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Abstract. Traditional hydrological modeling simulates
rainfall-runoff process dynamics using process-based models
(PBMs). PBMs are grounded in physical laws and therefore
highly interpretable. As environmental systems are highly
complex, though, subprocesses are sometimes hard or even
impossible to identify and quantify. Data-driven approaches,
like artificial neural networks (ANNSs), offer an alternative.
Such approaches can automatically discover hidden relation-
ships within the data. As a result, superior model perfor-
mance may be achieved. However, the uncovered relation-
ships are hard to analyze within black-box ANNs and often
fail to respect physical laws. Differentiable modeling calls
for knowledge discovery by combining both approaches,
benefiting from their respective advantages. In this work, we
present a physically inspired, fully differentiable, and fully
distributed model, which we term DRRAINN (Distributed
Rainfall-Runoff Artlficial Neural Network). DRRAINN is a
neural network model that estimates river discharge at gaug-
ing stations based on meteorological forcings and elevation.
Focusing on the Neckar river catchment in Southwest Ger-
many, DRRAINN is trained to predict daily water discharge
measurements using data from 17 stations and from ten me-
teorological years only. DRRAiINN’s performance is com-
pared to the performance of the European Flood Awareness
System (EFAS) reanalysis. Some instances of our model out-
perform EFAS at lead times of over 50d in terms of the
applied metrics for model performance. As DRRAINN is
fully differentiable and fully distributed, efficient source al-
location algorithms can be used to identify the precipitation
sources responsible for the water discharge dynamics at spe-
cific gauging stations. Besides DRRAiINN’s potential to fore-
cast upcoming water discharge dynamics, its full differentia-
bility could be utilized to infer erosion sites from turbidity

data, particularly when integrated with an appropriate ero-
sion model.

1 Introduction

Accurate water flow forecasting plays a critical role in mit-
igating short-term flood impacts, such as preventing loss of
life and reducing economic damage (Pilon, 2002). For ex-
ample, simulating river discharge is a prerequisite for flood
inundation modeling (Hunter et al., 2007) and enables in-
formed decision-making in water management such as dam
operations (Valeriano et al., 2010). Accuracy is not every-
thing though. Hydrological models that respect physical laws
are more likely to generalize well to new situations and to of-
fer insights into the underlying processes that govern water
movement. A solid understanding of the dynamics of water
systems is necessary to estimate the impacts of environmen-
tal planning and to improve infrastructure design (Palmer
et al., 2008; Bharati et al., 2011). It also enables a better as-
sessment of how climate change may alter existing ecosys-
tems in the future (Palmer et al., 2008; Van Vliet et al., 2013;
Al Hossain et al., 2015). Additionally, models that respect
physical laws can be used to infer the origins of observed dis-
charge, thereby further facilitating the development of poli-
cies that mitigate the damages caused by floods. From a prac-
tical perspective, a good model should allow efficient calibra-
tion and perform well even if data are sparse, which is often
the case for river discharge. Traditionally, these challenges
have been addressed using physically based approaches that
explicitly encode domain knowledge. These process-based
models (PBMs) describe physical processes with mathemat-
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ical equations derived from physical laws and observations
(Brutsaert, 2023).

Environmental hydrological processes are highly com-
plex, involving numerous interacting variables that make
the overall process highly heterogeneous (Margais and
de Dreuzy, 2017). Recent advances, such as the Multiscale
Parameter Regionalization framework (Samaniego et al.,
2010) and scalable transfer function approaches (Imhoff
et al., 2020) have focused on improving parameterization
and capturing spatial heterogeneity in PBMs to alleviate
these issues. To reduce uncertainty and initialize PBMs ad-
equately, data assimilation incorporates concrete observa-
tions into running models (Liu et al., 2012; Camporese and
Girotto, 2022; Montzka et al., 2012). Such advancements in
data assimilation can improve performance in both lumped
(Moradkhani et al., 2005; Liu and Gupta, 2007; Liu et al.,
2012) and distributed models (Rakovec et al., 2012). How-
ever, significant challenges remain, as the involved processes
and their interactions are in most cases only partially under-
stood (Hrachowitz et al., 2013), leading to high uncertainty
and biases. Even if a process is known well in detail, certain
input variables may simply be unobservable, such as under-
ground topography. Additionally, environmental processes
often occur at scales that differ substantially from those ob-
served under laboratory conditions (Hrachowitz et al., 2013;
Shen, 2018; Nearing et al., 2020).

Complementary to PBMs, data-driven models have gained
traction in recent years, driven by the increasing amount of
available hydrological data (Sit et al., 2020). Artificial neural
networks (ANNs) are data-driven models that automatically
learn relationships from large datasets. Given the superior
performance of early data-driven approaches in hydrology,
it is likely that the full potential of data-driven approaches
remains untapped (Shen, 2018; Nearing et al., 2020). How-
ever, despite achieving strong predictive performance, ANNs
often fail to respect physical laws due to their purely data-
driven nature. This calls for measures such as hybrid or
physics-informed models that bias data-driven approaches
toward physical plausibility. Furthermore, it is often criti-
cized that developers of machine learning (ML) models do
not put enough effort into the interpretation of their devel-
oped systems, failing to gain a better understanding of the
system’s internal dynamics (Muifioz-Carpena et al., 2023).

One promising avenue to overcome these limitations in-
volves leveraging ML to infer latent variables that are other-
wise inaccessible to direct measurement. To give an exam-
ple, a considerable portion of total discharge originates from
subsurface flow. It is not yet possible to directly measure sub-
surface flow, making underground topography a latent driver
of hydrological behavior (Shen, 2018). We believe that these
latent variables may contribute to poor model generalization
across basins. ML and especially ANNs can support hydro-
logical modeling in such cases, because they allow to infer
latent variables retrospectively given observation dynamics
(Butz et al., 2019; Otte et al., 2020). This motivates a key
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question we address in this paper: Given observed dynamics,
in which areas did precipitation contribute to the measured
discharge?

Similar to subsurface flow, spatially distributed evapotran-
spiration patterns are challenging to measure directly. Model
inversions of NN (Sit et al., 2020) may therefore help to ex-
tend our understanding of the water cycle with ML. For a
broader overview of ML applications in hydrology, we refer
the reader to Shen (2018) and Sit et al. (2020).

A combination of PBMs and ML-based approaches could
leverage the advantages of both worlds. When combined
with the goal of knowledge discovery, this approach is re-
ferred to as “differentiable modeling” (Shen et al., 2023). It
could result in well-performing interpretable models that au-
tomatically find new relationships in the data, respect phys-
ical laws, generalize well across different settings, and re-
quire comparatively little data. From the ML perspective,
known relationships can be incorporated into differentiable
models as constraints or inductive biases. Inductive biases
encode prior assumptions about the data-generating process,
effectively constraining the model’s solution space. By doing
so, they can improve performance, enhance generalization,
and make learning more efficient. Furthermore, they guide
the model towards discovering interpretable structures in the
data, aligning its behavior with established principles (Butz
et al., 2025). A crucial challenge for the modeler is to find
and incorporate those biases that restrict the solution space
as much as possible without introducing incorrect or unjus-
tified assumptions and without restricting the self-organizing
power of NNs.

In their seminal work, Kratzert et al. (2018) have suc-
cessfully used a long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) for rainfall-runoff modeling at
the basin scale (Kratzert et al., 2018), demonstrating that
purely data-driven models can exceed traditional methods.
Since then, numerous studies have emerged, applying largely
the same model to various data sets (Sit et al., 2020). No-
tably, significant advancements to the model have also been
made, including the incorporation of physical constraints
(Kratzert et al., 2019; Hoedt et al., 2021), uncertainty esti-
mation (Klotz et al., 2022), and the extension of modeling to
multiple timescales (Gauch et al., 2021). Hybrid models such
as neural ODEs, where differential equations of conceptual
hydrological models are replaced by neural networks, were
also applied in this setting (Hoge et al., 2022). All of the
aforementioned models are lumped, meaning that inputs are
spatially aggregated over each catchment. These catchments
are typically delineated using digital elevation models.

