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Abstract. Modern hydrology is embracing a data-intensive
new era, with information from diverse sources currently
providing support for hydrological inferences at broader
scales. This results in a plethora of data-reliability-related
challenges that remain unsolved. The water budget non-
closure is a widely reported phenomenon in hydrological
and atmospheric systems. Many existing methods aim to en-
force water budget closure constraints through data fusion
and bias correction approaches, often neglecting the phys-
ical interconnections between water budget components. To
solve this problem, this study proposes a Multisource Dataset
Correction Framework grounded in Physical Hydrological
Process Modelling to enhance water budget closure, termed
the PHPM-MDCF. The concept of decomposing the total wa-
ter budget residuals into inconsistency and omission residu-
als is embedded in this framework to account for different
residual sources. We examined the efficiency of the PHPM-
MDCF and the distribution of residuals across 475 contigu-
ous United States (CONUS) basins selected by hydrological
simulation reliability. The results indicate that the inconsis-
tency residuals dominate the total water budget residuals, ex-
hibiting highly consistent spatiotemporal patterns. This por-
tion of residuals can be significantly reduced through PHPM-
MDCF correction and achieved satisfactory efficiency. The
total water budget residuals decreased by 49 %, on aver-
age, across all basins, with reductions exceeding 80 % in
certain basins. The credibility of the correction framework
was further verified through noise experiments and compar-
isons with existing methods. In the end, we explored the po-

tential factors influencing the distribution of residuals and
found notable scale effects, along with the key role of hydro-
meteorological conditions. This emphasizes the importance
of carefully evaluating the water balance assumption when
employing multisource datasets for hydrological inference in
small and humid basins.

1 Introduction

Advances in measurement and monitoring techniques have
revolutionized hydrology research through providing an un-
precedented opportunity to detect hydrological processes
(Sivapalan and Blöschl, 2017). Data availability is no longer
the key constraint for conducting large-scale research as it
once was. Approaches that work with large samples and mul-
tisource data are now more attractive for hydrological stud-
ies (Nearing et al., 2021). In the absence of satisfactory in
situ observation, we can freely access data from different
sources as a complement, such as satellite remote sensing,
radar, model simulations, and reanalysis (Refsgaard et al.,
2022). As such, whether at the watershed scale or at the mod-
elling scale (e.g. grid cells), we have multiple choices to rep-
resent water budget components, thereby facilitating hydro-
logical inferences. This reality is also referred to as the fourth
paradigm of hydrology (Peters-Lidard et al., 2017).

However, every coin has two sides: the abundance of avail-
able data has brought challenges with regard to data selec-
tion, confronting contemporary hydrologists with the task of
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filtering datasets. After excluding datasets that do not match
the research scale and spatiotemporal coverage, we still have
no idea about how to select the most suitable one from the re-
maining datasets. In the past decades, extensive efforts have
been made to evaluate the accuracy of datasets by referencing
in situ observations or ensembles of multisource data (Sahoo
et al., 2011; Tang et al., 2020; Ansari et al., 2022). However,
the fact remains that the “true value” is perpetually unattain-
able, rendering any form of reference data uncertain. For ex-
ample, the undercatch phenomenon in rainfall measurements
is well known, and it is difficult to eliminate the bias even
with the application of undercatch corrections (Robinson and
Clark, 2020). The issue of scale mismatches and the lack of
availability of site data in certain regions also pose challenges
for data evaluation. Therefore, we argue that the evaluation
based on reference data lacks sufficient reliability, highlight-
ing the need for more widely applicable criteria in evaluating
and correcting datasets from various sources.

The law of mass conservation, typically represented in hy-
drology by the water balance, constitutes a fundamental prin-
ciple applicable universally across time and space. Thus, the
terrestrial water budget describes the physical consistency
among different components of the water balance, which can
serve as a criterion for evaluating and correcting datasets. For
a closed basin, the water budget can be mathematically ex-
pressed as (Lehmann et al., 2022)

dTWS
dt
= P −ET−R, (1)

where dTWS
dt is the change in terrestrial water storage, P is

precipitation, ET is evaporation, and R is runoff at the outlet.
By incorporating data from different sources into Eq. (1), we
can assess whether these data achieve closure of the water
budget, thereby evaluating their reliability in depicting hy-
drological processes. If Eq. (1) is not satisfied, the residual
term, known as water budget residuals, can quantify the ex-
tent of physical inconsistency among multiple datasets. A
comprehensive review of the terrestrial water budget clo-
sure examination is given in Lv et al. (2017); interested
readers are encouraged to refer to this work. The consen-
sus in the recent scientific literature is that data inconsis-
tency is widespread, attributed to different production pro-
cesses among various datasets, and no single combination of
datasets can fully close the water budget across all basins.
Such inconsistency poses an obstacle to robust hydrological
inferences (Beven, 2002). As an example of this, physically
inconsistent forcing and evaluation data can mislead hydro-
logical modelling and introduce significant uncertainty into
model inferences (Kauffeldt et al., 2013). To mitigate the im-
pact of data inconsistency, it is essential to properly correct
datasets and improve water budget closure.

The pioneering work in enhancing water budget closure
across different data sources through data correction was
conducted by Pan and Wood (2006), who integrated a con-
strained ensemble Kalman filter (CEnKF) to impose con-

strains on the terrestrial water budget. This technique was
subsequently developed and applied in several studies (Sa-
hoo et al., 2011; Zhang et al., 2016). Similar extension
methods include the multiple collocation (MCL) and pro-
portional redistribution (PR) methods (Abolafia-Rosenzweig
et al., 2020; Abhishek et al., 2022; Luo et al., 2023). These
methods are all grounded in the data fusion process, deriving
uncertainties for each water budget component from multiple
data sources. Estimated uncertainties facilitate the determi-
nation of weights for allocating closure residuals, ultimately
achieving a zero residual. Overall, these methods can be col-
lectively referred to as data-fusion-based closure correction
approaches. Another recently developed method to constrain
the water balance employs an optimization-based strategy,
exhibiting improved performance in long-term consistency
with GRACE terrestrial water storage change (Petch et al.,
2023). Other approaches, such as the post-processing filter-
ing technique (PF) and bias correction method (Munier et al.,
2014; Weligamage et al., 2023), can also be helpful in closing
the water budget. However, the closure constraints imposed
by the above methods (hereafter referred to as traditional
methods) have been questioned, with Abolafia-Rosenzweig
et al. (2020) arguing about the potential incorrect assignment
of residuals. If a component in the water budget exhibits a
bias, closure correction algorithms may mistakenly apply the
bias closure constraint to other components. The intrinsic at-
tribution of this issue lies in the algorithms neglecting the
physical correlations among components and imposing strict
constraints on water budget closure by integrating uncertain-
ties from multisource data. In other words, assigning closure
residuals based exclusively on the magnitude of a priori data
uncertainty without accounting for the distribution of com-
ponents in hydrological processes, such as the partitioning
of precipitation, may be unrealistic and could lead to erro-
neous allocation of closure residuals. In the context of ap-
plying such closure constraints, it becomes evident that the
precision of certain individual components may deteriorate
notably, particularly when uncertainties are challenging to
quantify (Luo et al., 2023).

As is well-known, hydrological models, whether data-
driven or physics-based, aim primarily to characterize hy-
drological processes by accurately allocating water quanti-
ties among components such as precipitation, evaporation,
runoff, and soil moisture. In abstract terms, hydrological
models can be regarded to be directed graphs of fluxes, with
nodes representing state variables and edges symbolizing
fluxes or transitions (Wang and Gupta, 2024). Such a directed
graph is computationally closed, indicating that hydrologi-
cal models inherently exhibit the essential characteristic of
water budget closure. A clear piece of evidence comes from
the data consistency evaluation conducted by Gutenstein et
al. (2021), who found that the dataset from the same model
(i.e. precipitation and evaporation from the ERA5 coupled
model) manifested a well-closed system. In this sense, hy-
drological models appear to be capable of guiding the allo-
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cation of closure residuals to enhance water budget closure.
Another distinctive feature of hydrological models, known
as error adaptability or calibration compensation capability,
underscores their pivotal role as innovative solutions for ad-
dressing challenges in achieving water budget closure. The
feature emphasizes that hydrological models can, to some
extent, compensate for biases in model inputs, outputs, and
structure, allowing satisfactory performance even when the
utilized datasets exhibit certain inaccuracies (Wang et al.,
2023). This provides hydrological models with the potential
to integrate forcing and evaluation datasets into a unified wa-
ter balance system under the soft-constraint paradigm.

Here, we propose another critical question regarding
achieving water budget closure: is the terrestrial water budget
described by Eq. (1) fully comprehensive? This issue came to
our attention through a recent study by Gordon et al. (2022),
who examined the widespread validity of the closed water
budget (CWB) hypothesis (i.e. formulated by Eq. 1) across
114 highland catchments using multiple data sources. Sur-
prisingly, their results revealed that the CWB hypothesis
failed to hold in 75 % to 100 % of the catchments. They high-
lighted that such failure of the CWB hypothesis could prop-
agate widely in hydrological inferences relying on it, poten-
tially leading to erroneous conclusions. To provide a physi-
cal explanation for the invalidity of the CWB, they extended
Eq. (1) by introducing an error term e and an additional term
G, as depicted in Eq. (2).

e+G= P −ET−R−
dTWS

dt
(2)

The term G accounts for the inter-basin groundwater fluxes
that were not considered in the original formulation, while
the term e addresses inconsistencies among the original
datasets. Clearly, when applying the CWB hypothesis for
data evaluation or correction, there is a tendency to prema-
turely assume the completeness of the applied formulas, po-
tentially leading to significant biases in the final results. Fur-
thermore, in practical applications, Eq. (1) may inadvertently
omit other water fluxes and storages besides groundwater.
For instance, utilizing gravity changes observed by GRACE
to estimate terrestrial water storage (TWS) may encompass
inter-basin water transfers or irrigation, which can have a
substantial influence in studies conducted at relatively small
scales (Lv et al., 2017). Partial observations of precipitation,
evaporation, and runoff can also introduce biases into this
equation. To distinguish the omission from total water bud-
get residuals among the original datasets, we further extend
Eq. (2) to obtain the generalized form as follows:

Res= Resi+Reso = P −ET−R−
dTWS

dt
, (3)

where Res is the total water budget residuals; Resi is the in-
consistency residuals, accounting for the fraction of water
non-closure due to physical inconsistencies among the orig-
inal datasets; and Reso is the omission residuals, explaining

the fraction resulting from omitted fluxes and storages in the
original equation. We assume that Eq. (3) offers a compre-
hensive description of the terrestrial water budget and can
be examined using multisource datasets. This advancement,
compared to previous studies, breaks down the sources of
water budget residuals, offering guidance for data evaluation
and correction.

