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Abstract. Globally, there are over 24 000 storage structures
(e.g. dams and reservoirs) that contribute over 7000 km? of
storage, yet most reservoir data is not openly accessible.
As a result, many studies rely on generalized assumptions
about reservoir storage dynamics to create generalized oper-
ational policies. With the creation of remotely sensed reser-
voir storage datasets such as RealSat and GloLakes and lo-
calized datasets such as ResOpsUS for the contiguous United
States, and the Mekong Data Monitor for the Mekong River
basin, the inference of reservoir operations using data de-
rived techniques has become much more ubiquitous for re-
gional studies. Yet to our knowledge, there has been no
global application of data-derived methods due to data limi-
tations and model complexities. Our analysis aims to fills this
gap by providing a workflow for implementing data derived
reservoir operations in large scale hydrologic models. This
methodology uses global satellite altimetry data from Glo-
Lakes, a parameterization methodology developed by Turner
et al. (2021), and a random forest model to extrapolate opera-
tional bounds. Our results demonstrate that our random forest
algorithm can capture storage dynamics and that the associ-
ated errors are propagated from the type of data used. Ad-
ditionally, we observe that deriving operational bounds from
historical reservoir time series only directly impacts stream-
flow directly downstream of dams and has minimal impacts
at the basin outlets. We do, however, observe that the data-
derived methodology increases the accuracy of simulated
global reservoir storage when compared to remotely sensed
and observed storage observations. These derived storages
are much lower than in generic operation schemes which
suggests that current operational schemes are overestimat-
ing the amount of reservoir storage and potentially overes-

timating water availability. We also evaluated the sensitiv-
ity of our modelling framework to different downstream op-
erating areas (i.e. 0 to 1100km) and found that there were
slight improvements when including downstream demands.
Ultimately, our workflow allows global hydrologic models
to capitalize on recent data acquisition by remote sensing to
provide more accurate reservoir storage and global water se-
curity.

1 Introduction

Across the globe, there are over 24 000 reservoirs that regu-
late 63 % of all global rivers (Hou et al., 2024), contain 61 %
of the global seasonal variability in water storage (Cooley
et al., 2021), and greatly decrease river connectivity (Grill
et al., 2019; Belletti et al., 2020). With this loss of river
connectivity comes a large amount of water storage (over
8000000 m> (Lehner et al., 2011)) that provides water for
a variety of main purposes, ranging from water supply and
irrigation to hydropower and flood control. These storage
structures also decrease streamflow variability with height-
ened effects during extreme flows (Salwey et al., 2023; Zajac
et al., 2017; Chalise et al., 2021). With projected increases
in global cropland (up to 1244 MHa) and over 90 % of the
world’s population living within 10 km of readily available
surface water (Kummu et al., 2011; Potapov et al., 2021), the
importance of reservoirs for flood control, irrigation, and wa-
ter supply is large as the majority of society is dependent on
reservoirs for a variety of uses (Di Baldassarre et al., 2018).
Therefore, having an accurate depiction of reservoir storage
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at the global scale in observations and models is crucial to
evaluating both historical and projected water availability.
Global reservoir storage capacity increased over the past
40 years as dams were built to support a variety of main
uses (Lehner et al., 2011; Haddeland et al., 2006; Li et al.,
2020; Wisser et al., 2013). This increase in storage capac-
ity does not necessarily correlate with an increase in stor-
age as many regions (primarily arid basins such as south-
eastern Australia, southwestern US, and eastern Brazil) have
observed decreases in total reservoir storage (Steyaert and
Condon, 2024; Li et al., 2020) due in part to increased do-
mestic water demand resulting from population growth and
decreased storage capacities from sedimentation (Simeone
et al., 2024; Li et al., 2020; Wang et al., 2024; Wisser et al.,
2013). This regionality is especially important as remote
sensing observations show that most global reservoirs (more
than 50 %) have not filled between 2010-2022, with many
reservoirs in the Southern Hemisphere observing strong de-
clines (Yao et al., 2023; Wang et al., 2024; Li et al., 2023).
Ultimately, the regional differences in reservoir storage, the
lack of observed filling, and the impact of sedimentation
and water demand on storage levels are not well captured in
generic operations due to simplified calculations that do not
assimilate information derived from observed storage values.
This lack of accurate representation is due to the generic
assumptions needed in reservoir operations (e.g. Meigh et al.,
1999; Doll et al., 2003; Pietroniro et al., 2007; Rost et al.,
2008) that use storage capacities (usually derived) from
static datasets such as the Global Reservoirs and Dams
Dataset (GRanD) (Lehner et al., 2011) or the World Reg-
istry of Dams accessible from the International Commis-
sion of Large Dams (ICOLD; https://www.icold-cigb.org,
last access: 5 June 2024) and/or surface area to calculate a
water balance in the reservoir at each time step. Any “ex-
cess” water above the storage capacity is then released down-
stream. These methodologies are more readily incorporated
into large-scale hydrologic models, such as WaterGAP (Doll
et al., 2009) and PCR-GLOBWB 2 (Sutanudjaja et al., 2018)
due to their limited data requirements. Their main critiques
lie in the assumption that reservoirs are usually filled to their
maximum capacity, which overestimates the amount of stor-
age (Steyaert and Condon, 2024; Salwey et al., 2023), and
that they lack the incorporation of different operational poli-
cies. Additionally, they are limited by the availability of the
static reservoir maps, and as a result, many only include
the 6000 largest reservoir structures described in GRanD
Lehner et al. (2011) even though more recent mapping by
Wang et al. (2022) has shown there are over 24 000 reser-
voir structures. More recent advances by Salwey et al. (2023)
and Brunner and Naveau (2023) focus on utilizing water bal-
ance methods to back-calculate transient reservoir character-
istics from openly available data such as regional streamflow.
These methodologies show promise regionally but have not
yet been scaled to global applications nor implemented in
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global hydrologic models in part due to the lack of calibra-
tion data (Hosseini-Moghari and Déll, 2025).

More complex models of reservoir operations pushed for
the inclusion of water demand and main use as a driving fac-
tor for reservoir releases in order to better represent reser-
voir operations. These policies included demand and policy
changes based on main reservoir use (pioneered by Hanasaki
et al., 2006). Similar to this approach, Biemans et al. (2011),
Haddeland et al. (2006), Voisin et al. (2013),and van Beek
etal. (2011) also included downstream demand (denoted by a
command area of 250 km for Haddeland et al., 2006, 600 km
for van Beek et al., 2011, and 1100 km for Hanasaki et al.,
2006) into the reservoir water balance as well as incorporat-
ing different operational policies based on the reported main
reservoir use based on four main categories: irrigation, flood
control, hydropower generation, and navigation, with irriga-
tion and hydropower being the two most used categories (van
Beek et al., 2011; Voisin et al., 2013). While van Beek et al.
(2011) changed operations based on main use, Voisin et al.
(2013) changed operations based on seasonality (i.e. flood
control operations in the spring and irrigation prioritization
in the summer/autumn). Ultimately, these operational poli-
cies are also easy to incorporate into large-scale hydrologic
models as their calculations rely solely on static reservoir ca-
pacity, modeled inflow, modeled downstream demand, and
one or two extra parameters that can either be readily calcu-
lated within the model or calibrated using additional obser-
vations.

Reservoir operation schemes are also adapting to the
newly available data in both the regional and global con-
text. Turner et al. (2021), Zhao et al. (2016), Burek et al.
(2020), Macian-Sorribes and Pulido-Velazquez (2020), and
Yassin et al. (2019) parameterized reservoirs based on avail-
able data using anywhere from 10 to 72 key parameters. The
majority of these methods utilized reservoir data that was
freely accessible via online platforms and opted to include
operational bounds based on different operational decisions
(a level for flood control, an active storage level, a conserva-
tion pool, and a dead storage zone). Burek et al. (2020) and
Zhao et al. (2016) pioneered this work by dividing reservoirs
into multiple levels based on multiple linear regressions (Bu-
rek et al., 2020) and using user-derived parameters obtained
from the local stakeholders (Zhao et al., 2016). The advance-
ment and availability of high-resolution transient regional
data has led to a rapid increase in the application of ma-
chine learning in reservoir operations, specifically focused
on networks (Coerver et al., 2018) and fuzzy logic schemes
(Macian-Sorribes and Pulido-Velazquez, 2020). While these
methodologies showed promise regionally, the lack of global
data removes the individual operating nuances and can result
in errors in downstream flows, specifically in regions that are
underrepresented (Yassin et al., 2019; Turner et al., 2021).
Yassin et al. (2019) and Turner et al. (2021) furthered this
methodology by using freely accessible historical reservoir
time series to obtain operational curves based on data-mined
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reservoir data. This data was used to create seasonal time se-
ries of storage and release patterns that (depending on the
number of variables) can be more easily incorporated into
regional models (e.g. MOSART for Turner et al., 2021).

While the majority of these schemes analyze regional dy-
namics, only a few have been incorporated into regional
models: Turner et al. (2021) into MOSART, Yassin et al.
(2019) into the Canadian land surface model MESH (Pietron-
iro et al., 2007), and Macian-Sorribes and Pulido-Velazquez
(2020) into RiuNet, with generally good results. The incor-
poration into large-scale hydrologic models has, until re-
cently, been very limited by the high data requirements, re-
duced generalizability, the number of interconnected vari-
ables, and the number of parameters in these models. The
lack of available data, for example, makes training and ob-
taining these parameters quite challenging as many global
hydrologic models strive to quantify water quantity on the
global scale instead of the local scale and thus consistent
high-quality input data needs to exist with global cover-
age. Additionally, the incorporation of multiple parameters
and inter-dependencies (i.e. large-scale hydrologic models
require reservoir storage, yet reservoir storage calculations
from data-driven models are dependent upon output from hy-
drologic models) and lack of generalizability increases the
computational load and the potential for compounding errors
already associated within the original hydrologic model as
well as the reservoir model. This said, the recent improve-
ments in satellite altimetry data (Chen et al., 2022; Hou et al.,
2024) has created an avenue for creating data derived opera-
tions that can be calibrated and validated on a global scale.

To facilitate accurate global hydrologic modeling at high
spatial resolutions, we need to combine the simplicity and
generalizability of classical reservoir modeling approaches
with the newly available data and data-driven operating rules.
Specifically, there is a need to better incorporate transient
reservoir operations into global hydrologic models. There-
fore, the objective of this study is to utilize global reservoir
storage data calculated via satellite altimetry in combination
with a data-driven framework to derive static and seasonal
parameters for global reservoir operation. We will follow the
work of Turner et al. (2021) by estimating seasonal bound-
aries for release and conservation. Ultimately, these compo-
nents will be placed into the global hydrologic model PCR-
GLOBWRB 2 (Sutanudjaja et al., 2018) to answer the follow-
ing questions:

— Are reservoir operations whose operating rules have
been extrapolated using data-derived approaches more
accurate than generic ones and what does this mean for
the current data gaps in reservoir operational data?

— What is the sensitivity of different reservoir operations
to the size of the command area?

— How does the ability of global hydrologic models to re-
produce streamflow and reservoir storage improve or
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decrease depending on the type of reservoir operation
used (i.e. generic vs. data-driven)?

To answer these questions, this study uses a dataset of re-
motely sensed reservoir time series from Hou et al. (2024)
that can be the basis for a statistical model (STARFIT), which
derives reservoir operational bounds. Using these operational
bounds, we derive two main reservoir models for irrigation-
like (dams that are focused on meeting downstream demand)
and hydropower-like dams (dams that are focused on hold-
ing storage stable). We implement these operational policies
in PCR-GLOBWRB 2 in order to evaluate the global impact
of changing reservoir regimes on global water resources.