Semi-distributed models partially leverage river network
topology, providing a compromise between lumped and fully
distributed representations. These include purely data-driven
graph-based models (Xiang and Demir, 2020; Moshe et al.,
2020; Sit et al., 2021; Kratzert et al., 2021; Sun et al., 2022;
Chen et al., 2022), as well as hybrid approaches that inte-
grate domain knowledge — for example, by using a differen-
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tiable Muskingum-Cunge routing model (Bindas et al., 2024;
Zhong et al., 2024). These models typically divide the over-
all catchment into multiple subbasins connected via the river
network, enabling limited spatial interaction. Within each
subbasin, however, forcings are still spatially aggregated,
similar to lumped models.

In contrast, fully distributed models directly operate on a
spatial grid. While there is a call for more fully distributed
data-driven models for rainfall-runoff modeling (Nearing
et al., 2020), most existing approaches remain limited in crit-
ical ways. Some hybrid models operate on a grid but re-
strict cell-to-cell communication to the direction of steep-
est descent (Xiang and Demir, 2022; Wang et al., 2024).
This strong assumption effectively transforms the grid into a
directed graph, excluding physically plausible underground
flows in other directions. CNN-LSTMs process gridded in-
put data without explicit assumptions about flow directions
(Ueda et al.,, 2024; Pokharel and Roy, 2024; Li et al.,
2022). However, these models separate spatial and tempo-
ral processing by flattening the convolutional neural network
(CNN) outputs before passing them to an LSTM. As a result,
spatial dependencies are not maintained across time steps.
This limitation is addressed in Oddo et al. (2024), were a
ConvLSTM (Shi et al., 2015) is used to jointly model space
and time. Yet, before the final discharge prediction, the out-
puts of all grid cells are flattened into a single feature vector
and passed through a fully connected layer. Similar global
aggregation strategies can be found elsewhere (Zhu et al.,
2023; Tyson et al., 2023; Pokharel and Roy, 2024; Xu et al.,
2022; Borgel et al., 2025). Moving a step closer to physical
plausibility, Longyang et al. (2024) combined a ConvLSTM
with ridge regression to learn which grid cells should con-
tribute to discharge estimation at each station. This allowed
the reconstruction of plausible underground flow paths be-
tween subbasins. Since all of these distributed models aggre-
gate the outputs of the spatial component globally over space,
whether weighted or not, they lack the incentive to propagate
water across the landscape in a physically plausible way.

Our work builds on differentiable modeling to com-
bine both process-based and data-based modeling, and
to address the challenges of physical plausibility, inter-
pretability, and latent variable inference. We present DR-
RAINN (Distributed Rainfall-Runoff Artlficial Neural Net-
work), a physics-inspired, fully differentiable, fully dis-
tributed rainfall-runoff model. Our spatio-temporal ANN ar-
chitecture estimates river discharge at gauging stations from
gridded precipitation, solar radiation, elevation, and past dis-
charge. DRRAINN is fully distributed in the sense that it in-
ternally operates on a grid. However, its outputs are point-
wise river discharge measurements at given gauging station
locations. Its full differentiability allows gradients to flow
seamlessly through the entire system, enabling end-to-end
optimization of all its components with sparse discharge
measurements being the only target variable. To avoid over-
fitting, and to improve interpretability and generalization, we
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incorporated several physics-inspired inductive biases into
DRRAINN. These include the modularization into a spa-
tially fully distributed rainfall-runoff model and the utiliza-
tion of a graph-based river discharge model. Additional ar-
chitectural choices precondition DRRAINN to encode dis-
tinct processes, such as lateral propagation of water across
the landscape and local evapotranspiration. As a result, DR-
RAINN turns into a gray-box deep learning model. Its model
design encourages the development of sub-modules, which
model surface and sub-surface water flow, water inflow into
a river network, and water flow and discharge across the river
network.

Thanks to DRRAINN’s fully distributed and fully differen-
tiable architecture, it is possible to answer spatially explicit
questions, such as: Where is the true catchment area, includ-
ing contributions from underground flows? In other words,
DRRAINN enables source allocations using gradient-based
attribution methods like saliency maps (Simonyan et al.,
2013). These techniques can help to examine and understand
internal model dynamics, enabling knowledge discovery.

We demonstrate our approach on the Neckar River basin
and compare performance against the operational European
Flood Awareness System (EFAS).

2 Methods

We present DRRAINN, a spatio-temporal ANN architecture
that estimates river discharge from static attributes and me-
teorological forcings in a distributed manner. This chapter
presents the methodology underlying our approach. We be-
gin with a detailed description of our neural network archi-
tecture and discuss key design choices that inform its struc-
ture. We then describe the input and output data specifica-
tions, which are closely tied to the architectural design. Fol-
lowing this, we introduce our study area and experimental
setup, present the benchmark model used for comparison,
and conclude with the evaluation metrics employed to assess
model performance.

2.1 Model

DRRAINN's structure is grounded in the following data and
structural information sources. The locations L; = (x;, y;)
for estimations of discharge in the river network are deter-
mined by discharge gauging stations that provide observed
discharge Q;, for time ¢ in 24h periods. The connectivity
of stations, determined by the river network, is encoded in
an adjacency matrix A; ;. Static maps Sy , and meteoro-
logical forcings Fy y, for hourly time points ¢ are encoded
on a grid that spans a domain larger than the elevation-
delineated catchment area to capture effective catchment
contributions beyond topographic boundaries. Given static
maps S. ., meteorological forcings F. . ., +1 over the whole
duration (ty. . .t;4T') in hours, and past discharge Q; ;,.;, over
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the tune-in period (#. . .y) in days, DRRAINN estimates dis-
charge Q; . +1:1,+7 over a temporal future horizon of T days
via a function f, representing the learned spatio-temporal
mapping implemented by the model:

Qi,ts—‘rl:ts—&-T = f(S:,:’ E,:,t():tS+T» Qi,t():ts) (1)

Since surface and subsurface flow differ from river flow dy-
namics as described above, we model these subprocesses
separately. Therefore, DRRAINN consists of two compo-
nents, the rainfall-runoff model and the discharge model.
The rainfall-runoff model operates recurrently on a grid, ren-
dering it fully distributed. It is supposed to model surface
and subsurface flow, and evapotranspiration. The discharge
model operates recurrently on a graph to model river flow
inside of channels and output estimated discharge QO at the
station locations. While DRRAINN is fully distributed in its
internal computation over a spatial grid, its outputs are only
available at selected gauging stations.

At each time step, DRRAINN processes the sequence
in an auto-regressive loop by first invoking the rainfall-
runoff model, followed by the discharge model. The rainfall-
runoff model receives gridded static maps S and meteo-
rological forcings F as input to model the catchment on
a grid. It is primed to distinguish between two important
subprocesses, namely surface and subsurface flow, which is
mainly driven by topography, and evapotranspiration, which
is mainly driven by solar radiation. It produces a latent rep-
resentation, which we term runoff embedding, extracted at
station locations and used as input to the discharge model.
Despite being the main driver of discharge, it cannot be di-
rectly interpreted as runoff due to its self-organizing nature.
The discharge model additionally receives an adjacency ma-
trix A that describes the connectivity between stations, static
river segment features, and the (potentially estimated) dis-
charge Q. from the previous time step. It then estimates
discharge Q for each station, from which the training loss is
computed.

