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Abstract. Uncertainties in hydrological simulations can be
quantified and reduced through data assimilation (DA).
This study explores strategies for assimilating soil moisture
(SM) data from Cosmic-Ray Neutron Sensors (CRNS) and
groundwater level (GWL) data into the Terrestrial System
Modeling Platform (TSMP), which integrates both land sur-
face and subsurface processes. DA experiments incorporat-
ing both state and parameter estimation were performed us-
ing the localized Ensemble Kalman Filter (LEnKF) within a
representative catchment in Germany over the period 2016
to 2018, with cross-validation conducted on non-overlapping
years. Univariate assimilation of SM reduced the unbiased
root mean square error (ubRMSE) by approximately 50 %,
while univariate assimilation of GWL achieved up to a 70 %
reduction in ubRMSE at assimilation sites. Improvements in
GWL estimates extended up to 5 km from the assimilation
points, with ubRMSE reductions ranging between 2 % and
50 %. However, assimilating GWL independently had a neg-
ative effect on SM representation, and similarly, assimilating
SM alone degraded GWL predictions. To address these is-
sues, a novel multivariate DA framework was developed, en-
abling SM and GWL to be assimilated independently through
separate modules. Groundwater data were used to constrain
the water table position, thereby improving the estimation of
the boundary between unsaturated and saturated zones and

allowing updates to hydraulic conditions within the saturated
zone. Meanwhile, SM data improved the representation of
hydrological processes in the unsaturated zone. The mul-
tivariate assimilation approach resulted in comparable im-
provements in GWL, SM, and evapotranspiration (ET) at the
assimilation sites. Moreover, including parameter estimation
alongside state updating further reduced the ubRMSE by up
to 17 %.

1 Introduction

Subsurface hydrologic states such as root zone soil mois-
ture (RZSM) and groundwater level (GWL) are critical in
regulating surface-subsurface water interactions in hydro-
logic and land modeling frameworks (Zhang et al., 2016;
Maxwell and Condon, 2016). Shallow groundwater controls
fluxes between saturated and unsaturated zones, directly in-
fluencing soil moisture (SM) dynamics and evapotranspira-
tion (ET) (Chen and Hu, 2004; Scanlon et al., 2023). Accu-
rate representation of RZSM and GWL is crucial for quanti-
fying coupled water-energy exchanges across the soil-plant-
atmosphere continuum (Sehgal et al., 2024). However, con-
ventional land surface models often neglect groundwater-
surface interactions and their impact on land-atmosphere ex-
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changes (Gleeson et al., 2021; Maxwell et al., 2007; Maxwell
and Condon, 2016). Integrated frameworks like the Terres-
trial System Modeling Platform (TSMP) (Shrestha et al.,
2014) simulate complex interactions among subsurface hy-
drology, soil processes, vegetation, and atmosphere, effec-
tively capturing spatiotemporal GWL dynamics and their in-
fluence on terrestrial ecosystems (Gasper et al., 2014; Kollet
et al., 2018; Shams Eddin and Gall, 2024).

Complicated coupled models often involve many parame-
ters, introducing uncertainty and reducing forecast reliabil-
ity. In groundwater modeling, parameterization simplifica-
tions and assumptions cause significant uncertainties due to
spatial variability in hydraulic properties and limited in-situ
data (Xu et al., 2017). Additional uncertainties stem from
input forcings, initial states, and model structure (Beven,
2006; Herrera et al., 2022). Data assimilation (DA) re-
duces uncertainties in model parameters and states by in-
tegrating observations to improve predictions (Liu et al.,
2012). The Ensemble Kalman Filter (EnKF) is a widely
used sequential DA method that effectively handles com-
plex, high-dimensional nonlinear hydrologic and terrestrial
system dynamics (Evensen, 2009; Houtekamer and Zhang,
2016; Evensen, 2003). EnKF has been shown to enhance SM
prediction in land surface models (Dan et al., 2020; De Lan-
noy et al., 2007) and improve groundwater table simulations
in subsurface hydrological models (Chen and Zhang, 2006;
Tang et al., 2024).

Terrestrial SM can be estimated across various spatial
scales using in-situ and remotely sensed (RS) data, which are
often assimilated into land surface models to enhance simu-
lation accuracy (Han et al., 2015; Gebler et al., 2019; Strebel
et al., 2022). However, in-situ measurements have limited
spatial coverage and temporal continuity (Nicolai-Shaw et
al., 2015), while RS products like Soil Moisture Active Pas-
sive (SMAP) (Kwon et al., 2024; Zhou et al., 2022; Seo et
al., 2021) and Soil Moisture Ocean Salinity (SMOS) (Tang-
damrongsub et al., 2022; Hostache et al., 2020) offer broader
coverage but with coarser resolution, shallow sensing depth,
and greater uncertainty. These limitations hinder effective
DA, particularly in high-resolution modeling (Zhou et al.,
2020; Shen et al., 2024). As an alternative, Cosmic-Ray Neu-
tron Sensors (CRNS) (Zreda et al., 2008) provide reliable,
non-invasive SM estimates at the field scale (∼ 18 ha), with
deeper penetration (∼ 80 cm) and reduced bias compared to
RS products (Zreda et al., 2012; Köhli et al., 2015; Bogena et
al., 2022). Recent advances in CRNS techniques, including
improved footprint characterization and revised calibration
strategies, have substantially enhanced its robustness (Franz
et al., 2013; Köhli et al., 2015; Schrön et al., 2017). As a
result, CRNS data have been adopted in diverse applications
such as hydrology, snow and vegetation monitoring, and land
surface modeling (Fersch et al., 2020; Dimitrova-Petrova et
al., 2021; Bogena et al., 2022). With the establishment of
long-term monitoring networks, CRNS data have also been
increasingly integrated into DA frameworks (Baatz et al.,

2017; Cooper et al., 2021; Patil et al., 2021). By bridging
the scale gap between point measurements and model grids,
CRNS serves an effective data source in DA frameworks,
thereby reducing model uncertainties and enhancing the re-
liability of terrestrial hydrology simulations (Shuttleworth et
al., 2013; Han et al., 2015; Baatz et al., 2017; Mwangi et al.,
2020).

Groundwater table depth is typically monitored via obser-
vation wells. Most groundwater DA studies have relied on
synthetic experiments. For example, Chen and Zhang (2006)
showed that EnKF can reconstruct hydraulic conductivity
using synthetic head data. Subsequent studies (Hendricks
Franssen and Kinzelbach, 2008; Tong et al., 2011) high-
lighted the benefits of localization in LEnKF to mitigate filter
divergence and improve parameter estimation. Panzeri et al.
(2013, 2014) introduced EnKF variants tailored to ground-
water DA by solving ensemble-based flow dynamics. These
efforts demonstrate EnKF’s effectiveness in handling nonlin-
ear, high-dimensional groundwater systems. However, even
with synthetic data, EnKF requires careful adaptation-such
as localization-to avoid filter instability. Real-world applica-
tions pose greater challenges, demanding further modifica-
tions to enhance DA performance.

Most DA research has focused on single Earth system
components, typically assimilating one variable. However,
groundwater and SM are strongly interconnected, and mul-
tivariate DA is essential to capture their interactions. Pre-
vious studies have applied multivariate EnKF within cou-
pled models like CATHY and Flux-PIHM to jointly assim-
ilate multiple observations, including SM, groundwater, dis-
charge, and land surface fluxes, demonstrating improved es-
timates of hydrologic states and parameters (Camporese et
al., 2009a; Shi et al., 2014; Botto et al., 2018; Shi et al.,
2015). Despite being tested primarily on small experimen-
tal catchments, these multivariate DA frameworks remain
computationally intensive and may involve trade-offs among
variables. Some parameters can only be identified under spe-
cific hydrological conditions, particularly in strongly non-
linear problems involving the unsaturated zones. To over-
come these challenges, some studies have explored alterna-
tive multivariate DA strategies within coupled models. Using
MIKE-SHE, Zhang et al. (2016) highlighted the importance
of spatial and variable-based localization in jointly assimi-
lating SM and groundwater head. Yet, its unsaturated flow is
still modeled in one dimension, limiting full system repre-
sentation. More recently, Zafarmomen et al. (2024) demon-
strated that a multivariate particle filter framework assimilat-
ing Sentinel-based leaf area index (LAI) and streamflow in
a coupled SWAT-MODFLOW model improved estimates of
vegetation and hydrologic states. However, the loosely cou-
pled model, in which surface and groundwater components
interact via data exchange, may not fully capture integrated
dynamics of saturated and unsaturated zones.

The coupled modeling system TSMP integrated with Par-
allel Data Assimilation Framework (PDAF) (Nerger et al.,
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2005) has also been utilized for the assimilation of both syn-
thetic and observed SM or groundwater data across vari-
ous spatial scales. Kurtz et al. (2016) showed its capabil-
ity in simulating terrestrial states and quantifying uncer-
tainties. Subsequent studies (Gebler et al., 2019; Li et al.,
2023a) demonstrated improved SM estimates through as-
similation of in-situ and CRNS-derived SM. Brandhorst and
Neuweiler (2023) found that jointly updating van Genuchten
parameters, porosity, and saturated conductivity optimized
SM forecasts. Li et al. (2023b) improved GWL estimates us-
ing LEnKF with real GWL data. While most TSMP studies
focused on single-variable assimilation, Zhang et al. (2018)
and Hung et al. (2022) explored joint assimilation of SM and
groundwater in synthetic domains, highlighting the benefits
of weakly coupled approach (only updates the saturated sub-
surface states) in more complex domain. Further research is
needed on multivariate assimilation in real-world settings.

Given the challenges of jointly assimilating SM and GWL
data into the integrated TSMP framework under realistic con-
ditions in the German Rur catchment, we propose a novel
multivariate assimilation method. This study aims to: (i) eval-
uate the effectiveness of simultaneously assimilating CRNS-
based SM and GWL observations using the new method; (ii)
compare assimilation performance across different multivari-
ate DA strategies; and (iii) demonstrate the advantages of the
proposed approach over conventional single-variable assim-
ilation in improving SM, GWL, and ET predictions. To our
knowledge, this study represents the first attempt to simul-
taneously assimilate in-situ CRNS SM and observed GWL
data within TSMP at the catchment scale.

