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Abstract. Soil moisture plays an important part in predicting
different forest-related phenomena, such as tree growth or
forest fire risk. As they influence the carbon storage capac-
ity of boreal forest ecosystems, it is crucial to provide soil
moisture information at high spatio-temporal scales. Current
satellite-based soil moisture products often have high tempo-
ral resolution at the expense of spatial resolution. Therefore,
we developed a machine-learning-based model to estimate
soil moisture at high spatial resolution over boreal forested
areas for the annual time period from May to October, while
retaining the high temporal resolution. The basis data of the
model is the 36 km spatial resolution soil moisture data from
the Soil Moisture Active Passive (SMAP) mission. Addition-
ally, vegetation properties, weather-related parameters, and
measured in situ soil moisture data are used to guide the
model construction process. The analysis of the developed
model shows that it retains the temporal and large-scale spa-
tial variability of SMAP soil moisture. Furthermore, compar-
isons with the independent in situ soil moisture data indicate
that the model’s predictions align more closely with in situ
values than SMAP soil moisture, as RMSE decreases from
0.103 to 0.092m3>m~3 , and correlation increases from 0.46
to 0.55 over forest sites. Therefore, this machine-learning-
based model can be used to predict high-resolution soil mois-
ture over boreal forested areas.

1 Introduction

Boreal forest ecosystems are important carbon sinks and
stocks (Pan et al., 2011, 2024). Trees, mineral soil, and or-
ganic layer account for about 70 % of the carbon pool in
boreal forests (Merild et al., 2023). Trees remove carbon
dioxide from the atmosphere through photosynthesis, turn
it into organic carbon compounds, and use them for grow-
ing. Carbon is stored in all parts of the tree, i.e. in branches,
stems, leaves, bark, and roots (e.g. Clemmensen et al., 2013;
Thurner et al., 2014). This carbon stored in the boreal ecosys-
tems is released back into the atmosphere due to forest fires
(Walker et al., 2019) and the decomposition of trees, turning
forests from carbon sinks to sources. As soil moisture plays
a significant role in predicting tree growth (Larson et al.,
2024), forest fire risks (Walker et al., 2019), and carbon stock
partitioning (Larson et al., 2023), it is essential to provide soil
moisture data at a large spatial scale and high temporal fre-
quency across boreal forests.

Due to the considerable local variation in soil moisture and
the sparsity of the in-situ measurement network, the only
viable way to extensively observe soil moisture over bo-
real forests is to use satellite-based soil moisture data sets.
However, persistent cloud cover, other weather-related phe-
nomena, and high solar zenith angles hinder the use of op-
tical satellite-based soil moisture data, making microwave-
based soil moisture the most feasible option. For exam-
ple, Sentinel-1 C-band Synthetic Aperture data (SAR) has
been used to retrieve soil moisture with high resolution (e.g.
Bauer-Marschallinger et al., 2019; Balenzano et al., 2021;
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Manninen et al., 2022), but the dense vegetation prevents
the radar signal from reaching the soil surface (Flores et al.,
2019), and thus causes uncertainty in the results (Bauer-
Marschallinger et al., 2019; Flores et al., 2019). A longer
wavelength band, like L-band, can penetrate the vegetation
to reach the soil surface (Flores et al., 2019), and possi-
bly even deeper than the documented —5cm depth in the
boreal forest (Ambadan et al., 2022). The well-known L-
band-based soil moisture mission Soil Moisture Active Pas-
sive (SMAP, https://smap.jpl.nasa.gov/, last access: 23 May
2025) has been measuring soil moisture globally from 2015
onwards, and has been reported to be sensitive to soil mois-
ture changes under the forest canopy (Colliander et al., 2020;
Ayres et al., 2021). The disadvantage of soil moisture data
from SMAP is that the spatial resolution is coarse, 36 km
(Entekhabi et al., 2014). SMAP soil moisture data has been
regridded to 9 km, but as soil moisture is known to be spa-
tially heterogeneous (Miilicke et al., 2020), there is a need for
soil moisture data in a finer spatial resolution. SMAP L-band
radiometer data has been combined with the Sentinel-1 C-
band radar data to obtain higher resolution (1 and 3 km) soil
moisture data (O’Neill et al., 2021; Das et al., 2019). The
unbiased root-mean-square-error (RMSE) of this combined
data is around 0.05m3 m—3 (Das et al., 2019). The limita-
tions of this data set include its temporal frequency, which is
around 6 d over Europe, and only around 12 d elsewhere, and
also its limited global coverage, as the product covers only
the area between —60 and 60° S, excluding the most of the
boreal forest zone.

In addition to of directly using satellite-based measure-
ments to retrieve soil moisture, another approach is down-
scaling. This involves enhancing coarse-resolution soil mois-
ture data to a finer spatial scale using regression or more
advanced machine learning methods. Downscaling has been
used widely (e.g. Peng et al., 2017; Sabaghy et al., 2018,
and references therein) with promising results. A few exam-
ples of downscaled soil moisture in 1 km spatial resolution
include GLASS SM (Zhang et al., 2023), which is based on
ERAS5-Land soil moisture; an over 20-year gap-free global
and daily soil moisture data set (Zheng et al., 2023) based on
ESA-CCI soil moisture; and downscaled SMAP (Fang et al.,
2022). Since the original data sets have very coarse spatial
resolutions, the downscaled data sets typically aim for a spa-
tial resolution of 1 km or coarser.

Our main goal is to develop a model for estimating high-
resolution soil moisture data over boreal forests of Northern
Finland. There we can use two elements to our advantage.
First is the SMAP soil moisture retrieval process, which is
based on the dominant land use classification in each pixel.
In the studied area, the SMAP soil moisture is most accurate
for forested areas with a shrub and herb dominated under-
story, because, by definition, the dominant land cover classi-
fication is woody savanna (i.e. a herbaceous understory and
forest canopy cover between 30 %—60 %; different class defi-
nitions can be found in Strahler et al., 1999). The second ele-
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ment is that most available in situ sites are located in forested
sites. By combining these two details we provide a model op-
timized to calculate a high resolution (1 km and 250 m pixel-
sized) soil moisture for boreal forests. We use SMAP soil
moisture data in 36 km spatial resolution as the basis, and we
combine SMAP soil moisture with in situ soil moisture ob-
servations. Other high-resolution and soil moisture linked pa-
rameters (like vegetation properties) are added to our down-
scaling machine learning model to guide the process.