We implement DRRAINN in pytorch (Paszke et al., 2019).
In the following, we provide a more detailed description of
DRRAINN’s components. See Fig. 1 for a depiction of the
overall model.

2.1.1 Rainfall-Runoff Model

The rainfall-runoff model consists of a position-wise LSTM
and a CNN that are called in each time step. This renders the
rainfall-runoff model local in space and time. Only spatially
local and temporally previous information is used to update
internal states.

The position-wise LSTM (PWLSTM) is responsible for
modeling the temporal relationships in the data and therefore
maintains a hidden and a cell state for each grid cell. The
gating mechanism regulates when and how the cell state is
updated, allowing the model to retain information over ex-
tended time periods. This can be particularly useful for im-
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plicitly modeling slow hydrological processes such as soil
moisture or groundwater levels, which evolve more gradu-
ally than overland flow. The LSTM receives precipitation as
input to update its hidden and cell states. It has a hidden size
of 4 (see Appendix B for hidden sizes 2 and 6). Importantly,
the weights of the LSTM are shared throughout the gridded
area. As a result, while the LSTM at each grid cell maintains
individual hidden and cell state values, the temporal process-
ing principle is identical everywhere. The assumption is that
the unfolding physics is the same everywhere, although they
may be locally parameterized.

The CNN models spatial relationships such as the propa-
gation of water flow across the landscape and evapotranspi-
ration. It receives and updates the hidden state 4 of the PWL-
STM to model spatial interactions, while leaving the PWL-
STM’s cell states untouched to preserve temporal memory.
Surface and subsurface flow are spatially extended processes,
whereas evapotranspiration is primarily a local phenomenon,
occurring independently at each grid cell. To reflect this dis-
tinction, we separate the CNN’s treatment of these processes
using different convolution types and input sources, introduc-
ing an inductive bias into the architecture.

More precisely, the CNN is based on a modified Con-
vNeXt block (Liu et al., 2022). A ConvNeXt block con-
sists of three layers, namely a depth-wise convolutional layer
(DWConv) with kernel size 7 x 7 followed by a position-wise
inverted bottleneck given by two linear layers (PWConvl
and PWConv2). This way, ConvNeXt decouples spatial and
channel-wise information flow. We apply the SiLU activa-
tion function after the convolutional and between the lin-
ear layers (Hendrycks and Gimpel, 2016). In contrast to its
original formulation, the weights of our ConvNeXt block are
not static but location-dependent. They are parameterized by
other neural networks, turning this network component into a
hypernetwork (Traub et al., 2024). This means that the Con-
vNeXt block can behave differently at each location on the
grid. Calling DWConv results in the following operation:

3 3

Yi,j,c = Z Z Wi, jm,n,c " Xi+m,j+n,c» (2)

m=—3n=-3

where y is the output, x the input, w are the weights pro-
duced by the hypernetwork, c is the considered channel, and
i and j are coordinates. We can still call this operation a con-
volution if we regard the input variables together with the
weight-generating networks as the kernel. Calling PWConvl
and PWConv2 results in the following operation:

Yioj.con = ZWi,j,com,cm *Xi, j cin> 3)
Cin

each layer of the ConvNeXt block is parameterized by a dis-

tinct hypernetwork, tailored to the type of process it rep-

resents. The weights of DWConv are produced by a CNN

that has the same kernel size as DWConv itself. The weights

for PWConv1 and PWConv2 are produced by position-wise
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Figure 1. Schematic overview of the DRRAINN architecture. The gridded rainfall-runoff model has two main tasks: to model the redistribu-
tion of precipitation across the landscape, and to model evapotranspiration based on solar radiation. It receives precipitation as its main input
to a point-wise LSTM, whose hidden states, but not cell states, are updated using a ConvNeXtBlock. The ConvNeXtBlock weights are not
fixed but dynamically generated by hypernetworks (indicated by red arrows). The depth-wise convolution (DWConv), responsible for lateral
water propagation, receives its weights from a CNN that takes elevation as input and shares the same receptive field as the DWConv. The
point-wise convolutions (PWConv1 and PWConv2), used to model local evapotranspiration processes, receive their weights from an MLP
that takes solar radiation as input. The LSTM hidden state is further processed by a linear layer before being passed to the discharge model.
This graph-based discharge model aggregates information at the gauging stations, incorporating the last (possibly inferred) discharge values,
elevation differences between stations, and river segment lengths. The arrows between Segment- and StationGRU indicate the temporal in-
formation exchange between these kernels: station outputs provide lateral inputs to segment kernels in the next time step, creating a recurrent

communication pattern. The output of the discharge model is the estimated discharge at each station.

multi-layer perceptions (MLPs). By using different input
variables for the different hypernetworks, we can distinguish
between local and spatially extended processes. How water
propagates across the landscape depends mainly on the to-
pography, which is why we generate the weights of DWConv
from elevation. Before feeding the elevation into the hyper-
network, we subtract the elevation of the center cell from the
elevations of all other cells within each receptive field as flow
direction directly depends on elevation gradients rather than
absolute elevation. Evapotranspiration, on the other hand, is
a local process and is therefore best captured by the position-
wise components. This is why we generate the weights for
PWConvl and PWConv2 from solar radiation. See Fig. 2 for
an illustration.

Lastly, the runoff embeddings are extracted at the station
locations, fed through a single linear layer, and sent to the
river discharge model. Aggregating the hidden states of all
cells on the corresponding upstream river segment showed a
tendency to overfit in preliminary experiments.

https://doi.org/10.5194/hess-29-6257-2025

2.1.2 Discharge Model

Our discharge model is a recurrent graph neural network
called DISTANA (Karlbauer et al., 2019), with the graph
structure defined by the actual river network and the stations.
DISTANA maintains two types of recurrent units: station and
segment kernels, both implemented as Gated Recurrent Units
(GRUs, Cho et al., 2014) with a hidden size of 8 (see Ap-
pendix B for hidden sizes 4 and 16, and a version in which the
GRU s are replaced with LSTMs). Station kernels are placed
at the gauging stations, while segment kernels are located on
segments between stations. These kernels communicate with
each other via lateral connections with 4 channels (Fig. 1).
In each time step, the segment kernels are updated first, fol-
lowed by the station kernels, which then estimate the dis-
charge O at their respective locations. The segment kernels
first concatenate the previous output of the upstream station
kernels with static river segment attributes — specifically the
altitude difference and segment length. After applying the
GRU, the output is multiplied by the adjacency matrix, which

Hydrol. Earth Syst. Sci., 29, 6257-6283, 2025
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Figure 2. Illustration of the hypernetworks used in DRRAiINN. In
both panels, the dark gray cells represent locations whose hidden
states are updated based on information from the light gray cells.
The weights for these updates are generated by separate neural net-
works that share the same receptive field but receive different types
of input data. Left: A CNN takes elevation as input and produces the
weights for the depth-wise convolution, which models lateral wa-
ter propagation. Right: An MLP takes solar radiation as input and
produces the weights for the point-wise convolution, which models
localized evapotranspiration.

is derived from the river network topology and station posi-
tions. The segment kernels thereby sum up information from
upstream station kernels. The output of the segment kernels
serves as input for the station kernels. The station kernels
work similarly. They first concatenate the last output of the
segment kernels with the last (potentially inferred) discharge
and the output of the rainfall-runoff model. After applying
the GRU, the output is split into the estimated discharge 0
and the input for the segment kernels in the next time step.
This creates a bidirectional information flow between station
and segment kernels across time steps, where station outputs
serve as lateral inputs to segment kernels in subsequent time
steps.

Although DRRAINN receives hourly meteorological forc-
ings F, it produces discharge estimates at a daily resolution.
During the initial 10d tune-in phase of each sequence, we
feed the same observed discharge value Q into DRRAINN
for each hourly step within the day.