Given the current increase in data availability but con-
cerns over reliability, this study aims to address the follow-
ing scientific questions through physical hydrological pro-
cess modelling: (a) how can the total water budget residuals
be quantitatively decomposed into inconsistency and omis-
sion residuals based on Eq. (3)? (b) From a large-sample per-
spective, what are the distribution patterns of these residuals?
(c) What strategies can be employed to achieve water bud-
get closure through physical hydrological process modelling
while strengthening the physical coherence among datasets
from different sources? By addressing these questions, we
highlight the necessity of a comprehensive description of the
water budget equation to effectively evaluate and correct wa-
ter non-closure. Furthermore, we developed a multisource
dataset correction framework based on decomposition of wa-
ter budget residuals and multi-objective calibration within
hydrological modelling. The presented framework, provid-
ing the capability to enhance the water budget closure and
hydrological connections among multisource datasets, was
applied to a large-sample basin dataset across the contiguous
United States (CONUS).

The remainder of this paper is organized as follows. Sec-
tion 2 describes the main datasets used in this research. Sec-
tion 3 then details the methods for decomposing water bud-
get residuals and the multisource data correction framework
with a hydrological model. The results are presented and dis-
cussed in Sects. 4 and 5. Section 6 provides the main conclu-
sions and outlook of this study.

2 Data

2.1 The CAMELS dataset

Motivated by the call of Gupta et al. (2014) for large-
sample hydrological studies to strike a balance between
depth and breadth, in this study, we attempt to carry out anal-
ysis on a widely used large-sample dataset, i.e. the Catch-
ment Attributes and Meteorology for Large-sample Studies
(CAMELS) community dataset. This dataset, developed by
Newman et al. (2015) and Addor et al. (2017), encompasses
daily forcings, hydrologic responses, and basin attributes for
671 basins across the contiguous United States (CONUS),
characterized by minimal human disturbance. Drawing upon
this dataset, a substantial body of experimental studies have
been conducted, covering model intercomparison, analyses
of scale effects in hydrology, evaluations of model perfor-
mance metrics, parameter estimation, and exploration of ma-
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chine learning models (Knoben et al., 2020; Beven, 2023).
Grounded in large-sample inquiries, these studies systemati-
cally explore the prevalent heterogeneity from different per-
spectives, yielding more robust and widely applicable con-
clusions.

In the original work by Newman et al. (2015) propos-
ing the CAMELS dataset, widespread physical-inconsistency
behaviours were observed, characterized by an imbalance
between precipitation and runoff. In the spatial depiction
within the Budyko framework, certain basins exhibited plot-
ting points exceeding the water limit line, indicating a sur-
plus of runoff relative to precipitation. Newman et al. (2015)
emphasized the necessity of corrections to be applied to
datasets. For the aforementioned reasons, investigation of the
decomposition and reconciliation of water budget residuals
within the CAMELS dataset is both necessary and feasible.
In practice, the in situ runoff data observed by the USGS Na-
tional Water Information System server were used. Consid-
ering the availability of data products, our analysis is con-
ducted over a common overlapping period spanning 1998
to 2010. During this period, 18 basins with missing runoff
observations were excluded in advance. Figure 1 presents
a regional profile, and detailed information on the excluded
basins is provided in Table S1 in the Supplement.

2.2 Datasets for constructing water budget equation

One of the main aims of this study is to investigate the de-
composition of water budget residuals and corrections to
datasets rather than comparing the differences and rankings
of closure residuals across different dataset combinations.
In line with this objective, referring to the work of Petch
et al. (2023), we strategically selected a single product for
each water component to construct the water budget equa-
tion, thereby laying the foundation for further research. In
making this selection, we not only considered the resolution
and spatiotemporal coverage of the products but also took
into account recommendations from previous data evaluation
studies regarding data accuracy (Kittel et al., 2018; Lehmann
et al., 2022). All datasets used are summarized in Table 1.
Notably, the “measurements” as used in this work are de-
rived from multisource datasets and do not specifically refer
to in situ measurements.

Specifically, daily precipitation estimation derived from
the Tropical Rainfall Measuring Mission (TRMM 3B42V7)
is used in this study. The well-known international NASA
project aims to comprehensively estimate all forms of pre-
cipitation, including rain, drizzle, snow, graupel, and hail,
through the integration of satellite data and ground-based
rain gauge measurements (Huffman et al., 2016). The ac-
curacy of the TRMM dataset has been validated by many
studies through comparisons with observation data and other
reanalysis datasets (Kittel et al., 2018; Villarini et al., 2009).
For evaporation, we utilized the third version of the Global
Land Evaporation Amsterdam Model (GLEAM v3) product

(https://www.gleam.eu/, last access: 31 August 2023), which
employs a set of algorithms to separately estimate the differ-
ent components of land evaporation (Miralles et al., 2011).
Several studies have demonstrated that this product aligns
well with flux measurements and multisource product en-
sembles (Munier et al., 2014; Robinson and Clark, 2020).
And, as mentioned above, the runoff measurements at the
basin scale are provided by the CAMELS dataset, which is
derived from site observations.

Finally, the most challenging component to estimate in
the water budget equation is the terrestrial water storage
change (TWSC) as it includes water both on and below
the Earth’s surface. In previous studies, the measurement of
gravity field changes, as provided by the Gravity Recovery
And Climate Experiment (GRACE) product, has frequently
been employed for the estimation of the TWSC (Luo et al.,
2020; Kabir et al., 2022). This approximation is based on the
assumption that, for a given large-scale basin, variations in
mass are primarily attributed to changes in TWSC. However,
the assumption is fragile when applied to small basins, lead-
ing to significant uncertainty in estimating TWSC for basins
with areas of less than 63 000 km2 (Lehmann et al., 2022).
This study focuses on the basin dataset from CAMELS, with
most basin areas being smaller than this threshold. To avoid
introducing additional uncertainty into the analysis, we need
alternative methods to estimate TWSC.

Assuming that TWSC can be retrieved through a combi-
nation of different water storages, we obtained the four-layer
soil moisture from ERA5-Land and the snow water equiva-
lent (SWE) from GlobSnow to estimate the overall TWSC.
This approach has been implemented in the investigation
of Hoeltgebaum and Dias (2023), yielding a high consis-
tency between estimated TWSC and GRACE observations
(i.e. correlation coefficient exceeding 0.71). Another consid-
eration in this method is that the decomposed TWSC prod-
ucts (i.e. soil moisture and SWE) can correspond to the re-
sults simulated by hydrological models, thereby allowing us
to correct water budget residuals, as discussed later.

Overall, all datasets were resampled to a daily time step
and then aggregated over basins through simple averaging
to perform the analysis of water budget closure at the basin
scale from 1998 to 2010. Including the observed runoff from
CAMELS, all data were converted to water depth (mm) to
construct a unified water budget equation. It is noteworthy
that there are certain missing data in GlobSnow SWE, vary-
ing across basins. To fill these data gaps, we set a window
length of 5 d, centred on missing data. We applied linear in-
terpolation within the window for gap filling. If linear inter-
polation was not feasible due to, for instance, the absence of
valid values within the window, mean climatology was em-
ployed to fill the missing data. To illustrate this, we randomly
selected nine basins and visually depicted the gap-filling pro-
cess in Fig. S1.
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Figure 1. Geographic representation of the CAMELS basin dataset (Newman et al., 2015, and Addor et al., 2017). The 18 basins excluded
from the analysis are denoted by red dots, whereas the study incorporates the remaining 653 basins, emphasized with yellow shading. The
copyright of the background map belongs to Esri (Gray Canvas Basemap).

Table 1. Overview of the products for constructing the water balance equation used in this study.

Variable Product Original resolution Original period Reference

Spatial Temporal

Precipitation TRMM 3B42V7 0.25°× 0.25° Daily 1998–2019 Huffman et al. (2016)
Evaporation GLEAM v3.8a 0.25°× 0.25° Daily 1980–2022 Martens et al. (2017)
Soil moisture layer 1/2/3/4 ERA5-Land 0.1°× 0.1° Hourly 1950–present Muñoz Sabater et al. (2021)
Snow water equivalent GlobSnow v3.0 25 km× 25 km Daily 1979–2018 Luojus et al. (2021)
Runoff CAMELS USGS Basin scale Daily 1980–2010 Newman et al. (2015)

3 Methods

To leverage physical hydrological process modelling for the
decomposition and correction of water budget residuals, the
following assumptions are necessary: (1) the hydrological
model provides a reliable representation of hydrological pro-
cesses, ensuring an accurate partitioning of input precipita-
tion, and (2) the uncertainties associated with the model forc-
ing and structure can be considered to be negligible during
the modelling process. These two hypotheses form the foun-
dation of this work. To ensure the validity of hypothesis 1,
we employed multiple evaluation variables and correspond-
ing metrics to guarantee the overall reliability of the model,
which will be detailed in the model setup section. Addition-
ally, it is pertinent to acknowledge that hypothesis 2 repre-
sents a strong assumption, carrying inherent uncertainties.
Despite this, it is necessary for the feasibility of the over-
all work, and we will explore the influence of this hypothesis
on the results further in the Discussion section.