2 Data and Methodology

2.1 Rur catchment

This study focuses on the Rur catchment (Fig. 1), which cov-
ers approximately 2354 km2 and is mainly located in west-
ern Germany, with a small portion extending into the Nether-
lands and Belgium. The Rur River originates in the southern
highlands and flows northward, descending gradually in el-
evation from about 690 to 15 m above sea level. Elevation
strongly influences the regional climate: mean annual tem-
perature decreases from around 10 °C in the northern low-
lands to approximately 7 °C in the southern mountains, while
precipitation increases from 650 mm to nearly 1300 mm (Bo-
gena et al., 2018). Potential evapotranspiration declines with
altitude, ranging from 850 mm in the north to 450 mm in
the south (Montzka et al., 2008). Land use varies spatially;
the northern lowlands are primarily dominated by agricul-
tural fields, mainly maize and wheat, and extensive grass-
lands. In contrast, the southern mountainous zone is pre-
dominantly forested, featuring both coniferous and broadleaf
vegetation types (Waldhoff and Lussem, 2015; Shukla et al.,
2023). Additionally, lignite extraction through open-pit min-

ing and urban infrastructure constitute significant compo-
nents of the land use pattern (Shukla et al., 2023). Hydrogeo-
logical characteristics also differ markedly across the catch-
ment: the southern mountainous area is dominated by consol-
idated bedrock that limits aquifer permeability and ground-
water recharge, whereas the northern lowlands, composed of
loose sediments, enable higher rates of groundwater recharge
(Bogena et al., 2018).

2.2 Terrestrial System Modeling Platform (TSMP)

The TSMP framework was developed as a fully coupled
land-energy-hydrology model to simulate vertical and lateral
exchanges of water and heat across the surface-subsurface
continuum (Shrestha et al., 2014). In this study, only the
Community Land Model (CLM, version 3.5) (Oleson et al.,
2004; Oleson et al., 2008) was employed to simulate terres-
trial surface dynamics, while ParFlow (Kollet and Maxwell,
2006, 2008; Kollet et al., 2010), a three-dimensional sim-
ulator of groundwater dynamics under variable saturation
conditions, was used for subsurface modeling. These two
models are coupled through a two-way interaction using the
Ocean Atmosphere Sea Ice Soil Model Coupling Toolkit
(OASIS-MCT) (Valcke, 2013), which enables the exchange
of variables and fluxes between them. Within TSMP, CLM
primarily simulates water and energy exchanges, including
ET from soil and vegetation, as well as processes such as
snow accumulation and melting (Oleson et al., 2004; Ole-
son et al., 2008). The terrestrial surface heterogeneity is rep-
resented in CLM via a hierarchical subgrid system, where
individual grid cells are subdivided into distinct land units
such as glaciers, lakes, wetlands, urban areas, and vege-
tated areas. Each land unit may consist of multiple soil or
snow columns, within which different plant functional types
(PFTs) with unique physiological characteristics can be spec-
ified (Oleson et al., 2008). Subsurface hydrology and the rep-
resentation of surface and groundwater dynamics are han-
dled by ParFlow within the TSMP framework, which takes
over soil water movement, overland flow, and aquifer in-
teractions from CLM (Ashby and Falgout, 1996; Jones and
Woodward, 2001; Maxwell, 2013). ParFlow couples a two-
dimensional surface flow module with a high-performance
three-dimensional solver for saturated-unsaturated subsur-
face flow (Kollet and Maxwell, 2006). It employs the
Newton-Krylov iterative algorithm (Jones and Woodward,
2001) to solve the coupled partial differential equations gov-
erning interactions between surface and subsurface hydro-
logical systems, including the three-dimensional form of
Richards’ equation (Richards, 1931) for saturated and unsat-
urated flow, and the kinematic wave formulation (Lighthill
and Whitham, 1955) to simulate surface runoff. Designed
for parallel computing, ParFlow efficiently manages large-
scale, high-resolution, and highly heterogeneous problems.
Further details on the coupling mechanism between CLM
and ParFlow are provided in Kollet and Maxwell (2008).
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Figure 1. (a) Elevation map of the study area, accompanied by (b) the spatial distribution of hydrological monitoring infrastructure, including
groundwater wells, cosmic-ray neutron probes, and flux measurement towers.

2.3 Model Forcing Data and Observations

2.3.1 Forcing Data from Atmospheric Reanalysis

The TSMP model utilized atmospheric forcing derived from
the COSMO-REA6 reanalysis dataset, which provides high
spatial resolution of approximately 6 km (0.055°) and hourly
temporal frequency (Bollmeyer et al., 2015). This dataset,
produced by the German Meteorological Service (DWD),
was generated through simulations of the COSMO numeri-
cal weather prediction system (Baldauf et al., 2011; Borsche
et al., 2016). The primary meteorological variables used to
drive TSMP include precipitation, air pressure, specific hu-
midity, air temperature, wind speed, as well as incoming
longwave and shortwave radiation.

2.3.2 Terrestrial and Subsurface Data

The Shuttle Radar Topography Mission (SRTM) version 4
dataset with 90 m resolution (Jarvis et al., 2008) provided
the digital terrain for the Rur catchment (Fig. 1). Land cover
classification was based on Sentinel-2 imagery (Phiri et al.,
2020; Drusch et al., 2012) and mapped to PFTs in CLM fol-
lowing Montzka et al. (2021). Monthly LAI data for 2016–
2018 were retrieved per PFT using the Sentinel-2 Level 2
Prototype Processor (SL2P) within SNAP (Weiss and Baret,
2020). SL2P employs an artificial neural network trained
on global LAI and biophysical data, including PROSAIL-
simulated canopy reflectance (Chander et al., 2009; Verrelst
et al., 2016; Poulter et al., 2023). For pixel-level LAI esti-
mation, the model inputs include Sentinel-2 canopy-top re-

flectance and geometric factors such as solar illumination and
viewing angles derived from satellite orbit data.

Figure 2 shows the distribution of soil sand and clay
fractions derived from the BK50 soil map of North Rhine-
Westphalia, which has a mapping scale of 1 : 50 000 (Geolo-
gischer Dienst NRW, 2009). Bulk density information was
obtained from the European Soil Database (Pano, 2006).
These soil texture and density datasets were then used to es-
timate soil hydraulic properties via the Rosetta pedotransfer
functions, as described by Schaap et al. (2001) and Zhang
and Schaap (2017). Furthermore, the HK100 subsurface ge-
ology map, produced at a scale of 1 : 100 000 by Geologis-
cher Dienst NRW (2011), supplied the data necessary to de-
fine the hydraulic conductivity (Ks) for the aquifer layers.

2.3.3 Field Measurements of Soil Moisture,
Groundwater, and Evapotranspiration

Soil moisture observations were obtained from 13 CRNS
sites (Bogena and Ney, 2021) (see Table 1) distributed
across the Rur catchment within the TERrestrial Environ-
mental Observatories (TERENO) framework (Bogena et al.,
2018), with preprocessing carried out through the COSMOS-
Europe project (Bogena et al., 2022). To prevent redundancy
caused by spatial proximity, measurements from Rolles-
broich1 and Rollesbroich2 were aggregated into a single rep-
resentative value, resulting in 12 effective CRNS sites used
for DA.

Groundwater table depth data for assimilation and in-
dependent validation were obtained from the Geoportal
NRW platform (http://www.geoportal.nrw, last access: 2
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Figure 2. Spatial distribution of sand (a) and clay (b) fractions, along with hydraulic conductivity of aquifer layers (c) within the Rur
catchment.

Table 1. Key site-specific information for the CRNS stations.

Name Latitude Longitude Altitude Mean annual precipitation Mean air temperature Land use
(°) (°) (m) (mm yr−1) (°)

Aachen 50.80 6.03 232 865 10.3 crop
Gevenich 50.99 6.32 107 718 10.3 crop
Heinsberg 51.04 6.10 58 722 10.3 crop
Kall 50.50 6.53 505 857 8 grassland
Kleinhau 50.72 6.37 374 614 9 grassland
Merzenhausen 50.93 6.30 91 718 10.3 crop
Rollesbroich1 50.62 6.30 515 1018 7 grassland
Rollesbroich2 50.62 6.31 506 1018 7 grassland
Ruraue 50.86 6.43 100 718 10.3 grassland
Selhausen 50.87 6.45 101 718 10.3 crop
Schöneseiffen 50.52 6.38 611 870 7 grassland
Wildenrath 51.13 6.17 72 722 10.3 needleleaf
Wüstebach 50.51 6.33 605 1401 7 spruce

May 2025). Given the weak hydraulic connectivity between
the RZSM and the deep confined aquifer, this study focused
on assimilating data from the unconfined upper aquifer.
Wells selected exhibited observation depths between 0 to
20 m and supplied records with at least monthly observa-
tions. In total, 616 wells met these criteria during the 2016–
2018 period (Fig. 1). Due to the 500 m model resolution and
the spatial clustering of observation wells near rivers, multi-
ple wells were often located within a single grid cell or within
river cells. To ensure representative observations for assim-
ilation, the median GWL was chosen among multiple wells
within a grid cell to minimize potential biases from unusu-
ally high or low groundwater levels. Additionally, grid cells
adjacent to stream networks were excluded from the assimi-
lation process, as persistent saturation in these areas caused
large discrepancies with observed values. Accordingly, wells
situated in river grid cells were excluded from the assimi-
lation. Following these screening procedures, 78 wells were
selected for DA, while the remaining 465 wells were reserved
for independent validation.

Evapotranspiration estimations from various DA exper-
iments were assessed against flux measurements obtained

from three eddy covariance monitoring sites located at Sel-
hausen, Rollesbroich, and Wüstebach. These datasets were
made available through the TERENO infrastructure (https:
//www.tereno.net/, last access: 26 August 2024). The eddy
covariance-based ET data were quality-controlled, gap-filled,
and energy-balance corrected following the procedures out-
lined in Bogena et al. (2018).