2.2 Data

The input data for DRRAINN consists of radar-based pre-
cipitation, elevation for above-ground topography, solar ra-
diation, and river discharge data. Preliminary experiments
showed no improvement when including temperature; there-
fore, we exclude it following Occam’s razor.

For precipitation, we use the radar-based precipitation
product RADOLAN provided by the Deutsche Wetterdienst
(RADOLAN, 2016). The data domain is a 900km x 900 km
pixel grid with a resolution of 1km x 1km that covers all
of Germany and a temporal resolution of 1h. This grid de-
fines the spatial resolution at which our model operates.
RADOLAN data is log-standardized before being sent to the
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model due to its long-tail distribution. Specifically, we add
1 and take the logarithm, then compute the mean and stan-
dard deviation of the transformed data to standardize it. We
replace missing values with zeros, which is the standardized
mean.

For static topography information we use the digital eleva-
tion model (DEM) EU-DEM v1.1 provided by the Coperni-
cus Land Monitoring Service of the European Environment
Agency (EU-DEM, 2016). We also use the DEM to com-
pute the differences in altitudes between adjacent discharge
gauging stations. Elevation values and derived difference are
standardized before being sent to the model, i.e., we subtract
their mean and divide by their standard deviation.

For solar radiation, we use surface short-wave downward
radiation (SSRD) from the ERAS data set (Copernicus Cli-
mate Change Service, 2023). It comes with a temporal res-
olution of 1h and a relatively coarse spatial resolution of
0.25° x 0.25°. Like the precipitation data, solar radiation data
is log-standardized. We use rasterio (Gillies et al., 2013) to
transform and reproject the DEM and solar radiation data to
match the RADOLAN coordinate reference system.

The topography of our river network is determined by
the AWGN data set (AWGN, 2023). We use it to compute
the adjacency matrix that describes which stations are con-
nected via river segments and the corresponding river seg-
ment lengths.

Finally, we use discharge measurement data to tune in
the discharge model and, more importantly, as the only tar-
get variable to train, validate, and test our model. We use
data collected and provided by the German Federal Institute
of Hydrology via the Global Runoff Data Centre (GRDC,
2024). The data set contains observed daily river discharge
from gauging stations worldwide, including those in Ger-
many. Since the location information of the discharge gaug-
ing stations is partially wrong, we corrected them manu-
ally. We then align the station locations to the nearest river
segment (snapping). If the correction exceeds a predefined
threshold of 1km, the station is excluded. If two stations are
very close to each other, one of them is discarded. Due to
its long-tail distribution, discharge data is log-standardized
on a per-station basis before being sent to the model. We
add 1 and take the logarithm, then standardize the data us-
ing station-wise means and standard deviations. We replace
missing values with zeros, which is the standardized mean of
the corresponding station.

Our choice of input datasets was guided by temporal reso-
lution, data provenance, and practical availability. Although
the European Flood Awareness System (EFAS) employs
EMO-1 for precipitation input, we opted for RADOLAN due
to important differences: EMO-1 offers a coarser 6 h resolu-
tion and is interpolated from sparse station data, in contrast to
RADOLAN’s direct radar-based observations. Although we
expect only minor differences in performance in some set-
tings, radar-derived datasets like RADOLAN provide finer
spatial and temporal resolution, which is advantageous for
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distributed models. Similarly, we chose ERAS for solar ra-
diation data due to its gridded format and hourly resolu-
tion. Alternative datasets, such as those provided by DWD,
are either available only as station-wise hourly data, which
lack the required grid format, or as gridded data aggregated
monthly, which does not meet our temporal requirements.
Daily datasets like EOBS may suffice if subdaily temporal
patterns are encoded separately, but this would require ad-
ditional preprocessing. A transition toward operation flood
forecast would place increased importance on the choice of
precipitation forecast products (Imhoff et al., 2022). Ulti-
mately, all data products entail inherent uncertainties and er-
rors, and our choices reflect a balance between data availabil-
ity, temporal resolution, and the specific requirements of our
model.

2.3 Study site

The Neckar river network in Southwest Germany spans a
catchment area of 14000km? with a mean elevation of
460m. According to ERAS, mean temperatures in this re-
gion were 0.95 °C during winter and 17.95 °C during summer
in our training period. Our dataset includes measurements
from 17 gauging stations distributed across the river net-
work (see Fig. 3). At the most downstream station in Rock-
enau, discharge during the training period ranged from 29.5
to 1690m> s~! with a mean of 133.3m3s~!.

The catchment features a highly heterogeneous land-
scape, including narrow and wide valleys, diverse geology
(e.g., limestone, sandstone), different soil textures (e.g., clay,
marl), and subsurface structures such as karst systems and
pore water aquifers. This makes the modeling of the Neckar
River network a challenging endeavor. To give a concrete ex-
ample, there are underground flows south of Pforzheim that
route water toward the east, while the elevation model sug-
gests a different flow direction (Ufrecht, 2002). This relation-
ship cannot be inferred from a digital elevation model alone.
Latent underground structures route the water in a different
direction than the elevation model alone would suggest.

By restricting the domain to the Neckar river network, we
end up with an area of size 200km x 200km. Following the
transformations described above, all gridded data is reduced
from a 1km x 1km grid to a 4km x 4km grid by taking the
mean. This results in a 50 x 50 grid covering the study area.
We train our model on hydrological years 2006-2015, val-
idate on 2016-2018, and test on 2019. Forcings F are pro-
vided at hourly resolution, while discharge is provided at
daily resolution.

2.4 Experimental setup
We train DRRAINN on sequences of 20 d (480 h steps), using
the first 10d as a warm-up phase. During this phase, we feed

the model observed discharge values to initialize and align its
hidden states with the true system dynamics. This procedure
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Figure 3. The study area used in this work is the Neckar River
catchment in Southwest Germany.

resembles data assimilation in traditional hydrological mod-
els, where observations are used to update model states and
reduce uncertainty. In ML terms, this corresponds to teacher
forcing. The warm-up phase allows the rainfall-runoff com-
ponent of DRRAINN to infer latent hydrological states, such
as soil moisture or aquifer recharge, through its hidden state
representations. This alignment helps the model transition
smoothly to predictive, open-loop mode, where future dis-
charge is estimated without access to ground-truth values.
After the warm-up phase, DRRAINN transitions into
open-loop mode for the remaining 10d of each sequence.
In this predictive mode, the discharge model feeds its own
previous discharge estimations as inputs for subsequent time
steps. The rainfall-runoff model, in contrast, continues to
receive observed precipitation and solar radiation as inputs
throughout the sequence. While informative, this setup does
not reflect realistic operational conditions for discharge fore-
casting. Precipitation forecasting, in particular, remains a
major challenge. Currently no algorithm can accurately pre-
dict precipitation 10 d ahead at a spatial resolution of 4km x
4km. However, this setup is well suited for knowledge dis-
covery concerning hydrologic processes, which is primary
focus in this work. We leave the evaluation of DRRAiINN
under realistic, forecast-based conditions for future work.
We use the mean squared error (MSE) computed on
station-wise standardized discharge data as both the train-
ing and validation loss. Standardization ensures that sta-
tions with larger discharge values do not dominate the loss,
promoting a balanced learning across all stations. Training
is performed using truncated backpropagation through time
(TBPTT), where the truncation length increases progres-
sively over the course of training. Initially, we backpropa-
gate the loss over 1d sequences (24 time steps) to help DR-
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Table 1. Truncation length schedule in days for TBPTT.