3.1 Decomposition of water budget residuals:
inconsistency and omission residuals

Our strategy for decomposing water budget residuals is
grounded in the computational closure of the hydrological
model. As previously discussed, conceptualized as a closed

directed graph, the difference between the inputs and out-
puts of the model must necessarily equal the change in state
variables. Stated differently, there is a water balance between
the forcing and simulated variables of the model, with no
physical-inconsistency residuals present. Therefore, setting
the inconsistency residuals in Eq. (3) to zero allows us to de-
rive the water budget equation of the hydrological model as
follows:

Reso = Pforcing−ETsim−Rsim−
dTWSsim

dt
, (4)

where the subscripts “forcing” and “sim” denote the forcing
and simulation values, respectively. It is crucial to clarify that
all variables in Eq. (4) are derived from the model itself rather
than from measurements and can therefore be considered to
be physically consistent. On the other hand, integrating the
multisource datasets described in Sect. 2.2 into Eq. (3) yields
the total water budget residuals (i.e. Res). For convenience,
we refer to the water budget characterized by the hydrolog-
ical model as the simulation system and the one constructed
by multisource datasets as the measurement system. When
the hydrological model calibrated against multiple variables
measured by the multisource datasets achieves reliable per-
formance, we consider the water budgets represented by the
simulation and measurement systems to be comparable. At
this point, the difference between Eqs. (3) and (4) represents
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the omission residuals (i.e. Resi = Res−Reso), indicating
the water fluxes or storages omitted by the original equa-
tion. Thus, the total water budget residuals can be decom-
posed into inconsistency and omission residuals. It is note-
worthy that, while the inconsistency residuals are absent in
the simulation system (a physically consistent system), omis-
sion residuals may still exist due to inherent omissions in the
original equation. Hence, the left-hand side of Eq. (4) may
not be zero.

Considering the comparability of available datasets and
model simulations, we have developed more specific expres-
sions for Eqs. (3) and (4), as depicted below.

Res= Resi+Reso = PTRMM−ETGLEAM−RUSGS

−
dSWEGlobSnow+ dSM0–50 cm

ERA5 + dSM50–289 cm
ERA5

dt
, (5)

Res= Reso = PTRMM−ETsim−Rsim

−
dSWEsim+ dSMSsim+ dGRSsim

dt
, (6)

In the above, the subscripts indicate variable sources, such as
measurements and simulated values, and superscripts for soil
moisture (SM) denote the depth of the soil layers to be ag-
gregated. The above water budget equations are discretized,
employing a simple central difference scheme with a 2 d time
step at the daily scale (Petch et al., 2023). Then, the residuals
are calculated at the daily scale and are subsequently aggre-
gated to the monthly and annual scales for further analysis.

It is important to further clarify that the hydrological
model used in this study (see below) divides total soil mois-
ture into soil water storage (SMSsim, hereafter SMS) and
groundwater reservoir storage (GRSsim, hereafter GRS). The
soil moisture measurements of ERA5, on the other hand, em-
ploy the HTESSEL (Hydrology Tiled ECMWF Scheme for
Surface Exchanges over Land) land surface scheme to char-
acterize land surface hydrological processes (Balsamo et al.,
2009), dividing soil into four layers (i.e. 0–7, 7–28, 28–100,
and 100–289 cm). In the HTESSEL model, the upper 50 cm
of the soil column is defined as the effective depth for gener-
ating surface runoff. To ensure consistency between the sim-
ulation and measurement systems, we match the top 50 cm
of ERA5 soil moisture with the soil water storage in the hy-
drological model used, while the depth range of 50 to 289 cm
corresponds to the groundwater reservoir storage in the same
model.

3.2 Multisource dataset correction framework for
achieving water budget closure

Here, we introduce an innovative Multisource Dataset Cor-
rection Framework grounded in Physical Hydrological Pro-
cess Modelling, termed the PHPM-MDCF, to enhance wa-
ter budget closure. Unlike traditional correction methods that
use uncertainty (typically derived from the variance of mul-
tisource datasets for the same variable or priori estimation)

as a weight for allocating water budget residuals, this frame-
work leverages the hydrological model – a physically con-
sistent system – as a constraint to correct the measurement
system. Figure 2 indicates the flowchart for the correction
framework, and the procedure is described below.

– Step 1. Initialize the basic computing unit. Calibrate
the hydrological model, calculate the total water bud-
get residuals from the original datasets, and then de-
compose them into inconsistency and omission residu-
als following the method outlined in Sect. 3.1. This step
is denoted as iteration 0.

– Step 2. Correct for the inconsistency residuals. Allo-
cate inconsistency residuals based on the magnitude of
the differences (i.e. the distance between the simulation
and measurement systems) between simulated and mea-
sured values for each variable in Eqs. (5) and (6). This
difference indicates the correction direction and magni-
tude for each variable, which facilitate the convergence
of the measurement system toward the simulation sys-
tem. Here, an initial correction rate of 0.5 is set to grad-
ually correct the multisource datasets, thereby avoiding
potential uncertainties that arise from excessive correc-
tion. Formally, the allocation of inconsistency residuals
can be described by the following equation:

Mv
c =M

v
o −Resi×

dv

dall
×α, (7)

where Mv
c denotes the corrected measurements of vari-

able v, and Mv
o is the original measurements; dv is the

difference between the simulation and measurement of
variable v, and dall represents the aggregate of differ-
ences for all variables; α is the correction rate, with an
initial value of 0.5.

– Step 3. Calibrate and evaluate the model. Recalibrate
and evaluate the hydrological model using the datasets
corrected in the previous step to assess the reliability of
this correction. If the recalibrated model yields unreli-
able simulations, consider this correction to be exces-
sive, halve the correction rate, and repeat step 2. Other-
wise, maintain the correction rate and proceed with the
next iteration of the correction. The consideration be-
hind this step is that excessive correction may lead to
the measurement system going out of bounds, prevent-
ing further convergence of the two systems. This is to
say, the iterative process involves continual trial and er-
ror, with each error prompting us to approach the next
correction more cautiously.

– Step 4. Conduct iteration and termination of the cor-
rection. Iterate through steps 2–3 to gradually correct
the datasets until the inconsistency residual decreases to
10 % of its initial value or until the correction rate falls
below 4 %.
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Figure 2. Flowchart of the Multisource Dataset Correction Framework grounded in Physical Hydrological Process Modelling (PHPM-
MDCF).

The design goal of the PHPM-MDCF is to impose soft
constraints on multisource datasets through the calibration
compensation capability and the physical consistency fea-
ture of the hydrological model. Such a constraint is referred
to as soft because, unlike traditional methods that import
“hard” constraints, the correction process does not strictly
require residuals to be zero immediately. Instead, it aims to
advance the convergence between the simulation and mea-
surement systems, as illustrated in Fig. 3. In extreme cases,
when the measurement system is corrected to be identical
to the simulation system, all measurements would become
physically consistent. This process can be seen as a collapse
from Eq. (5) to Eq. (6). The efficiency of ultimately closing
residuals depends on the ability of the model to accurately
characterize reality, and this can vary across different loca-
tions.

Notably, the correction is performed at the daily scale,
aligning with the model step. In the subsequent application
of the PHPM-MDCF, the measurements are derived from the
data described in Sect. 2.2. In addition, through experimenta-
tion, the parameter settings in the PHPM-MDCF (i.e. initial
correction rate, decay rate of the correction rate, and correc-
tion termination threshold) have been tailored to suit the cur-
rent study area (Table S2). When applying this framework
to other regions, additional adjustments and testing may be
required.

3.3 Model setup and calibration

In the present investigation, we employed the Hydrologiska
Byråns Vattenbalansavdelning (HBV) model to implement
our correction framework. The conceptual HBV model was
developed by the Swedish Meteorological and Hydrological

Figure 3. Illustration of the correction process advancing conver-
gence between the simulation and measurement systems. The mea-
surement system is corrected to approach the simulation system,
while the simulation system is refined via parameter calibration to
better approximate the measurement system. As a result, the dis-
tance between the two systems is reduced, leading to better physical
consistency in the corrected measurement system.

Institute (SMHI) in the 1970s (Bergström, 1976). Given its
straightforward yet effective design and minimal input re-
quirements, this model has attained broad recognition and
application within the global hydrological modelling scien-
tific community and has also been tested in the CAMELS
basins (Feng et al., 2022). Here, we provide brief details and
refer the reader to the above references for a fuller descrip-
tion.
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The basic structure of the HBV model comprises three
main modules: the snow routine, soil moisture routine,
and runoff routine, as illustrated in Fig. A1 in the Ap-
pendix. Starting with precipitation forcing, water flux tra-
verses through the three modules, accumulating in various
state variables such as snow and soil water. Ultimately, water
is released through three reservoirs – soil moisture and upper-
zone and lower-zone reservoirs – as quick runoff, interflow,
and base flow. Thus, the overall soil moisture can be divided
into soil water storage (i.e. the first reservoir) and ground-
water reservoir storage (i.e. the combination of the latter two
reservoirs). In the current study, the HBV model is config-
ured to run on a daily basis, aligning with both the forc-
ing and evaluation datasets, ensuring the feasibility of sub-
sequent correction. Table A1 lists the free parameters slated
for calibration in the HBV model, providing their descrip-
tions and respective ranges.