2.4 Localized Ensemble Kalman Filter for Data
Assimilation

Data assimilation consists of two main phases: the prediction
phase and the correction phase (Carrassi et al., 2018). Dur-
ing the prediction phase, system state estimates are generated
solely based on prior historical information. In the correc-
tion phase, these predictions are updated by integrating cur-
rent observational data, which refines the estimates of states
and/or parameters and subsequently updates their probability
distributions (McLaughlin, 2002).

Hendricks Franssen et al. (2011) developed a method us-
ing an augmented state vector to enable the simultaneous
assimilation of multiple variables and model parameters. In
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this study, the focus is on updating soil water content (θ )
and groundwater levels, represented by the piezometric head
(h). To address parameter uncertainty, hydraulic conductivity
(Ks) is also included in the update process. These variables
and parameters are combined into a single vector within the
EnKF framework, structured as follows:

ψ =

(
x

log10 (Ks)

)
=

 h

θ

log10 (Ks)

 (1)

State and parameter updates are carried out by integrating
observations from SM and GWL (represented as h) into a
unified observation vector.

The update formula for ψ is computed individually for
each member j (j = 1, . . . ,N ) of the ensemble as outlined in
Evensen (2003). To generate the ensembles, this study con-
sidered the uncertainties from both atmospheric inputs and
model parameters (e.g., Ks and porosity). The update equa-
tion for each realization is as follows:

ψaj = ψ
f
j +αK

(
ŷj −Hψfj

)
(2)

where ψfj and ψaj represent the prior and posterior state-
parameter vectors for the j th realization, yj denotes the mea-
surement vector (e.g., θ and h), K stands for the Kalman gain
matrix, and α is a relaxation coefficient (or called damping
factor) for parameter (log10Ks) update, with values ranging
from 0 to 1. This step is essential to prevent covariance under-
estimation, a phenomenon that may arise when the ensemble
Kalman filter is employed iteratively with limited realiza-
tions, leading to a reduced estimate of the ensemble spread
(Hendricks Franssen and Kinzelbach, 2008).

The K matrix is defined by the following equation:

K= PHT
(

HPHT
+R

)−1
(3)

The observation operator H links the observation vector to
the state vector. The matrix P represents the covariance of
the model states and uncertain parameters, while R denotes
the covariance matrix for measurement error. The perfor-
mance of the filter relies on the state-error covariance ma-
trix P, which is estimated based on the members of ensemble
(Evensen, 2003; Houtekamer and Mitchell, 1998).

Due to the small ensemble size, spurious correlations may
arise between distant model grid points, potentially distort-
ing the covariance estimation. To address this, we employed
the localized EnKF approach introduced by Houtekamer
and Mitchell (1998), which incorporates spatial localization
to confine observational influence within a specified radius
(Hamill et al., 2001). This is achieved by modifying PHT

to ρ ◦PHT in Eq. (3), where the Schur product involves a
localization matrix ρ and the original cross-covariance. The
localization weights in ρ are computed using a compactly
supported fifth-order function proposed by Gaspari and Cohn
(1999), ensuring smooth spatial falloff of influence.

The correlation ω, representing an element in ρ that links a
grid point to an observation, can be approximated as follows:

ω(l,e)

=

 1− 1
4
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e
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(
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l
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3

(
e
l

)−1
, l < e ≤ 2l

0, e > 2l
(4)

Here, l refers to the chosen localization radius, while e in-
dicates the direct distance from the measurement location to
the particular grid cell being analyzed. The correlation value
ω varies with this distance, attaining a maximum of 1 di-
rectly at the observation point and gradually decreasing to
zero once the distance exceeds twice the radius l.

In this study, SM observations for assimilation were ob-
tained from CRNS. As CRNS measurement depth depends
on SM conditions, it was first estimated following Schrön et
al. (2017). The PDAF framework then mapped CRNS data
to soil layers within the estimated penetration depth (Fig. 3),
allowing updates to the simulated SM profiles. After assim-
ilation, modeled SM was aggregated using a weighted aver-
age and compared to CRNS data for validation, as detailed
in Schrön et al. (2017). The Rur catchment model consists
of 100× 162 grid cells with a resolution of 500 m× 500 m.
Following previous EnKF studies using 12 CRNS stations
(Baatz et al., 2017; Li et al., 2023a), we set the localization
radius to ∼ 100 km to ensure that assimilation effects cover
the entire study area. In the LEnKF framework, a fifth-order
polynomial (Eq. 4) is applied to gradually reduce update
magnitudes with distance, distinguishing it from the standard
EnKF approach.

Within the TSMP-PDAF framework, GWL observations
were converted to pressure head values for saturated layers
based on hydrostatic equilibrium (Zhang et al., 2018). The
saturated zone was defined using the shallowest water table
values from the ensemble. An update range was constrained
using a horizontal localization radius of 5 km, derived from
spatial correlation patterns of GWL.

Earlier research by Zhang et al. (2018) showed that in
TSMP, assimilating SM and/or GWL enables updates to all
relevant subsurface states via DA. In this fully coupled DA
configuration of Zhang et al. (2018), cross-variable covari-
ances ensured that observations of one variable (e.g., SM)
could directly adjust others (e.g., GWL). Later, Hung et al.
(2022) applied GWL assimilation restricted to the saturated
zones and demonstrated that this approach outperformed the
fully coupled strategy of Zhang et al. (2018). In this study, we
develop a new weakly coupled DA scheme that introduces
separate update restrictions for each observation type: GWL
observations are used to update only saturated cells, while
SM observations are used to update only unsaturated zones.
This design minimizes potential spurious cross-variable cor-
relations and enhances the robustness of multivariate as-
similation. Additionally, updates are applied asynchronously
to account for the different temporal dynamics of the vari-
ables: SM, which changes more rapidly, is typically updated
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Figure 3. Conceptual diagram illustrating the assimilation of CRNS-based soil moisture and groundwater level (pressure head) observations
into the TSMP system (CLM-ParFlow) using the PDAF framework. Here, θf and θa represent the predicted and updated states of soil
moisture in the unsaturated zone, respectively, while hf and ha denote the predicted and updated pressure heads in the saturated zone.
Groundwater level measurements are converted into pressure head values to serve as input data.

daily, whereas groundwater, with slower dynamics, is up-
dated weekly. Furthermore, unlike previous DA studies of
TSMP, which generally used the same localization radius for
joint GWL and SM assimilation, our approach applies dif-
ferent localization radii for the two variables, accounting for
their distinct spatial correlation characteristics.

3 Setup of Model and Experiments

3.1 Generation of Ensemble Members

To represent input uncertainty, the CLM-ParFlow system was
perturbed by modifying atmospheric forcings and subsur-
face properties, including saturated hydraulic conductivity
and soil porosity, resulting in 128 ensemble realizations. Ta-
ble 2 summarizes the statistical metrics of meteorological
perturbations. Precipitation, air temperature, and shortwave
and longwave radiation were stochastically perturbed using
a multivariate normal framework with temporal dependen-
cies. A first-order autoregressive model was applied to cap-
ture temporal structure (Han et al., 2015). Standard devia-
tions and time-series dependencies were informed by previ-
ous regional-scale DA studies (Reichle et al., 2010; Baatz
et al., 2017). To preserve mass-energy balance, lognormally
distributed noise with correction was added to shortwave ra-
diation and precipitation (Yamamoto, 2007).

The model domain is discretized at 500 m resolution hor-
izontally and extends 100 m vertically with 25 layers of in-
creasing thickness. The top 10 layers (to 3 m depth) align
with CLM-defined soil layers, while deeper layers represent
bedrock. Porosity and hydraulic conductivity were perturbed
separately in soil and aquifer zones. Soil hydraulic parame-
ters for the Mualem-Van Genuchten model were derived us-
ing Rosetta (Schaap et al., 2001; Zhang and Schaap, 2017),

based on geostatistically simulated sand and clay content us-
ing a spherical variogram (mean 0, variance 50 %2, range
12.5 km). Silt was calculated as the residual. Soil textures
were constrained to 0 %–100 %, and Rosetta estimated spa-
tially variable porosity andKs . AquiferKs values were taken
from a hydrogeological map (Fig. 2) and perturbed by spa-
tially uniform noise on log10Ks (range: −0.5 to 0.5), while
aquifer porosity was fixed at 0.15.

3.2 Configuration of Data Assimilation Experiments

Each ensemble member underwent a spin-up to achieve hy-
drologic equilibrium specific to its realization. This involved
two phases: first, ParFlow was run for 100 years using ini-
tial groundwater depths averaged from Bogena et al. (2005),
driven by 30-year average recharge derived from climato-
logical inputs (precipitation and actual evapotranspiration)
provided by the German Meteorological Service. Second,
the steady-state output from ParFlow initialized the coupled
CLM-ParFlow model, which was then repeatedly forced with
2015 atmospheric inputs for ten years. Following spin-up,
DA experiments were conducted over three years (1 January
2016–31 December 2018), assimilating GWL from 78 wells
and SM from 12 CRNS sites using LEnKF.

11 DA experiments (Table 3) were conducted to assess as-
similation performance, differing in observation type, state
vector composition, and localization strategy. The open loop
(OL) experiment, performed without assimilation, served
as the reference for DA comparisons. SM_DA assimilated
daily SM observations from CRNS (observation error of
0.03 cm3 cm−3) with 100 km localization radius. GWL_DA
assimilated weekly GWL observations, with an observational
error of 0.05 m, using a 5 km localization radius, updating
only hydraulic head (h) in the saturated zone. FC_DA assim-
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Table 2. Statistics of atmospheric variable perturbations. The last column presents their cross-correlations, arranged in the same order as the
variables listed in the first column of the table.