#Epochs  Truncation length ~ Batch size
10 1 256
4 2 128
2 4 64
1 10 32
1 20 32

RAIiNN focus on short-term temporal relationships and sta-
bilize learning. Over the course of training, we increase the
truncation length, enabling the model to learn longer-term
dependencies. The truncation length schedule is shown in Ta-
ble 1. Training takes less than 8 h on a single NVIDIA A100
GPU. A forward simulation of a 20 d sequence takes approx-
imately 4s.

To improve generalization and account for model variabil-
ity due to random initialization, we train five independent in-
stances of DRRAINN per experiment, each initialized with
a different seed. We report test results based on the three
runs with the lowest validation loss out of five seeds. This se-
lection procedure is applied consistently to both the primary
model and all ablation variants. We use the Ranger optimizer
(Wright, 2019) with a learning rate of 0.0025 to optimize the
30600 parameters in DRRAINN. To stabilize training, we
clip the gradient if its norm exceeds 1, thereby preventing
large parameter updates in steep regions of the loss surface.
We use hydra to manage experiment configurations (Yadan,
2019).

To increase the size of the training data set and improve
generalization, we apply data augmentation. CNNs are not
inherently invariant to rotations and reflections, meaning a
model trained on the original data orientation may perform
poorly when presented with rotated or reflected versions
of the same physical scenario. The symmetry group of the
square contains eight elements: the identity, rotations by 90,
180, and 270°, and reflection in the x, y, and both diago-
nal axes. For each training sequence, we apply a uniformly
sampled symmetry to the spatial variables in each time step.
We ensure physical consistency by tapping into the runoff
embeddings at the transformed station locations. The river
discharge model’s graph structure remains unchanged by this
augmentation, as graph neural networks are inherently invari-
ant to such spatial transformations.

2.5 Benchmark model: European Flood Awareness
System

To provide context for DRRAINN’s performance, we com-
pare it to the European Flood Awareness System (EFAS), an
established and operational distributed process-based model.
We use publicly available EFAS reanalysis data, which elim-
inates the need to tune EFAS ourselves. This avoids poten-
tial biases that could arise from allocating unequal tuning ef-
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fort to the benchmark model versus our own model. While
DRRAINN achieves higher performance than EFAS in many
scenarios, our primary aim is to demonstrate the potential
of distributed neural networks for river discharge estimation,
rather than merely outperforming EFAS.

EFAS simulates runoff on an approximately 1.5km x
1.5km grid with a temporal resolution of 6 h. It receives as in-
puts static maps describing topography, river networks, soil,
and vegetation, as well as meteorological forcings such as
precipitation, temperature, and potential evaporation.

While EFAS serves as a useful benchmark, the comparison
to DRRAINN is not perfectly fair due to fundamental differ-
ences in the input and output variables. Both models receive
gridded meteorological forcings, but DRRAINN additionally
receives discharge measurements during the tune-in period.
In contrast, EFAS does not use discharge measurements as
input but relies on them for offline model calibration. Fur-
thermore, DRRAINN produces discharge estimates only at
gauging station locations, whereas EFAS generates discharge
predictions across the entire spatial grid. EFAS also relies on
additional input variables not used by DRRAINN, such as
soil type, vegetation, temperature, and potential evapotran-
spiration. While this makes EFAS a powerful tool, it also
limits its applicability in regions lacking such detailed in-
put data. Another difference lies in the precipitation data
used: EFAS relies on EMO-1, a 6h product interpolated from
weather station data, whereas DRRAINN uses RADOLAN,
a radar-based dataset offering higher spatial and temporal
resolution. As a result, a direct comparison between EFAS
and DRRAINN is not valid. Nonetheless, EFAS serves as a
baseline to contextualize the expected performance range of
DRRAINN. We thus emphasize that our goal is not to di-
rectly compare performance but to provide a baseline that
allows us to place the principled quality of DRRAiINN’s per-
formance with respect to alternative state-of-the-art forecast-
ing approaches.

2.6 Evaluation

Besides visualizing hydrographs for selected gauging sta-
tions, we evaluate DRRAINN using four standard metrics
in hydrology: Kling-Gupta efficiency (KGE, Gupta et al.,
2009), Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe,
1970), Pearson’s correlation coefficient (PCC), and the mean
absolute error (MAE). We report all four metrics because
each highlights different aspects of model performance, and
no single metric is free from limitations (Gupta et al., 2009).
MAE is particularly intuitive, as it is expressed in the same
unit as discharge and directly quantifies the average devia-
tion between predictions and observations. However, because
it lacks normalization, stations with larger discharge magni-
tudes contribute disproportionately to the overall MAE. PCC
quantifies the strength of linear association between the ob-
served and estimated discharges. While it captures shared
variability, it is insensitive to systematic differences in scale
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or bias. To also capture the scale, the NSE was developed,
which can be seen as a mean squared error that is weighted
by the variance of the observed discharge. While the NSE
does incorporate bias, it does so in normalized form scaled by
the standard deviation of the target variable, which can mask
individual contributions of different error components. The
KGE was therefore developed to independently evaluate cor-
relation, bias, and variability as separate components. When
computing KGE and NSE values, we use station-wise means
and variances calculated from the training data set, following
the approach in Kratzert et al. (2019). For KGE, NSE, and
PCC, higher values indicate better performance, with a max-
imum of 1 representing a perfect match. In contrast, lower
values of MAE are better, with O indicating a perfect fit.

During open-loop inference, we evaluate metrics sepa-
rately for each open-loop step, where the first step resem-
bles closed-loop estimation. This allows us to assess how
model performance degrades with increasing lead times. Al-
though DRRAINN was only trained on sequences that span
20d, we evaluate it on 50 d sequences to investigate its abil-
ity to generalize beyond the training horizon. Additionally,
we will plot the performance of the models against the mean
discharge of the different stations to identify potential sys-
tematic dependencies between flow magnitude and model ac-
curacy. In all cases, we exclude the initial 10 d tune-in period
before calculating metrics and producing plots.

With knowledge discovery being the main motivation of
this work, we also test DRRAINN for physical plausibility.
A physically implausible model might learn spurious rela-
tionships in the data. It could, for example, exploit the DEM
to encode local biases that lead to gains or losses of water
not driven by meteorological forcings. By retrospectively in-
ferring catchment areas from observed dynamics, we assess
whether the rainfall-runoff model successfully propagates
water across the landscape. The procedure is as follows: Af-
ter a forward pass, we compute saliency maps by taking the
gradient of the final discharge estimate with respect to the
precipitation inputs. These maps tell us to which extent the
model’s output depends on the precipitation in each grid cell
and time step. We multiply this gradient by the precipitation
itself to focus the analysis on cells in which precipitation oc-
curred. To examine how the attributions change over time,
we split the sequence into subsequences of 5d, over which
we take the mean. We do this for each station separately and
visualize the resulting attributions to identify which areas
contribute most to discharge estimation at each station. To
reduce noise, we repeat this process across all test sequences
and average the resulting attribution maps.

We compare the resulting attributions with catchment ar-
eas delineated from elevation data using standard hydrolog-
ical techniques, which are widely used in the field. To eval-
uate their agreement quantitatively, we employ the follow-
ing measure when comparing DRRAINN to the ablated mod-
els: For each station, the attributions are standardized to lie
between 0 and 1 using min-max scaling. We then compute
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the Wasserstein distance between the attributions values in-
side the delineated catchment area and those outside it. A
higher Wasserstein distance indicates greater differentiation
between attributions inside and outside elevation-delineated
catchment areas. This provides one measure of how well
the model’s learned patterns correspond to topographically-
defined flow boundaries, though deviations may reflect ei-
ther model limitations or genuine subsurface flow processes
not captured by surface topography alone. This quantitative
measure complements the qualitative comparison, providing
stronger evidence for our model’s ability to propagate water
across the landscape in a physically plausible way. Specif-
ically, it indicates that the model has implicitly learned the
topographic structure of flow direction —i.e., that water gen-
erally flows downhill — solely from observed discharge dy-
namics.