Here, a multi-objective global optimization algorithm, the
Non-dominated Sorting Genetic Algorithm II (NSGA-II), is
applied for parameter calibration of the HBV model. Ow-
ing to its optimization efficiency, this algorithm has been
extensively used in hydrological modelling practices around
the world (Mostafaie et al., 2018). For more details about
the algorithm, see Deb et al. (2002). We implemented the
calibration framework using the NSGA-II algorithm in a
Python environment with the DEAP package (Fortin et al.,
2012). Five calibration objectives are considered, including
R (runoff), ET (evaporation), SMS (soil moisture storage),
GRS (groundwater reservoir storage), and SWE (snow water
equivalent). Meanwhile, the Kling–Gupta efficiency (KGE)
metric (Gupta et al., 2009) is utilized to evaluate the simula-
tion performance of R and ET, while the Pearson correlation
coefficient (r) is employed to evaluate the performance of
SMS and GRS considering potential discrepancies in their
magnitudes arising from differences in soil layer depth. Fi-
nally, the root mean square error (RMSE) is applied to evalu-
ate the simulation performance of SWE. Ideally, the optimal
simulation is characterized by values of 1 for the first two
metrics and 0 for the last one. The detailed description of the
evaluation metrics is provided in Appendix B.

4 Results

4.1 Distribution of water budget residuals and their
components across the CAMELS basins

In this section, we investigate the spatiotemporal distribution
of water budget residuals for each component decomposed
using the method proposed in Sect. 3.1 across the large sam-
ple of the CAMELS basins. These results provide insights
into the two primary sources of non-closure issues in the
water budget equation: physical inconsistencies among the
original datasets and water fluxes or storage omitted in the
original equation. To ensure the robustness of the results, as

mentioned previously, it is essential that hydrological mod-
els reliably represent hydrological processes. With reference
to previous studies (Knoben et al., 2019; Clark et al., 2021;
Aerts et al., 2022), we have adopted KGE≥−0.41 and a
statistically significant r at the 5 % level as criteria for guar-
anteeing reliable simulations. The multi-objective simulation
performances of the HBV model are detailed in Appendix C.
In general, the majority of the basins (475, accounting for
72.24 % of the total basins) achieved reliable simulations
across all variables. Among them, we have observed that the
central and western CONUS present relatively greater chal-
lenges for modelling. This pattern and its potential causes
will be explored further in the ensuing discussion.

Within the 475 basins demonstrating reliable simulations,
in Fig. 4, we plotted the spatial distribution of the long-term
monthly mean water budget residuals (Res), inconsistency
residuals (Resi), and omission residuals (Reso). An impor-
tant observation from comparing the different rows of Fig. 4
is that Res shares a similar spatial pattern with Resi, whereas
Reso exhibits some differences. This pattern exists across dif-
ferent quantile ranges of the residuals. For instance, Res and
Resi both present an east–west gradient for three statistical
measures (i.e. min, median, max), with low values occurring
along the western coastline and high values being primar-
ily concentrated in eastern inland basins. The exception is a
cluster of low median values located in the central CONUS.
Interestingly, the minimum values of Reso display a contrast-
ing spatial pattern, with higher values in the west and lower
values in the east. The spatial differences in the median and
maximum values of Reso are not pronounced. These patterns
lend support to the underlying assumption that the drivers
of inconsistency residuals and omission residuals are funda-
mentally different and thus can be decomposed from the total
water budget residuals.

Figure 5 further illustrates the temporal distribution pat-
terns of the three residuals in terms of seasonality. It is read-
ily discernible in the figure that the similarity between Res
and Resi reappears, manifesting distinct seasonal patterns
with more pronounced negative trends during the cold sea-
sons (i.e. October to the following April) and positive trends
during warm seasons (i.e. May to September). On the con-
trary, Reso tends to be mainly positive, except from Septem-
ber to November; its extent of variability is also significantly
smaller than that of the other two residuals. With regard to
magnitude, Resi is much greater than Reso considering both
positive and negative biases. From the above results, we can
conclude that Resi predominates within Res, exhibiting sig-
nificant spatiotemporal differences compared to Reso. These
two residuals may combine or offset each other to collec-
tively form the total water budget residuals. The potential
factors affecting the spatiotemporal distribution and propor-
tion of Res will be investigated further in Sect. 4.4.
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Figure 4. Spatial distribution of long-term monthly mean water budget residuals (Res), inconsistency residuals (Resi), and omission residuals
(Reso) across 475 CAMELS basins with reliable simulations. The unit of the residuals is mm.

Figure 5. Temporal distribution of monthly water budget residuals
(Res), inconsistency residuals (Resi), and omission residuals (Reso)
across 475 CAMELS basins with reliable simulations. Boxplot-like
diagrams describe variability across catchments, and outliers repre-
sent the 10th and 90th percentiles. The unit of the residuals is mm.

4.2 Efficiency of the PHPM-MDCF

We are now tackling the third question through the proposed
multisource dataset correction framework (PHPM-MDCF)
across the 475 CAMELS basins with reliable simulations.

For illustration, several case basins have been selected to
demonstrate the correction process and its efficiency.

Figure 6 shows the correction results at the case basin
numbered 1013500 (for more details about the basin num-
ber, see Newman et al., 2015). As expected, the time series
of Res and Resi after correction (red lines) tend to be flatter
and closer to zero compared to their uncorrected counterparts
(blue lines). This becomes more apparent as the timescale in-
creases. However, despite recalibrating the model with cor-
rected datasets, Reso driven by the omission in the water bud-
get equation exhibited no substantial changes before and af-
ter correction (e.g. the monthly mean absolute values were
maintained around 6.5 mm; see Fig. 6f). This phenomenon
occurs because we only corrected the inconsistency residuals
with reference to the simulation system, while the omission
accounting for the additional water terms should not be cor-
rected in the existing datasets.

To get an impression of the PHPM-MDCF correcting the
water budget residuals, the bottom row of Fig. 6 shows the
variation in the mean absolute values of three residuals with
increasing correction iterations at the monthly scale. The re-
sults indicated that the correction process led to a significant
reduction in Res and Resi, decreasing from 42.8 and 44.3 mm
to 6.9 and 8.6 mm (reductions of approximately 83.9 % and
80.7 %). Although water budget residuals cannot be fully
corrected to zero in this framework (as can be done in tra-
ditional methods), we argue that this correction efficiency is
satisfactory enough. It is rooted in physical hydrological pro-
cess modelling, thus potentially strengthening the physical
relationships among the components of the water balance.
The final corrected results for this case basin are presented
in Fig. S2, depicting the time series of multisource datasets
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Figure 6. Correction results of water budget residuals for multisource datasets at basin no. 1013500. (a–c) Time series of water budget
residuals (Res), inconsistency residuals (Resi), and omission residuals (Reso) at daily, monthly, and yearly scales; the grey line represents
residuals during the correction process. (d–f) Variation in long-term mean absolute values of three residuals with correction iterations at the
monthly scale. The unit of the residuals is mm.

before and after correction. In the following sections, we will
provide further evidence of the credibility of this correction
framework.

The correction results for several other case basins (i.e.
numbered 1137500, 2177000, 6311000, and 14092750) are
presented in Figs. S3–S6. Their absolute mean monthly
residuals decreased by 70.4 %, 58.1 %, 40.3 %, and 54.0 %,
respectively, providing evidence for the effectiveness of the
PHPM-MDCF. To have a clearer idea of the ability of the cor-
rection framework to reduce water budget residuals across
all the CAMELS basins, Fig. 7 shows the map of the per-
centage reduction in monthly total water budget residuals af-
ter corrections. In general, the PHPM-MDCF demonstrated
robust performance across most basins, with an average re-
duction percentage of 49 % across all basins. The correction
efficiency exhibits a latitudinally dependent decline pattern,
which is primarily due to the small initial residuals in low-
latitude regions (Fig. 4). In high-latitude regions, such as the
western coastline and eastern inland basins, the potential cor-
rection space is much larger, leading to higher correction ef-
ficiency (in terms of absolute value).

4.3 Credibility of multisource dataset correction

4.3.1 Convergence between simulation and
measurement system

As we stated before, the core objective of the PHPM-MDCF
is to promote the convergence between the simulation and
measurement systems (Fig. 3). In fact, this process can be di-
vided into two parts. The first part, namely the measurement
system approaching the simulation system, which is im-

plemented by correction procedures, has gained confidence
from the significant reduction in the inconsistency residuals
(Fig. 6). On the other hand, to illustrate the convergence of
the simulation system toward the measurement system, we
present the changes in model simulation performance before
and after correction of case basin no. 1013500, as depicted in
Fig. 8. From the figure, we can clearly see that both the pop-
ulation solution sets (ranging from light- to darker-grey scat-
ters) and the Pareto fronts (ranging from blue to red scatters)
tend toward the optimal point in the upper-right corner after
correction. More intuitively, Fig. S7 presents a comparison of
measurements and simulations for each variable before and
after correction. It is evident that the relationship between
measurements and simulations is significantly strengthened
after correction. These results suggest that the PHPM-MDCF
has the ability to enhance the convergence between the sim-
ulation and measurement systems, supporting the credibility
of the correction results, to some extent.

4.3.2 Noise experiments

To further demonstrate the credibility of multisource dataset
correction, we designed a series of noise experiments and
applied them to case basin no. 1013500, therefore examining
whether the PHPM-MDCF can effectively handle the man-
ual noise and produce robust correction results. These exper-
iments are summarized in Table 2, where the first three ex-
periments set different types of single-point noise at different
positions of the same original datasets, and the last exper-
iment adds an equal-length Gaussian white-noise sequence
to the runoff sequence. Eventually, two new noisy datasets
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Figure 7. The percentage reduction in monthly total water budget residuals after correction through the PHPM-MDCF. Zonal means (right
panel) include mean (black scatters), median (black line), and range (grey shading). The vertical line indicates the mean value of −0.49 for
all basins.

Figure 8. Comparison of multivariable simulation performance be-
fore and after correction at basin no. 1013500. Light grey and dark
grey indicate population solution sets before and after correction,
and blue and red indicate Pareto fronts before and after correction.
Metrics evaluating SWE simulation performance have been normal-
ized for consistency. The subplot in the second row and second col-
umn shows that the evaporation simulation maintains high accuracy
in this basin due to the alignment between the HBV algorithm and
measurements.

were generated, as illustrated in Figs. S8 and S9. For clarity,
we refer to them as NS1 and NS2 (i.e. noise sequences 1 and
2) and designate the noise-free dataset as OS (i.e. original
sequence). The noise points are ordered from 1 to 4.