Variables Noise Standard deviation Time correlation scale Cross correlation

Precipitation Multiplicative 0.3 24 h [ 1.0, −0.8, 0.5, 0.0,
Shortwave radiation Multiplicative 0.2 24 h −0.8, 1.0, −0.5, 0.4,
Longwave radiation Additive 20 W m−2 24 h 0.5, −0.5, 1.0, 0.4,
Air temperature Additive 1 K 24 h 0.0, 0.4, 0.4, 1.0]

ilated both SM and GWL using the fully coupled DA strat-
egy, with the state vector including h and θ in all subsur-
face layers. θ and h were updated daily and weekly, respec-
tively, both with a 5 km localization radius. WC_DA used the
weakly coupled scheme, with h updated only in the saturated
zone and θ only in the unsaturated zone; all other settings
were the same as FC_DA. Moreover, WC_DA_r followed
the same setup as WC_DA, except that the localization ra-
dius differed between the two variables: 5 km for GWL and
100 km for SM. For all DA experiments, the suffix _PAR in-
dicates that, in addition to state updates, the saturated hy-
draulic conductivity (logKs) was updated every seven days
using a damping factor of 0.1. The _PAR runs were initial-
ized from the same spun-up equilibrium state as their corre-
sponding state-update experiments, and the gradual parame-
ter updates ensured that changes remained small and did not
disturb the equilibrium state too much, thereby avoiding the
need for additional spin-ups. Furthermore, parameter valida-
tion involved applying Ks updated from one year to OL sim-
ulations in other years (e.g., using updated Ks from 2016 in
2017–2018).

3.3 Model Performance Assessment

Simulation outputs from the OL run along with multiple as-
similation experiments were evaluated against daily observed
data for GWL, SM, and ET. The assessment employed statis-
tical indicators including the root mean square error (RMSE),
unbiased RMSE (ubRMSE), and Pearson’s correlation coef-
ficient (R). Among these, ubRMSE was emphasized in our
analysis because it is widely applied in DA research and fa-
cilitates comparison with previous studies. To avoid redun-
dancy, detailed results for RMSE and R are presented in the
Supplement tables to ensure a comprehensive evaluation of
model performance.

The RMSE at a given time step t was computed using the
following formula:

RMSEt =

√∑Nobs
i=1

(
ysim
t − y

obs
t

)2
Nobs

, (5)

The ubRMSE at each time step t was computed using:

ubRMSEt =

√√√√∑Nobs
i=1

[(
ysim
t − y

sim
)
−

(
yobs
t − y

obs
)]2

Nobs
, (6)

Calculation of R is based on the following expression:

R =

∑n
t=1

(
yobs
t − y

obs
)(
ysim
t − y

sim
)

√∑n
t=1

(
yobs
t − y

obs
)2∑n

t=1

(
ysim
t − y

sim
)2
, (7)

Here, ysim
t denotes the ensemble-mean simulation for the tar-

get variable (SM, GWL, or ET) at a given time step t , origi-
nating from either an OL or DA experiment, while yobs

t refers
to the matching observation. Nobs represents the count of
available observations at time t , and n indicates the overall
count of evaluated temporal intervals.

4 Results

4.1 Univariate Soil Moisture Assimilation

Table 4 compares the ubRMSE of SM, ET, and GWL be-
tween the baseline OL simulation and the SM only assim-
ilation scenarios (SM_DA and SM_DA_PAR), while addi-
tional metrics including RMSE and R for SM and ET are
provided in Table S1 in the Supplement. Assimilating CRNS
SM observations significantly improved SM prediction accu-
racy at monitored sites during 2016–2018, as shown in Sup-
plement Figs. S1–S3. In the SM_DA scenario, SM ubRMSE
and RMSE decreased by over 45 % and 50 %, respectively.
Joint updates of states and parameters (SM_DA_ PAR) out-
performed state-only assimilation. Correlation coefficients
for SM improved notably in DA runs (R = 0.85–0.90) ver-
sus OL (R = 0.61–0.63) (Table S1). However, SM assimila-
tion had limited impact on ET, with RMSE reduced by less
than 3 % compared to OL. However, GWL ubRMSE met-
ric showed variable changes when only SM was assimilated,
ranging from −7 % to 15 % across individual years, where
positive values indicate a deterioration in performance. Over
the 2016–2018 period, the average change in ubRMSE was
small, corresponding to 3.87 % for SM_DA and−0.41 % for
SM_DA_PAR. Overall, SM assimilation had a minor nega-
tive effect on GWL, with some annual variability.

Hydrol. Earth Syst. Sci., 29, 6419–6443, 2025 https://doi.org/10.5194/hess-29-6419-2025



F. Li et al.: A new approach for joint assimilation of cosmic-ray neutron soil moisture 6427

Table 3. Summary of the data assimilation experiments conducted. Observational data include groundwater levels (GWL) and soil moisture
(SM). Key variables consist of pressure head (h), soil water content (θ ), and hydraulic conductivity (Ks ). The terms “unsat” and “sat”
distinguish between the unsaturated and saturated domains, respectively. Experiments FC_DA and FC_DA_PAR were performed using the
fully coupled framework, following the methodology described by Hung et al. (2022).

Experiments (abbrev.) Observations State vector GWL and SM local radius

OL – – –
SM_DA SM θ –
SM_DA_PAR SM θ , logKs –
GWL_DA GWL hsat –
GWL_DA_PAR GWL hsat, logKs –
FC_DA GWL, SM θ , h Same
FC_DA_PAR GWL, SM θ , h, logKs Same
WC_DA GWL, SM θunsat, hsat Same
WC_DA_PAR GWL, SM θunsat, hsat, logKs Same
WC_DA_r GWL, SM θunsat, hsat Different
WC_DA_r_PAR GWL, SM θunsat, hsat, logKs Different

Table 4. Annual unbiased root mean square error of volumetric soil moisture, evapotranspiration, and groundwater level during 2016-2018
for the open-loop (OL) and univariate soil moisture data assimilation experiments (SM_DA and SM_DA_PAR).

Year Variable Experiments

OL SM_DA SM_DA_PAR

2016 SM (cm3 cm−3) 0.08 0.05 0.05
2017 0.09 0.04 0.04
2018 0.09 0.05 0.04
2016–2018 0.09 0.05 0.04
2016 ET (mm d−1) 0.63 0.65 0.64
2017 0.66 0.66 0.66
2018 0.68 0.70 0.70
2016–2018 0.66 0.67 0.66
2016 GWL (m) 7.30 6.87 6.79
2017 7.24 8.31 7.74
2018 7.16 7.34 7.06
2016-2018 7.23 7.51 7.20

Figure 4 illustrates the differences in SM, ET, and GWL
between the OL simulation and the univariate SM assimila-
tion scenarios for the year 2018, with corresponding findings
for 2016 and 2017 shown in Figs. S4 and S5. In the sce-
narios involving only state estimation and those involving
simultaneous parameter estimation, assimilation led to dis-
tinct spatial changes in SM distribution across the catchment-
marked by increased moisture in the northern areas and a
drying trend in the south. For 2018, the spatial distribution
in annual SM was similar for both the state-only and joint
state-parameter update runs, indicating a limited parameter
influence that year. In contrast, the impact of parameter up-
dates on SM was more pronounced in 2016 and 2017, likely
due to differing hydrological conditions. Specifically, under
the wetter conditions of 2016, elevated SM levels enhanced
spatial coherence, thereby increasing sensitivity to parameter
adjustments (Li et al., 2023a).

The regional distribution of ET changes closely followed
the corresponding SM patterns, indicating a direct influence
of SM assimilation on ET dynamics. Within the southern
region of the catchment, both SM_DA and SM_DA_PAR
simulations exhibited reduced ET compared to the OL sim-
ulation, consistent with lower SM levels. In contrast, the
northern catchment showed increased ET linked to higher
SM following assimilation. The impact of SM assimila-
tion on ET in the southern region was relatively limited,
with changes generally below 50 mm yr−1, as ET there was
primarily constrained by available energy. However, in the
northern Rur subregion-characterized by lower precipitation-
ET responded more strongly to assimilation, with increases
exceeding 100 mm yr−1 following the rise in SM. Notable
spatial variations in GWL also emerged across certain areas
of the catchment after assimilation. Since TSMP is a com-
prehensive system, assimilation of SM alone also influenced
GWL dynamics. Additionally, due to the SM localization ra-
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Figure 4. Spatial variations in annual soil moisture (0–80 cm), evap-
otranspiration, and groundwater level for 2018 are shown in panels
(a)–(c), depicting the differences between SM_DA and OL simula-
tions (SM_DA minus OL). Panels (d)–(f) present similar contrasts
between SM_DA_PAR and OL (SM_DA_PAR minus OL). Black
pentagrams mark the locations of the CRNS monitoring stations.

dius covering the entire basin and the inclusion of lateral
groundwater flow in TSMP, changes in GWL were not con-
fined to areas near CRNS locations. While GWL spatial pat-
terns showed some alignment with those of SM, they were
less consistently matched than the patterns observed in ET.