This paper is constructed as follows. First, all the used
data sets are introduced in Sect. 2, followed by preprocessing
steps and model construction in Sect. 3. In Sect. 4, the results
of the model analysis and model validation are shown. We
conclude with a discussion and conclusions in Sects. 5 and
6, respectively.

2 Data

In this study, we used in situ data from two large boreal for-
est in situ observation areas with easily accessible data, one
in Northern Finland (NF), operated by the Finnish Meteo-
rological Institute (FMI), and the other in Alaska, operated
by multiple networks (see Sect. 2.9 below). For model con-
struction, we decided to use NF sites, leaving the Alaska
sites for validation. The locations of the sites are shown in
Fig. 1. Based on the observations between the years 2019
and 2023 from the weather stations located in the NF (https:
/Iwww.ilmatieteenlaitos.fi/havaintojen-lataus, last access: 23
May 2025), there is snow cover typically from mid-October
to May, depending on the site and location. Therefore, we
chose the annual interval spanning from the first of May to
15 of October 2019-2023 as the study period. From here on-
wards, the use of the soil moisture term indicates volumetric
water content (%).

2.1 Study area

The main study area is located in Northern Finland, between
latitudes 65.5 and 70.0°N, placing it in the boreal forest
biome. Based on the land cover classification data in 100 m
resolution from CORINE land cover (see Sect. 2.8) for NF
(area shown in Fig. 1), around 61 % of the area is covered
by tree cover (42 % coniferous trees, 10 % broadleaved trees,
and 9 % mixed trees). One fifth of the area (almost 20 %) is
covered in peat bogs, and 4.5 % is covered by water bodies
(lakes). Water bodies include three large lakes (Lake Inari,
Lokka Reservoir, and Porttipahta Reservoir), but also many
smaller lakes. The rest of the land use (around 15 %) is dif-
ferent urban areas, heatlands, bare areas, and agriculture.

2.2 SMAP soil moisture

The SMAP mission was meant to combine radiometer (pas-
sive) and radar (active) observations. However, since the
radar broke down just months after the launch, the radiome-
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Figure 1. Locations of the chosen training, test, and validation data sites. Left: Northern Finland study area in a broader context (blue squared
area). Middle: Location of the chosen model training (black circles) and test (red circles) in situ sites. Right: Location of the chosen model
validation in situ sites. Black stars indicate forest sites and red circles indicate other sites (mosaic, shrub, sparse).

ter is currently the only instrument observing the surface.
This SMAP L-band (1.41 GHz) radiometer has a native spa-
tial footprint of 36 km and the data is provided on the global
cylindrical EASE-Grid 2.0 (Brodzik et al., 2012).

SMAP soil moisture is based on retrieved brightness tem-
perature data in horizontal and vertical polarizations (O’ Neill
et al., 2021). Water body correction is applied to the bright-
ness temperature data first to remove water bodies, as they
lower the brightness temperature values and hence cause
overestimated soil moisture values. Then tau-omega-model
(tau, vegetation optical depth 7 and, omega, vegetation single
scattering albedo, w) is applied to the single channel (hori-
zontal and vertical) brightness temperature data to separate
soil and vegetation contributions from the total brightness
temperature. After that, soil moisture is retrieved by inver-
sion from the tau-omega corrected brightness temperature.
Land use classification data is used to determine the t and
o values for different areas. For dual-channel retrieved soil
moisture, the tau-omega corrected single-channel brightness
temperature data is used.

In this study, we use the SMAP SPL3SMP V009 prod-
uct (O’Neill et al., 2023), in which the global surface soil
moisture (0-5cm) in m>m™3 is provided twice a day, at
06:00 am (descending) and at 06:00 pm (ascending). Three
different soil moisture products are available, one calculated
from each single channel and one dual-channel product. As
the latter one is currently the baseline product (Chan and
Dunbar, 2021), we chose that for this study. Further, we fo-
cus on the soil moisture data at 06:00 am (descending over-
passes). This SMAP data in 36 km resolution is used as an
input for the soil moisture model.

2.3 MODIS
The Moderate Resolution Imaging Spectroradiometer

(MODIS) instruments are aboard the Terra and Aqua satel-
lites, which were launched in 1999 and 2002, respectively.
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As Sun-synchronous satellites, they provide almost global
coverage every 1 to 2d. Terra is set to a descending orbit
(measurements at 10:30 am) and Aqua to an ascending orbit
(measurements at 01:30 pm). The MODIS instrument mea-
sures multiple wavelength bands, resulting in a wide range of
obtained parameters. In this study, we use vegetation indices
from both MODIS instruments. We use MYD13Q1 (from
Aqua, Didan, 2021a) and MOD13Q1 (from Terra, Didan,
2021b) products (version 6.1) which are global 16-d-mean
data sets with 250m spatial resolution. The data used,
the Enhanced Vegetation Index (EVI) and the Normalized
Vegetation Index (NDVI), are provided in the Sinusoidal tile
grid. EVI and NDVI contribute to the vegetation effects of
the soil moisture model.

2.4 SMAP-based 1 km soil moisture data

SMAP, enhanced to 9km spatial resolution, was further
downscaled to 1 km (Lakshmi and Fang, 2023) by using ther-
mal inertia theory (Fang et al., 2022). Based on that the-
ory, the land surface temperature (LST) difference between
night and day is negatively correlated to the soil moisture.
For downscaling SMAP, the MODIS LST data in 1 km spa-
tial resolution from Terra (night) and Aqua (day) were used,
combined with the NDVI, also from MODIS. The NDVI, di-
vided into 10 groups by using an interval of 0.1, is used for
grouping soil moisture and LST differences. The assumption
behind this is that changes in NDVI affect the relationship
between soil moisture and LST difference. Based on the val-
idation, the downscaled SMAP data performs better in low
latitudes and warm months, compared to high latitudes and
cold months (Fang et al., 2022). The SMAP in 1 km resolu-
tion is used in this study as an example of downscaled data
based on SMAP data.