First, we examined the adaptation capability of the PHPM-
MDCF to single-point extreme errors. The top row of Fig. 9
compares the differential form of the OS and NS1, highlight-
ing the impact of the three noises. The first two noises intro-
duce extremely unreasonable values in the runoff measure-

ments, while the third noise affects the water balance signif-
icantly by altering all water budget variables, as evidenced
in Fig. 9c–d. Through the application of the PHPM-MDCF
for NS1 correction, we derived a new corrected sequence and
compared it with the previous OS-based corrected sequence.
In terms of runoff correction, as shown in Fig. 9c, whether
the noises are extremely large or small (i.e. noise 1 and 2
with differences of 3 standard deviations), the correction pro-
cess constrains them to reasonable runoff processes. This is
achieved by the representation of physical hydrological pro-
cesses underlying the correction strategy, which constrains
the corrected values to avoid producing extreme outliers.
Furthermore, water imbalance caused by the combination of
multivariable single-point noises can also be constrained to
minimal levels through correction (Fig. 9d).

Another concern here is whether the correction of extreme
noises in runoff will propagate to other variables, potentially
leading to a series of unreasonable correction results, as ques-
tioned by Abolafia-Rosenzweig et al. (2020) in relation to
traditional methods. In Fig. S10, we specifically focus on
the correction results around three single-point noises to ad-
dress this question. The fact that simultaneous corrections
of other variables during extreme runoff noise correction did
not significantly differ from OS-based corrections further en-
hances our confidence in the PHPM-MDCF. This suggests
that the soft constraints based on physical hydrological pro-
cesses will not lead to compensatory errors, as seen in tra-
ditional methods due to the rigid allocation of water budget
residuals. From a theoretical perspective, the PHPM-MDCF
assigns the weights of residual correction based on the dis-
tance between the measurements and simulations for each
variable. In the presence of a single extreme bias, the large
distance between the measurement and simulation of the cor-
responding variable leads to a larger correction being applied
to that variable, while the weights for other variables remain
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Table 2. Description of the noise experiments to examine the credibility of multisource dataset correction.

ID Description Position of the noises
(yyyy-mm-dd)

Noise sequence

Exp. 1 A single positively biased noise is added to R, with a
magnitude of 3 standard deviations

Noise 1: 1998-09-18 NS1

Exp. 2 A single negatively biased noise is added to R, with a
magnitude of 3 standard deviations

Noise 2: 1999-04-26

Exp. 3 A set of positively biased noise at the same position is
added to R, ET, SMS, GRS, and SWE, with a
magnitude of 1 standard deviation

Noise 3: 2001-12-16

Exp. 4 A series of zero-mean random Gaussian white noise is
added to R, with a standard deviation of 20 % relative
to the original sequence

Noise 4: the entire
sequence

NS2

Figure 9. Correction results for multisource datasets corresponding to noise experiments 1–3. (a–b) Time series of OS and NS1 in the
form of differences. (c) Comparison among the runoff noise sequence (NS1), OS-based runoff-corrected sequence (corr OS), and NS1-based
runoff-corrected sequence (corr NS1). (d) Comparison of water budget residuals generated by the three sequences at the daily scale.

unaffected. However, in traditional methods, the correction
weight for each variable remains constant over time, and the
final residuals are constrained to zero. This leads to the prop-
agation of extreme biases across different variables.

Subsequently, we assessed the robustness of correction re-
sults after incorporating Gaussian white noise into the orig-
inal sequence. From the comparison between OS-based and
NS2-based correction results (Fig. 10), it can be seen that the

addition of Gaussian white noise changed the correction in
runoff slightly, showing a minor decrease in the high-value
range (with a slope less than 1). However, the overall evo-
lution trend of runoff remains unchanged as it is still con-
strained by the same hydrological physical processes. With
such a basis, as excepted, the correction of other variables is
minimally affected by Gaussian white noise in runoff.
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Figure 10. Correction results for multisource datasets corresponding to noise experiment 4. (a) Comparison among the runoff noise se-
quence (NS2), OS-based runoff-corrected sequence (corr OS), and NS2-based runoff-corrected sequence (corr NS2). (b) Comparison of
multivariable between OS-based correction and NS2-based correction in terms of standardized values.

In summary, the results yielded from the above exper-
iments indicate that both single-point noise and Gaussian
white noise have minimal impact on the corrections. The
final correction results are constrained by the hydrological
model, with random errors in measurements not altering the
allocation of water budget residuals significantly. The phys-
ical relationships among various water budget variables, as
represented by the model, are also imposed onto the mea-
surements through the correction process.

4.3.3 Comparison with existing correction methods

Previous analyses and experiments clarify the unique char-
acteristics of the PHPM-MDCF, which imposes closure con-
straints based on physical hydrological processes. This dif-
fers significantly from existing correction methods, such as
PR and CEnKF (Luo et al., 2023). In this section, we con-
ducted a comparison analysis to further evaluate the reliabil-
ity of the PHPM-MDCF. To implement existing correction
methods, support from multisource measurements for each
water component is essential for calculating the residual al-
location weights. Here, we obtained monthly datasets from
Lehmann et al. (2022), which include 11 precipitation, 14
evaporation (ET), 11 runoff (R), and 2 terrestrial water stor-
age (TWS) datasets (Table S3). The datasets previously uti-
lized in this study were also included for data fusion and cor-
rection (Table 1). In general, these datasets were processed to
a uniform monthly scale and a common period (2003–2010)
and were subsequently aggregated to the basin scale. Sev-
eral representative basins (numbered 1539000, 1557500, and
3070500) were selected to illustrate the differences between
the PHPM-MDCF and existing methods based on the spatial
coverage of multisource datasets.

Figure 11 presents a comparison of the monthly correction
results from three methods (i.e. PR, CEnKF, and the PHPM-
MDCF) for three main water budget components at basin no.
1539000. Note that the measurements of precipitation are not
compared here as the PHPM-MDCF does not perform cor-

rection for this variable. It is clear from the figure that both
the PHPM-MDCF and CEnKF method exhibit minimal cor-
rection of ET, whereas the PR method expands the range of
ET significantly, particularly increasing seasonal peaks. This
arises from the assumption of the PR method that relative er-
rors are proportional to the relative magnitudes of each vari-
able (Abhishek et al., 2022). However, in many cases, this
assumption may not hold true.

In terms of the R and terrestrial water storage change
(TWSC), the overall trends of the correction results from the
three methods are generally consistent. However, the CEnKF
appears to produce greater fluctuations in R and shows lim-
ited correction of TWSC (Fig. 11). This is linked to the com-
putational mechanism underlying CEnKF, where the Kalman
gain – or the error covariance between measurements and
the ensemble mean of the multisource datasets – determines
the magnitude of the residuals corrected for each variable.
Specifically, the measurements ofR to be corrected are based
on in situ observations, while the multisource dataset in-
cludes model simulations and remote sensing values. Poten-
tial mismatches between the grids and basins may lead to
significant discrepancies, resulting in a greater allocation of
correction for R. On the contrary, measurements of TWSC
are limited and primarily derived from GRACE, which re-
sults in relatively small error covariance and, consequently,
smaller corrections. Furthermore, as previously noted, such
methods may generate unreasonable corrections due to the
propagation of extreme errors, such as the negative R val-
ues in Fig. 11b, which are more likely to occur in small
basins. The PHPM-MDCF avoids these issues by consid-
ering physical-process constraints, leading to more reason-
able corrections. Additionally, it does not rely on multisource
datasets and can perform corrections on any model time step
and for any model output variable. The TWSC derived from
SWE and SM is consistent with GRACE TWSC, which also
demonstrates the reliability of this framework in retrieving
TWSC. The comparison results for the other two represen-
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tative basins are shown in Figs. S11–12, leading to similar
conclusions.

4.4 Potential influencing factors of water budget
residuals

4.4.1 Factors influencing spatial distribution

In this section, we conducted a preliminary exploration of the
potential factors influencing the formation and distribution of
water budget residuals. As shown in Fig. 4, all three water
budget residuals are subject to strong spatial organization,
and these patterns are in agreement with previous studies.
For example, Kauffeldt et al. (2013) found negative residu-
als (i.e. runoff coefficient > 1) along the western coastline
of CONUS, while the eastern region showed notable positive
residuals (i.e. P−R>ET). Other studies investigating water
budget residuals with diverse dataset combinations have re-
vealed similar spatial patterns (Zhang et al., 2016; Gordon et
al., 2022). Therefore, we speculate that the spatial distribu-
tion of water budget closure is predominantly influenced by
the characteristics of the basin.

Here, we focus on the total water budget residuals
(i.e. Res) and attempt to relate them with the hydro-
meteorological conditions and the basin area. To bring out
these relationships, from Fig. 12, three regression curves are
obtained by correlating mean absolute residuals at different
timescales with basin areas over 475 CAMELS basins. The
negative gradients of the curves imply a scale effect in the
water budget non-closure phenomenon where, as basin area
increases, the water balance constructed from multisource
datasets can be enhanced. Moreover, as expected, hydro-
meteorological conditions within the basin play a crucial
role in controlling the distribution of water budget residu-
als. The clear delineation between different levels of daily
precipitation and the runoff coefficient revealed in Fig. 12
strongly supports this reasoning, where multisource datasets
yield larger water budget residuals in basins with high pre-
cipitation and runoff coefficients – large red spots are located
in the upper portion of the figure. These results highlight
the risks of using multisource datasets for hydrological in-
ference in humid and small-scale basins – specifically, po-
tential physical inconsistencies – and underscore the need to
carefully test the water balance assumption.