4.2 Univariate Groundwater Level Assimilation

Table 5 provides an overview of simulation results for GWL,
SM, and ET across multiple years, comparing outputs from
the OL and univariate GWL assimilation experiments. The
unbiased RMSE of GWL was evaluated at update points and
at validation sites categorized by their distance from these
points, with consistent patterns observed across all distance
groups. A more detailed assessment of GWL performance,
including RMSE metrics, is available in Table S2. Tempo-
ral dynamics of GWL in response to assimilation are illus-
trated in Fig. S6, which depicts GWL evolution at 12 mon-
itoring locations. Substantial improvements in GWL simu-
lations were observed at assimilation sites in the GWL_DA
experiment, where the annual ubRMSE was reduced by ap-
proximately 60 % relative to the OL run. When both states
and parameters were jointly updated in the GWL_DA_PAR
experiment, the ubRMSE further decreased to 2.04 m, cor-
responding to a ∼ 72 % reduction compared to OL. While
notable improvements were evident near assimilation wells,
the performance gains declined with increasing distance
from these locations. Joint updating of states and parameters
(GWL_DA_PAR) consistently outperformed state-only up-
dates (GWL_DA). Within the 0–0.5 km ranges from assimi-

lation points, GWL ubRMSE decreased from 6.96 to 3.78 m,
reflecting a 46 % improvement. Beyond 0.5 km, ubRMSE in
the GWL_DA_PAR experiment remained at least 10 % lower
than in OL. In contrast to the large improvements in GWL,
univariate GWL assimilation generally had a limited negative
impact on SM, with interannual variability. Over the 2016–
2018 period, the average SM ubRMSE was 0.09 cm3 cm−3

in GWL_DA and 0.11 cm3 cm−3 in GWL_DA_PAR, com-
pared with 0.09 cm3 cm−3 in OL. In individual years, SM
ubRMSE ranged from 0.09 to 0.10 cm3 cm−3 in GWL_DA,
corresponding to annual changes of 0 %–25 % compared
with OL value in each respective year. In GWL_DA_PAR,
SM ubRMSE further increased to 0.10–0.11 cm3 cm−3, re-
flecting annual rises of over 20 % relative to OL values of the
corresponding year. This absence of enhancement in SM was
likewise observed in ET, since univariate GWL assimilation
did not improve SM simulations. Consequently, ET simula-
tions exhibited minimal change, with ubRMSE, RMSE, and
R metrics showing negligible differences, as summarized in
Table S1.

Figure 5 illustrates the annual variations in multiple vari-
ables by comparing the univariate GWL assimilation sce-
narios with the OL simulation for 2018, while correspond-
ing results for 2016 and 2017 are provided in Figs. S7 and
S8. A 5 km localization radius was applied during ground-
water assimilation, leading to notable GWL variations pri-
marily in the vicinity of the assimilation points. In contrast,
the hilly southern region-characterized by sparse measure-
ment locations-exhibited minimal GWL changes. Although
spatial differences in GWL between the state-only and state-
parameter update runs were generally small, several areas
in the central catchment experienced distinct GWL adjust-
ments resulting from parameter updates. Groundwater assim-
ilation also influenced SM estimates, particularly near assim-
ilation locations where changes in SM closely corresponded
to GWL variations. However, since most CRNS sites were
located at greater distances from the assimilated groundwa-
ter wells, SM simulations at those CRNS locations remained
largely unaffected. Furthermore, annual SM estimates exhib-
ited only minor differences between the state-only and state-
parameter GWL assimilation runs. The influence on ET was
similarly limited to areas surrounding the GWL update points
due to the applied localization radius. It is worth highlight-
ing that the distributions of variations in SM and ET showed
strong consistency across space.

4.3 Multivariate Data Assimilation of Soil Moisture
and Groundwater Level

Table 6 summarizes the ubRMSE values of GWL, SM, and
ET from various multivariate assimilation scenarios between
2016 and 2018. Additional RMSE results for groundwater ta-
ble depth are provided in Table S3. Among all experiments,
the WC_DA_PAR scenario produced the best-performing
groundwater estimates at the assimilated sites, lowering the
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Table 5. Annual unbiased root mean square error of groundwater level, volumetric soil moisture, and evapotranspiration for 2016–2018,
evaluated for the open-loop (OL) and univariate groundwater level assimilation scenarios (GWL_DA and GWL_DA_PAR). Note: “0” refers
to assimilation points; validation sites are grouped by their distance from these points into three categories: less than 0.5 km, between 0.5 and
2.5 km, and between 2.5 and 5 km.

Year Variable Distance Experiments

OL GWL _DA GWL _DA_PAR

2016 GWL (m) 0 7.30 3.39 2.03
2017 7.24 2.78 2.05
2018 7.16 2.52 2.04
2016–2018 7.23 2.90 2.04
2016 0–0.5 km 7.23 6.54 3.70
2017 6.95 4.46 4.02
2018 6.69 3.89 3.62
2016–2018 6.96 4.97 3.78
2016 0.5–2.5 km 5.32 5.84 4.60
2017 5.26 4.88 4.82
2018 5.09 4.70 4.63
2016–2018 5.22 5.14 4.68
2016 2.5–5 km 6.37 6.36 5.12
2017 6.31 5.50 4.99
2018 6.03 5.29 5.16
2016–2018 6.24 5.72 5.09
2016 SM (cm3 cm−3) – 0.08 0.10 0.10
2017 0.09 0.09 0.11
2018 0.09 0.10 0.11
2016–2018 0.09 0.09 0.11
2016 ET (m) – 0.63 0.63 0.63
2017 0.66 0.66 0.66
2018 0.68 0.68 0.68
2016–2018 0.66 0.66 0.66

ubRMSE substantially-dropping it from 7.23 to 2.05 m, rep-
resenting a reduction of nearly three-quarters. A similar level
of accuracy was attained by the GWL_DA_PAR run, yield-
ing a ubRMSE of 2.04 m. At validation sites within 0 to
0.5 km of assimilation points, the multivariate assimilation of
SM and GWL slightly underperformed compared to the stan-
dalone groundwater update in predicting GWL, although the
difference was not statistically significant. Across all single-
and multi-variable assimilation scenarios, WC_DA_r_PAR
achieved the minimum ubRMSE (4.56 m) for GWL predic-
tions within the 0.5–2.5 km range from assimilation sites. In
comparison, the FC_DA_PAR experiment yielded the lowest
ubRMSE value (4.91 m) at sites 2.5 to 5 km away from the
assimilation points.

In the multivariate DA experiments, SM depiction
showed a significant improvement, with WC_DA_PAR and
WC_DA_r_PAR yielding the greatest ubRMSE decrease of
50 %. Detailed RMSE and R statistics for SM and ET are
provided in Table S4. However, SM evaluation results under
fully coupled joint SM and groundwater assimilation scenar-
ios (FC_DA or FC_DA_PAR) failed to surpass the outcomes
from SM-only assimilation runs (SM_DA or SM_DA_PAR),
suggesting that incorporating groundwater data did not im-

prove SM representation in the fully coupled system. Mul-
tivariate assimilation produced a slight enhancement in ET
simulation accuracy, reflected by an approximate 3 % de-
crease in RMSE, though this was not evident in ubRMSE val-
ues. Furthermore, applying parameter updates had minimal
impact on ET simulation results across these experiments.

To facilitate comparison, Fig. 6 presents the ubRMSE
values from both univariate and multivariate assimilation
runs. In contrast with the OL simulation, the FC_DA and
FC_DA_PAR experiments showed improved ability to repro-
duce SM and groundwater dynamics. Nonetheless, the re-
sults were inferior to those obtained through individual as-
similation of SM or GWL for their corresponding hydrolog-
ical variables. Alternatively, the weakly integrated schemes
(WC_DA and WC_DA_PAR) yielded improved estimates of
SM and GWL relative to the fully coupled configuration. Ac-
cording to Fig. 6, WC_DA_r and WC_DA_r_PAR demon-
strated superior capability in replicating GWL and SM at
observation sites relative to the remaining multivariate as-
similation approaches. Within the 2.5 to 5 km range from
assimilation locations, predictive accuracy declined slightly
compared to the fully coupled configuration, possibly at-
tributed to the broader localization radius applied during SM
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Table 6. Annual unbiased root mean square error of groundwater level, soil moisture, and evapotranspiration during 2016–2018, eval-
uated for the open-loop (OL) and multivariate assimilation scenarios (FC_DA, FC_DA_PAR, WC_DA, WC_DA_PAR, WC_DA_r, and
WC_DA_r_PAR). Note: “0” denotes assimilation locations; validation sites are grouped by their distance from these points into three ranges:
less than 0.5, 0.5 to 2.5, and 2.5 to 5 km.

Year Variable Distance Experiments

OL FC_DA FC_DA_PAR WC_DA WC_DA_PAR WC_DA_r WC_DA_r_PAR

2016 GWL (m) 0 7.30 3.24 2.96 3.14 2.13 3.24 2.37
2017 7.24 4.06 2.88 2.93 1.98 3.01 2.04
2018 7.16 3.44 3.06 3.33 2.03 2.57 2.11
2016–2018 7.23 3.58 2.97 3.13 2.05 2.94 2.17
2016 0–0.5 km 7.23 4.64 4.43 4.16 4.23 4.41 4.52
2017 6.95 3.96 3.69 3.94 4.60 4.27 3.49
2018 6.69 3.25 3.54 3.93 3.62 3.96 3.61
2016–2018 6.96 3.95 3.89 4.01 4.15 4.21 3.87
2016 0.5–2.5 km 5.32 5.57 4.72 4.73 7.56 4.73 4.67
2017 5.26 4.75 4.78 4.65 4.73 4.61 4.48
2018 5.09 4.34 4.46 4.66 4.79 4.61 4.52
2016–2018 5.22 4.89 4.65 4.68 5.70 4.65 4.56
2016 2.5–5 km 6.37 5.65 5.03 5.27 8.24 7.54 5.61
2017 6.31 5.23 5.02 5.38 5.52 7.01 7.81
2018 6.03 4.89 4.68 5.30 5.18 5.68 5.10
2016–2018 6.24 5.26 4.91 5.32 6.31 6.74 6.17
2016 SM (cm3 cm−3) – 0.08 0.05 0.05 0.06 0.04 0.06 0.04
2017 0.09 0.06 0.06 0.05 0.04 0.05 0.04
2018 0.09 0.08 0.05 0.07 0.04 0.05 0.04
2016–2018 0.09 0.06 0.05 0.06 0.04 0.05 0.04
2016 ET (mm d−1) – 0.63 0.63 0.64 0.63 0.63 0.64 0.64
2017 0.66 0.66 0.66 0.66 0.66 0.66 0.66
2018 0.68 0.70 0.70 0.70 0.70 0.70 0.70
2016–2018 0.66 0.66 0.67 0.66 0.66 0.66 0.66

assimilation, which imposed a more pronounced effect on
groundwater estimation. By way of reference, assimilating
SM alone showed that updating SM led to decreased accu-
racy in GWL estimates.