2 Methods

For this analysis, we updated the number of storage struc-
tures in PCR-GLOBWB 2 (Sutanudjaja et al., 2018) from
6000 to over 24 000 worldwide using a new dataset: Geo-
DAR (Wang et al., 2022) (Sect. 2.1). Additionally, we also
update the current reservoir operations. To do this, we fol-
lowed the data derived workflow outlined in Fig. 1. First,
we utilized a new dataset of remotely sensed reservoir sur-
face area and estimated storage created by Hou et al. (2024)
called GloLakes (titled reservoir time series in Fig. 1). We in-
put this weekly data into the STARFIT model developed by
Turner et al. (2021) (Sect. 2.5.1) to determine reservoir rule
curves that specify seasonal flood and conservation pools.

After obtaining seasonal flood and conservation pools for
1752 reservoirs, we then trained a random forest model to
predict the ten parameters that determine the flood and con-
servation zones for these 1752 reservoirs. The random for-
est model used static reservoir characteristics and hydrocli-
matic socioeconomic variables as features. We then used the
trained random forest model (Sect. 2.6) to extrapolate ac-
tive storage bounds for all of the 24 000 structures and com-
pared this new operational scheme with the current reservoir
scheme in PCR-GLOBWB 2 (Sect. 2.7). Finally, we split
the 22 000 dams into categories based on their main use and
modelled releases based on two main operational schemes
described in Sect. 2.5.2 and 2.5.3. This allowed us to analyze
the bias in using different input data in our random forest
workflow and the impact of operational schemes on PCR-
GLOBWB 2 outputs.

2.1 Data Sets

To compliment the hydrologic model and statistical model
(STARFIT from Turner et al., 2021), we required a variety of
datasets that are depicted in Table 1. These datasets are used
to update the number of reservoirs in PCR-GLOBWB 2, train
the random forest algorithm, and validate our analysis.
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Figure 1. Outlines our workflow to create the data-derived operations implemented in PCR-GLOBWB 2. Orange boxes denote the instances
where outside reservoir, socioeconomic, or hydroclimatic datasets were used. Blue boxes denote the parameters and the final curves, while
green boxes denote the models that we used in our methodology. For our analysis, we used 1752 reservoir time series and thus, the STARFIT
maximum-minimum active zone boundaries are only available for 1752 dams. The random forest methodology allows us to extrapolate the
active zone curves from these 1752 structures to 24 000 global reservoirs.

Table 1. Describes the data used in this analysis. Column one gives the dataset name. Column two gives the paper citation or webpage
associated with the data source. Column three gives the type of data, and column four describes the function the data played in this analysis.

Dataset Name Citation Type of Data Purpose
Global Runoff Data Centre https: Discharge data Streamflow validation
/Iwww.bafg.de/GRDC/EN/

Home/homepage_node.html
(last access: 17 July 2023)

GeoDAR Wang et al. (2022)

Static reservoir characteristics Base maps

Global Reservoir and Dams Lehner et al. (2011)

Dataset

Static reservoir characteristics Base maps

International Commission of
Large Dams Dataset

https://www.icold-cigb.org
(last access: 13 March 2019)

Static reservoir characteristics Gap filling missing reservoir

purposes and construction

dates
GloLakes Hou et al. (2024) Transient reservoir operations Random forest algorithm and
storage validation
ResOpsUS Steyaert et al. (2022) Transient reservoir operations Storage validation

2.1.1 Reservoir Data

To update the number of reservoirs in PCR-GLOBWB 2,
we used a newly minted reservoir dataset that contains over
24000 global structures (Wang et al., 2022). The dataset
itself contains static reservoir properties such as surface
area, capacity, latitude, and longitude. In order to fill miss-
ing gaps in surface area, capacity, creation date, and main
reservoir purpose, we linked GeoDAR (Wang et al., 2022)
to the Global Reservoirs and Dams Dataset (GRanD) cre-
ated by Lehner et al. (2011) and the International Com-
mission of Large Dams (iCOLD) registry (ICOLD; https:
/Iwww.icold-cigb.org, last access: 13 March 2019). From this
updated table, we created annual maps of static reservoir
characteristics (e.g. outlet points, storage capacity, reservoir
id, and surface area), which are used as inputs to model reser-
voir releases and to distinguish between two operational poli-
cies hydropower-like and irrigation-like. We separated our
operations into these two categories as Steyaert and Condon
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(2024) and Salwey et al. (2023) noted differences in opera-
tional patterns between storage reservoirs (noted as irrigation
and water supply main uses) and non-storage reservoirs (such
as hydropower, navigation and flood control uses).

In addition to static reservoir characteristics, we required
transient reservoir data for the STARFIT model. For this, we
used the GloLakes dataset (Hou et al., 2024), a dataset that
contains remotely sensed reservoir surface area time series
data for the majority of dams and lakes in HydroSHEDS
(Giachetta and Willett, 2018). Hou et al. (2024) used re-
motely sensed surface area extents from Landsat and reser-
voir depths from BLUEDOT/Sentinel2 and other satellite
products. These outputs were then put into a storage area
relationship from Crétaux et al. (2016) to calculate reser-
voir storage. From GloLakes, we were able to fit curves for
over 6000 storage structures worldwide. Due to limited satel-
lite coverage and temporal gaps, the majority of data points
sit within latitudes between 56° S and 82.8° N and are only
available on the weekly time scale.
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2.2 Validation Data

To validate our analysis, we used two types of validation
data to benchmark the quality of the random forest model
and our data-driven reservoir operations: storage data from
ResOpsUS and the LandsatPlusICESat2 product from Glo-
Lakes, and streamflow data from the Global Runoff Data
Center. Reservoir storage data from the ResOpsUS dataset
(Steyaert et al., 2022), which contains over 600 reservoirs
spread throughout the conterminous United States and was
the original data (Turner et al., 2021) used to create the
STARFIT algorithm, is used as an independent benchmark
to evaluate how well the workflow captures seasonalities
against direct observations. To validate storage changes and
potential storage uncertainties within the workflow globally,
we used the estimated water level variations from Landsat-
PlusSentinel2 and LandsatPlusICESat2, as both are avail-
able at the same temporal and spatial resolution. To vali-
date and benchmark the addition of our data-driven opera-
tions in PCR-GLOBWB 2, we used global streamflow data
from over 10000 gages in the Global Runoff Data Center’s
(GRDC) dataset. The data in GRDC has good coverage over
North America and Europe and lower coverage in Asia and
Africa (Burek and Smilovic, 2023). Even with the limited
coverage, GRDC data is still the best for global validation
of streamflow. Our validation used 75 % of all the gages and
of these 75 %, 8 % of the gauges have a full period of record
from 1979-2023 which is the period over which we analyzed
changes in streamflow due to reservoir operations. For a more
detailed analysis, we removed all the gages that were not di-
rectly downstream of a reservoir and were therefore left with
2666.

All the data for this analysis was acquired through open-
access sources and has been noted in either Table 1 or the
Data Availability section.

2.3 PCR-GLOBWB 2

PCR-GLOBWRB 2, our primary global hydrologic model, is
a grid-based hydrologic model that covers the entirety of
the globe (aside from Greenland and Antarctica) and esti-
mates human water use as well as hydrological variables.
The computational grid of PCR-GLOBWB 2 is available
at a variety of resolutions: 30 arcmin, 5 arcmin (Sutanudjaja
et al., 2018) or 30 arcsec (van Jaarsveld et al., 2025; Hoch
et al., 2023). For each grid and time step (daily for hydro-
logic variables and dynamic for river routing), the model
simulates moisture storage and water exchanges between the
ground, atmosphere, and soils. Through this, it can effec-
tively simulate transpiration from crops and vegetation, evap-
oration from soil and open water, snow and glacier processes
such as accumulation and melt, surface runoff, groundwa-
ter recharge, soil and plant transpiration, discharge, reservoir
storage, reservoir release, and runoff. The system’s runoff
is routed through a river network to potential sinks such as
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the ocean, or endorheic lakes and wetlands using the kine-
matic wave approach. The model currently has 6000 dams
based on GRanD (Lehner et al., 2011) that use a generic op-
eration scheme developed by Sutanudjaja et al. (2018) and
described in Sect. 2.4.1. In addition to modeling hydrologic
variables, Wada et al. (2014) included an updated scheme
for evaluating human water use. At each daily time step in
PCR-GLOBWRB 2, three main steps occur: (1) water demand
for irrigation, industrial, livestock, and domestic uses is esti-
mated, (2) these estimated demands are translated into with-
drawals from surface and/or groundwater sources subject to
the availability of these resources and the maximum ground-
water pumping capacities, and (3) consumptive water use
and return flows are calculated per sector (Sutanudjaja et al.,
2018).

2.3.1 Inclusion of GeoDAR into PCR-GLOBWB 2
domain

Since PCR-GLOBWB 2 runs on a gridded model domain,
our first step in updating the number of structures was to
create new input maps by remapping the geospatial struc-
tures from GeoDAR to the PCR-GLOBWB 2 domain. First,
we rasterized the GeoDAR attributes and overlaid them on
the PCRaster global domain maps that has a 5 arcmin spa-
tial resolution (about 10km at the equator). We opt for the
5 arcmin resolution in order to capitalize on the extensive val-
idation and benchmarking done by Sutanudjaja et al. (2018)
and to limit excessive calculation times that occur at higher
resolutions (van Jaarsveld et al., 2025). We then ensured that
the mapped location based on the latitudes and longitudes
from GeoDAR also aligned with other reservoir character-
istics such as upstream catchment area. We compared the
catchment areas reported in GRanD, iCOLD, and GeoDAR
to the calculated catchment area at the dam location calcu-
lated from the PCR-GLOBWRB 2 drainage network. For each
potential location, we minimized the difference in catchment
area and the distance to the reported latitude and longitude of
the dam. Due to the decision to model at a spatial resolution
of 5 arcmin, we found that some dams are situated within the
same grid cell. For these grid cells that had multiple dams,
we summed their storage capacity and chose the construction
date of the first dam. After remapping the dams to their new
location on the PCR-GLOBWB 2 domain, we then ensured
that reservoirs were not split between multiple catchments
and that lakes and reservoirs were not mixed if situated in
the same grid cell. Here, we calculated the total area of each
lake and reservoir per cell, and if the total area of the lake
was larger than the reservoir for overlapping structures, we
converted the reservoir cells to lakes and vice versa. We en-
sured that reservoirs were only present in the dynamic model
simulation after their initial construction date to avoid unre-
alistic discharge simulations. Lastly, we repeated this process
with the original input data from GRanD to ensure any differ-
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ences in our results could be solely attributed to the reservoir
operations or initial reservoir input data.

2.4 Reservoir Operations

To evaluate the impact of ‘“standard” generic operations
and data-driven reservoir operations on global discharge, we
opted to utilize two different reservoir schemes. The first is
a generic reservoir scheme derived from Sutanudjaja et al.
(2018) which uses static values such as maximum reservoir
capacity and operational bounds: 10 % of maximum storage
capacity as the dead storage (the point where water can no
longer be abstracted from the dam) and 75 % of maximum
storage capacity as the maximum available storage, with
year-round fixed boundaries that do not reflect seasonality.
The second is a data-derived reservoir scheme: STARFIT, de-
rived by Turner et al. (2021) to fit historical reservoir time se-
ries from ResOpsUS (Steyaert et al., 2022). This method de-
rives weekly operational bounds for flood and conservation
zones from historical storage time series and has been cali-
brated and tested in the United States (Turner et al., 2021). As
our analysis is done globally, we use data from the 1752 dams
in GloLakes Hou et al. (2024) and derive the operational
bounds for the STARFIT using a combination of observa-
tions and machine learning. To complement these operational
bounds, we employ two main sets of equations based on
two main groupings of reservoir main purposes: irrigation-
like and hydropower-like (Sect. 2.5.3 and 2.5.2). We use
these two groupings to denote how releases change based
on reservoir storage level. In irrigation-like dams, the goal
is to meet downstream demand and therefore the equations
in Sect. 2.5.3 prioritize this goal by meeting all downstream
demand when reservoir storage sits between the data derived
operational bounds and proportionally less when storage sits
between the conservation bound and 10 % of the maximum
storage capacity of the reservoir. For hydropower-like dams,
the goal is to hold storage as stable as possible. Therefore,
the equations in Sect. 2.5.2 prioritize meeting downstream
demand when the storage in the hydropower-like reservoir
sits between the data derived operational bounds. However,
if meeting this downstream demand causes the reservoir stor-
age to drop below the conservation bound, then the reservoir
can only meet a portion of the downstream demand to allow
storage to stay in the active zone (zone between the opera-
tional bounds). For both types of reservoirs, we employ an
additional flood release and account for environmental flow
requirements as 10 % of the naturalized flow (Gleeson and
Wada, 2013).