4.4.2 Factors influencing temporal distribution

The pronounced seasonal pattern of non-closure residuals
depicted in Fig. 5 is quite interesting. To gain more in-
sight into the observed pattern, we compare it with the tem-
poral factors reported in the literature. The first and fore-
most reported factor associated with the observed negative
biases in Res during the cold season is the underestima-
tion of precipitation (Newman et al., 2015). This system-
atic bias is related to phenomena, such as snowfall, freez-

ing rain, and non-convective precipitation, that occur during
the cold season, where measurements and simulations are
prone to show significant errors, including the well-know un-
dercatch phenomenon (Kauffeldt et al., 2013; Robinson and
Clark, 2020). Another key factor influencing water budget
non-closure is connected to the temperature and evapora-
tion dynamics. Abolafia-Rosenzweig et al. (2020) evaluated
the water budget residuals over 24 global basins and found
that the likelihood of positive biases in the water balance in-
creases with rising temperatures, likely induced by the po-
tential uncertainties in evaporation estimates. The research
by Lv et al. (2017) also supports this perspective, indicating
that the underestimation of evaporation is a primary contrib-
utor to the water budget non-closure. In summary, according
to the literature, cold-season precipitation and warm-season
evaporation seem to be the primary drivers of the temporal
distribution of Res. To examine this reasoning, while obtain-
ing the true values is impossible, we can provide evidence by
comparing evaporation and precipitation, along with the cor-
responding residuals, between the cold and warm seasons.

Figure 13 depicts the relationship by separately comparing
the ratios of evaporation and precipitation for the cold and
warm seasons with the corresponding water budget residu-
als. For the cold season, the scatter points can be split into
two distinct regions along the vertical line where the ra-
tio is 1. The scatter points in the left region indicate basins
where cold-season precipitation is lower than in the warm
season, leading to relatively smaller absolute residuals (clus-
tered around zero residuals). In contrast, scatter points for
basins with dominant cold-season precipitation are dispersed
below the zero residual line, with larger negative residuals
becoming more prevalent as the proportion of cold-season
precipitation increases. In other words, regions where cold
precipitation constitutes a larger proportion of the water bud-
get residuals are more sensitive to the underestimations of
precipitation, resulting in larger negative residuals. Further-
more, we observed similar trends in the warm season, where
a higher proportion of warm-season evaporation is associated
with larger positive residuals (the red dots exhibit an upward
trend to the right). These results confirm the perspective of
previous research, highlighting the potential uncertainties in
measurements of cold-season precipitation and warm-season
evaporation.

4.4.3 Factors influencing the proportions of residuals
components

Another interesting finding in Sect. 4.1 is that the magnitude
of Reso is significantly smaller than that of Resi. As a re-
sult, Res is dominated by Resi, leading to a highly consistent
spatiotemporal distribution between them. However, the un-
derlying question is what this implies and which factors drive
the proportions of the residual components.

Res reflects the degree to which the measurements achieve
water budget closure. In this study, we argue that two key
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Figure 11. Comparison of monthly correction results between the PHPM-MDCF and existing methods (PR and CEnKF) at basin no.
1539000. (a–c) Time series of the original and corrected measurements of evaporation, runoff, and terrestrial water storage change. (d–
f) Scatterplots and regression lines of the original and corrected measurements.

Figure 12. Relationship between the mean absolute of water budget residuals, basin area, long-term average daily precipitation, and runoff
coefficient (RC) over 475 CAMELS basins with reliable simulations. The respective red lines represent the linear regression of residuals with
basin area for each timescale.

conditions are necessary for using measurements to describe
theoretical water balance. The first one is that measurements
of different water components must be physically consistent.
In practice, however, this condition is often challenging to
meet due to inconsistencies and uncertainties in data pro-
duction processes from different sources, which can result
in non-zero Resi (Luo et al., 2020). The second crucial, yet
frequently overlooked, condition is the completeness of the
water budget equation. Building on the work of Gordon et

al. (2022), we developed a more generalized water budget
equation (Eq. 3) and used Reso to account for the water im-
balances caused by omitted water. From this perspective, Res
results from the interplay between Resi and Reso through
either their accumulation or mutual cancellation. Therefore,
the low proportion of Reso essentially suggests that our de-
scription of the water budget equation is comparatively com-
prehensive.
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Figure 13. Relationship between the ratios of evaporation and pre-
cipitation for the cold and warm seasons separately and the corre-
sponding water budget residuals. Note that blue represents residuals
for the cold season, and red represents those for the warm season.
The seasonal divisions are consistent with Fig. 5. The unit of the
residuals is mm.

Consider the fact that, if our description of the water bud-
get equation is incomplete and omits a significant water com-
ponent, Reso would likely exert a greater influence on Res,
resulting in a more pronounced discrepancy between Res and
Resi. To examine this, we intentionally exclude the SWE
component from the water budget equation to evaluate its im-
pact on the decomposition of Res. This is a plausible scenario
in practice, as it is likely that this component was not consid-
ered when reconstructing the TWSC. Figure 14 illustrates the
comparison between Reso derived from the decomposition
method excluding SWE (hereafter ResNSWE

o ) and its original
values. It is evident that ResNSWE

o exhibits greater variability
compared to the original values (i.e. with smaller minimum
values and larger maximum values). The median differences
indicate that the likelihood of increased omission residuals is
higher after excluding SWE (Fig. 14b). Such differences re-
veal that omitting a crucial SWE storage component results
in a greater degree of water imbalance, and, as expected, this
effect is more pronounce in high-latitude and high-elevation
regions (Fig. 14d–f). Moreover, the spatiotemporal distribu-
tion of Reso has changed (Figs. S13–14). Notably, during the
cold season (December to February), the proportion of Reso
is much higher and exhibits a significant positive trend. These
findings align with our definition of Reso, which refers to the
water imbalance caused by omitted water. It also supports
the validity of our decomposition method to some extent and
highlights the importance of a comprehensive water budget
equation in evaluating water balance.

5 Discussion

5.1 What lies within the realm of belief

The foundation of modern experimental science is based on
empiricism, emphasizing the repeatability of experiments,
i.e. whether the results can perfectly reproduce observations.
This idea has far-reaching implications across various fields,
with a classic example being hydrologists always aiming for
their model predictions to closely match observations. Im-
portantly, the underlying assumption of this approach is that
our observations perfectly approximate reality and can be
seen as true values. In most small-scale studies, such as those
conducted in laboratory or field settings, this might hold true.
However, as we shift our focus to larger spatial scales, obtain-
ing observations directly often becomes challenging, thus ne-
cessitating a reliance on indirect observations, which could
potentially undermine this assumption. As a consequence,
our confidence in the observations – better referred to as mea-
surements – may diminish, which is precisely the new chal-
lenge we face in the era of big data.

When we lack sufficient confidence in any single measure-
ment, the utilization of multisource data fusion becomes a
method to mitigate errors from all sources of measurements,
thereby reducing uncertainty. Within the process of data fu-
sion, the basic step is to determine the weights of all compo-
nents. The ensemble mean method assumes an equal weight
for all components, while the simple weighted method es-
timates weights based on the a priori uncertainties, which
are typically the differences between each component and
the average of all measurements (Sahoo et al., 2011). In the
widely used triple collocation (TC) method, weights can be
determined by calculating errors (uncertainties) based on the
similarity of the triplet inputs without the need for “ground
truth” (Stoffelen, 1998). Some other methods also determine
uncertainty through manually assigned constants or error
propagation calculations (Munier et al., 2014; Ansari et al.,
2022). However, all of these methods face the same issue:
the true value may be unattainable, and the determined er-
ror or uncertainty involves subjective factors. This presents a
logical paradox: we resort to data fusion due to the absence
of a true value, yet, during the fusion process, we paradoxi-
cally assume the existence of this true value to estimate un-
certainty. Essentially, we need to answer a fundamental ques-
tion: what do we truly believe in?

The answer is in what we have truly learned. A better ap-
proach is to leverage our existing knowledge about the phys-
ical world to enhance our confidence in measurements. In
fact, this concept embodies, to some extent, a Bayesian phi-
losophy and is reflected in many fields. Here, we present two
modern examples to illustrate this idea. The first one is the
atmospheric reanalysis, which has been one of the most sig-
nificant topics in atmospheric science since the 19th century.
This technique employs numerical models and assimilation
techniques to integrate multiple types of historical measure-
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Figure 14. Comparison of Reso obtained from residual decomposition excluding SWE with the original values. (a–c) Spatial distribution
of monthly mean Reso excluding SWE minus its original values. (d–f) Time series of Reso excluding SWE and its original values at the
southern basin (02198100, 32.96° N), northern basin (12358500, 48.33° N), and high-elevation basin (07083000, elevation of 3.56 km) at a
monthly scale. The unit of the residuals is mm.

ments into a unified modelling framework and assimilation
scheme, thereby generating continuous and consistent esti-
mates of climate states. In essence, its aim is to unify our
knowledge system (i.e. numerical models) with the measure-
ment system, thereby enhancing the credibility of the model
output.

Another example is research in the field of hydrology,
where Liao and Barros (2022) proposed an inverse rainfall
correction (IRC) framework to improve quantitative precip-
itation estimates (QPEs) in headwater basins. Their funda-
mental concept is that errors propagate from precipitation to
runoff, enabling the reversal of precipitation errors by calcu-
lating runoff simulation errors from distributed hydrological
models and applying the travel time distribution for correc-
tion. In this example, existing knowledge is represented by
the hydrological model, which is assumed to reflect the true
physical processes and is then used to enhance the confidence
in precipitation measurements.

The proposed correction framework (PHPM-MDCF) cap-
italizes on this concept by iteratively advancing the con-
vergence between the knowledge system (i.e. hydrological
model and water balance equation) and the measurement sys-
tem, thus enhancing the credibility of the measurements. Al-
though our current knowledge may not be entirely precise –
for example, the depiction of hydrological processes in mod-
els may lack accuracy – it remains the foundation upon which
we can rely and that we can strive to refine in the future.
Furthermore, several underlying concepts in this framework,
such as residual decomposition and advancing water budget
closure through correction, align with a recent study (Wang

and Gupta, 2024). The authors of this study introduced a
novel hybrid model (i.e. mass-conserving perceptron) and
discussed its potential application, including the bias correc-
tion (lacking confidence for the measurements) and exam-
ination of non-observed interactions with the environment
(corresponding to the omission errors). Coupling the PHPM-
MDCF with hydrological models that provide stronger inter-
pretability is a valuable and promising research effort as it
can offer insights into the physical attribution of water bud-
get non-closure and enable more reasonable correction.