Figure 7 illustrates the annual changes in GWL, SM,
and ET for the Rur catchment in 2018, comparing various
multivariate assimilation experiments with the OL simula-
tion. Since the results from combined state-parameter up-
dates closely matched those from state-only updates, only
the joint state-parameter updating results are presented. Out-
comes for 2016 and 2017 are presented in Figs. S9 and
S10, respectively. In the WC_DA_PAR scenario, changes in
GWL estimates were highly consistent with those from the
GWL-only DA runs. This consistency arises from using the
same groundwater updating approach, specifically updating
only the hydraulic pressure confined to the saturated zone.
Notable GWL variations were also observed in areas with-
out direct groundwater assimilation points. These changes
likely resulted from SM updates within the multivariate as-
similation scenarios, particularly in the FC_DA_PAR and
WC_DA_r_PAR experiments. The spatial distribution of SM
in the WC_DA_r_PAR run was very similar to that of the
univariate SM assimilation, since both used the identical as-
similation localization radius. Due to the smaller 5 km assim-

ilation radius applied in the FC_DA_PAR and WC_DA_PAR
runs, SM changes remained largely limited to areas close
to assimilation sites. Significant variations in annual SM
were also detected near groundwater monitoring points in
the northern catchment, indicating that combined assimila-
tion of SM and groundwater influences SM prediction ac-
curacy. The spatial pattern of ET aligned closely with SM,
reflecting ET’s primary control by SM variability. Moreover,
in the multivariate assimilation runs, SM at certain locations
adjacent to groundwater assimilation points was influenced
by GWL adjustments, resulting in ET fluctuations that might
contrast with those observed in univariate SM assimilation.

To enable a comprehensive comparison between single-
variable and multivariate assimilation approaches, Fig. 8
presents the time-series variations of SM and GWL recorded
at a CRNS site and a monitoring well throughout all assim-
ilation scenarios. The simulated SM patterns from the state-
only (GWL_DA) and state-parameter (GWL_DA_PAR)
groundwater assimilation runs closely follow those of the OL
simulation, indicating that assimilating GWL data has little
impact on SM estimates for these scenarios. Likewise, as-
similating SM alone produced only minor changes in GWL.
When GWL data were assimilated, the modeled GWL pro-
gressively converged toward the observed values gradually.
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Figure 5. Spatial variations in annual groundwater level, soil mois-
ture (0–80 cm), and evapotranspiration for 2018 are shown in pan-
els (a)–(c), illustrating the differences between GWL_DA and OL
simulations (GWL_DA minus OL). Panels (d)–(f) present similar
contrasts between GWL_DA_PAR and OL (GWL_DA_PAR mi-
nus OL). Black hollow circles indicate the locations of groundwater
monitoring wells.

Within the multivariate assimilation runs, the fully coupled
setups (FC_DA and FC_DA_PAR) showed the largest dis-
crepancies in GWL and SM compared to observations. In
general, differences in modeled SM and GWL were small
when comparing assimilation experiments updating both
states and parameters to those updating states alone.

4.4 Impact of ParameterKs Updates on Model
Performance

Across all DA experiments, incorporating parameter updates
consistently outperformed relying solely on state updates.
To assess the performance of the adjusted parameters, they
were implemented in OL simulations for independent years
and evaluated against results obtained using the initial pa-
rameter set. Table 7 summarizes evaluation metrics-RMSE,
ubRMSE, and R, which serve as indicators of model perfor-
mance for various variables during the Ks validation period.
Improvements in SM estimates were attributed to the updated
Ks derived from the SM_DA_PAR scenarios, as reflected
by enhanced results across all evaluation metrics. Apply-
ing Ks values estimated from SM_DA_PAR reduced the SM
ubRMSE from 0.09 to 0.08 cm3 cm−3 in the OL validation
runs. Nevertheless, the updated Ks did not improve GWL
predictions, nor were significant enhancements observed in
ET simulations.

Applying the Ks values updated through the
GWL_DA_PAR experiments in OL runs for other in-
dependent years resulted in a slight reduction (less than 2 %)

in the overall RMSE and ubRMSE of GWL compared to
simulations using the original Ks . Additionally, enhanced
GWL modeling was observed in unassimilated areas fol-
lowing the incorporation of the revised Ks . Specifically,
within a range of 2.5–5 km from the assimilation points, the
modeled GWL improved by approximately 4 %, indicated
by a decrease in ubRMSE from 6.24 to 6.01 m. However, no
evident improvements were found in SM and ET estimates
after applying the revised Ks derived through the univariate
GWL assimilation (GWL_DA_PAR) experiments.

No noticeable improvement in simulated GWL was ob-
served at the assimilation points during the OL validation
using the revised Ks derived from the WC_DA_r_PAR sce-
nario. Compared to the GWL_DA_PAR experiment, the
Ks values estimated from WC_DA_r_PAR produced more
accurate GWL predictions at unassimilated grid locations.
Within the 0–0.5 km and 2.5–5 km ranges from assimila-
tion points, the GWL ubRMSE decreased by over 4 %.
Furthermore, the revised Ks enhanced SM simulation per-
formance, demonstrated by a reduction in SM ubRMSE
from 0.09 cm3 cm−3 with the original Ks to 0.08 cm3 cm−3

following the WC_DA_r_PAR assimilation. Although the
revised Ks obtained from the WC_DA_r_PAR scenario
brought some improvements, its impact on ET simulation re-
mained minimal.

Figure 9 illustrates the differences in the mean spatial
values of log10Ks at soil depths of 2 cm and 10 m for the
SM_DA_ PAR, GWL_DA_PAR, and WC_DA_r_PAR sce-
narios compared with the reference OL simulation. The out-
comes illustrated correspond to the year 2018, with supple-
mentary outcomes for 2016 and 2017 provided in Figures
S11 and S12. The spatial patterns of Ks modifications were
consistent across all three years. In the SM_DA_PAR ex-
periment, changes in Ks occurred both within the root zone
and, indirectly, extended to the saturated zone at 10 m depth.
Such modifications in Ks may have a significant influence
on the accuracy of GWL estimation. Conversely, during the
GWL_DA_PAR run, state modifications were limited to the
saturated layers, producing pronounced changes in Ks pri-
marily at the groundwater assimilation points in that zone.
No significant impact on Ks was observed in the unsaturated
zone due to these updates.

Within the WC_DA_r_PAR scenario, the assimilation
processes for SM and GWL were conducted separately.
Consequently, modifications in Ks within the unsaturated
zone were projected to mirror the patterns identified in the
SM_DA_PAR experiment, whereas variations in the satu-
rated layers were anticipated to correspond to those seen in
the GWL_DA_PAR experiment. These findings indicate that
the distribution of Ks modifications across the affected re-
gions closely match those from the individual assimilation
runs. Nevertheless, due to the interdependence between SM
and GWL updates in the joint assimilation, the resulting Ks
modifications exhibit more intricate and integrated system
behavior, rather than merely a straightforward combination
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Figure 6. Comparison of unbiased root mean square error (ubRMSE) for groundwater level (GWL, m) at different distances from assimilation
points, alongside soil moisture (SM, cm3 cm−3) results from both univariate and multivariate assimilation runs. Groundwater level metrics
are shown on the left y-axis, while soil moisture values correspond to the right y-axis.

Table 7. Summary of performance metrics for simulated groundwater level, volumetric soil moisture, and evapotranspiration across all
validation runs during the 2016–2018 period. Note: “0” refers to groundwater assimilation locations; validation sites are categorized by their
distance from these points as follows: less than 0.5, 0.5 to 2.5, and 2.5 to 5 km.

Variable Distance Indicators Ks from SM_ DA_PAR Ks from GWL_ DA_PAR Ks from WC_ DA_ r_ PAR

GWL 0 RMSE (m) 7.90 7.16 7.32
0–0.5 km 6.92 6.84
0.5–2.5 km 6.54 6.50
2.5–5 km 6.98 6.95
0 ubRMSE (m) 7.27 7.09 7.23
0-0.5km 6.71 6.63
0.5–2.5 km 5.21 5.17
2.5–5 km 6.01 5.97

SM – RMSE (cm3 cm−3) 0.09 0.10 0.09
ubRMSE (cm3 cm−3) 0.08 0.09 0.08
R 0.67 0.60 0.68

ET – RMSE (mm d−1) 0.75 0.76 0.75
ubRMSE (mm d−1) 0.66 0.66 0.66
R 0.83 0.84 0.83

of changes seen in the separate univariate runs. As a result,
certain areas of the study region exhibited greater variations
in Ks at different subsurface depths.

5 Discussions

5.1 Benefits and Challenges of the New Multivariate
Data Assimilation Framework

In this research, we propose an innovative joint DA frame-
work that improves the accuracy of both SM and GWL esti-
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Figure 7. Spatial variations in the 2018 annual differences of
groundwater level, 0–80 cm soil moisture, and evapotranspiration
are presented in panels (a), (d), (g), showing comparisons be-
tween the multivariate data assimilation scenario FC_DA_PAR
and the open-loop (OL) run. Panels (b), (e), (h) and (c), (f), (i)
display the corresponding differences for the WC_DA_PAR and
WC_DA_r_PAR scenarios, respectively. The locations of CRNS
stations and assimilated groundwater wells are marked by black
pentagrams and circles.

mations. When assimilation is limited to a single variable,
either SM or GWL, it generally enhances the assimilated
variable but frequently decreases the reliability of the non-
assimilated one. The observed deterioration may stem from
spurious inter-variable covariances generated during the state
estimation process. These covariances can modify the nat-
ural trade-offs between SM and GWL that arise from their
physical coupling through soil water retention and pressure
head relationships. Specifically, changes in shallow ground-
water directly affect SM in the unsaturated zone, while SM
dynamics control recharge and thus influence GWL. Impor-
tantly, the strength of this connection is not spatially uniform.
In areas with shallow groundwater tables, SM and GWL are
tightly coupled, so assimilating one variable has stronger im-
pacts on the other. In contrast, with deeper groundwater, the
hydraulic link between SM and GWL weakens, and under
such conditions this connection can be functionally discon-
nected, resulting in assimilating one variable having little or
no effect on the other, and in some cases, minor degrada-
tions may occur. Such degradations may be partially caused
by small ensemble sizes, which make estimated covariances
less reliable, especially for weaker correlations. In addition,
non-Gaussianity related to drier soil conditions may impair

the effectiveness of assimilating one variable on improving
the estimates of the other. This effect particularly impacts
the upper soil states when GWL is assimilated, or the deeper
subsurface states when SM is assimilated from dry soils. This
issue can also be partly attributed to the use of point-scale ob-
servations, given that neutron sensing stations and ground-
water monitoring wells are unevenly distributed across the
study area. When assimilation targets only one state compo-
nent (e.g., GWL), it is difficult to reduce uncertainties in hy-
drologically connected states (such as SM) at non-adjacent
spatial locations. Such spatial heterogeneity and statistical
limitation explain why assimilation of a single variable can
improve its own estimates while occasionally causing small
degradations in the other, depending on local hydrogeolog-
ical settings. However, the observed reductions in the non-
assimilated variable are relatively small compared with the
improvements in the assimilated variable, suggesting that
univariate assimilation still provides substantial benefits for
the targeted state. These limitations of univariate assimilation
underscore the value of multivariate approaches, which may
better account for the coupled dynamics of SM and GWL
and improve the accuracy of both states simultaneously.