For all of the operational schemes (generic, irrigation-
like and hydropower-like), we employ the following method.
First, we define the initial release and set up the framework
for other conditions, such as environmental flows and floods.
To do this, we first calculate the initial discharge into the
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model that is defined by Eq. (1).
R; ZRF'Ran (1)

where RF is the reduction factor as shown in Eq. (3) with the
updated values as defined above, R,y is the long-term aver-
age outflow that is dynamically calculated within the model.
This initial release (R;) is used as a starting point in each op-
erational scheme and is modified based on the type of opera-
tion used. In all cases, the R; cannot be greater than the down-
stream bankfull discharge value of 2.3, which is the highest
ratio of streamflow to stream network is expected to transport
without floods occurring.

Then, we calculate the new storage using the following
water balance equation under the initial release to ensure a
starting point of storage:

Sct+1D)=8@)+ 1)+ P1)—E@W)—R; 2

where [ is inflow, S; is reservoir storage, P is precipitation,
E is evaporation, R is release, and ¢ refers to the time step.

We use this updated storage to define the reduction fac-
tor, which is the fraction of the long-term average reservoir
release, as outlined in Eq. (3).

RF = Sc¢ — Smin

Smax - Smin

3)

where S; is the current storage level, Spax 1S the maximum
storage capacity and Spip is the dead storage level.

After this, we employ updated release calculations based
on Sect. 2.4.1, 2.5.2, or 2.5.3 depending on the type of op-
erational scheme used as well as the type of dam. This new
release is then placed back into Eq. (2) to update the storage
at the current timestep.

2.4.1 Generic Reservoir Scheme in PCR-GLOBWB 2

Generic reservoir operations are already implemented in
PCR-GLOBWB 2 by Sutanudjaja et al. (2018) and mimic
that of hydropower operations. Each reservoir has an active
zone between 10 % and 75 % of the reported maximum stor-
age capacity in GRanD. When storage is below the dead
storage limit (i.e. 10 % of maximum capacity), the reservoir
does not release any water. Between 10 % and 75 % full, the
reservoir outflow is scaled by the reduction factor denoted by
Eq. (3).

The generic release operations are defined by the follow-
ing piecewise function.

0 if Se < Smin
R = Rf . sQavg if S¢ > Smin and Sc < Smax
S5 (Qor— Qavg) + B if Se > Smax

“)

where Q,yg is the longterm average discharge at the point
location of the dam, Qyy is the bankfull discharge, and B is
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the bankfull number which is the ratio of bankfull discharge
to the average discharge and is denoted as 2.3 in our analysis
(van Beek et al., 2011).

In all instances, demand is set at zero, meaning that
the reservoir is changing releases solely based on storage.
When reservoir storage minus the projected release would
be greater than the set maximum of 75 % of storage ca-
pacity or Smax, the reservoir enters flood conditions. At this
point, an additional release is added to ensure that the reser-
voir is brought back to the upper 75 % of storage and is
not over-topped. All the water is routed downstream where
it can be further allocated within the river network in PCR-
GLOBWRB 2.

2.5 Data Driven Reservoir Operations - STARFIT
2.5.1 Operational Curves by STARFIT

To remedy gaps in generic reservoir operations (primarily
the lack of demand, no environmental flow, and uniformly
large active zones), Turner et al. (2021) used the ResOpsUS
dataset (Steyaert et al., 2022) to create STARFIT, a reservoir
model that takes historical reservoir storage, release, and in-
flow data to output operational ranges for each variable. To
do this, these daily storage, release and inflow values are ag-
gregated into weekly time series and a combination of sine
and cosine curves (described by Eq. 5 below where u, o, and
B are curve parameters and further described in Turner et al.,
2021) are fit to the upper and lower percentiles of each time
series. This results in two curves bounded by the upper and
lower percentiles with a total of 10 parameters, which creates
a range within which reservoir release, storage, and inflow
should sit based on historical data (Turner et al., 2021, used
the period from 1980-2020).

S =u+a-sinRrwt) + B -cosQrwt) 5)

For our analysis, we were only able to obtain storage time se-
ries from GloLakes, as no global dataset of reservoir releases
is available. We applied the Turner algorithm to GloLakes
storage data for 1752 dams from 1980-2020. This data is al-
ready aggregated weekly due to the gaps in satellite passages
and therefore we were able to use the estimated storage val-
ues directly from these remotely-sensed observations. We did
not gap-fill the data as this would add additional assumptions
that could later lead to increased uncertainties. We fit flood
and conservation curves to the 1752 dams and obtained the
10 parameters (five for the flood and five for the conservation
curve) denoting the upper and lower limits of the active zone.
The 10 parameters were then used as training data for a ran-
dom forest model that was used to extrapolate the parameters
to the global scale (Sect. 2.6).

Since there are large differences between irrigation/wa-
ter supply dams and hydropower/navigation, we grouped the
dams into two main categories. Main purposes, such as ir-
rigation and water supply, were grouped as their dynamics
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are driven by downstream demand (either for agriculture or
for domestic uses), while main purposes that have opera-
tions that are not demand-driven such as hydropower, fish-
eries, navigation, recreation, and other were grouped into
a second category. To ensure that these two groupings had
distinct dynamics, we evaluated the average, maximum, and
minimum flood and conservation curves for both irrigation-
like and hydropower-like reservoirs for all the 1752 train-
ing dams. These distinctions, shown in Fig. A3, demonstrate
that our groupings had uniquely different conservation time-
series.This grouping allowed us to have two main operational
strategies: one for hydropower-like dams which strive to keep
storage as high as possible and one for irrigation-like dams
which strive to meet downstream demand.

Before we could implement the data-derived reservoir op-
erations in PCR-GLOBWB 2, we had to calculate command
areas as the reservoir operation scheme requires downstream
demand to determine how much water should be released by
water supply and irrigation dams. Based on our literature re-
view, we observed that there are three main command ar-
eas used by large-scale hydrologic models: 250 km (Hadde-
land et al., 2006), 600 km (van Beek et al., 2011), 1100 km
(Hanasaki et al., 2006). For each dam represented in the Geo-
DAR map, we calculated the farthest location along the river
network at a distance of 250, 600, or 1100 km and allocated
the water demand in each cell up to this point to the upstream
reservoir. If during this process, another dam intersects the
river network before the full command area is created, we as-
sume that this is the maximum distance that is served by the
upstream reservoir. This command area is used to aggregate
the total downstream demand that could be met by the reser-
voir. We use this aggregated downstream demand in both the
hydropower-like and irrigation-like dams as both dam types
can meet the downstream demand when storage sits between
the data derived operational bounds. We found that while our
model was not sensitive to the downstream area (Fig. Al),
we did observe that the addition of a command area increased
our model performance (Fig. A4).

Hydropower-like dams are only able to meet a portion of
downstream demand when they are within their active zone
and meeting demand would not decrease storage below the
conservation bounds. Irrigation-like dams, on the other hand,
are allowed to meet demand when in the active zone and
above dead storage (denoted as 10 % of the storage capacity).
We also included surface water abstractions for irrigation-
like dams. In PCR-GLOBWRB 2, surface water is abstracted
from the river or lake cell closest to the cell with a demand.
For irrigation-like dams, we only allowed surface water ab-
stractions if the abstracted volume of water would not drop
the reservoir storage below the conservation curve.

Lastly, we implement a piecewise function for releases
based on the current reservoir storage (S;) where Ry is the
flood release, Env is the environmental flow requirement de-
fined in PCR-GLOBWB 2, and R; and Ry, are the irrigation
and hydropower releases in the active zone and are described
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in by Eq. (9) in Sect. 2.5.3 and by Eq. (8) in Sect. 2.5.2 re-
spectively.

Ri+ Ry, if S§¢—R > Scap
Ry if S¢ > Smin
and S¢ < Smax and use is hydropower
R= 1R if Se > Smin
and S; < Smax and use is irrigation
Env if S¢ < Smin
and R; or Ry, < Env and S; — Env > 0
(6)

where Rt = S¢ — R — Scap.
2.5.2 Operations for Hydropower-like Dams

For the hydropower-like dams, we implement a very similar
methodology to the generic reservoir operations, with the no-
table exception that the upper and lower operational bounds
are not set at 10 % and 75 % of maximum storage capac-
ity but rather are derived from the observational data using
the workflow described in Fig. 1. We use these operational
bounds to denote the active zone and therefore the release
factor (Eq. 3) for the hydropower dam. We opted for differ-
ent hydropower and irrigation operations as the main goal
of each type of reservoir is slightly different. For example, a
hydropower dam in Switzerland could have slightly different
operational bounds than a hydropower dam in Vietnam, how-
ever, the main purpose: hold enough water to support elec-
tricity generation, would be the same. For all hydropower
dams, we calculate a new initial hydropower release based
on Eq. (7):

D-RF/B, ifR<D
Ryi = ) @)
R if R>D

where D refers to the maximum demand aggregated at the
specified downstream area (250, 650, 1100 km), R is the cur-
rently calculated release, RF is the reduction factor (defined
in Eq. 3), Ry, is the initial release, and B is the bankfull dis-
charge.

Once the hydropower release is calculated, there are mul-
tiple options for the final release outlined by Eq. (8). When
storage is below conservation, the release is equal to the re-
calculated environmental flow and the dam meets no down-
stream demand. When the storage again enters the active
zone (the area between the conservation and flood curves),
the release is the difference between the current storage (Sc)
and the hydropower release described by Eq. (8). If this new
release results in a lower storage value than the conservation
value, we assume the release is equal to the environmental
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flow value and does not release any additional water.

Sc — R, if Smin < S¢ < Smax

Ry = and S¢ — Rpi > Smin (8)

max(Se — Smin, 0)  if S¢c — Rpi < Smin

where Rp; is the initial hydropower release defined by
Eq. (7), S. is the current storage, Spayx is the flood value and
Smin 18 the conservation value.

2.5.3 Operations for Irrigation-like Dams

For irrigation-like dams, Spiy is set at 10 % of the maximum
storage capacity and Spax(?) is set at the flood value of that
given day. When storage is in the active zone and above the
dead storage zone (defined as the lower 10 %) the release will
be equal to the calculated demand, unless releasing that much
water would push the storage into the dead zone (defined as
the lower 10 % of the storage capacity). In the case where the
precalculated release is already greater than demand (Eq. 1),
the release does not change. We use the following piecewise
function to capture these dynamics:

R, if Smin < S¢ < Smax
and R > D
Ri={(RF-D) if Smin < Sc¢ < Smax 9

and R < D

max(Se — 0.1 - Scap,0) if S¢ — R < 0.1 Scap

2.6 Random Forest Extrapolation

Since the weekly operational bounds from STARFIT are only
available for 1752 structures globally, this would severely
limit our global modeling capabilities. Therefore, we used a
random forest approach to extrapolate the 10 parameters for
the approximately 22 000 other structures in GeoDAR based
on relationships between the parameters for the 1752 dams
and their reservoir and catchment characteristics. As input
features, we used static reservoir characteristics (i.e. stor-
age capacity and main purpose), socioeconomic variables
(i.e. population density), and climatic variables for the up-
stream areas (i.e. precipitation, temperature, and aridity) to
best reflect potential drivers for changes in reservoir release
policies. 75 % of the 1752 structures were used to train the
random forest model and the remaining 25 % were used as
independent validation. Additionally, we may find that by us-
ing a different validation scheme, our operational curves may
also change as our random forest is sensitive to the input data
(Table A1). The obtained RF was then used to extrapolate the
10 parameters to all 24 000 structures.