5.2 Limitations and paths forward

It is our opinion that some traditional hydrological inferences
are based on a philosophy that involves some long-standing
and problematic assumptions that arise from the unwarranted
confidence in measurements. However, the fact that truth is
almost impossible to measure due to the complexity of real-
world physical processes hampers the foundation of infer-
ences, especially in large-scale studies that employ multi-
source non-field data. The presented framework has advan-
tages in its integration of the widely applicable water budget
equation and its reliable representation of hydrological pro-
cess using a hydrological model, significantly mitigating this
issue, and enhances our confidence in the corrected datasets.
Although the efficiency and credibility of the PHPM-MDCF
have been examined in the previous sections, there are sev-
eral limitations and uncertainties worthy of further discus-
sion.
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5.2.1 Uncertainty of forcing data

Here, we return to hypothesis 2 posed at the beginning of
the Methods section. As we acknowledge, the uncertainties
arising from the forcing and model structure undeniably ex-
ist and were a limitation in this study. First, the uncertainty
in the forcing may arise from two aspects; one is the inac-
curacy of the datasets themselves, and the other is the uncer-
tainty introduced by the scaling process (i.e. the conversion
from grid scale to basin scale). To investigate the sensitivity
of correction results to forcing data, we re-conducted multi-
source dataset correction using Daymet precipitation data at
the same case basin (no. 1013500) and compared it with the
original correction (forcing by TRMM). The comparison of
the two precipitation products is presented in Fig. S15, where
Daymet precipitation is significantly lower. The top panels
of Fig. 15 display slight differences between the two cor-
rections; for instance, the Daymet correction shows a larger
SWE (with a slope greater than 1), while other variables
are smaller. These differences can be entirely explained by
variations in precipitation forcing. Nevertheless, the tempo-
ral patterns of all variables under the two corrections remain
broadly consistent, with determination coefficients of all re-
gression curves exceeding 0.70 (Fig. 15b). Theoretically, the
consistency of correction stems from three aspects. Firstly,
it is attributed to the adaptability of hydrological models to
the input data, specifically the calibration compensation ca-
pability we described in the Introduction (Wang et al., 2023).
This enables the hydrological model to generate a reasonable
representation of hydrological processes even with imprecise
forcing. Secondly, as discussed in Sect. 4.3.2, the PHPM-
MDCF serves as a soft constraint and utilizes the distance
between measurements and simulations to allocate residual
correction, thereby mitigating the propagation of bias be-
tween variables. Thirdly, the uncertainty caused by the mis-
match between the grids and basin boundaries is effectively
alleviated through the unit conversion (i.e. from volume to
depth units). These three features ensure the stability of the
correction, rendering it less susceptible to interference from
uncertainties in the forcing datasets.

Further evidence of the robustness of the PHPM-MDCF
is provided by Fig. 15c–d, where corrected residuals tend to
converge after several iterations despite being forced by dif-
ferent precipitation datasets. The main influence of forcing
data is manifested in the omission residuals. As expected,
the omission residual term is simply an approximation of the
missing water fluxes or storages in the water budget equation,
which can vary depending on the datasets chosen to charac-
terize the equation. In Fig. 15e, the omission residuals driven
by Daymet stabilize around 12.5 mm, whereas those driven
by TRMM stabilize around 6.5 mm. Such a discrepancy can
be further highlighted in the comparison of the residual time
series (Fig. S16). Further investigation would be required to
better understand the omission residuals from a physical per-
spective. For example, a distributed hydrological model with

a representation of subsurface-layer flow processes will al-
low us to identify the magnitude of inter-basin interactions;
a more detailed description of the water budget equation in
data-rich environments can help us examine the sources of
omission errors. This is undoubtedly important but is not the
focus here. In summary, the above results suggest that the
correction is minimally sensitive to the choice of forcing,
demonstrating the robustness of the correction results. This
is achieved by maintaining similar inconsistency residuals –
corresponding to a similar correction amount – as long as
differences in precipitation do not result in substantial varia-
tions in the hydrological processes.

It is noted that the PHPM-MDCF has limitations in ad-
dressing inconsistency residuals in forcing. The reasons are
twofold. On the one hand, this is due to our neglect of un-
certainties in the forcing, which, as indicated by the above
analysis, appears to have a limited impact on the correc-
tion for other variables. On the other hand, this is because
the PHPM-MDCF allocates residuals based on the distance
between simulations and measurements, while the forcing
cannot be simulated within the hydrological model. In this
case, is there potential to correct the inconsistency residu-
als in the forcing? Clues to this possibility are hidden in the
above analysis. Systematic biases in precipitation products
are directly reflected in the water budget equation, leading to
different total input water volumes. Consequently, with the
inconsistency residuals of other variables unchanged, main-
taining the water balance would require an increase in omis-
sion residuals (Fig. 15e). Therefore, it can be inferred that,
with other variables unchanged, TRMM demonstrates supe-
rior water budget closure compared to Daymet, which con-
tains smaller inconsistency residuals. In other words, the dif-
ference in the two omission residuals reflects the discrepancy
in inconsistency residuals contained within the two precipi-
tation products. This portion of the omission residual differ-
ence can be directly corrected in the precipitation. However,
it is worth noting that not all omission residuals can be cor-
rected in the precipitation as it still contains residuals from
some unknown omitted water content. Such correction must
be relative and based on comparisons between different pre-
cipitation products as true values and perfect water balance
equations are unattainable. Another strategy is to couple an
atmospheric model with this framework to generate simu-
lated precipitation, allowing for the correction of precipita-
tion products. In subsequent work, we will explore these ap-
proaches and try to extend the PHPM-MDCF based on these
ideas.

5.2.2 Uncertainty of model structure

The characterization of physical hydrological processes
through modelling constitutes the foundation of the correc-
tion framework. The internal model structure is the primary
constraint for achieving water budget closure, and, thus, it
is crucial for the final correction results. The selection of
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Figure 15. Comparison of correction results based on different forcing datasets (TRMM and Daymet) at basin no. 1013500. (a–b) Corrected
time series of five water budget variables. (c–e) Variation in long-term mean absolute values of three residuals with correction iterations at
the monthly scale. The unit of the residuals is mm.

the lumped model (i.e. the HBV model) is intended to fa-
cilitate the application in large-sample basins to derive more
general conclusions, as has also been done in many pre-
vious large-sample hydrology studies (Gupta et al., 2014).
The reliability of model simulations has been confirmed by
multi-objective evaluation. However, whether the spatial dis-
tribution of model performance is intrinsically related to the
model structure is crucial to the robustness of the current
work.

To address the question, we first compared the model per-
formance with other studies that employed different mod-
els. As illustrated in Fig. C1, the model behaviour exhibits
strong spatial organization, with unreliable simulations pri-
marily concentrated in the central and western regions of
CONUS. This spatial distribution of prediction skill broadly
agrees with many previous studies. Brunner et al. (2021)
classified this region as an intermittent regime and attribute
the unsatisfactory simulation to the complex day-to-day vari-
ation in runoff. In their work, all four lumped models with
different structures (i.e. SAC, HBV, VIC, mHM) supported
the inference. In Yan et al. (2023), a more complex land sur-
face model (i.e. CLM5) was utilized for evaluating the un-
certainty of runoff prediction; they reported that the south-
western and central US showed the poorest prediction skill.
Notable pioneering research was conducted by Knoben et
al. (2020), who evaluated runoff predictability in CAMELS

basins using 36 hydrological models with different struc-
tures. After conducting a comprehensive analysis, they gen-
erated a multi-model runoff prediction performance map,
which aligns closely with the results of this study. Therefore,
we deduce that the spatial disparities in model performance
or predictability predominantly depend on basin and climatic
conditions rather than on model structure. The consistency of
the model performance with prior studies demonstrates that
the HBV model is reliable in the context of this study.

To further substantiate the above inference, we catego-
rized basins into four groups based on model performance
in runoff and compared the inter-group differences in six
types of basin and climatic characteristics (i.e. climate, hy-
drology, geology, topography, soil, and vegetation). The four
groups consist of unreliable performance, reliable perfor-
mance, below-average performance, and above-average per-
formance. First, the two-sample t test at the 5 % level was
conducted to examine whether there are significant differ-
ences in each characteristic indicator between the unreliable
and reliable groups. The indicators exhibiting a statistically
significant difference were then presented and compared in
Figs. S17 and S18. For clarity, here, we list indicators whose
inter-group difference was greater than 30 % in terms of me-
dian cumulative probability: mean precipitation, mean po-
tential evapotranspiration, aridity index (climate), proportion
of silt (geology–soil), mean runoff, runoff coefficient, fre-
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quency of high-flow days (hydrology), and all vegetation in-
dicators (vegetation). The significant inter-group differences
in these indicators highlight critical basin and climatic char-
acteristics pivotal to the successful modelling of the hydrol-
ogy system, providing convincing evidence for our inference.
In summary, basins with the following characteristics typ-
ically pose challenges to simulation: arid regions with low
precipitation and high potential evaporation, resulting in a
low runoff ratio and frequent alternation between zero flow
and high flow. Vegetation in these basins tends to consist of
lower vegetation types and to lack forests. It is worth not-
ing that, while we have validated the reliability of the HBV
model in the current study, its simplistic physics and lumped
design structure lead to significant limitations in simulating
several processes such as snow and groundwater (Brunner et
al., 2021). In other words, the HBV model may not be suit-
able for accurately representing the reality of these specific
processes.