Building on earlier TSMP-PDAF studies of multivariate
DA, Hung et al. (2022) used a detailed synthetic modeling
scenario for a southwestern German domain. They showed
that updating only the saturated layers improved GWL es-
timation compared to fully coupled DA, in contrast to ear-
lier studies based on highly simplified synthetic frameworks
(Zhang et al., 2018). However, in Hung et al. (2022), the syn-
thetic GWL and SM data for assimilated locations were sit-
uated within a single grid cell. In contrast, this research was
carried out within an actual watershed, where the majority of
CRNS SM and groundwater monitoring sites are located on
different grid cells, allowing for a more precise spatial map-
ping of SM and GWL measurements. The results of this re-
search indicate that the novel multivariate assimilation tech-
nique introduced here outperforms the fully coupled DA ap-
proach employed by Hung et al. (2022) in predicting system
states.

In multivariate DA, previous studies have shown that chal-
lenges persist despite methodological advances. Shi et al.
(2015) combined model states and global calibration coeffi-
cients into a high-dimensional joint vector, requiring covari-
ance relaxation, conditional covariance inflation, and qual-
ity control to prevent filter divergence and ensure physical
plausibility. Zhang et al. (2016) employed distance and vari-
able localization to control spurious correlations in joint SM
and groundwater head assimilation, but this approach relies
on manually defined rules and may lose physically mean-
ingful cross-variable information. Botto et al. (2018) ap-
plied normalization to measurement error covariance matri-
ces and addressed simulated data anomalies and innovation
vectors to prevent ill-conditioning of the Kalman gain. While
these measures ensure numerical stability, they require care-
ful manual scaling of each variable.
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Figure 8. Temporal dynamics of volumetric soil moisture at the Kall CRNS site and groundwater levels at a selected observation well through-
out 2018 are shown for the open-loop (OL) simulation alongside various assimilation scenarios. Panels (a)–(b) present results for the SM_DA
and SM_DA_PAR scenarios; panels (c)–(d) correspond to GWL_DA and GWL_DA_PAR; panels (e)–(f) display FC_DA and FC_DA_PAR
outcomes; panels (g)–(h) illustrate WC_DA and WC_DA_PAR; and panels (i)–(j) show results for the WC_DA_r and WC_DA_r_PAR
configurations.
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Figure 9. Spatial comparison of ensemble mean log10Ks between
the open-loop simulation and various data assimilation schemes for
the year 2018. Panels (a) and (d) show results for the SM_DA_PAR
scenario; panels (b) and (e) present outputs for GWL_DA_PAR;
panels (c) and (f) depict results for WC_DA_r_PAR. The upper row
corresponds to estimates at 2 cm soil depth, while the lower row rep-
resents values at 10 m depth. Locations of CRNS sites and assim-
ilated groundwater wells are marked by red pentagrams and black
circles, respectively.

In contrast, the weakly coupled DA scheme adopted in this
study updates states and parameters sequentially, with each
variable employing its own spatial localization and indepen-
dent updates. This allows saturated zone pressure to be up-
dated using GWL observations, while SM estimates in the
unsaturated zone are adjusted based on CRNS-derived mea-
surements. The use of variable-specific localization parame-
ters further improves the representation of their distinct spa-
tial characteristics, reduces the influence of spatially distant
uncertainties, and limits unphysical information propagation.
Importantly, this framework achieves these benefits without
requiring extensive manual tuning or high-dimensional cor-
rective procedures, which are often needed in traditional mul-
tivariate DA approaches. Additionally, asynchronous assim-
ilation enables different update intervals for each variable:
SM, which varies rapidly, is typically updated daily, whereas
groundwater, with slower dynamics, is updated weekly. This
approach allows coupled models to better accommodate the
differing timescales of fast-evolving and slowly changing
processes and to assimilate multiple variables from diverse
data inputs. These characteristics enhance the robustness and
reliability of the assimilation framework in real-world catch-
ments, where observations are spatially heterogeneous and
hydrological processes operate across multiple timescales.

Beyond improving state estimates, the impact of indepen-
dent updates on water balance needs to be considered. Dur-
ing assimilation, SM and groundwater states are modified di-
rectly, which can temporarily disturb the local water balance.
These imbalances may persist for a period depending on site-
specific conditions. Such local imbalances are common in
data assimilation, but the tight coupling between CLM and

ParFlow ensures that surface and subsurface fluxes redis-
tribute these adjustments through the model’s physical pro-
cesses. Consequently, at the catchment scale, independent
updates do not induce systematic water balance errors, as
they only alter storage states and local imbalances are mit-
igated by the coupled land-subsurface dynamics. Compared
to uncoupled models, these local imbalances are not neces-
sarily larger, but in coupled systems they are redistributed
differently due to interactions between surface and subsur-
face processes.

To evaluate the robustness of this framework, experiments
were conducted over the 2016–2018 period, capturing hy-
drological variability. Despite interannual fluctuations, the
results demonstrated stability and reliability throughout the
study period, with improved forecasting accuracy for di-
verse elements across the coupled surface-subsurface system.
Nonetheless, it is noteworthy that the ubRMSE for GWL
within the 2.5 to 5 km range was higher under the mul-
tivariate assimilation scheme than in univariate groundwa-
ter assimilation experiments (6.17 m versus 5.09 m). Conse-
quently, although multivariate assimilation integrates a wider
variety of observations than univariate assimilation, it is un-
able to consistently yield enhanced performance. The find-
ings align with those of Botto et al. (2018), who used
the CATHY model to investigate an artificial hillslope and
showed that including more variables in the assimilation
framework can negatively impact the prediction accuracy of
certain other model variables. They suggested that the filter’s
effectiveness was constrained by the poor precision of pres-
sure head measurements. Similarly, Zhang et al. (2016) at-
tributed the unreliable model outputs observed during joint
assimilation of SM and GWL primarily to unrealistic inter-
variable correlations arising from a small number of ensem-
ble members. Overall, the factors limiting the advantages of
multivariate assimilation relative to single-variable assimila-
tion can vary depending on the model used.

Beyond the assimilated state variables, the coupled
model’s related ET output was also assessed. Nonetheless,
findings showed that groundwater assimilation failed to en-
hance ET simulation accuracy, primarily owing to the in-
sufficient improvement in representing SM. In regions with
deeper groundwater table depth, assimilating GWL had a di-
minished influence on near-surface SM and ET dynamics.
This study found that assimilating SM data into the inte-
grated models led to some improvements in ET predictions,
although these gains were relatively minor. Moreover, multi-
variate DA did not provide further improvements in ET simu-
lation accuracy compared to univariate SM assimilation, with
the positive impact on ET estimates remaining comparable.

5.2 Uncertainty Analysis and Enhancement Strategies

This research presents novel strategies for applying multi-
variate assimilation techniques within integrated hydrolog-
ical modeling frameworks. While advancements have been
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made, the assimilation results still indicate unresolved un-
certainties that should be addressed in future work. Part of
this uncertainty arises from the model’s use of coarse spatial
discretization. Coarser spatial resolution typically smooths
terrain features, which reduces gradients in both surface and
groundwater flows and likely contributes to persistent dis-
crepancies in simulated GWL. Moreover, DA tends to be less
effective in the presence of such systematic biases. For exam-
ple, Xue et al. (2021) systematically evaluated hydrological
simulations over High Mountain Asia using models at dif-
ferent spatial resolutions, and found that coarse model res-
olution introduced systematic biases in runoff, particularly
over complex terrain, thereby limiting the effectiveness of
DA. Future research could explore finer spatial resolutions
(e.g., 100 m) to more accurately represent groundwater sys-
tems linked to narrow valleys, thereby minimizing biases
caused by coarse spatial discretization and improving DA
performance. Furthermore, the performance of assimilation
tends to decline with increasing distance from observation
wells, as localized updates have weaker influence on more
remote areas. Potential strategies to mitigate this issue in-
clude applying adaptive localization radii, assimilating spa-
tially distributed datasets (e.g., RS products), or increasing
the number of groundwater wells to enhance spatial cover-
age. Employing higher spatial resolution reduces the likeli-
hood of multiple observation wells being located within a
single grid cell, thereby allowing a larger number of wells to
be effectively assimilated. It also reduces wet biases in simu-
lated GWL, decreasing the probability of wells falling within
river or near-river grid cells and thereby increasing the num-
ber of observations that can be reliably assimilated. Addi-
tionally, this study does not consider possible systematic err
in the observational datasets. In real-world scenarios, multi-
ple approaches are employed to handle observational biases
during DA, including adjustments for scale mismatches and
the use of long-term normalization techniques, as highlighted
in earlier research (Zhang et al., 2016; Reichle et al., 2002;
Crow and van den Berg, 2010).