3 Results

To evaluate DRRAINN, we first present hydrographs and
compare performance with EFAS to contextualize DR-
RAINN’s results. We furthermore show that DRRAINN can
retrospectively infer catchment-like structures, thus demon-
strating how full differentiability supports physical inter-
pretability.

3.1 Hydrographs

EFAS produces hydrographs that match both the shape and
magnitude of observed discharge, rendering it a strong con-
testant (Fig. 4). As EFAS produces gridded outputs, it is nec-
essary to extract outputs from EFAS grid cells that corre-
spond to the station locations in order to make meaningful
comparisons.

DRRAINN also produces plausible hydrographs that
closely match the observed discharges. This includes both
low flows (Fig. 4a) and high flows (Fig. 4d). Since DR-
RAINN operates autoregressively — using its own discharge
estimates as input in the next time step — error can accumulate
over time, leading to gradual decline in accuracy. Nonethe-
less, it is notable that the model is in general able to hit peaks
even after almost 50 d, despite being trained only on 20d se-
quences.

3.2 Performance

Overall, DRRAINN outperforms EFAS in all considered
metrics (Fig. 5). Since EFAS does not incorporate discharge
values during inference, we report its mean performance over
lead times as constant. As described above, DRRAINN’s au-
toregressive nature causes errors to accumulate over time,
leading to a gradual decline in performance at longer lead
times.

The KGE plot (Fig. 5a) indicates that DRRAINN is able
to maintain strong performance over time. Averaged over the
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Figure 4. Hydrographs showing observed discharge, EFAS simulations, and predictions from one of five DRRAINN model instances for
lead times of up to 50 d. The four panels show the stations with the lowest (a) and highest (d) mean discharge, as well as the stations where
EFAS (b) and DRRAINN (c) achieve the best KGE performance on average on one day lead times on the validation set. We selected the
sequence from the test set with the highest discharge variance, as variance likely serves as a proxy for prediction difficulty.

seeds, starting with a KGE of about 0.71, our model’s estima-
tions stay above those of EFAS during the entire estimation
horizon of 50d, despite having been trained only on 20d se-
quences. In contrast, the NSE plot (Fig. 5b) shows gradual
decline in performance over time with a decrease from 0.72
to 0.62 over the estimation horizon. Regardless, even after
50d, all seeds show higher NSE values than EFAS. The PCC
plot (Fig. 5¢) shows a strong linear relationship between ob-
served and estimated discharges, with an average value of
about 0.9 at the start. DRRAINN captures this relationship
better than EFAS over the entire estimation horizon. Note
that the linear correlation is also part of KGE and NSE. As
the MAE allows direct interpretation, its plot (Fig. 5d) shows
that EFAS is off by about 6.5m>s~! on average, while DR-
RAINN with 3.9m3s~! on average on the first day produces
a considerable smaller error. After about 25 d, EFAS yields a
lower MAE on average.

All metrics reveal differences in performance across the
model instances trained with different random seeds. How-
ever, the relative ranking of model instances varies depend-
ing on the specific metric and lead time. Some seeds perform
better during the initial days, while others are better with
greater lead times: For example, in the KGE plot (Fig. 5a),
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the ranking changes after about 42 d. The difference between
instances are due to random weight initialization and the or-
der of batches only. These stochastic factors may lead some
instances to start the training with a larger bias towards cap-
turing short-term, while others start with a larger bias towards
capturing long-term relationships in the data.

The plots in Fig. 6 show that some stations consistently
yield more accurate discharge estimates than others. This
observation holds across all evaluation metrics. Which sta-
tions are harder to estimate, however, is different across the
metrics, reflecting the distinct sensitivities each metric has,
as discussed previously. Interestingly, both the different DR-
RAINN instance and EFAS show partial agreement on which
stations are more difficult to model. For example, the KGE
values in Fig. 6a show that Altensteig and Stein are consis-
tently easier to estimate, while Oppenweiler, Bad Imnau, and
Murr are among the most challenging. The reasons for this
discrepancy — such as differences in data quality, catchment
size, land cover, or upstream complexity — could be analyzed
in future work.

The regression lines indicate whether model performance
correlates with average discharge levels across stations. We
performed linear regression; the regression lines appear ex-
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Figure 5. Performances of the best three out of five DRRAiINN model instances, compared to EFAS across different metrics and lead times
up to 50 d. Results are averaged across all stations. Each line style corresponds to a distinct DRRAiINN instance.

ponential due to the logarithmic scaling of the x-axis. All
metrics, except MAE, show that both models tend to perform
better at stations with higher discharges. This effect is more
pronounced in EFAS, while our model exhibits a more bal-
anced behavior. Both DRRAINN and EFAS produce signifi-
cantly larger MAEs with increased mean discharge (Fig. 6d).
This is expected since MAE does not account for the stations’
mean discharges or their variability in discharge, unlike the
other metrics.

3.3 Catchment area inference

We observe that DRRAiINN implicitly infers catchment areas
that align with topographically expected ones, as shown in
Fig. 7. Darker areas indicate regions with higher importance
of precipitation for estimating discharge at the corresponding
station. These attribution patterns spatially overlap with the
catchment areas delineated from elevation alone (depicted in
red). The first four columns visualize attributions for subse-
quences of 5 d length to illustrate temporal changes in spatial
influence. There is a tendency of the area of influence to in-
creases in size the further we look into the past. This suggests
that DRRAINN propagates encoded water quantities along
the landscape in a manner that aligns, at least to some extent,
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with physical flow processes. The last column shows attribu-
tions averaged over the whole 20 d sequences.

In the case of Pforzheim, DRRAINN assigns low impor-
tance to an area in the lower right part, despite its inclusion
in the delineated catchment area. This discrepancy could be
related to known underground flows near Pforzheim, as re-
ported in Ufrecht (2002). In the absence of subsurface flows,
water would be expected to pass through Pforzheim; how-
ever, due to the presence of underground flow paths, it instead
moves towards the southeast, entering the Neckar River net-
work via an alternative route. Our results suggests that DR-
RAINN may have detected these unobservable underground
flows from precipitation and discharge dynamics. However,
this hypothesis arguably needs more investigation in the fu-
ture.

Note that these results primarily serve as a proof of princi-
ple: We present results from the seed producing the clearest
attributions; others yielded qualitatively worse results. How-
ever, it is important to keep in mind that DRRAiNN is trained
on daily discharge measurements. Learning sharp catchment
delineations would require the training data set to contain se-
quences in which it rained within the area, but not outside of
it, over the extent of a 24h period. As precipitation is very
dynamic on this time scale, the chances for this are relatively
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Figure 6. Performances of the best three out of five DRRAINN model instances and EFAS at a 1d lead time across different metrics and
stations. The x-axis shows the logarithmic mean discharge at each station. Blue vertical lines depict the standard deviation across DRRAINN
seeds. Dashed lines represent linear regressions between the log-mean discharge and corresponding metric.

low. In the future, we expect sharper results if we go from
daily to hourly discharge data.