The distinctive perspective of this work lies in utilizing
the physical processes described by hydrological models to
constrain multisource datasets, thereby enhancing water bud-
get closure among them. In particular, our next priority is
to incorporate more complex models to examine the PHPM-
MDCF in different basins with specific hydro-meteorological
conditions. For instance, distributed hydrological models and
hybrid models (ML-HM) are valuable tools that can im-
prove our understanding of water budget closure through
more detailed physical-process representation (Liao and Bar-
ros, 2022; Wang and Gupta, 2024). By employing models
that generate additional output variables, we can more com-
prehensively represent the water budget equation and extend
the application of the PHPM-MDCF to more complex wa-
ter budget systems. Additionally, multiple models can be uti-
lized for ensemble correction, which aids in quantifying un-
certainty and providing more robust correction results.

6 Conclusions

Advanced measurement techniques open new opportunities
for modern hydrological research. However, due to the lack
of consistent data production protocols and evaluation stan-
dards, physical inconsistencies are prevalent in multisource
datasets in the form of water budget residuals. Such incon-
sistencies undermine our confidence in data reliability and
compromise the robustness of hydrological inferences rely-
ing on these datasets. In this study, we proposed a multi-
source dataset correction framework, the PHPM-MDCF, to
achieve water budget closure through physical hydrologi-
cal process modelling. Built upon the decomposition of total
water residuals and the iterative multi-objective calibration,
the framework has the ability to reduce the inconsistency
residuals among multisource datasets and to promote conver-
gence between the simulation and measurement systems. We
demonstrated the spatiotemporal distribution of water bud-

get residuals and the efficiency of the PHPM-MDCF across
475 CONUS basins selected by hydrological simulation re-
liability. Several experiments were conducted to verify the
credibility of the framework, including the addition of man-
ual noises and comparisons with existing correction meth-
ods. Furthermore, we explored potential factors influencing
the spatiotemporal distribution and proportions of residuals.
The major study findings are summarized as follows:

1. The results from water budget residual decomposition
indicate that inconsistency residuals dominate the total
water budget residuals, showing highly consistent spa-
tiotemporal distributions. In spatial terms, both demon-
strate an east–west gradient and concentrations of low
values along the western coastline and eastern inland
basins within CONUS. Temporally, they exhibit nega-
tive trends in the cold seasons and positive trends in the
warm seasons. On the contrary, the omission residuals,
which account for the water quantities omitted in the
original water budget equation, have different drivers
and thus exhibit distinct distributions compared to the
former. This component constitutes a relatively small
proportion of the total budget residuals.

2. The PHPM-MDCF demonstrates satisfactory correction
efficiency, with an average reduction percentage of 49 %
in total water budget residuals across all 475 basins after
correction. In certain basins, this reduction can exceed
80 % (i.e. 84 % in basin no. 1013500). The correction
efficiency shows a latitudinally dependent pattern, with
greater absolute values in high-latitude regions. The re-
sults from noise experiments validated the credibility of
the correction framework. Both single-point extreme-
noise and Gaussian white-noise sequences exert a lim-
ited impact on final correction results. Corrections ap-
plied to extreme noises in one variable do not propa-
gate to others, thereby avoiding the generation of unrea-
sonable values. Its credibility was further substantiated
through comparisons with existing methods.

3. The water budget non-closure phenomenon exhibits no-
ticeable scale effects and is closely related to hydro-
meteorological conditions. This highlights the need for
careful consideration of the water balance assumption
when applying multisource datasets for hydrological in-
ference in small and humid basins. Moreover, the un-
derestimation of cold-season precipitation and warm-
season evaporation could be directly associated with the
negative and positive biases in water budget residuals
for the corresponding seasons. As a foundation for eval-
uating the water balance, a comprehensive water budget
equation is undoubtedly crucial, as underscored by the
analysis of residual proportions.

For the first time, this study presents a correction approach
to achieve water budget closure based on physical hydrolog-
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ical modelling. However, the Bayesian philosophy underly-
ing the approach has been implicit in many previous meth-
ods, such as atmospheric reanalysis. The only thing we can
rely on is our prior knowledge; therefore, continuously pro-
moting convergence between knowledge and measurement
systems is crucial for enhancing our confidence. An obvi-
ous extension of this research is the inclusion of more dis-
ciplines within both atmospheric sciences and broader Earth
sciences. This contributes to a better understanding, in the
era of big data, of the distinctions and correlations between
simulations, measurements, and reality.

Appendix A: Implementation details of the HBV model

Figure A1 illustrates the basic structure of the HBV model,
encompassing three modules (i.e. snow routine, soil mois-
ture routine, and runoff routine) and three runoff compo-
nents: quick runoff, interflow, and baseflow. The cumulative
sum of these components constitutes total runoff, which is
routed through a triangular unit hydrograph (UH). At each
model run step, the runoff at the outlet of the basin is de-
termined. The HBV model is driven by daily precipitation
(from TRMM), average temperature (from CAMELS), and
potential evaporation (from GLEAM), enabling the simula-
tion of various hydrological fluxes and state variables, in-
cluding runoff, soil moisture storage, groundwater reservoir
storage, evaporation, and SWE. Table A1 lists the free pa-
rameters slated for calibration in the HBV model, providing
their descriptions and respective ranges.

The period from 1998 to 2000 is looped five times for
model spin-up, and the subsequent 10-year period is used
for model calibration. After each calibration, the optimal pa-
rameter set is selected from the Pareto fronts. Finally, these
optimal parameters are applied to the entire 12-year period
to yield the best simulation, thus facilitating the multisource
dataset correction.
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Figure A1. Schematic structure of the HBV model. The variables marked with an asterisk (∗) denote water storage, whereas those annotated
with positive (+) and negative (−) signs represent the inputs and outputs of the storage.

Table A1. The description and ranges of free parameters in the HBV model for calibration.

Parameter Unit Description Min Max

DD mm °C−1 d−1 Degree-day factor 1.0 10.0
TT °C Threshold temperature for snowmelt initiation −2.5 2.5
Beta – Shape coefficient 1.0 8.0
FC mm Field capacity 10.0 600.0
K0 d−1 Recession coefficient of the quick runoff 0.1 0.8
K1 d−1 Recession coefficient of the interflow 0.01 0.5
K2 d−1 Recession coefficient of the baseflow 0.001 0.15
Kp d−1 Recession coefficient of the percolation 0.001 5.0
PWP – Soil permanent wilting point as a fraction of FC 0.2 1.0
HL mm Threshold water level for near-surface flow 10.0 200.0
maxbas d Weighting parameter of triangular unit hydrograph 1 10

Appendix B: Evaluation metrics used for model
calibration

The Kling–Gupta efficiency (KGE) metric provides a com-
prehensive measure of the similarity between simulations
and measurements by incorporating three components: cor-
relation, the ratio of standard deviations, and the ratio of
means. It has been demonstrated to exhibit superior perfor-
mance in calibrating hydrological models (Knoben et al.,
2020; Aerts et al., 2022). The Pearson correlation coefficient

(r) quantifies the extent of shared information between sim-
ulations and measurements, characterized by its insensitivity
to amplitude and mean values (Lorenz et al., 2014). Thus, it is
suitable for evaluating variables that may exhibit mean differ-
ences between simulations and measurements, such as SMS
and GRS. The root mean square error (RMSE) is a widely
used evaluation metric in hydrological modelling. Despite it
not being a normalized metric, its calculation does not in-
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Table B1. Description of evaluation metrics, including ranges and optimal values.

Metrics Full name Variables to be evaluated Range Optimal value

KGE Kling–Gupta efficiency Runoff, evaporation (−∞,1] 1.0
r Pearson correlation coefficient Soil moisture storage, groundwater reservoir storage [−1,1] 1.0
RMSE Root mean square error Snow water equivalent [0,+∞) 0.0

volve division, making it particularly suitable for evaluating
variables like SWE, which may be a sequence consisting en-
tirely of zeros. Based on the simulated and measured values
of the target variables, the three metrics can be calculated
using the following formulas:

KGE= 1−
√
(r − 1)2+ (

σsim

σobs
− 1)2+ (

µsim
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− 1)2, (B1)
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where σ is the standard deviation, and µ is the mean; V i is
the target variable at time step i, and n is the length of the
sequence. The subscripts “sim” and “obs” denote the sim-
ulation and measurement of the variable, respectively. The
range and optimal values of the evaluation metrics are shown
in Table B1.

Appendix C: Simulation performance of the HBV
model across CAMELS basins

In this appendix, we present the simulation performance
of the HBV model on 653 CAMELS basins. As shown in
Fig. C1, the performance of five target variables, including
runoff, evaporation, soil moisture storage, groundwater reser-
voir storage, and snow water equivalent, is described using
three metrics (i.e. KGE, r , and RMSE). The gradient from
white to deep blue indicates progressively better simulation
performance. In contrast, red highlights basins of unreliable
simulation, determined by a KGE of less than −0.41 and an
r value failing the significance test at the 5 % level. Table C1
summarizes the multivariable simulation performance of the
HBV model across all basins.
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Figure C1. The multi-objective simulation performances of the HBV model across the CAMELS basins. Results are based on (a) runoff,
(b) evaporation, (c) soil moisture storage and groundwater reservoir storage, and (d) snow water equivalent. Red dots represent unreliable
simulation performance, and the size of the points is proportional to the basin area. The unit of the RMSE is mm.

Table C1. Performances of the HBV model in terms of five target variables across the CAMELS basins. The last row presents the number
and proportion of basins where all target variables are reliably simulated. The unit of RMSE in the table is “mm”.

Variables Median performance Range (KGE, Reliable simulation Reliable
(KGE, r , RMSE) r , RMSE) Count (basins) proportion (%)

Runoff 0.50 −0.40 to 0.88 499 76.42 %
ET 0.94 −0.40 to 0.99 548 83.92 %
SMS 0.80 0.07 to 0.95 645 98.77 %
GRS 0.72 0.02 to 0.95 653 100.00 %
SWE 5.97 0.00 to 353.34 – –
All variables – – 475 72.74 %
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