Hydrol. Earth Syst. Sci., 29, 6237-6256, 2025
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2.5 Interpolated daily weather observations

Finnish Meteorological Institute provides different weather-
related parameters in spatial resolution of 1 km (Finnish Me-
teorological Institute, 2023), covering the time period start-
ing from 1961 through the present day. Daily weather station
observations are interpolated into a 1 km x 1km grid by us-
ing kriging with external drift. In that method, external pre-
dictors are used as covariates. Elevation, relative altitude, the
effect of the seas, and the effect of the lakes are the cho-
sen external predictors for these weather station observation
based maps (Aalto et al., 2016). Daily precipitation sum and
daily mean temperature are used as inputs for the soil mois-
ture model.

2.6 GPM

The Global Precipitation Measurement mission (GPM, https:
/lgpm.nasa.gov/missions/GPM, last access: 23 May 2025)
is a network of satellites, aiming to provide precipitation
observations every 2-3h. This is achieved by using active
radar observations and passive microwave radiometer mea-
surements. Precipitation data is provided in multiple levels
and processing steps, of which we use the level 3 Integrated
Multi-satellitE Retrievals for GPM (IMERG) Final Run data.
This data is based on intercalibrated data from all microwave
precipitation estimates, and microwave-calibrated infrared
satellite estimates, as well as bias corrected by using pre-
cipitation gauge analyses (Huffman et al., 2023). The Final
Run product is provided in either 30-min intervals or daily
and monthly means. The spatial resolution is 0.1° (around
10 km). For this study, we use daily means of precipitation.

2.7 ERAS-Land

ERAS5-Land, the land component of the fifth generation
of European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric reanalysis of the global climate
(ERA)Y), is produced by the Copernicus Climate Change Ser-
vice. Similarly to ERAS, the land component also covers
the period from 1940 to the present day (Hersbach et al.,
2020), but with enhanced spatial resolution (from 31 to
9km). ERAS5-Land provides hourly data of various surface
parameters, of which we used air temperature at 2 m above
the surface (K).

2.8 CORINE land cover

The Coordination of Information on the Environment
(CORINE) program was launched in the 1980s, as there was
a need for detailed and harmonized land cover data set over
the European continent (Biittner et al., 2017). The current
land cover data covers the pan-European area with 100 m
spatial resolution. The data set consists of 44 classes, and
it is updated every six years. In this study, we use CORINE
land cover data from 2018 to determine the land use classifi-
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Table 1. Gradient Boosting model parameters, their ranges and cho-
sen values to be used for model building. Parameter ranges are con-
strained to prevent overfitting. The chosen values are determined by
using GridSeachCV method with CV =3.

Chosen
Parameter name Range value
Number of leaves 4,5, 6] 5
Maximum depth 4,5, 6] 4
Minimal amount of data in one leaf  [20, 30, 40] 40
Maximum number of bins [100, 150, 200] 200
Number of trees [200, 300, 400] 300

cations of the study area, the land cover classes of the used in
situ sites in the NF area, and we also used land cover data to
create a mask to exclude water bodies and all the other land
covers except forested areas.

2.9 Insitu data

In situ soil moisture data for model training and testing are
from the Arctic Space Centre of the Finnish Meteorolog-
ical Institute (FMI-ARC, https://fmiarc.fmi.fi/, last access:
23 May 2025). FMI-ARC hosts a measurement infrastruc-
ture, which is used to monitor, for example, the atmosphere,
soil properties, snow properties, precipitation, and carbon
and water cycles. All collected observations can be found
at https://litdb.fmi.fi/ (last access: 30 September 2024). For
in situ soil moisture observations, the measurement sites are
located around Sodankyld and Saariselkd, and they cover
mostly boreal forested sites. The chosen in situ sites with
additional information can be found in Table A1, and their
locations are shown in Fig. 1. The in situ soil moisture is
measured at different depths, and for this study, we chose a
depth of —5cm.

The in situ data for validation of the constructed model
are located in the boreal zone in Alaska. In situ soil mois-
ture data has been collected in the International Soil Mois-
ture Network (ISMN) database starting from 1952 (Dorigo
et al., 2013, 2021). In situ soil moisture data is provided to
the ISMN by multiple organizations for free use. From ISMN
we chose 16 stations located in the boreal zone (Fig. 1, right
side), and information about those sites can be found in Ta-
ble A2. Similarly to NF sites, the in situ soil moisture is also
measured at different depths, and for this study, we chose a
depth of —5cm.

Additionally, we included one in situ site from the U.S Na-
tional Science Foundation’s National Ecological Observatory
Network (NEON). NEON has multiple measurement sites
around the United States, of which 5 are located in Alaska.
From these 5 sites, we chose Delta Junction as its dominant
land use class is evergreen forest. The used data product is
DP1.00094.001 (National Ecological Observatory Network,
2025), in which soil volumetric water content is included in
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Table 2. Statistical values between predicted values and in situ soil
moisture for training and test sets.

RMSE uRMSE R R? N

Training 0.058 0.058 0.81 0.66 3415
Test 0.062 0.061 0.71 051 1725

Testsite A 0.069 0.059 043 0.19 585
Test site B 0.044 0.039 0.71 0.50 524
Test site C 0.067 0.061 0.51 0.26 616

various depths. For this study, we chose a depth of —6cm,
which is the shallowest one.