Based on Steyaert and Condon (2024) and van Beek et al.
(2011), we assume that the flood peak cannot be greater than
100 % or less than 5 % of the total storage capacity. There-
fore, any values that sit above 100 or less than 5 for flood are
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automatically set at these bounds. We also assume that there
is at least a 5 % difference between the flood and conserva-
tion curves so that there is always an active zone in the reser-
voir. To ensure this is the case, we calculate the difference
between the flood and conservation curves at each weekly
step for each dam and if the difference is less than 5, we use
Eq. (10) below to calculate the new conservation level where
C;..., 1s the conservation value at the current timestep, F; and
C; are the flood and conservation values at the timestep.

[Ctnew =min(F; — 5, Cy)] (10)
2.7 Model Evaluation and Model Setup

In this study, we use five scenarios to test the impact of differ-
ent reservoir datasets as well as different reservoir operating
schemes on the hydrologic simulations of PCR-GLOBWB 2.
Our first two scenarios use the original reservoir operations
in PCR-GLOBWB 2 and only differ by the reservoir input
datasets (Table 2 column 2): one has the GeoDAR database
as the input (BaseGeoDAR) and one has the GRanD data as
input (named Baseline), both of these use the reservoir op-
erating scheme as developed by Sutanudjaja et al. (2018).
We then create three scenarios with the updated data-driven
algorithm for the three command areas we opted to test
based on literature: 250km (Turn250), 600 km (Turn600),
and 1100 km (Turn1100). These three scenarios use the Geo-
DAR reservoir dataset as the input dataset and can be directly
compared to the Baseline and BaseGeoDAR scenarios that
use Sutanudjaja et al. (2018).

To estimate the impact of different reservoir datasets, we
compared the Baseline and the BaseGeoDAR scenarios as
any difference in the hydrologic variables (e.g. discharge,
reservoir outflow, reservoir storage, reservoir evaporation,
surface water abstraction, and total runoff) can be related
directly to the different number of reservoirs structures in
the model. The comparison between the BaseGeoDAR and
Turn250, Turn600, or Turn1100 serves to identify the impact
of implementing a different reservoir operating scheme in an
existing model like PCR-GLOBWB 2.

To validate our analysis, we compared PCR-GLOBWB 2
discharge at the point location closest to dams where ob-
served discharge is available via GRDC (Federal Institute
of Hydrology, 2020). While this validation has its limita-
tions (mainly we are only looking at single point locations
and there is a skew towards more gauged basins) it allows
us to observe how streamflow regimes are changing between
the different simulations, how different that regime change
might be between different reservoir release schemes, and
to determine which reservoir operation scheme will produce
the most accurate streamflow measurements. To complement
this, we also validate our reservoir storage against observed
storage values in ResOpsUS as well as remotely sensed reser-
voir storage from GloLakes to see if reservoir dynamics are
better represented with the new database schemes.
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3 Results
3.1 Impact of reservoir datasets

We first analyze the impact of changing the reservoir
dataset on the global representation of reservoirs in PCR-
GLOBWRB 2. Figure 2 shows the total storage that is added
to the modeling domain when changing from GRanD (global
storage of 6355.72km?®) to GeoDAR (global storage of
7123.66 km?). 95 % of the 230 global basins depicted in Hy-
droSHEDS observe increases in reservoir storage as a result
of the inclusion of new dams and only a few basins show
a reduction. Of these 218 basins, 40 basins have slight in-
creases in storage (noted as percent differences between 0
and 1 %), while the remaining 178 basins observe more sig-
nificant increases. The largest storage increases are observed
in Greenland, Central Asia, the Middle East, the Horn of
Africa, and Central Africa. Of the 11 basins that do not ob-
serve increases in storage, spread throughout Central Mex-
ico, Brazil, East Africa, China, the Baltic states, Ireland, and
Spain, two observe storage percentages very close to 0, and
9 observe much larger negative differences. The lowest value
sits at —21 % and is located in Ireland, which is the result
of corrections in dam locations or storage volumes moving
from GRandD to GeoDAR.

These negative values are the result of the two main deci-
sions. The first is the decision to use GeoDAR as the “truth”
value when reporting storage capacity, as GeoDAR included
GRanD and updated these values where necessary. This de-
cision could mean that some dams have lost storage capac-
ity due to discrepancies between GRanD and GeoDAR. Sec-
ondly, our workflow for creating the updated input maps for
GeoDAR looks at each catchment and determines the total
surface area of each reservoir and lake. Since reservoirs can-
not be split across multiple catchments, we calculate the to-
tal area of the reservoir in each catchment and then place the
reservoir in the location that has the largest area in large with
the HydroSHEDS draining network in PCR-GLOBWB 2
(Giachetta and Willett, 2018). While this is physically sound,
the PCR-GLOBWB 2 drainage network might not directly
align with the physical river networks, or the reservoir dataset
does not align with the digital drainage network, and there-
fore, some reservoir structures might be oriented in a differ-
ent basin. For small dams, this might not be an issue, but for
larger dams, this could end up causing storage differences.

To evaluate the impact the increased number of dams has
on the global streamflow, we aggregated the long-term an-
nual average runoff from 1979-2023 across all 230 global
basins and then divided the total storage capacity by the long-
term average annual runoff for each basin. This yields the
fraction of regulation per basin depicted in Fig. 2b. 20 % of
the basins or 42 total basins have zero regulation due to hav-
ing no reported storage capacity (regions depicted in grey in
Fig. 2a) while 4 basins have regulation values greater than
0.5, meaning that half of the longterm basin runoff is stored
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Table 2. Shows the model scenarios that we have built and tested for this paper. The first column denotes the name assigned to the model

scenario in the results.

Model Reservoir Dataset and number of dams  Operational Policies Command Area (km)
Baseline GRanD (6000) Sutanudjaja et al. (2018)  None

BaseGeoDAR  GeoDAR (24 000) Sutanudjaja et al. (2018)  None

Turn250 GeoDAR (24 000) Turner et al. (2021) 250

Turn600 GeoDAR (24 000) Turner et al. (2021) 600

Turn1100 GeoDAR (24 000) Turner et al. (2021) 1100

Percent Difference (%)
B > 25
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[1-5-5
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Figure 2. Change in total storage globally in GeoDAR when compared with GRanD as a percentage (a) and the fraction of regulation in each
basin (b) where grey represents areas that have no storage. Both panels use the PCR-GLOBWB 2 input files using GeoDAR to determine the
total storage in each basin. Panel (b) uses the average of 40 years of modeled runoff data from PCR-GLOBWB 2.

in reservoirs (i.e. in the southwestern US and the Middle
East).

More notable than the exact regulation values are the dif-
ferences and similarities between the patterns in Fig. 2a and
b. Basins with a large degree of regulation (shown in Fig. 2b),
like the Colorado Basin, Yenasei, and the Tigris-Euphrates,
have a large amount of storage which suggests that these re-
gions have a multitude of medium to large dams compared
to the available runoff. Conversely, some basins with a large
amount of storage (Fig. 2a) such as much of Central and
South Eastern Asia, Central Africa, and Western Australia
do not have a high degree of regulation, which implies that
there is not a direct relationship between total storage and a
high degree of regulation (Fig. 2b).
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3.2 Evaluation of the Random Forest Model

First, we added the 24 000 structures to the PCR-GLOBWB 2
domain and developed the workflow described in Fig. 1 to in-
corporate two main types of reservoir operations into PCR-
GLOBWB 2. We then evaluated the impact of this method-
ology by using different input datasets: ResOpsUS (n = 668,
Steyaert et al., 2022) and GloLakes (n = 24000, Hou et al.,
2024) in four different combinations. The first combination
is a comparison between the different STARFIT curves ob-
tained from each reservoir dataset (Table 3: column 1). This
comparison (using 668 dams across the contiguous United
States) allows us to evaluate the implicit impact of using lo-
cal data (ResOpsUS) compared to a global remotely sensed
dataset (GloLakes), that is required for global applications
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like global hydrologic model simulation. The difference we
find in this comparison shows the potential reduced quality of
global reservoir water level estimates compared to local in-
formation. The second combination is a comparison between
the STARFIT-derived curves for ResOpsUS (Table 3: col-
umn 2) and the extrapolation of those curves (n = 668) us-
ing our random forest methodology in Sect. 2.6. This allows
us to evaluate how well our methodology matches the origi-
nal derivation of reservoir operating curves compared to the
benchmark dataset of STARFIT. The last two comparisons
are between two different data products from GloLakes for
satellite altimetry: ICESat2 and Sentinel2 (Table 3: columns
3 and 4), which allow us to see the difference in quality mov-
ing from local to global and using a random forest compared
to the original methodology.

The bias metrics (given in percentages) in the first column
show that STARFIT with GloLakes overestimates the flood
level while the conservation level is slightly underestimated,
yet the higher correlation demonstrates the timing is consis-
tent between the two datasets. Conversely, the conservation
correlation is not as strong (0.59 %), however, the conserva-
tion curves are slightly closer to the original STARFIT data
than the flood curves.

After evaluating the uncertainty of the input STARFIT
curves from direct observations and the satellite altimetry
data (Table 3: column 1), we evaluate the extrapolation
methodology in Fig. 1 with ResOpsUS (Table 3: column 2).
The third column shows the bias between the random forest
algorithm and the original algorithm. Overall, we observe a
large bias for the flood curves and quite high correlations for
flood and the conservation curves suggesting the RF work-
flow is overestimating the flood curves yet still aligns with
the values in STARFIT. RMSE (% per week) for both the
flood and conservation curves are high which demonstrates
that while the timing of the flood curves match, the general
errors are much larger in part because the RF algorithm un-
derestimates the conservation levels. Compared to column
two, the conservation correlations rise and the bias decreases
which suggests the random forest algorithm trained on ob-
servational data does a relatively good job of capturing the
levels for the conservation curves compared to the STARFIT
algorithm. The RMSE values (given in % per week) do in-
crease and the flood correlation decreases suggesting that the
RF does not accurately capture the flood values potentially
due to the short notice period for flood conditions.

Columns 3 and 4 show the extrapolation metrics for both
GloLakes datasets: ICESat2 (column 4) and Sentinel2 (col-
umn 3). These results show that when applied to GloLakes,
the RF extrapolation effectively reproduces the flood and
conservation curves, even better than when the RF is ap-
plied to the ResOpsUS STARFIT curves (Column 2). How-
ever, column 1 shows that the largest error occurs when
moving from ResOpsUS to GloLakes. Thus the total errors
are mostly made up of errors in the storage time series that
are obtained from remote sensing. In general, the operating
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Figure 3. Operational curves as storage percentage vs. epiweek
for two main types of dams: hydropower (a, b, ¢, d, €) and irri-
gation (f, g, h, i, j). Panels (a) and (f) depict the original curves
that come out of the STARFIT model. Panels (b) and (g) depict
the STARFIT model using the data from GloLakes Sentinel2. Pan-
els (¢) and (h) depict the Random Forest algorithm trained on Re-
sOpsUS. Panels (d) and (i) depict the Random forest methodology
shown in Fig. 1 using the GloLakes ICESat2 data, while panels (e)
and (j) show the final constrained curves from the random forest
methodology using GloLakes Sentinel2.

bounds are more narrow compared to the original algorithm
(Fig. 3).

While the metrics depicted in Table 3 provide a summary
and validation of our workflow, the actual curves related to
the different data and method combinations are much more
insightful. For illustration, Fig. 3 shows the results for dams
with two main purposes: the Butt Valley Dam (California,
United States) with a hydropower main purpose (Fig. 3 top
row) and the Medina Dam (Texas, United States) with an ir-
rigation main purpose (Fig. 3 bottom row). We only include
hydropower-like and irrigation-like as our allotted reservoir
operations in Sect. 2.4 use these two categories to determine
operations.