The study took place in the Rur catchment, which features
a comprehensive and accurate network of field measure-
ments, including CRNS and groundwater observation sites.
These comprehensive datasets provide a unique opportunity
to evaluate the performance of the novel multivariate assim-
ilation approach within the catchment area. Based on exist-
ing information, no other hydrological region offers such a
reliable and extensive observation network. To broaden the
applicability of this approach, future studies could focus on
integrating more widely accessible datasets, such as terres-
trial water storage variations derived from GRACE/GRACE-
FO (Tapley et al., 2019; Khaki et al., 2017) or RS-based SM
products (Bayat et al., 2021). Such spatially distributed ob-
servations could also help to reduce the decline in assim-
ilation performance with distance from individual ground-
based observations, thereby providing additional constraints
across larger areas. However, these data products are unfor-

tunately too coarse to resolve hydrological processes in our
study area, highlighting the need for higher-resolution obser-
vations for effective local-scale assimilation.

Beyond spatial resolution and observation distribution,
structural deficiencies in the model may contribute to persis-
tent uncertainties and further complicate the effective appli-
cation of DA with real-world observations. This study per-
forms GWL assimilation under the simplifying assumption
of hydrostatic equilibrium, even though real-world condi-
tions are considerably more complex. Multiple aquifers can
coexist in a vertically layered system, separated by interven-
ing aquitards. Additionally, fault lines may act as horizon-
tal barriers that disrupt aquifer continuity, potentially alter-
ing groundwater flow patterns and their spatial distribution.
Anthropogenic groundwater withdrawal also significantly af-
fects aquifers. This is particularly evident in the Rur catch-
ment, where hydrogeological conditions are strongly influ-
enced by water management practices aimed at preventing
water accumulation in open-cast lignite mines (Bogena et al.,
2018). These processes are insufficiently represented in the
current model, which contributes to systematic biases and
makes updating necessary. By assimilating GWL data, the
model can be better calibrated and its parameters fine-tuned
to reflect observed conditions, thereby improving predic-
tion accuracy while effectively accounting for the complex-
ities of layered aquifer systems, groundwater withdrawals,
and mining-related disturbances. Nonetheless, the impact of
structural model uncertainties on assimilation performance
should be carefully addressed in future research.

This study employs SM data derived from CRNS measure-
ments for assimilation. The effectiveness of DA relies on the
proper calibration of CRNS data and the use of the weighting
function for CRNS data (see Schrön et al., 2017). The COS-
MIC operator (Shuttleworth et al., 2013) allows for the direct
assimilation of neutron intensity data from CRNS. Currently
under development within TSMP-PDAF, this approach is ex-
pected to support future DA applications.

The EnKF, originally developed to address nonlinearity in
dynamic modeling systems, has demonstrated effectiveness
in coupled terrestrial simulations. This nonlinearity primarily
arises from the complex interdependencies among state vari-
ables, such as the coupling between SM and GWL through
pressure head dynamics (Camporese et al., 2009b). This in-
herent nonlinearity complicates the design of multivariate as-
similation schemes. As a result, determining the most suit-
able observational inputs and evaluating the compromises as-
sociated with integrating diverse variables continue to pose
major obstacles for upcoming investigations. Potential strate-
gies to enhance multivariate DA include using different vari-
ants of EnKF, combining EnKF with other filtering methods,
or implementing bias-aware filters.

The primary objective of multivariate DA is to enhance
the accuracy of both state variables and associated parameter
estimates. This research focused on updating Ks , identified
as a critical parameter for the subsurface groundwater sys-
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tem. Although the temporal evolution of assimilated states
may not show large differences between experiments with
and without Ks updates, this does not imply that parameter
updating is ineffective. For example, in our experiments, Ks
updates led to reductions in ubRMSE of more than 10 % for
both GWL and SM compared with state-only assimilation.
However, the immediate temporal impact ofKs updates may
be limited, partly due to the constrained adjustment range ap-
plied by the fixed damping factor (0.1) and the slow response
of groundwater states. Moreover, model biases are also in-
fluenced by other factors, including forcing uncertainty and
structural model errors, which may play a dominant role in
the temporal evolution of SM and groundwater states. Nev-
ertheless, parameter-updating experiments improved perfor-
mance metrics and long-term mean states, demonstrating
their value in correcting systematic model biases that cannot
be fully addressed by state assimilation alone. Independent
validations using the revised Ks confirmed enhanced predic-
tions of both GWL and SM. These results highlight the im-
portance of considering both state and parameter updates in
multivariate assimilation frameworks to achieve more reli-
able hydrologic predictions.

Even though estimating a larger set of parameters is theo-
retically possible, Brandhorst and Neuweiler (2023) reported
computational stability issues in idealized scenarios when as-
similating SM to estimate subsurface hydraulic properties.
As a result, updating the full set of van Genuchten parameters
in practical applications remains challenging. Similarly, Shi
et al. (2015) demonstrated through synthetic experiments that
simultaneously estimating multiple soil hydraulic parameters
using EnKF becomes increasingly difficult as the number of
parameters grows. Their findings also indicated that incorpo-
rating a broader range of data types can improve the accuracy
of subsurface hydraulic parameter estimation. Therefore, fu-
ture studies will need to integrate diverse datasets within
multivariate assimilation frameworks to effectively update
key parameters in coupled surface-subsurface models, ulti-
mately enhancing overall model predictive performance.

6 Conclusions

This study investigated various strategies for assimilating
groundwater and CRNS SM data collected from an exten-
sive observation network into the integrated land surface and
subsurface model (CLM-ParFlow) within a German water-
shed. The benefits and limitations of using these datasets in-
dependently were compared with those of multivariate DA
methods. A novel multivariate DA technique is introduced,
in which GWL and SM are weakly coupled through separate
phases using the LEnKF, thereby improving update stability.
Assimilating groundwater data adjusts the transition bound-
ary between the vadose and phreatic zones and updates the
hydrological states (and potentially parameters) within the
saturated domain. CRNS-derived SM data is used to modify

vadose zone conditions and may also influence its parame-
terization. A set of 128 realizations was created by varying
both meteorological inputs and subsurface hydraulic param-
eters. DA simulations were conducted over the 2016–2018
period. ET data from eddy covariance stations, alongside
GWL and SM observations, served to assess the impact of
both univariate and multivariate assimilation on predicting
GWL, SM, and ET. Improvements in model predictions var-
ied across the different DA experiments and years. Generally,
univariate assimilation yielded better accuracy for the assim-
ilated variable; for example, assimilating SM data reduced
the ubRMSE for SM by 50 % at measurement sites, while
assimilating GWL data decreased the ubRMSE for GWL by
70 % at observation points, nearly 50 % at 500 m, and ap-
proximately 20 % at 5 km. However, assimilating GWL data
alone negatively affected SM prediction accuracy, with the
2016–2018 average ubRMSE increasing by approximately
20 %. Similarly, assimilating SM data alone reduced the ac-
curacy of GWL estimates, leading to a less than 4 % rise in
the 2016–2018 average ubRMSE. Overall, the improvements
in the targeted state clearly exceeded the limited deteriora-
tions in the non-assimilated state, demonstrating the bene-
fit of univariate assimilation. This also highlights the impor-
tance of multivariate approaches for achieving simultaneous
improvements in both variables.

The simultaneous assimilation of CRNS SM and GWL
observations using the conventional integrated model frame-
work fails to provide additional benefits beyond those
achieved by single-variable assimilation and, in fact, is
considerably less efficient. However, the newly developed
multivariate assimilation method successfully integrates
the strengths of individual univariate assimilation models,
thereby enhancing their respective advantages. As a re-
sult, the accuracy of variables estimated under the multi-
variate scheme closely matches that obtained from single-
variable assimilation. In summary, the combined assimila-
tion of GWL and SM through the novel method offers a clear
improvement over univariate assimilation. Furthermore, im-
provements in ET estimation are observed only when SM
is included in the assimilation process, whether in univari-
ate or multivariate form. This study highlights the benefits
of jointly assimilating CRNS and groundwater data from ob-
servation networks, aiming to advance terrestrial hydrology
modeling within physically based coupled frameworks. Fu-
ture research should focus on developing multivariate DA
techniques that integrate diverse data sources, such as RS
products and ground-based measurements, to enhance the
representation of terrestrial system components at finer spa-
tial scales. Achieving this requires exploring the interrela-
tionships among various variables within coupled model-
ing frameworks during joint assimilation and designing im-
proved assimilation strategies to prevent degradation in the
accuracy of non-assimilated states.
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Code and data availability. The TSMP framework, partly devel-
oped by the authors Johannes Keller and Harrie-Jan Hendricks-
Franssen, is available at https://github.com/HPSCTerrSys/TSMP
(last access: 1 August 2024) and archived with
https://doi.org/10.5281/zenodo.8283716 (Hartick et al., 2023).
Data assimilation was implemented using PDAF v1.13.2
(http://pdaf.awi.de/trac/wiki, last access: 1 August 2024).
Meteorological forcing was derived from COSMO-REA6
(https://reanalysis.meteo.uni-bonn.de/?COSMO-REA6, last
access: 1 November 2023). Soil texture and geological data
were obtained from the BK50 (https://www.opengeodata.nrw.de/
produkte/geologie/boden/BK/ISBK50/, last access: 1 November
2023) and HK100 (https://www.opengeodata.nrw.de/produkte/
geologie/geologie/HK/ISHK100/, last access: 1 November 2023)
maps and the European Soil Database (https://esdac.jrc.ec.europa.
eu/content/european-soil-database-v20-vector-and-attribute-data,
last access: 1 November 2023). CRNS soil moisture, groundwater,
and eddy covariance data were sourced from COSMOS-Europe
(https://doi.org/10.34731/x9s3-kr48, Bogena and Ney, 2021),
Geoportal NRW (https://www.geoportal.nrw, last access: 1 Novem-
ber 2023) and TERENO (https://www.tereno.net, last access: 1
November 2023), respectively. All figures were produced using
Matplotlib v3.5.2 (https://matplotlib.org, last access: 1 August
2024).
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