3 Methods
3.1 Preprocessing

All gridded data used (SMAP, EVI, NDVI, and interpolated
weather station observations) are reprojected to the global
EASE2-grid if needed and resampled to achieve a spatial
resolution of 1km. This means that the projection matches
that of SMAP, but the spatial resolution is finer than that of
SMAP. If the original resolution is coarser than the resam-
pled one, the resampling is done by using the nearest neigh-
bor. On the other hand, if the original resolution is finer than
the resampled one, then the resampling is done by taking the
average of all values within the coarser pixel. The average is
taken even if there is only one value within the coarser pixel.
This ensures that the model inputs have a minimal number of
missing values.

After resampling and reprojecting, some of the data are
further preprocessed. As EVI and NDVI data from both
MODIS instruments are originally provided every 16d, we
obtain daily maps of EVI and NDVI by linear interpolation
over time using the closest available observations. The linear
interpolation was chosen because it is easy to implement and
does not cause any major discrepancies in the interpolated
data for vegetation types with weak seasonal changes, such
as evergreen needle-leaved forests (Li et al., 2021).

After interpolation, we calculate the mean value of Terra
and Aqua -based vegetation maps to obtain only one EVI
and NDVI map per day. Precipitation and air temperature
from interpolated weather station data are provided as daily
means. Based on preliminary testing, we decided to use a
precipitation sum of 2 and 7 d preceding each SMAP obser-
vation, and a temperature sum of 8 and 10d preceding each
SMAP observation instead of using just the daily means of
one previous day. This approach takes into account the cu-
mulative effects of temperature and precipitation. In situ data
for training and testing was cleaned by removing those sta-
tions and those years where soil moisture values were ab-
normally low (below 0.05 continuously, or decreased to zero
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regularly), as including those values might lead to the model
underestimating soil moisture. Also, there are two in situ
sites located in or close to the peatlands, where soil moisture
values of those sites are extremely high (> 0.75m? m=3). In-
cluding those locations in the training set caused the model to
predict erroneous soil moisture values. Therefore, those two
sites were excluded from the study data set.

After preprocessing and data cleaning, all the gridded data
are matched with NF in situ locations. If there are multiple in
situ values within the same 1 km pixel, we take a mean value
of those soil moisture values and use that instead to represent
the soil moisture in that location. By doing this, we end up
with only 10 individual locations, as most of the in situ sites
are located near each other.

3.2 Model for soil moisture

The data set for model construction consists of only 10 in-
dividual locations. We aimed to have similar distributions of
soil moisture values in both training and test sets. Therefore,
we chose 7 of those 10 sites for the training data set, and the
other 3 were left for the test set. The placing of the individ-
ual in situ sites to training or test set is shown in Fig. 1 and
Table Al.

We used all the available data from the chosen annual pe-
riods covering the years 2019-2023, and hence we had 3415
values for training and 1775 for testing. Tree-based algo-
rithms are commonly used in soil moisture predictions (e.g.
Wei et al., 2019; Tramblay and Quintana Segui, 2022; Ning
et al., 2023; Shokati et al., 2024), and it has been reported
that tree-based methods can outperform deep-learning meth-
ods (Li and Yan, 2024). The Gradient Boosting (GB) method
(Breiman, 1997; Friedman, 2001, 2002), in which the weak
learners (decision trees) are trained sequentially by correct-
ing the residuals of the previous model, was therefore chosen
for model construction. We used a framework for tree-based
algorithms called Light Gradient-Boosting Machine (light-
GBM), as it is faster to use (Ke et al., 2017).

We hypertuned the model parameters by using the Grid-
SearchCV method from scikit-learn (Pedregosa et al., 2011).
It is a method where all possible combinations of given
model parameters and their grids are tested and evaluated
by using cross-validation. In our model building, we used
CV =3. The chosen parameters with their test ranges are
shown in Table 1. The learning rate was chosen to be 0.05.
We also limited the maximum bins to 200, and a minimum
number of data values in one leaf to 40 at maximum to limit
overfitting.

4 Results
4.1 Analysis of the model

The SHapley Additive exPlanations (SHAP, Lundberg et al.,
2020) values (which specify the effect of different individual
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Table 3. Mean relative differences [%] between in situ soil moisture values and predicted soil moisture estimates from both GB model.

Values are from test set, and they cover the time period 2019-2023.

Resolution  Testsite A  Testsite B Testsite C  Test site D All
1km —17.37 -7.11 24.25 - —0.88
250m 0.12 —19.14 —58.36 0.83 —19.55

inputs on the output) indicate that vegetation inputs dominate
the results, as can be seen from Fig. 2. All inputs have clear
linear effects on the results. Precipitation-related inputs have
the smallest effect on the model.

The RMSE, R, and R? values between the training and
test set indicate no overfitting (Table 2). RMSE and uRMSE
values between in situ values and training and test sets are al-
most identical (0.058 and 0.062, and 0.058 and 0.061, respec-
tively). On the other hand, R and R? values are higher be-
tween in situ values and predicted soil moisture values from
the training set compared to values between in situ values
and test set predicted soil moisture values. Based on results
in Fig. 3, there is a possibility of the model underestimating
higher soil moisture values (> 0.3 m3m~3). Also, as there
are no higher than 0.4m?m™3 soil moisture values in the
training set, the model will have difficulties predicting soil
moisture values above 0.4 m3 m~3.