3.4 Ablations

To assess both the contributions of specific architectural
components and the model’s use of topographic informa-
tion, we conducted a series of ablations on DRRAINN (Ap-
pendix A). First, we examined whether DRRAINN utilizes
the DEM primarily for encoding flow physics or as po-
sitional information by training, validating, and testing it
on a rotated DEM. This resulted in slightly worse per-
formance and reduced alignment between attribution maps
and elevation-delineated catchments (Appendix Al). Next,
we evaluated the model’s inductive bias in distinguish-
ing between spatially extended and local processes (Ap-
pendix A2). Last, we removed the hypernetworks to exam-
ine their impact (Appendix A3). Both ablations led to perfor-
mance degradation across most metrics and lead times. How-
ever, the differences were not always significant. Notably,
both ablated models show reduced correspondence between
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their attribution patterns and elevation-delineated catchment
boundaries. The attribution maps either exhibit less coher-
ent spatial structures or show systematic deviations from
topographically-expected patterns, suggesting that these ar-
chitectural components contribute to the model’s ability to
learn topographically-consistent flow representations.

4 Discussion

We introduce DRRAINN, a fully differentiable, fully dis-
tributed neural network architecture for estimating river dis-
charge from past discharge, gridded elevation maps, and
gridded precipitation and solar radiation. DRRAiINN demon-
strates better performance than EFAS on lead times of up
to 50d. This indicates that DRRAiINN can produce valid es-
timations far into the future despite it being trained on se-
quences of only 20 d, including a warm-up period of 10d.
Our analysis reveals that the difficulty of discharge estima-
tion varies across gauging stations. Interestingly, both DR-
RAINN and EFAS consistently struggle with the same sta-
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Figure 7. Attribution maps of precipitation for discharge estimation at selected stations and time intervals, averaged over all test set sequences.
Darker colors indicate grid cells where precipitation has a stronger influence on the estimated discharge at the corresponding station. For
comparison, traditional catchment areas delineated from elevation data are outlined in red. This juxtaposition highlights the agreement
between data-driven attributions and physically derived catchment boundaries. The attribution method is described in detail in Sect. 2.6 of

the main text.

tions, suggesting that the difficulty is intrinsic to the stations
and their associated data rather than specific to the model ar-
chitecture. Several factors likely contribute to this variability.
For example, stations affected by unobserved variables such
as complex subsurface topography, land cover heterogene-
ity, or anthropogenic factors (e.g., dam operations) may be
inherently harder to model. Furthermore, spatial variations
in the quality of input data could contribute to discrepancies
in performance. Future investigations using attribution tech-
niques could offer deeper insights into these station-specific
variations and guide the development of architectural modi-
fications or regularization to address these challenges effec-
tively.

Our ablation studies show the benefits of distinguishing
between spatially extended and local processes, and of incor-
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porating hypernetworks. The reduced performance and fail-
ure of the ablated models to produce realistic catchment areas
suggests that these components encode crucial hydrological
processes, such as water movement across complex topogra-
phies. This suggests that incorporating appropriate inductive
biases can both improve model interpretability and reduce
the risk of learning spurious correlations.

Interestingly, the model instance that produces attribu-
tion maps with the strongest correspondence to elevation-
delineated catchments is not the one with the best predic-
tive performance. This points to a trade-off between opti-
mizing for predictive accuracy and producing attribution pat-
terns that align with topographically-expected flow bound-
aries. This suggests that conventional performance metrics,
while effective at evaluating predictive accuracy, may not
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fully capture whether the model’s internal representations
correspond to our expectations based on surface topography
and established hydrological understanding.

Increasing the amount of training data generally enhances
performance in ML. Currently, DRRAINN is not designed
for scalability, as its application is expected to require retrain-
ing in each specific context. A natural step toward improv-
ing adaptability would be training DRRAINN on hourly dis-
charge data. This could improve performance and attribution
quality, potentially enabling the model to trace the origins of
individual discharge peaks. Since traditional PBMs rely on
a wider range of input variables, feeding them as additional
inputs could also lead to performance improvements in DR-
RAIiNN. This includes land cover, parent material, soil tex-
ture, vegetation, temperature, and potential evapotranspira-
tion among others. Interpretability methods can then be used
to perform a sensitivity analysis, revealing which input vari-
ables are important when and, due to our model being fully
distributed, where. These methods may also provide insights
into the model’s internal representations, potentially uncov-
ering links to real-world hydrological variables.

Several strategies can be employed to investigate DR-
RAINN’s spatial generalization capabilities. One approach
is to leave out individual stations within a river network dur-
ing training to evaluate generalization within hydrologically
connected regions. A more demanding test of generaliza-
tion would involve training and testing on different river net-
works. By testing it on catchments that are not part of the
training data, we can systematically assess its ability to gen-
eralize to unseen regions. Ultimately, we aim to apply DR-
RAINN to diverse catchments across Germany, Europe, or
globally. Due to DRRAiINN’s data-driven nature, discharge
measurements will always be needed for training. However,
recent advances in remote sensing may enable the applica-
tion of DRRAINN to ungauged river networks (Gigi et al.,
2019).

5 Conclusions

In this paper, we introduced DRRAINN, a fully distributed
neural network architecture that estimates river discharge
from precipitation, solar radiation, elevation maps, and past
discharge measurements from gauging stations. Despite be-
ing trained on sparse target data — namely daily discharge ob-
servations from 17 stations over ten years — DRRAINN out-
performs the operational benchmark model EFAS in terms
of KGE and NSE across various lead times. Beyond its
predictive accuracy, DRRAINN provides physically inter-
pretable attributions, enabling the identification of precipita-
tion sources contributing to discharge at specific stations. Our
analyses highlight the importance of incorporating hydrolog-
ically meaningful constraints, or inductive biases. These bi-
ases not only enhance interpretability but also help the model

Hydrol. Earth Syst. Sci., 29, 6257-6283, 2025

F. Scholz et al.: Fully differentiable, fully distributed rainfall-runoff modeling

align more closely with physical principles, as evidenced by
its ability to delineate realistic catchment areas.

With its predictive performance, interpretability, and phys-
ical consistency, DRRAiINN represents a promising step for-
ward in the application of neural networks to distributed hy-
drological modeling.

Appendix A: Ablations
Al Rotated elevation map

We aim to assess whether DRRAINN utilizes the elevation
map in a physically plausible way — specifically, to propagate
water downhill across the landscape. An alternative would
be that DRRAINN leverages the elevation map primarily as
a positional encoding, allowing it to orient itself within the
landscape and learning location-specific biases. In practice,
both mechanisms are likely at play to some degree.

To examine this, we train, validate, and test DRRAINN
using the same elevation map as before, but rotated by 180°.
This setup preserves the statistics of the elevation map, en-
suring a fair comparison.

For most metrics and lead times, DRRAiNN performs bet-
ter when trained and tested on the original elevation map
compared to the rotated one (Fig. A1). Nonetheless, its con-
tinued superior performance relative to EFAS — even with
the rotated DEM — supports the hypothesis that DRRAINN
leverages elevation as a positional encoding. Remarkably,
this still enables it to reconstruct plausible catchment areas
to some extent (Fig. A2). However, our quantitative analy-
sis (Fig. A3) shows that catchment areas are more accurately
reconstructed when DRRAINN is executed on the original
DEM. This suggests that our original model’s use of the ele-
vation map goes beyond mere positional encoding, incorpo-
rating hydrologically meaningful information.

A2 AIILSTM

A key inductive bias in DRRAINN is the explicit separation
between spatially extended processes and local processes.
Lateral water movement across the landscape is a spatially
extended process primarily driven by elevation. Evapotran-
spiration, on the other hand, is a local process that is largely
influenced by solar radiation. We encode this distinction into
DRRAINN by assigning these processes to different compo-
nents of the ConvNeXt block: the DWConv is parameterized
by a CNN that receives elevation as input, while PWConvl
and PWConv2 are parameterized by an MLP that receives
solar radiation. In this ablation, we discard this bias by feed-
ing the elevation and solar radiation — together with precipi-
tation — directly into the PWLSTM. Consequently, the rela-
tivity bias, realized by subtracting the elevation of the center
cell from the elevations of all other cells within each recep-
tive field of the hypernetwork, is also removed.
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Figure A1l. Performances of the best three out of five DRRAiINN model instances and DRRAiINN model instances on a rotated elevation map,
compared to EFAS across different metrics and lead times up to 50 d. Results are averaged across all stations. Each line style corresponds to

a distinct DRRAINN instance.