When looking at the hydropower example, Butt Valley
Dam, (Fig. 3: top), we observe that all the curves have a peak
during the first half of the year which aligns with spring pre-
cipitation in this region. The ResOpsUS (Fig. 3a) curve has a
larger peak (a range of 20 % and 95 %) when compared to the
other algorithms. GloLakes-STARFIT (Fig. 3b), on the other
hand, has a much more limited operational range (between
20% and 75 %). This range is further limited when look-
ing at the RF model using GloLakes-ICESat2 or GloLakes-
Sentinel2 (Fig. 3d and e respectively), although these final
storage ranges encompassed the average range of both Re-
sOpsUS and GloLakes. The RF model with the ResOpsUS
data (Fig. 3c) is more similar in range to the STARFIT curves
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Table 3. Depicts the performance metrics (column 1) between the extrapolated curves using the methodology in Fig. 1 and the STARFIT
algorithm developed by Turner et al. (2021) to evaluate the impact of changing data and the random forest on the “original curves”. All
RMSE values are in the units (% per week). Column two shows the metrics between the original curves derived from STARFIT and the
constrained curves using 668 actual storage values from ResOpsUS (Steyaert et al., 2022) in order to evaluate the impact of using GloLakes.
Column three depicts the RF workflow vs. the extrapolation using ResOpUS to further evaluate the RF workflow without the error in satellite
altimetry. Column four depicts the comparison between the STARFIT curves and the random forest-constrained curves for the 1752 GloLakes
dams that could be input into STARFIT and were used to train and validate the RF workflow. Lastly, column five shows the same metrics for
another data product in GloLakes using ICESat2. This is used to validate the RF workflow.

Performance Metric STARFIT with STARFIT vs. RF STARFIT vs. RF STARFIT vs. RF
GloLakes extrapolation with extrapolation with extrapolation with
vs. STARFIT with ResOpsUS GloLakes/Sen-  GloLakes/ICESat2
ResOpsUS (n = 668) tinel2 (n =2445)

(n = 266) (n=1753)
Bias Flood (%) 11.58 0.66 0.16 1.977
Bias Conservation (%) —8.05 —3.06 0.08 1.38
Correlation Flood (%) 0.83 0.78 0.96 0.98
Correlation Conservation (%) 0.59 0.73 0.94 0.97
RMSE Flood (% per week) 18.03 20.16 11.31 8.91
RMSE Conservation (% per week) 15.46 18.32 10.13 7.47

made with GloLakes while maintaining the same peak in the
early part of the year. This suggests that in general, our RF
workflow constrains the active zone of the reservoir while
keeping the same seasonal patterns when compared to the
STARFIT curves for the hydropower-like dams.

For irrigation like dams, we plotted the same five curves
for the Medina Dam (irrigation main purpose). Overall, the
curves depict the same general trend (Fig. 3 bottom) with the
ResOpsUS (Fig. 3f) curves having the largest active zone and
the RF workflow with GloLakes-ICESat2 (Fig. 3i) having the
most limited operational range. Opposite to the hydropower
example, the final GloLakes-Sentinel2 extrapolation (Fig. 3j)
shows a much lower overall active zone with slight increases
in the active zone towards the latter part of the year, which
is consistent with irrigation demand. In general, we see that
moving from local data ResOpsUS to more global data like
GloLakes results in the strongest reduction in the operation
bounds, while moving from STARFIT to RF only results in
a small reduction of the operational bounds.

To evaluate the implication of these operational bounds,
we first look at the impact on two dams: the Clinton Lake
Dam in Illinois (with a water supply main purpose) and the
Koelnbrein Dam in Austria (with a hydropower main pur-
pose) shown in Fig. 4. To do this, we plot the monthly aver-
age storage fraction (Fig. 4a and d), the difference between
the reservoir inflow and outflow at the point location of the
dam (Fig. 4b and e) and the discharge in m? s~ ! at the respec-
tive basin outlets. For each panel, we plot three of the five
models: Baseline (black, the reservoir rules as currently im-
plemented in PCR-GLOBWB 2), BaseGeoDAR (grey, orig-
inal reservoir operating rules with additional reservoirs), and
Turn250 (pink, new reservoir rules and additional dams). We
opted not to plot all Turn600 and Turn1100 as the differ-
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ences between the models are relatively small (Fig. Al). Ad-
ditionally, the comparison between these dams and the rest
of the modelled dams are shown in Tables A2 and A3 and
additional examples of single point location comparisons are
shown in Fig. A13 and additional basin outlets are given in
Fig. Al4.

In both cases, the reservoir storage is lower in the data-
driven operations (Turn250) when compared to the generic
operations (Baseline and BaseGeoDAR). This is mostly due
to the change in operational schemes but also affected by
upstream regulation and changes therein (the difference be-
tween Baseline and BaseGeoDAR). For the hydropower
dam, the Baseline and BaseGeoDAR storage fractions are not
too different and have the same seasonal cycle. Conversely,
the Turn250 storage fractions sit between 0.01 and 0.02 with
a shifted storage fraction peak towards the end of the year
compared with the Baseline and BaseGeoDAR which have
a storage peak towards the spring. The water supply dam,
which contains irrigation-like operations, shows similar sea-
sonal trends as the Baseline and BaseGeoDAR, yet the aver-
age storage drops much lower, especially in the autumn and
winter months.

To fully determine the shifts in storage observed in Fig. 4a
and d, we can use Fig. 4b and e to determine when the reser-
voir is filling (positive values) and when it is emptying (nega-
tive values). In all models, the irrigation dam fills in the win-
ter and spring and empties during the summer. The Turn250
model has slightly more filling, which is offset by more de-
pletion in the spring months, indicating larger storage dy-
namics, but a lower average storage. It also does not return to
full quite as quickly as the Baseline and BaseGeoDAR mod-
els, potentially due to meeting (downstream) demand. For
the hydropower dam, all models have a peak in the spring-

https://doi.org/10.5194/hess-29-6499-2025



J. C. Steyaert et al.: Data derived reservoir operations simulated in a global hydrologic model 6511

0325 " 0.021 45000 -
c = -
S 0.300 1 © J © 40000
2 y 5 0.01 2
L 0.275 1 € @ 35000 1
S > 0.001 2
g 0.250 g £ 30000
o — B kY] 4
8 0.2251 g oot a 25000/
0.200 1 -0.02 20000 A
. -
[ 11000 1
0.8 ) /_\ \
5 \/ © 10000 A
3 g &
C 0.6 H o 9000
w = o
] @ ©
8 g £ 8000+
S 0.4 S ks
n n 9 70004
0.2 6000 -
JFMAM] JASOND JFMAM] JASOND
Month Month
—— Turn250 —— Baseline BaseGeoDAR

Figure 4. Implementation of the final operational curves in PCR-GLOBWB 2 for the three main reservoir models: Baseline (black), BaseGeo-
DAR (grey), Turn250 (pink). The top row shows Clinton Lake Dam, a water supply dam in the Mississippi basin, while the lower row shows
the Koelnbrein dam, a hydropower dam in the Danube basin. Column one (a, d) shows the storage fraction for all the models. The second
column (b, e) shows the change in storage between each month to observe where the dams are filling (positive values and releasing (negative
values). The final column (¢, f) shows the long-term monthly discharge (m3 571) over the 40 year simulation period (1980-2023) at the

respective basin outlets.

time with a decrease in all other months. Conversely to the
irrigation dam, the Baseline model has more filling compared
to the BaseGeoDAR and the Turn250 models. That said, the
springtime depletion in the Turn250 model is much more lin-
ear compared to the other models.

The different reservoir schemes have small impacts at the
basin scale, even in heavily managed basins (Fig. 2). In the
Mississippi (Fig. 4c), there is a small reduction in discharge
for the Turn250 model during the peak flows in the spring
and slightly more discharge during the low flows in the win-
ter months. In the Danube (Fig. 4f), there is slightly less dis-
charge at the outlet during the winter for the Turn250 model,
but otherwise, the modeled discharge is the same. The differ-
ence between these two basins is in part due to the difference
in regulation observed in Fig. 2b, where the Danube basin
has a lower degree of regulation compared to the Mississippi
basin.

3.3 Reservoir model comparison and implications on
storage and discharge

To validate the implementation of the new reservoir scheme,
we first calculate the different water balance components (Ta-
ble 4). The data-derived operations do not affect the climatic
forcings; therefore, we do not observe differences in precip-
itation and only small differences in evaporation across all
models. There is an increase in evaporation in the BaseGeo-
DAR model and an increase in water availability (denoted by
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an increase in water body storage and a positive change in
total water storage across the model time frame). These in-
creases as well as the increase in surface water abstractions
are a potential result of increasing the total number of dams
and the total storage capacity. Comparatively, we observe a
decrease in water availability (denoted by water body stor-
age, change in total water thickness and runoff) as well as
decreases in water body evaporation and runoff in the data-
derived operations (Turn250, Turn600, Turn1100) a potential
result of the lower storage levels. Overall, the water balance
results demonstrate that the data-derived operations do not
lead to large differences across the PCR-GLOBWB 2 do-
main, suggesting that the relative impacts are not large and
are mostly regional to local.

To further validate the data-derived operations, we analyze
discharge and reservoir storage, as the water balance table
shows that both are affected by changes in reservoir opera-
tions. First, we validate the discharge in our models against
the observed values in GRDC. Globally, 6044 stations fit our
criteria: a period of record starting in at least 1979, a mini-
mum overlap of two or more years, catchment sizes that are
at least 25 % of each other, and no more than a difference
of three magnitudes between the observations and the simu-
lated discharges. As other reservoir studies demonstrate that
reservoir impacts on streamflow are greatest near the dam
(Hanasaki et al., 2006; Haddeland et al., 2006; Biemans et al.,
2011; Zajac et al., 2017), we filtered out any locations that
were not directly impacted by upstream reservoirs. This left

Hydrol. Earth Syst. Sci., 29, 6499-6527, 2025



6512

J. C. Steyaert et al.: Data derived reservoir operations simulated in a global hydrologic model

Table 4. Different hydrologic components for evaluating the water balance across all the models over the entire model period (1980-2022).
In addition to hydroclimatic variables (precipitation, evaporation, and total water storage), we also include storage in lakes and reservoirs,
evaporation from waterbodies, and abstractions from ground and surface water.

Model Evaporation  Precipitation Runoff ~ Surface Water ~ Groundwater =~ Water Body ~ Water Body =~ Change in Total
(km3 yro 1 (km3 yro b km? yr— 1 Abstraction Abstraction Storage  Evaporation Water Storage
(km?3 yr=h (km?3 yr= 1 (km?3 yr=h (km?3 yr—h (km3 yr— 1
Baseline 62803.44 111556.56 49029.85 2467.25 566.18 10570.41 1651.557 —6.94
BaseGeoDAR 62 822.95 111556.56 49049.07 2499.56 55791 10561.87 1657.99 6.934
Turn250 62794.48 111556.56 49021.39 2519.99 561.670 8614.62 1627.17 —4.84
Turn600 62794.53 111556.56 49025.71 2518.20 561.44 8614.97 1627.23 —4.78
Turn1100 62794.78 111556.56 49021.83 2520.12 561.67 8614.55 1627.23 —4.70
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Figure 5. Depicts the validation between the five models and the GRDC streamflow gauges globally. Panel (a) shows the daily KGE values
for the 2666 stream gauges that have at least one dams upstream and are therefore directly impacted by our reservoir model. Each line is
colored by the model. Panels (b), (c), and (d) show the difference between the baseline for the BaseGeoDAR and Turn250 models for the
R (b), o (¢), and B (d) components of the KGE. A plot of these values without the zoom is shown in the appendix as Fig. A15.

2666 gauges that fit the above criteria. For these gauges, we
calculated the Kling-Gupta Efficiency (KGE) and its compo-
nents (correlation, bias ratio, and variance ratio) for each lo-
cation and each model and plotted a cumulative distribution
function (CDF, Fig. 5). The CDF shows slight improvements
in the middle of the KGE range (—0.25 to 0.25), however, the
improvements are quite minor. This means that our reservoir
operations do not lead to significant improvements in the dis-
charge simulations in PCR-GLOBWB 2 at the measurement
locations and as a result do not allow draw conclusion into
the impact of data-derived operations on streamflow regimes.