As the original highest spatial resolution of some inputs is
250 m (NDVI and EVI), we also resampled SMAP soil mois-
ture and weather-related inputs to that same 250 m spatial
resolution using nearest neighbor resampling. We then cal-
culated soil moisture maps from those 250 m resolution data
maps using the constructed GB model to study how sensitive
the developed model is to small changes in vegetation values
(i.e. as those are the only parameter values changing within
one time step). Exemplary time series for NF test sites for the
year 2020 are shown in Fig. 4. The individual in situ sites are
located close to each other and therefore the Test sites A—B
have the same in situ sites in both resolutions. Only in Test
site C one site (MET0010) locates in a different pixel. There-
fore, for Fig. 4, we have added an extra Test site D, which
includes the in situ site MET0010. Overall, as all sites (A-D)
are boreal forest sites, SMAP soil moisture is temporally well
in line with in situ soil moisture values, but due to the coarse
resolution, there are systematic differences, especially in Test
site C (and D). Predicted values calculated for both 1 km and
250 m resolution data are better in line with in situ values.
Based on these results for NF sites, the developed model is
not overly sensitive to small changes in weather-related and
vegetation properties data. Also, based on these time series
results, the developed model detects temporal changes well.
In hindsight, as the model is constructed using SMAP soil
moisture, and SMAP soil moisture data is noisy, some of the
same noisy features can be found in predicted values. Also,
due to the SMAP being the basis for the developed model, the
predicted values have the same temporal resolution as SMAP,
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meaning that data can be predicted almost daily if SMAP soil
moisture data are available. Mean relative differences (Ta-
ble 3) between in situ values and GB model-based predicted
values indicate varying under- and overestimations. In 1 km
resolution, the underestimation for the whole test set is just
< 1 %, which is to be expected. For 250 m resolution, the un-
derestimation is higher, almost 20 % for the whole test set.

We also calculated the soil moisture values for the whole
NF area using the constructed model to analyze how well the
model captures the spatial variations and also to show the
impact of missing pixels on the predicted maps. We calcu-
lated soil moisture maps using 1km and 250 m resolution
data. Examples of these predicted soil moisture maps are
shown in Figs. 5 and 6. Predicted soil moisture values are
lower than SMAP soil moisture values, and for 250 m res-
olution maps the number of missing pixels increases. Nev-
ertheless, spatial changes are well detected by the predicted
values when compared to SMAP soil moisture. The miss-
ing values in predicted maps are due to the missing data in
the inputs. SMAP data have missing data because of water
bodies or otherwise failed soil moisture retrievals. Similarly,
vegetation properties are not retrieved over water bodies, but
vegetation data are also missing because of missing measure-
ments, caused typically by cloud cover (as vegetation prop-
erties are based on optical data). Furthermore, as the model
is developed mainly for forested areas, a land cover mask
was applied to the results (shown only in Fig. 6, and omitted
in Fig. 5 for clarity). We used CORINE land cover data in
100 m spatial resolution as the basis of the mask. Land cover
data was resampled to the 1 km and 250 m spatial resolutions
and those pixels where forest classes covered under 50 % of
the coarser pixel were masked.

4.2 Model uncertainty

We used the sensitivity of the most important inputs and the
standard deviation of the difference between predicted soil
moisture values and in situ values from test data as the uncer-
tainty of the model. First, we approximated the uncertainty
each input causes to the results. Predicted soil moisture from
the training data was used as the reference data. Then we
added errors to the important inputs separately from their er-
ror distributions € ~ N(0, o2). For vegetation indexes, we
used the reported uncertainties, 0.015 for EVI and 0.025
for NDVI (https://modis-land.gsfc.nasa.gov/ValStatus.php?
ProductID=MOD13, last access: 15 May 2025). For SMAP
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Figure 2. The SHapley Additive exPlanations (SHAP) values for the constructed gradient boosting model. Left: the mean SHAP values for
each predictor. Right: More detailed view of the effect of different feature values on predictions.
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Figure 3. Scatter plots of predicted training and test set soil moisture values from years 2019-2023. Left: scatter plot of training data set.

Right: scatter plot of test set.

soil moisture, we used the standard deviation from the dif-
ference between SMAP soil moisture and in situ soil mois-
ture from the whole in situ data set from NF. The obtained
standard deviation was 0.097. For weather-related inputs, we
used reported RMSE values (Aalto et al., 2016), 1.4 mm for
precipitation and 0.58 °C for temperature. As we use cumu-
lative sums, we used error propagation of sum to estimate
the uncertainty of them. The uncertainties have therefore a
form of /x - RMSE;, where x in the number of days the
cumulative sum is obtained, and i is either precipitation or
temperature. This way we obtained 1.98 mm uncertainty for
precipitation sum over 2d, and 3.7 mm uncertainty for pre-
cipitation sum over 7d, and 1.64 and 1.83 °C uncertainties
for temperature sums over 8 and 10d, respectively. We cal-
culated the difference between the error-added values and the
reference data 100 times. The sensitivity of each varied in-
put, the test std, and the total uncertainty for the constructed
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model are shown in Table 4. The total uncertainty is calcu-
lated as a squared sum between the individual sensitives and
test std, that is:

= 3(4)

1

6]

SMAP soil moisture has the highest impact on the model
uncertainty for individual inputs. On the other hand, vegeta-
tion properties and weather-related data have the lowest im-
pact. In total, the model uncertainty is around 0.080 m> m—3.

4.3 Validation with Alaska sites

The weather station network over Alaska is sparse, and thus
kriging-based interpolation to obtain precipitation and tem-
perature in high resolution (as done over Northern Finland)
is not possible. Therefore, we decided to use satellite-based
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Figure 4. Exemplary time series of test sites for the year 2020. Predicted soil moisture values in 1km and 250 m resolutions are from a
developed gradient boosting model. In test site C, one in situ site (METO0010) locates in different pixel in 250 m resolution. Therefore, we
added an extra Test site D, which includes the in situ site MET0010.

Table 4. Sensitivities for chosen inputs, standard deviation between data for precipitation (GPM data) and for temperature, we

test set in situ soil moisture and predicted soil moisture, and cal- used ERA5-Land temperature data. GPM data was calculated
culated total uncertainty of the model. All results have the unit to required Cumulative sums Wlthout any modiﬁcations but

3..-3 . . T
mem . as ERAS5-Land data is provided hourly, we preprocessed it

in daily mean temperatures and then further processed it to

Source Uncertainty . .
required cumulative sums.