We observe a significant performance drop for all metrics
except MAE (Fig. A4). In addition, the inferred catchment
areas appear less plausible compared to those produced by
DRRAINN (Fig. AS), a finding that is supported quantita-
tively (Fig. A6). These results demonstrate that explicitly dis-
tinguishing between spatially extended and local processes
benefits DRRAINN in terms of both predictive accuracy and
physical plausibility.

A3 No hypernetworks

Here, we train DRRAINN without hypernetworks to assess
their contribution. To stay close to the original architecture,
we preserve inductive bias that distinguishes between the
spatially extended process of water propagation and the lo-
cal process of evapotranspiration. Specifically, the elevation
map is concatenated with the hidden state, passed through
a position-wise linear layer, and then fed into the DWConv.
This step is necessary because DWConv requires the input
and output channels to be of equal size. As a result, the rela-
tivity bias, realized by subtracting the elevation of the center
cell from the elevations of all other cells within each recep-
tive field of the hypernetwork, is also removed. For solar ra-
diation, we concatenate it with the hidden state and feed the
result directly into PWConvl.

https://doi.org/10.5194/hess-29-6257-2025

Removing the hypernetworks from DRRAINN results in
decreased performance for KGE and NSE (Fig. A7a and b).
For PCC and MAE, we do not observe a systematic differ-
ence (Fig. A7c and d). The ablated model produces less plau-
sible attributions maps compared to DRRAINN (Fig. AS8), a
finding that is supported quantitatively (Fig. A9).
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Figure A2. Attribution maps of precipitation for discharge estimation at selected stations and time intervals, averaged over all test set

sequences with a rotated elevation map. Brighter colors indicate grid cells where precipitation has a stronger influence on the estimated
discharge at the corresponding station. For comparison, traditional catchment areas delineated from elevation data are outlined in red.
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Figure A3. Wasserstein distances between normalized attributions
inside and outside the catchment areas delineated from the digi-
tal elevation model. A higher distance indicates better agreement
between inferred and delineated catchment areas, suggesting more
physically realistic model behavior. Standard deviations are com-
puted across the different gauging stations.
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Figure A4. Performances of the best three out of five DRRAiINN model instances and DRRAiINN model instances where all forcings are fed
into the PWLSTM, compared to EFAS across different metrics and lead times up to 50 d. Results are averaged across all stations. Each line

style corresponds to a distinct DRRAINN instance.
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Pforzheim

Figure AS. Attribution maps of precipitation for discharge estimation at selected stations and time intervals, averaged over all test set
sequences when all forcings are fed into the PWLSTM. Brighter colors indicate grid cells where precipitation has a stronger influence on the
estimated discharge at the corresponding station. For comparison, traditional catchment areas delineated from elevation data are outlined in

red.
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Figure A6. Wasserstein distances between normalized attributions
inside and outside the catchment areas delineated from the digi-
tal elevation model. A higher distance indicates better agreement
between inferred and delineated catchment areas, suggesting more
physically realistic model behavior. Standard deviations are com-
puted across the different gauging stations.
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Figure A7. Performances of the best three out of five original DRRAINN model instances and DRRAiINN model instances without hyper-

networks, compared to EFAS across different metrics and lead times up to 50d. Results are averaged across all stations. Each line style
corresponds to a distinct DRRAINN instance.
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Figure A8. Attribution maps of precipitation for discharge estimation at selected stations and time intervals, averaged over all test set
sequences without hypernetworks. Brighter colors indicate grid cells where precipitation has a stronger influence on the estimated discharge
at the corresponding station. For comparison, traditional catchment areas delineated from elevation data are outlined in red.
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Figure A9. Wasserstein distances between normalized attributions
inside and outside the catchment areas delineated from the digi-
tal elevation model. A higher distance indicates better agreement
between inferred and delineated catchment areas, suggesting more
physically realistic model behavior. Standard deviations are com-
puted across the different gauging stations.

Appendix B: Alternative hyperparameters

In this appendix, we report the performance of DRRAINN
under alternative hyperparameters settings. In the default
configuration, the LSTM in the rainfall-runoff model has a
hidden size of 4, and the GRU in the discharge model has
a hidden size of 8. Here, we examine DRRAiINN’s perfor-
mance using both smaller and larger hidden sizes. Addition-
ally, we assess the impact of replacing the GRUs in the dis-
charge model with LSTMs.

B1 Rainfall-runoff model with hidden size 2

Figure B1 shows that reducing the hidden size of the rainfall-
runoff model from 4 to 2 still yields a competitive model. On
average, it performs slightly worse during the initial days.
However, due to the variance in performance across different
seeds, additional experiments are required to draw a more
definitive conclusion.

B2 Rainfall-runoff model with hidden size 6

Figure B2 shows that increasing the hidden size of the
rainfall-runoff model from 4 to 6 slightly decreases perfor-
mance on the NSE and PCC metrics, while KGE remains
largely unaffected. Since no significant improvement is ob-
served, we argue that the smaller model should be preferred,
following Occam’s razor.

https://doi.org/10.5194/hess-29-6257-2025

B3 Discharge model with hidden size 4

Figure B3 shows that reducing the hidden size of the dis-
charge model from 8 to 4 significantly reduces performance
across all metrics and lead times.

B4 Discharge model with hidden size 16

Figure B4 shows that increasing the hidden size of the dis-
charge model from § to 16 leads to mixed results. While KGE
appears to deteriorate, NSE and PCC show slight improve-
ments, particularly at longer lead times. Since no significant
improvement can be observed, we argue that opting for the
smaller model align better with Occam’s razor.

BS Discharge model with LSTM

Figure B5 shows that replacing the GRUs in the discharge
model with LSTMs significantly reduces performance across
all metrics and almost all lead times. This suggests that
model complexity should reflect the complexity of the under-
lying dynamics: river flow tends to follow simpler dynam-
ics than surface and subsurface flow, which we model with
an LSTM. Moreover, water typically resides in channels for
shorter periods compared to its residence time below ground.
This may explain the superior performance of GRUs in the
discharge model, though further investigation is warranted.
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Figure B1. Performances of the best three out of five original DRRAiINN model instances and DRRAiINN model instances with a hidden
size of 2 in the rainfall-runoff model, compared to EFAS across different metrics and lead times up to 50 d. Results are averaged across all
stations. Each line style corresponds to a distinct DRRAINN instance.
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Figure B2. Performances of the best three out of five original DRRAINN model instances and DRRAINN model instances with a hidden
size of 6 in the rainfall-runoff model, compared to EFAS across different metrics and lead times up to 50 d. Results are averaged across all
stations. Each line style corresponds to a distinct DRRAiINN instance.
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Figure B3. Performances of the best three out of five original DRRAiINN model instances and DRRAiINN model instances with a hidden size
of 4 in the discharge model, compared to EFAS across different metrics and lead times up to 50 d. Results are averaged across all stations.
Each line style corresponds to a distinct DRRAINN instance.
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Figure B4. Performances of the best three out of five original DRRAiINN model instances and DRRAiINN model instances with a hidden size
of 16 in the discharge model, compared to EFAS across different metrics and lead times up to 50 d. Results are averaged across all stations.
Each line style corresponds to a distinct DRRAiINN instance.
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instead of GRUs in the discharge model, compared to EFAS across different metrics and lead times up to 50 d. Results are averaged across
all stations. Each line style corresponds to a distinct DRRAiNN instance.
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