To identify the impact of the two reservoir operation
schemes, we calculated the differences between the individ-
ual components of KGE (R, B, ). We included the cur-
rent operational scheme in PCR-GLOBWB 2 with the inclu-
sion of GeoDAR (BaseGeoDAR) and the data-driven opera-
tions for the 250 command area (Turn250) compared against
the Baseline model (Fig. 5b, c, and d respectively). Addi-
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tionally, the addition of no command area (Fig. ASa and
b) demonstrated very small KGE differences. For the rest
of our analysis, we decided not to include the other com-
mand areas as a boxplot of the KGEs per command area
(i.e. Turn250, Turn600, and Turn1100) depicted little to no
variations (Fig. Al) and the boxplot of the KGEs without
the command area (Fig. Al) did not show improvements
in KGE. When looking at the differences in the correlation
(Fig. 5b), there are more positive correlations for BaseGeo-
DAR and more negative correlations for Turn250 when com-
paring these two models with the Baseline (42.78 % above 0
for the BaseGeoDAR operations vs. 41.46 % for Turn250 re-
spectively). This suggests that in some cases, the inclusion of
more dams is enough to improve model performance, but in
most, it is not. However, the magnitude of these differences
is quite small as there are only four points above or below
a difference of 0.5 for the comparison between Turn250
and the Baseline and one point for the comparison between
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Figure 6. Shows scatter plots of reservoir storage observations
vs. modeled results for Turn250 (pink) and Baseline (black). Panel
a uses GloLakes as the observations, which is the dataset the oper-
ational policies are derived from) while panel b uses ResOpsUS as
a more “neutral” validation. For both panels, we matched the same
period of record as GloLakes (1 January 1984 to 31 May 2023)
and ResOpsUS (variable depending on the reservoir, but typically
1980-2020).

BaseGeoDAR and Baseline. For the bias difference (Fig. 5c),
the Turn250 model contains more bias values above and be-
low 0 (50.86 % vs. 35.29 % above and below for Turn250
and 52.22 % vs. 35.15 % for the BaseGeoDAR). This sug-
gests that the data-derived scheme is more likely to overesti-
mate discharge than the generic operations with the GeoDAR
maps. Lastly, the alpha (Fig. 5d), which depicts the variance
ratio of the observations and modeled values, depicts more
variance in the Turn250 model when compared to the Base-
line (33.56 % vs. 40.78 % above for Turn250 and 44.78 %
vs. 37.56 % for the BaseGeoDAR). This suggests that data-
driven operations are better at representing the variability of
discharges.

In addition, we validated the reservoir storage derived
from each operational scheme against indirect observations
(GloLakes) and direct observations (ResOpsUS, Fig. 6a and
b respectively). To do this, we compared the long-term stor-
age fraction for the Turn250 (depicted in pink) and Baseline
(depicted in black) models against the two observations of
reservoir levels. In both panels, the data-driven operations
(Turn250) are more closely aligned with the observations
(i.e. sit close to and above the 1: 1 line) than the Baseline
operations (Fig. 6). Figure 6a shows the scatter between in-
direct observations (reservoir levels are translated to reser-
voir storage) taken from satellite altimetry using GloLakes.
Here, we observe that the Turn250 aligns more with Glo-
Lakes (an RMSE of 0.28 and more points at or above the
1:1 line) than the Baseline operations (an RMSE of 0.32).
Next, to remove the underlying bias that we trained our RF
algorithm on data in GloLakes, we also compared our data-
driven operations to ResOpsUS. Figure 6b shows a scatter
of the modeled storage fractions compared to observations
for large dams in the United States (ResOpsUS). Once again,
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the Turn250 model aligns better with observations (RMSE
of 0.30 for Turn250 vs. 0.37 for the Baseline). Addition-
ally, the Spearman rank correlation between both observa-
tions and models is moderately strong for Turn250 when
compared to GloLakes (0.37 for Turn250 and 0.18 for Base-
line (Table 5 and slightly positive for ResOpsUS (0.14 for
Turn250 vs. 0.08 for Baseline). Further analysis of the differ-
ences between the two main types of reservoirs in our anal-
ysis (irrigation-like and hydropower-like, demonstrate that
our hydropower operations are more similar to the obser-
vations (RMSE of 0.28 for Turn250) compared to both the
generic operations (RMSE of 0.32) and the irrigation-like
dams (RMSE of 0.29 for Turn250) when comparing against
the GloLakes dataset (Fig. A2). An analysis of the monthly
RMSE and monthly KGE values between all the models and
the GloLakes point observations also demonstrate that the
Turn250 model is more aligned with observations (Figs. A7
and AS8). In conclusion, this analysis demonstrates that the
data-driven operations have more realistic long-term average
storage compared with the Baseline scenario.

To round off our analysis, we look at the density of all the
storage fractions (Fig. 6) for GloLakes and ResOpsUS. For
both of the observations, the majority of the observed stor-
age fractions sit between 20 % and 80 % full slight variations
in the exact peaks (30 % full for GloLakes and 50 % full for
ResOpsUS). The storage fractions from the Turn250 opera-
tions contain more storage fraction values between 20 % and
60 % and in doing so underestimate the total storage when
compared to both observations. The Baseline storage frac-
tions, on the other hand, contain a large density of values
between 60 % and 80 % full, which suggests that the Base-
line operational scheme holds reservoirs at a higher storage
value on average and is overestimating the amount of storage.
Ultimately, we find that the storage estimates in the Turn250
model are more accurate when looking at the correlations and
RMSEs.

3.4 Reservoir Regulation Changes Over Time

To determine regions where the Turn250 model is able to
capture storage dynamics, we opted to look at the median
long-term monthly reservoir fraction for each basin in Hy-
droSHEDS and the aggregation per continent (Fig. 7). In ad-
dition to plotting the monthly storage fraction of all the mod-
els, we plot the monthly storage fraction for the GloLakes-
LandsatPlusSentinel2 reservoirs (the training dataset for our
RF workflow) to allow for comparison between observations
and model results. 468 dams had a storage fraction greater
than one when using the static values from our GeoDAR in-
put maps, therefore, for these dams, we used the maximum
storage value in the GloLakes observations as the maximum
storage for this analysis. This misalignment could be due to
flood conditions in the GloLakes reservoirs or overestima-
tions due to the workflow in Hou et al. (2024).
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Table 5. Shows the RMSE, the Spearman rank correlation and corresponding p values, between the scatter plots in Fig. 6 for each of the
models (rows) and between the two datasets (columns). In both comparisons, the correlations are statistically significant.

Model RMSE with  Correlation with P value with  RMSE with  Correlation with P value with

GloLakes GloLakes GloLakes  ResOpsUS ResOpsUS ResOpsUS
Baseline 0.32 0.18 8.53x 10714 0.37 0.08 0.06
Turn250 0.28 037 4.78 x 10733 0.30 0.14 0.0008

In looking at the median storage fraction across the differ-
ent basins (Fig. 7), we first observe higher storage fractions in
the more northern basins. Basins with a large amount of reg-
ulation such as the Mississippi, Nile, and Orinoco (based on
Fig. 2) have median storage fractions slightly above 0.5. The
global differences in median storage fraction generally align
with increased aridity, where regions that are more arid such
as Australia, the Sahara, Mexico, the Middle East, and India
have lower median storage fractions compared with the po-
tential demand for water supply in these regions. Conversely,
more humid regions such as Northern Europe, the Amazon,
the Mekong, and the Eastern United States have median stor-
age fractions around 0.4.

Globally, the generic operations hold more water as the
Baseline and BaseGeoDAR have the higher median stor-
age fraction of 0.63 and 0.59 respectively. Turn250 (0.50)
sits closer to the median storage fraction observed in Glo-
Lakes (0.48). Regionally, though, the differences are more
pronounced as the data derived operations do not capture the
storage fractions observed in North America, Australia and
South America, while in Europe, Asia and Africa the data
derived operations align better with observations. In general,
though, all the models (Turn250, BaseGeoDAR and Base-
line) have similar monthly trends that do not necessarily align
with the monthly trends in GloLakes. For example, in North
America, the observed storage values are highest in March
through July, while Turn250 has the highest storage in Au-
gust to October and the Baseline and BaseGeoDAR models
both have fairly flat monthly storage values. Conversely, in
Asia and South America, the modeled monthly storage frac-
tion (specifically when looking at Turn250) trend appear to
align relatively accurately with the observed storage frac-
tions.

4 Discussion

4.1 Global Impacts on the Hydrologic Cycle of the
Data-Driven Reservoir Operations

To analyze the impact of the reservoir operations on the
global hydrologic cycle, we first analyzed the ability of the
model setup to reproduce streamflow dynamics. Primarily,
we evaluate the cumulative distribution of the daily KGE val-
ues, which shows little to no difference between the differ-
ent model configurations (Fig. 5a). This is partly due to the

Hydrol. Earth Syst. Sci., 29, 6499-6527, 2025

Table 6. RMSE between the curves in Fig. 7 for each of the given
models (columns) and regions (rows). For this table, we took the
GloLakes storage fraction as the observations. For clarity, we depict
the best results in bold.

Region Baseline BaseGeoDAR  Turn250

RMSE RMSE RMSE
North America 0.32 0.24 0.21
South America 0.05 0.05 0.15
Europe 0.09 0.12 0.05
Australia 0.31 0.08 0.22
Asia 0.18 0.10 0.06
Africa 0.18 0.07 0.04
Global 0.11 0.15 0.04

limited number of GRDC gages (only one-third) that are di-
rectly downstream of reservoirs and thus the ability of this
validation to directly quantify the impact of changes in reser-
voir operations. While the correlations are not affected by the
changes in reservoir operations, we do observe that the vari-
ance ratio shows (Fig. 5d) that the data-derived operations
are slightly better at capturing the variability of the stream-
flow dynamics and the bias ratio shows the data-derived op-
erations are more likely to overestimate streamflow (Fig. 5¢).
The sensitivity of the two operational schemes to the differ-
ent components of KGE is most likely a result of the local-
ized impacts which are more pronounced when we look at the
difference between the long-term reservoir storage integral
(Fig. 4b and e). While the aggregated results tend to dampen
the impact of the reservoir operations on the streamflow dy-
namics (Figs. 4c and f, and 5a), we see that locally there
are still distinct differences in the simulated reservoir out-
flows. In irrigation-like dams for the data driven operations,
the magnitude of release is larger than that of inflow during
the autumn months when compared to the generic schemes
(Fig. 4c). This suggests that the addition of downstream de-
mand into our reservoir scheme increases the overall draw-
down of the reservoir and allows more water to move through
the system, a dynamic observed in the scheme of Voisin et al.
(2013).