SMAP soil moisture 0.029 Altogether 17 stations from Alaska were used as an in-
NDVI 0.020 dependent model validation set. One site located in Alaska,
EVI 0.019 Tokositna Valley, was excluded from the validation set, be-
Prec. 2d sum 0.003 cause its soil moisture values varied abnormally. In addi-
?rzec.;;i sum 888; tion, the predicted soil moisture values below 0.05m3 m—3

m ed sum ’ were also excluded. We calculated statistical values (RMSE,
T2m 10d sum 0.003 . .. . .

. uRMSE, and R) for each site between in situ soil moisture

Test standard deviation 0.069

and SMAP in 36 km resolution, SMAP enhanced to 1km
total 0.080 resolution, and GB-model-based predicted values, both 1 km
and 250 m. The median statistical values are similar (Fig. 7),
only R values are slightly higher with SMAP in 36 km reso-
lution compared to others.
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15 jul 2023 03 Sep 2023

SMAP SMAP

Figure 5. Exemplary maps show SMAP soil moisture for two dates,
along with predicted soil moisture at spatial resolutions of 1 km and
250 m. Missing values due to the missing values in inputs and water
bodies are indicated in white. Even though developed model is just
for forested areas, all pixels with data in these maps are shown for
clarity.

Of the 16 stations, only 5 were reported to be located in
forested sites (information is based on ESA CCI Land Cover
(ESA, 2017) and NLCD (https://www.mrlc.gov/, last access:
12 May 2025)). Soil moisture data comparisons from those
five sites are shown in Fig. 8. SMAP soil moisture in both
resolutions has a lot of variability compared to predicted es-
timates. It is also evident that the GB-model cannot predict
high soil moisture values (> 0.4m> m™3), as was expected.
Overall, there are clear correlations between satellite-based
estimates and in situ soil moisture values when taking into
account all data, but correlations are less clear when focus-
ing on individual sites.

Exemplary time series for sites Nenana and Gulkana River
(tree-covered sites) are shown in Fig. 9, and a close-up focus-
ing on the year 2019 in Fig. 10. The high soil moisture values
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Predicted values in 250 m
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Figure 6. Exemplary maps show SMAP soil moisture for two dates,
along with predicted soil moisture at spatial resolutions of 1km
and 250 for a smaller area located around Lake Pallas (68.033° N,
24.197° E). Missing values due to the water bodies are indicated in
white and other land uses than forest are indicated in grey. The land
use mask is based on CORINE land use classification in 100 m res-
olution. Pixel is assumed to be forest if the forest class fraction is
above 50 %.

at the beginning of the summer (due to the snow melt) are not
detected by SMAP data. On the other hand, the GB-model-
based estimates do catch them better. Otherwise, SMAP data
in both resolutions detect the soil moisture values well. The
GB-model-based soil moisture estimates have more temporal
variation compared to SMAP data. The close-up of the year
2019 shows that the model can detect the U-shape of the in
situ soil moisture better than SMAP data.

Sixteen in situ sites in Alaska were grouped into coarser
land use classification classes (forest, mosaic, shrub, and
sparse), and RMSE, uRMSE, and R values were calculated
between in situ values and each satellite-based data, the val-
ues are shown in Table 5. For forested sites, predicted values
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Figure 7. RMSE, uRMSE, and R values between in situ values
from Alaska validation data set and different soil moisture data sets
(SMAP in 36 km resolution, SMAP in 1km resolution, predicted
values using 1 km resolution data, and 250 m resolution data) shown
as violin plots. The data is from the annual time period between
1 May and 15 October, covering varying number of years depend-
ing on the in situ site.

in 250 m have the lowest RMSE and uRMSE, and highest R
values compared to other data sets. Predicted values in 1 km
resolution have the second-highest model validation statis-
tics. For mosaic sites, SMAP in 36 km has the lowest RMSE
and uRMSE, and the highest R value. All data sets struggle
to predict soil moisture values in sparse sites. In shrub sites,
predicted values in 1km resolution are more in line with in
situ values compared to SMAP soil moisture values in both
resolutions. Based on these validation results, the developed
model predicts temporal changes relatively well.

Hydrol. Earth Syst. Sci., 29, 6237-6256, 2025

Table 5. Model validation statistics between observed in situ soil
moisture from Alaska sites and predicted soil moisture values.
Highlighted values in bold indicate the lowest RMSE and uRMSE
values, and the highest correlation values.

RMSE forest mosaic  shrub  sparse all
SMAP 0.103 0.149 0.174 0.156 0.144
SMAP 1 km 0.095 0.162 0.197 0.152 0.150

Predicted 1 km 0.093 0.175 0.147  0.131 0.138

Predicted 250m  0.092 0.174 0126 0.136 0.145
uRMSE

SMAP 0.101 0.147 0.138 0.142 0.144
SMAP 1 km 0.094 0.156  0.161  0.134 0.149

Predicted 1 km 0.093 0.163  0.091 0.128 0.131
Predicted 250m  0.092 0.163 0.104 0.133 0.137

R
SMAP 0.46 061 —-041 —0.15 0.18
SMAP 1km 0.43 040 —-043 —0.03 0.09

Predicted 1 km 0.50 0.21 0.42 0.14 0.25
Predicted 250 m 0.55 0.14 —-0.01 0.03 0.16

N
SMAP 2680 2556 1550 2530 9316
SMAP 1km 2680 2556 1550 2530 9316

Predicted 1 km 2680 2556 1550 2530 9316
Predicted 250m 2788 2497 1554 2460 9299

5 Discussion

Spatio-temporal data on the variation in soil moisture for bo-
real regions is crucial for predicting forest-related phenom-
ena, such as tree growth and forest fire risk, both of which
influence the carbon storage capacity of these ecosystems.
However, existing satellite-based soil moisture products for
vegetated areas often have coarse spatial resolution. To ad-
dress this issue, higher-resolution data is necessary to capture
the finer spatial variations in soil moisture. Consequently,
we developed a model utilizing satellite data to estimate
soil moisture at high resolution (1 km and 250 m) over bo-
real forested regions. We used a tree-based machine learning
method called gradient boosting with SMAP soil moisture in
36 km spatial resolution as a basis. Produced data maps have
the same temporal resolution as SMAP (typically daily, but
are missing if SMAP soil moisture retrieval has failed). The
developed model is shown to retain the temporal and spa-
tial variability of SMAP soil moisture, but validated against
independent data, the predicted values show better agree-
ment compared to the SMAP soil moisture (RMSE decreas-
ing from 0.103 to 0.092m?m™3, and correlation increasing
from 0.46 to 0.55 over forest sites).