Due to the limitations in monitoring reservoir impacts on
global streamflow dynamics, we recommend using alterna-
tive methods such as regional or, where they exist, global
reservoir storage observations. Compared to the streamflow
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Figure 7. Median storage fraction per basin in HydroSHEDS for the Turn250 as a spatial map surrounded by line plots. Each line plot
corresponds to a different continent and shows the long-term monthly storage for each model: Baseline(black), BaseGeoDAR (grey), Turn250
(pink), compared with the long-term monthly storage fraction in GloLakes (navy).

results which do not show strong impacts, we observe that
the data-derived storage is more aligned with observations
and therefore provides a more accurate reservoir storage rep-
resentation globally (Figs. 7 and 6). In most regions ex-
cept Australia, the reservoir storage in the data-driven op-
erations is decreased when compared to the generic oper-
ations (Fig. 7). These lower storage values are most likely
due to the transference from GloLakes to the final curves us-
ing the methodology in Sect. 2.6 as this transference led to
more constrained operational bounds compared to ResOp-
sUS (Fig. 3). We also observe that the data derived opera-
tions do not align as well as the Baseline or BaseGeoDAR for
Australia and North America (Fig. 7). This could be due to
data gaps in the GloLakes dataset for these regions, more hy-
dropower reservoirs, or operational patterns that have shifted
due to recent drought events, which our random forest work-
flow may not be able to capture as well as it does not in-
clude temporal evaluations of the operating boundaries. Ad-
ditionally, we may find that by using a different validation
scheme, our operational curves may also change as our ran-
dom forest is sensitive to the input data. Our model water
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balance shows less reservoir storage, evaporation, and more
surface water abstraction in the data-driven operations (Ta-
ble 4). This suggests two things: first the water is moving
more quickly through the river system as there is not as much
storage compared to the generic operations (Baseline and
BaseGeoDAR) which results in more available water for ab-
straction at downstream locations (shown by the difference in
surface water abstractions between Turn250 and Turn1100).
While this could create a water deficit in locations directly
near the reservoir, the comparison with observed data in
Fig. 6 demonstrates that the lower storage values are more
comparable to independent observations than the larger stor-
age values in the generic operations (Fig. 6). Therefore, this
suggests that the generic operations overestimate the amount
of water in storage and do not accurately pinpoint regional
or localized water deficits (Salwey et al., 2023; Steyaert and
Condon, 2024).

While using observed storage values is ideal for training
reservoir models, the global datasets are limited by limita-
tions in data coverage and privacy concerns (Steyaert et al.,
2022; Salwey et al., 2023). Therefore, to capitalize on our
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global methodology, we utilized satellite altimetry data that
correlates reservoir surface area with reservoir storage, in-
stead of using observed storage values directly. Ultimately,
we observed that satellite altimetry data did not reduce the
overall quality of our storage results in many regions, how-
ever, the GloLakes dataset does overestimate storage in 468
of the 1752 dams in our analysis when using storage capaci-
ties from GeoDAR. While this skews the seasonal trends ob-
served in Fig. 7, it is a result of a larger issue in data avail-
ability for reservoir management schemes. Since our analy-
sis utilizes the general trends and dynamics in the observa-
tions to derive trends of storage fraction that are combined
with reported storage capacities in GeoDAR to derive re-
leases in PCR-GLOBWRB 2, it is hypothesized that satellite
altimetry is less able to capture the conservation dynamics
(Hou et al., 2024; Zhang et al., 2020). However, we observe
that the lack of seasonality in the conservation curves allows
the random forest algorithm to better represent these curves
when compared to the flood curves (RMSE of 7.47 vs. an
RMSE of 8.91 for the analysis with GloLakes-ICESat2 in Ta-
ble 3). The random forest algorithm trained on GloLakes has
high correlations between the values from STARFIT, further
suggesting that the use of satellite-derived storage dynam-
ics is the largest area of uncertainty in our modeling frame-
work. The biggest change is the decreased active zone both
in range and in maximum and minimum values (Figs. 3 and
6). This is because satellite altimetry data uses storage-area
relationships that tend to regress to the mean and that may
not necessarily account for natural processes that decrease
the overall amount of available storage, such as sedimenta-
tion, and are limited in their temporal and spatial resolution.
Conversely, observed storage time series such as ResOpsUS
use the actual storage values derived from simplified water
balance equations or storage elevation relationships and con-
tain a much larger active zone (Fig. 3). This decrease in the
operational range will limit the amount of water that can be
stored in reservoirs and as a result, will increase the reservoir
release (Fig. 4b and e). However, we still observe through
Fig. 6 that the data derived storage values are more accurate
than the storage values obtained from the generic operations
even with the underestimations in part because the generic
operations are not as sensitive to observed changes.

4.2 Evaluation with Other Reservoir Models

Similar to other modeled reservoir operations, we observe
limited improvement in discharge at basin outlets (Hanasaki
et al., 2006; Haddeland et al., 2006; Biemans et al., 2011; Za-
jac et al., 2017), yet the data-derived storage improvements
are much more similar to those of Turner et al. (2021) when
using the extrapolated curves. We also observe more stor-
age values aligning with observations for different reservoir
functions. Salwey et al. (2023) noted that grouping reservoirs
based on main purpose may miss key differences in the op-
erational patterns, however, our results demonstrate that the
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hybrid incorporation of data-driven operational bounds with
a more generic reservoir operation scheme (grouped by two
main categories) performs better than the generic schemes
previously used. Ideally, we would be able to differentiate
into more specific reservoir categories; however, at the global
scale, operational information for all main purposes (primar-
ily for fisheries and recreation) is missing. We also find mod-
est improvements in all major reservoir use categories (irriga-
tion, hydropower, water supply, and navigation) by separat-
ing the values in Fig. 6 based on the main purpose (Fig. A2).
Additionally, we also observe that our modeled reservoir
storage aligns with the monthly trends Steyaert and Condon
(2024) found in the United States (i.e. flood and navigation
reservoirs sit much closer to a storage fraction of 0.3 while
irrigation-dominated basins have a higher storage fraction
with large seasonality). While the trends in the United States
are not necessarily indicative of operational trends globally,
this is one of the few studies that look directly at the trends
seen in storage observations instead of solely looking at the
operational impacts.

This said, our model provides a few notable improvements
over other reservoir operation schemes. First and foremost, it
utilizes observational data to derive key boundaries for reser-
voir operational bounds, something that to our knowledge,
has not yet been done on the global scale (Turner et al.,
2021; Yassin et al., 2019). The other reservoir schemes to
utilize observational data directly typically require multiple
parameters (such as in Yassin et al., 2019; Turner et al., 2021;
Burek et al., 2020) or are parameterized regionally (Turner
et al., 2021; Salwey et al., 2023; Brunner and Naveau, 2023;
Macian-Sorribes and Pulido-Velazquez, 2020). Generic op-
erations are typically chosen for global hydrologic models
due to the ease of incorporation that relies on limited data
(Haddeland et al., 2006; Hanasaki et al., 2006; van Beek
et al., 2011; Sutanudjaja et al., 2018). Our scheme is scal-
able both to specific regions and data availability and also
to model complexity. This is because the main variable of
importance is the derived operational targets which can be
easily obtained from limited remotely-sensed observational
data.

Recently, there has been a strong push to back-calculate
reservoir impacts from readily available hydrologic vari-
ables such as streamflow (Salwey et al., 2023; Brunner and
Naveau, 2023). These schemes show promise in areas where
reservoir data is not readily available and in models that are
currently relying on generic operations based on two main
purposes: irrigation or hydropower (Salwey et al., 2023).
However, they still rely on the assumption that reservoir re-
leases are the difference between naturalized streamflow and
observed values (Brunner and Naveau, 2023). This can be
accurate in many cases, but in human-dominated basins with
a large amount of surface water abstraction and complex in-
teractions, such as the Colorado River basin, among others,
this assumption may not be valid. Salwey et al. (2023) reme-
died this with their transfer function approach; however, the
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results were only tested in water supply-dominated basins in
the United Kingdom, and different balances of uses and op-
erational patterns could change the results. Finally, in all in-
stances, these methods assume that reservoir operations are
static over time which may not necessarily be the case (Pat-
terson and Doyle, 2019; Patterson et al., 2021) and would re-
quire nearby downstream observations of river discharge to
infer the reservoir operating policies over time. While this is
not infeasible, there are currently a limited number of reser-
voirs in the world where this would be a viable approach to
accurately derive reservoir operations.

Utilizing data-driven operational bounds combined with a
dual-purpose operational scheme has a plethora of benefits
(more realistic operational bounds, the ability to change op-
erations based on location, use, and hydroclimatic variables,
and increased understanding of water availability). That said,
there are still improvements to be made. First, the lack of
global reservoir storage observations or even regional data
hindered our ability to create target curves based on obser-
vations and that do not rely on satellite altimetry data and its
uncertainties (temporal gaps, back-calculated storage, etc).
Additionally, we assume that our operational bounds are con-
stant during the simulation period, however in a changing
climate this assumption may no longer hold, especially dur-
ing extreme events (such as droughts) or under management
changes (Salwey et al., 2023; Patterson and Doyle, 2019;
Steyaert and Condon, 2024). We also assume reservoirs are
operated as a single entity and do not explicitly and dynam-
ically account for releases in series as we assume that the
underlying storage data accounts for this dynamic and there-
fore these relationships exist in our operational bounds.

Apart from errors accruing from above assumptions, the
accuracy of our results is also limited by the errors that
are propagated through our workflow. Specifically, PCR-
GLOWBWB 2 underestimates the flashiness of streamflow
regimes. It is also less accurate in specific regions such as
the Niger, the Rocky Mountains and portions of continen-
tal Eastern Europe due to errors in the snow dynamics, es-
timation of the groundwater responses and data limitations
(Sutanudjaja et al., 2018). Additionally, the estimation of the
operational STARFIT rules from the remotely sensed stor-
age data of GloLakes is limited by the revisit time of satel-
lites, the influence of cloud cover and atmospheric interfer-
ence as well as the statistical models that back calculate stor-
age that are limited by the digital elevation model’s spatial
resolution (Hou et al., 2024; Chen et al., 2022). As storage
is typically not a direct measurement and, even in the case
of in-situ observed water levels observations, is back cal-
culated from storage/area or storage/elevation relationships,
validation primarily on storage alone is inherent to uncer-
tainty. Primarily, these limitations can affect the actual stor-
age value as they rely on storage elevation charts that are
only periodically updated (Steyaert et al., 2022). While the
single errors are propagated through our system, the results
of the independent validation with ResOpsUS and GloLakes

https://doi.org/10.5194/hess-29-6499-2025

6517

(Figs. 6 and 7) show improved performance for storage val-
ues in PCR-GLOBWB 2 and suggest similar improvements
for other global hydrologic models with the caveat that errors
may propagate through the modelling system.

Based on these limitations, we find that more effort needs
to be put into cultivating global datasets of historical reser-
voir operations and also include more data-derived methods
in operational reservoir schemes. While the first recommen-
dation is liable to privacy concerns (Steyaert et al., 2022),
we believe that more accurate information on reservoir op-
erations will increase the reliability of large-scale hydrolog-
ical models and thus serve a wider community. The addi-
tion of more data-derived methods in our reservoir opera-
tions scheme demonstrated much lower storage than PCR-
GLOBWB 2 had previously modeled using other methods.
This could highlight unknown water deficits as the total
reservoir storage in select regions may not be able to account
for surface water abstractions and the currently implemented
reservoir operating rules could overestimate the amount of
available water in vulnerable regions.

5 Conclusions

This study combines previous work by Turner et al. (2021)
and data acquisition by Hou et al. (2024) to develop a work-
flow for implementing data-driven reservoir operations in
global hydrologic models. Using an updated dataset of reser-
voir locations (Wang et al., 2022), satellite altimetry data
from Hou et al. (2024) and the STARFIT model (Turner
et al., 2021), we first developed operational bounds for 1752
reservoirs whose storage time series were estimated using re-
mote sensing that are then used to train a random forest al-
gorithm. We observe that the RF extrapolation is accurately
able to depict the flood and conservation curves and that the
main source of uncertainty is the errors associated with the
storage estimations from satellite altimetry. After this evalu-
ation, we then estimated operational bounds for over 20 000
structures that are implemented into PCR-GLOBWB 2 us-
ing the trained random forest algorithm. While the impact on
discharge is modest and does vary significantly based on lo-
cation, we see large improvements in our reservoir storage
and seasonal dynamics when using data-derived operations
over the generic ones. Therefore, we suggest reservoir op-
eration models rely emphasize model validation on reservoir
storage in addition to validation based on streamflow in place
of validation solely on streamflow as the available stream-
flow observations are rarely close to the release point of the
reservoir and therefore not as sensitive to reservoir operations
compared to storage. We also do not see strong differences
when using different command areas even though it would
be expected that changes to these values would increase or
decrease storage. We did however observe slight improve-
ments when using command areas compared to without com-
mand areas. This suggests that reservoir modelers should use
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a command area, but can opt to use the command area that
makes the most sense to their domain (we opt to use the 250).
To remedy issues with the static operations (i.e. no change in
the future), in the future we hope to evaluate changes in oper-
ational patterns using smaller 10-year moving periods to see
if there are large changes in operational dynamics. We hope
that this work can be further implemented into other large-
scale hydrologic models to better represent reservoir dynam-
ics and to evaluate their impact on hydrologic regimes and
anthropogenic water availability.