There exist numerous other soil moisture products at a
1 km spatial resolution, which differ on the underlaying data
they use, the methods they implement, and also whether they
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Figure 8. Comparisons between in situ values from Alaska sites (five forested sites) and different soil moisture data sets (SMAP in 36 km
resolution, SMAP in 1km resolution, predicted values using 1 km resolution data, and 250 m resolution data). The data is from the annual
time period between 1 May and 15 October, covering varying number of years depending on the in situ site.

are global or regional (Table 6). Overall, our constructed
model has higher uRMSE values than many other 1 km spa-
tial resolution data sets, but most of them do not cover bo-
real forest areas or are not validated against boreal forest soil
moisture. Of those that do cover boreal forests, the uRMSE
and R? values are in line with the results we obtained from
validation against forested sites in Alaska. Those data prod-
ucts which are based on Sentinel-1 SAR and cover boreal for-
est zone (Bauer-Marschallinger et al., 2018; Fan et al., 2025;
Meyer et al., 2022) have difficulties with dense vegetation,
which is to be expected due to the C-band being sensitive
to vegetation. On the other hand, good results are obtained
when using ERAS soil moisture as the basis data (Zhang
etal., 2023). Used downscaling methods and algorithms vary.
Change detection method (used in Bauer-Marschallinger
et al., 2018) and forward model (Fan et al., 2025) are used
for Sentinel-1 SAR data, whereas for Sentinel-1 and SMAP
combination uses SMAP active-passive algorithm (used in
Das et al., 2019; Meyer et al., 2022, and is based on work
by Das et al., 2014, 2018; Entekhabi et al., 2014). Machine-
learning methods are also implemented (Kovacevi¢ et al.,
2020; Rao et al., 2022; Zhang et al., 2023, 2024; Zheng
et al., 2023), mostly when using ESA-CCI or ERAS soil
moisture data. When SMAP soil moisture is used as a data
source, typical algorithms are based either on the thermal
inertia theory (used in Fang et al., 2022; Dandridge et al.,
2020) or the Temperature—Vegetation (7—V) method (used
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in Yin et al., 2020; Mohseni et al., 2024, based on Sandholt
et al., 2002). Once again, the validation results from our con-
structed ML-method-based model are consistent with other
ML-based data sets.

Soil properties are commonly used inputs for soil mois-
ture models (e.g. Ranney et al., 2015; O et al., 2022; Ma
et al., 2023; Zhang et al., 2023). As we have a small num-
ber of individual sites in training and test sets, we excluded
soil properties data from this study. Additionally, other com-
monly used inputs include topography and geography data
(i.e. elevation, slope, aspect, latitude, and longitude). Again,
as we have a relatively small amount of model construction
data, adding geographical information would have caused
major overfitting. We also excluded topography data, as it has
been found that models using topography data as inputs may
not be useful in other locations (Kemppinen et al., 2023).
Weather-related data, i.e. precipitation, and temperature, are
included as inputs because they are related to the soil mois-
ture. Precipitation is positively correlated with soil moisture
(Sehler et al., 2019), but air temperature has the opposite
effect (Feng and Liu, 2015). Based on feature importances
(Fig. 2), air temperature in both cumulative sums (sums over
8 and 10 d) have a negative impact on the results as expected,
but precipitation has a varying effect. Precipitation sum over
7 d has the expected positive effect, but the precipitation sum
over 2d has the opposite effect. The latter might be due to
the canopy interception and no-rain values. The canopy in-
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Figure 9. Exemplary time series of soil moisture for two Alaska sites located in forested areas. Left: Nenana, right: Gulkana River. Black
indicates in situ soil moisture and grey, turquoise, red, and blue satellite-based soil moisture data. The curtain in the two bottom rows
indicates the model uncertainty (uncertainty 0.080 m3 m~3 added and subtracted from the predicted values). Data for Nenana is from years

2018-2021, and for Gulkana River from years 2019-2022.

terception of precipitation can be up to 50 % in the dense
boreal forest (Molina and del Campo, 2012; Zabret et al.,
2017; Hassan et al., 2017), leading to only a small amount
of rain attributed to the soil moisture, but also it is possible
that there are no rain events happening, leading the sum of
rain over 2 d to cause negative effect to the soil moisture val-
ues. It has also been studied that air temperature has a higher
impact on soil moisture than precipitation, even over forest
areas (Feng and Liu, 2015). This effect can be seen in fea-
ture importances (Fig. 2), as temperature has a clearly higher
impact on the soil moisture estimates compared to precipi-
tation. The cumulated precipitation and temperature values
increased the model accuracy compared to the instantaneous
values, and therefore they were chosen. An additional useful
data source would have been the land surface temperature

Hydrol. Earth Syst. Sci., 29, 6237-6256, 2025

(LST), as the LST difference between night and day corre-
lates with soil moisture. LST data has been widely used for
estimating soil moisture (e.g. Matsushima et al., 2012; Hao
et al., 2022; Han et al., 2023). The disadvantage of LST is
that it is obtained from optical measurements. Due to the dif-
ficulties caused by cloud cover, obtaining even moderately
gap-free LST data regularly over the whole NF area was an
impossible task, and therefore we did not include LST as an
input.