Appendix A

In the below figure (Fig. A3), we plot the average, maxi-
mum and minimum value of the derived STARFIT curves
for the irrigation-like (blue) and hydropower-like (red) dams
for both the flood (Fig. A3, top row) and the conserva-
tion (Fig. A3, bottom row) bounds. While the average and
maximum flood and the maximum conservation values do
not differ much between the dams, we do see large differ-
ences in the average conservation and the minimum flood
and conservation curves which could be a result of the differ-
ing operations at the lower end of storage. Specifically, the
flood minimum peaks in irrigation-type dams in the spring
and summer months to potentially support downstream de-
mands in drier periods, while the hydropower-like dams have
lower flood minimum values. The conservation curves expe-
rience the most changes in part due to the hydropower-like
dams holding storage much higher across the year while the
irrigation-like dams are meeting downstream demand in the
autumn months. For the minimum conservation values, the
irrigation-like dams have higher storage fractions compared
to the hydropower-like dams. Due to the differences in the
seasonality of the lower bounds for the flood curve and the
differences in the conservation curves, we still think that the
distinction in operational schemes is useful.

We computed the daily KGE values for these two models
as well as the Turn250, Baseline and vanBeekGeo against
the streamflow observations in GRDC. While the addition
of the command area slightly improves the model (Fig. A4,
purple vs. pink lines), we do see large improvements in us-
ing two different operational schemes (green vs. pink lines
in Fig. A4). This suggests that creating two different release
rules for irrigation-like and hydropower-like dams enhances
model performance compared to a single simplified scheme.
We also saw there are operational differences in the aver-
age conservation curves and the flood and conservation min-
imum curves when looking at the two typologies we defined
(Fig. A3). This, in conjunction with Steyaert and Condon
(2024) and Salwey et al. (2023) noting that there are differ-
ences in irrigation, water supply and hydropower dams, fur-
ther supports our conclusion that having two main types of
reservoir operations better represents the observed dynamics.
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We computed the daily KGE values for different command
areas: 250, 600 and 1100 as well as for the Turner scheme
without command areas. While the lack of command area
leads to worse KGE values for all station locations, the lack
of command area does lead to limited improvements in some
areas. Aggregating these performances into the boxplot in
Fig. Al shows that while the variance in KGE values are
lower, the average performance is actually slightly below that
of the other command areas. Therefore, we opted to continue
our analysis with the Turn250 model.

We decided to implement a simple rule curve for the Mis-
sissippi Basin that accounts for the downstream demand (the
green line in Figs. A4 and A6). This simplified operational
policy still accounts for downstream demand according to
the 250km distance and can meet this demand and surface
water abstractions if storage is within the active zone (de-
fined as the area between the flood and conservation curves)
and includes environmental flow and flood releases. We ran
the model for the Mississippi basin without the command
area (by setting the downstream demand to 0) but includ-
ing the two operational schemes (purple line). In analyzing
the longterm monthly storage for the simple rule curve we
observe that we hold less water on average, but the seasonal
dynamics are similar to the other models (Fig. A6). This sug-
gests that the biggest difference is the overall storage fraction
levels and this simplified rule curve decreases the overall wa-
ter availability in the Mississippi region.

The below figures shows the evaluation between the three
main operational scheme models and the point observations
in GloLakes. The KGE plot shows that the Turn250 model
has relatively more negative KGE values, however, these
negative performances are typically in wetter periods where
PCR-GLOBWB 2 is already underestimating streamflow.
This model also has larger KGE values. As for the RMSE we
do see that the Turn250 has more values closer to 0, suggest-
ing the Turn250 model is more aligned with the observations.
We also opted to plot the KGE components (Fig. AS8).

The alpha and R components show slight improvements in
modeled storage with the Turn250 operations, while the beta
shows that the Turn250 has more bias, which is most likely
occurring in the wetter periods.

To evaluate the difference between the GloLakes curves
in Fig. 7, we evaluated the number of dams in the GloLakes
vs. GeoDAR (Figs. A10 and A11) as well as the RMSE and
KGE for the US dams (Fig. A9.The number of dams in the
US in GloLakes (1752 with 543 or 31 % in the US plotted in
red in Fig. A10) differs from the total number of dams used
in our analysis (over 20000 with 8214 or 40 % in the US
plotted in blue in Fig. A11). Additionally, the random for-
est algorithm looks for similarities and differences across all
the dams in the training set. This training set (75 % of all the
data) is chosen randomly and, while it includes dams from
the US, we make sure to choose multiple regions. Therefore,
this could account for the regional differences in our stor-
age patterns compared to the GloLakes observations. When
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plotting the monthly KGE and monthly RMSE (Fig. A9) for
each of the models, we do see that the RMSE in the United
States are much higher and the KGE is slightly worse. This
suggests that the issue in performance is perhaps due to the
underlying model dynamics in PCR-GLOBWB 2 as well as
the inclusion of other regions in the training dataset to create
the Random Forest algorithm.

To show the difference between the different components
of the KGE in Fig. 5, we created scatters plots of the differ-
ent KGE components between the Turn250 and vanBeekGeo
models (Fig. A12). While the scatter for the R component
makes this component appear to be the most important, we
find that both the R and beta components have almost equal
values above and below the 1: 1 line, suggesting that these
two components are muting the KGE differences. Compar-
atively, alpha has 1196 points above the 1:1 line and 779
points below the 1: 1 line which suggests that alpha is the
most sensitive to the operational changes and contributes the
most to the KGE changes (1210 above the 1 : 1 line and 1158
below the 1 : 1 line).
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0.25 4

0.00

Daily KGE

—0.25 1

—0.50 -

—0.75 A

-1.00{ —— -1

Turn600 Turn1100 No Command Area

Model

Turn250

Figure A1. Shows a boxplot of the data derived operational scheme
with the three main command areas: 250, 600 and 1100, in differ-
ent colors. The Turner scheme with no command area is shown in
orange.
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Figure A2. Depicts a scatter plot of the storage fractions in Glo-
Lakes vs. the storage fractions in Turn250 and Baseline models. The
left panel shows the results for dams with an irrigation main purpose
and the right panel shows the dams with a hydropower main use.
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Figure A3. Shows the average, maximum and minimum conser-
vation and flood timeseries for all 1752 STARFIT curves that are
employed in the random forest algorithm colored by main use de-
noted in our analysis. The blue curves are indicative of the irrigation
curves and the red are the hydropower curves.

Table A1. RMSE between the curves in Fig. 7 for each of the given
models (columns) and regions (rows). For this table, we took the
GloLakes storage fraction as the observations. For clarity, we depict
the best results in bold.

Model MSE MAE

K -Fold cross validation  359.77 12.96

with CV =10 (SD=47.13) (SD=0.83)
Best K -Fold cross 291.15 11.74
validation model

Single RF 388.39 11.65
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Table A2. Performance metrics for the Clinton Lake Dam compared to the rest of the reservoirs within our analysis.

Model Clinton KGE  Clinton R Clinton KGE Clinton R

(Storage) (Storage)  (Storage Integral)  (Storage Integral)
Baseline 0.068 0.05 —7.95 x 1017 —0.88
vanBeekGeo —0.45 0.43 —337x 1018 —0.69
Turn250 —-0.219 —0.032 —2.01 x 1018 —-0.911

Table A3. Performance metrics for the Koelnbrein Dam compared to the rest of the reservoirs within our analysis.

J. C. Steyaert et al.: Data derived reservoir operations simulated in a global hydrologic model

Model Koelnbrein KGE  Koelnbrein R Koelnbrein KGE Koelnbrein R
(Storage) (Storage)  (Storage Integral)  (Storage Integral)
Baseline 0.13 0.96 —4.47 x 107 0.41
vanBeekGeo 0.25 0.85 —5.63 x 1017 0.65
Turn250 0.13 0.85 —7.56 x 1017 0.56
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Figure A4. Depicts the cumulative distribution function of the three —— vanBeekGea == Turn600 No Command Area

main models in our analysis: Baseline (black), vanBeekGeo (grey),
Turn250 (pink), as well as two additional tests with removing the
command areas (No Command Area in purple) and a simplified re-
lease method (Simple Curve in green). As the Simple Curve and the
No Command Area curves were only evaluated for the Mississippi
basin, we only included the daily KGE values in the Mississippi
basin for other models.
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Figure AS. Depicts the cumulative distribution function of the daily
KGE values of the three main models in our analysis: Baseline
(black), vanBeekGeo (grey), Turn250 (pink), and the run with no
command areas (orange). Panel a shows the cumulative distribution
of the daily KGE for all the GRDC gages, while panel b shows the
daily KGE for the 6000 gages that are downstream of dams.
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Figure A6. Depicts the longterm monthly average of the storage
fractions for the three model in our analysis: Baseline (black), van-
BeekGeo (grey) and Turn250 (pink) as well as the simplified release
curve denoted as Simple Curve (green).
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Figure A7. Cumulative distribution functions of the monthly KGE
and monthly RMSE between the three main models: Baseline
(black), vanBeekGeo (grey) and Turn250 (pink) evaluated against
point observations in GloLakes.

https://doi.org/10.5194/hess-29-6499-2025

6521

1.0 / 1.0 1.0
0.8 1 / 0.8 0.8
| 4
< 0.6 0.6
0 |
=
o
Qo
o
% 0.4 0.4 1
0.2 1 0.2
/r‘
} ¢
0.0 T 0.0 T 0.0 T
0 1 0 1 2 0 1 2
Monthly CC Monthly Alpha Monthly Beta

= Baseline === vanBeekGeo Turn250

Figure AS8. Shows the cumulative distribution functions of the
KGE components, o, § and R between the three models: Baseline
(black), vanBeekGeo (grey) and Turn250 (pink) evaluated against

point observations in GloLakes.
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Figure A9. Depicts the KGE and RMSE CDFs for the storage eval-
uation with point location in GloLakes across the United States. The
simulated models are depicted in black for Baseline, grey for the
vanBeekGeo and pink for Turn250. The dashed pink line denotes
the boundary above which the KGE values show significance.
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Figure A10. Map of the point locations of the GloLakes observations used to train our random forest algorithm and validate our analysis.
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Figure A11. Point location map of all GeoDAR locations that are used in our analysis.
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Figure A12. Scatter plots of the streamflow KGE components be-
tween each model and observations. We plot the KGE components
(o, B, and R) for the Turn250 model on the y axis and the KGE
components for the vanBeekGeo model on the x axis. The dashed

red line is the one-to-one line.
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Figure A14. Depicts the longterm monthly averages of an additional nine global basins ordered by location. All plots include the same three
main models: Turn250 (pink), vanBeekGeo (grey) and Baseline (black), to see the changes in discharge for additional basins.
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Figure A15. Show the KGE, and KGE components of the models we used in our analysis for Fig. 5 in the manuscript without any zoom.

Hydrol. Earth Syst. Sci., 29, 6499-6527, 2025 https://doi.org/10.5194/hess-29-6499-2025



J. C. Steyaert et al.: Data derived reservoir operations simulated in a global hydrologic model 6525

Code availability. PCR-GLOBWB 2 is freely available at
https://doi.org/10.5281/zenodo.17589689  (Steyaert et  al.,
2025) and all associated input data is currently available at
https://doi.org/10.5281/zenodo.17590237 (Steyaert et al., 2025).
All analysis and validation codes are available upon request.

Data availability. All the modelled outputs in our analysis are
available on YODA, a Utrecht Universiteit wide data repository
at https://public.yoda.uu.nl/geo/UUO1/F2UOSH.html (last access:
5 November 2025) and https://doi.org/10.24416/UU01-F2UOSH
(Steyaert et al., 2025).
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