To choose the best model, we tested three tree-based meth-
ods: random forest, level-wise gradient boosting, and leaf-
wise growth-based gradient boosting. The leaf-wise growth
GB (lightGBM) produced the results with the highest accu-
racy and was therefore chosen. However, because it is a tree-
based method, it cannot extrapolate well when inputs differ
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Figure 10. Close-up from the exemplary time series for two Alaska sites located in forested areas. Left: Nenana right: Gulkana River. Black
indicates in situ soil moisture and grey, turquoise, red, and blue satellite-based soil moisture data. The curtain in the two bottom rows indicates
the model uncertainty (uncertainty 0.080 m3 m~3 added and subtracted from the predicted values). Data are from the year 2019.

from training data, as the decision boundaries are determined
during training. Therefore, our predicted estimates are more
or less bounded, and unexpectedly high or low soil moisture
values are not predicted correctly (i.e. soil moisture values
below 0.05 m? m~3 or above 0.4 m> m~3). To overcome this
disadvantage, there needs to be much more data from diverse
in situ locations. The available data from the in situ networks
is limited and thus hinders model’s predictive ability.

We included SMAP in 1 km resolution to be compared to
our model predictions. Other downscaled data sets were also
considered, but as the soil moisture network is sparse, they,
unfortunately, use some of the same in situ sites from NF and
Alaska for training, and therefore we could not use them as
independent data sets. The comparisons with SMAP in 1 km
resolution indicate that downscaled SMAP lacks some of the
variability found in our model. For some sites in Alaska,
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SMAP in 1km even performed weaker compared to SMAP
in 36 km resolution. Based on those results, it could be pos-
sible that thermal inertia theory is not ideal for downscaling
soil moisture data over forested areas.

As our model provides high-resolution soil moisture for
forested areas, it covers approximately 60 % of the NF area
(see Sect. 2.1). Additionally, SMAP soil moisture has a lot
of noise, and some of those features are also transferred to
our model predictions. Smoothing would have been one op-
tion to decrease the effect of noise, but choosing the method
that would have retained the actual temporal variations was
not a straightforward task. Also, we tried to implement pre-
cipitation and temperature data to smooth some of the noise,
but due to the dense nature of the boreal forest, there was
no clear relationship between soil moisture changes and
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Table 6. A collection of downscaled soil moisture data sets in 1 km spatial resolution, with reported accuracies. The uRMSE values have the

unit m3m—3.
Area Source data uRMSE R R?  Boreal forest Reference
global S1-SAR 0.080? 0.39 — RMSE=0.035m*m=3; R =0.28 Bauer-Marschallinger et al. (2018)
global SI-SAR 0.077 - — uRMSE=0.097m3m™3 Fan et al. (2025)
global S1-SAR and SMAP  0.050 - — does not cover Das et al. (2019)
global S1-SAR and SMAP  0.056% — 0.70 RMSE € [0.043,0.162]; R € [0.33,0.61] Meyer et al. (2022)
global ESA-CCI SM 0.058 — 0.73 does not cover Kovacevié et al. (2020)
global ESA-CCI SM 0.052 0.82 — not validated Zhang et al. (2024)
global ESA-CCI SM 0.045 0.89 — not validated Zheng et al. (2023)
global ERAS SM 0.048 0.89 — uRMSE=0.061m®m~3; R=0.73 Zhang et al. (2023)
global SMAP 0.063 - — not optimal over high latitudes Fang et al. (2022)
global SMAP 0.054 0.64 — includes dense vegetation Yin et al. (2020)
regionalb SMAP - — 0.70  not for boreal forest Dandridge et al. (2020)
regional® SMAP 0.069 0.64 — not for boreal forest Mohseni et al. (2024)
regionald SMAP 0.057 - —  not for boreal forest Rao et al. (2022)

3 RMSE instead of uRMSE. P Lower Mekong River Basin. ¢ Africa. 9 China.

weather. Therefore, we decided to leave the noise in the end
results.

In the future, L-band-based missions, like the NASA-
ISRO SAR mission (NISAR, https://nisar.jpl.nasa.gov/, last
access: 23 May 2025; Lal et al., 2023, 2024) with a planned
launch around April 2025, and Radar Observing System for
Europe in L-band (ROSE-L, https://sentiwiki.copernicus.eu/
web/rose-1, last access: 23 May 2025) with a planned launch
in 2028, are aiming to provide soil moisture data with higher
spatial resolution (around 200 m for NISAR and around 25 m
for ROSE-L). With those resolutions, even peatlands can be
taken into account. As they cover over 20 % of NF and are
important carbon sinks, peatlands need to be included in soil
moisture studies. If there were more in situ observation sites
located in varying kinds of peatlands, one could construct a
model based on them, and then combine models focused on
forested areas and peatlands to better account for all the vari-
ability in soil moisture over boreal forest areas. As it is, the
constructed GB-model does provide an alternative to down-
scale SMAP soil moisture in 36 km resolution to finer spatial
scales over boreal forests.
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6 Conclusions

We developed a model to predict high-resolution soil mois-
ture in boreal forests. This model specifically targets forests,
as peatlands are not represented in SMAP soil moisture data,
and most in situ soil moisture observation sites are located
within forests. The model was developed by using SMAP
soil moisture at 36 km spatial resolution as the basis data,
and additional vegetation properties and weather-related data
were used to guide the machine learning model together with
in situ soil moisture values. The model produces predictions
at a resolution of 1 km, which aligns well with SMAP mea-
surements. However, it can also generate soil moisture esti-
mates at a finer resolution of 250 m, offering improved accu-
racy in certain applications, for example hydrological mod-
elling and carbon exchange studies. Consequently, the model
provides a valuable tool for predicting soil moisture in high
resolution across boreal forested landscapes.
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Table Al. In situ sites for training and testing the soil moisture model, located in Northern Finland. Land cover information is from CORINE

land cover data set.

Name Number of spots

Location

Land use

Training set

DIS0002 3 67.153°N, 26.729°E  Transitional woodland-shrub
DIS0004 2 67.253°N, 26.862°E  Coniferous forest

DIS0005 1 67.253°N, 26.861°E  Coniferous forest

KAIO001 3 67.357°N, 26.685°E  Coniferous forest

KAI00022 2 67.359°N, 26.686°E  Coniferous forest

LENO0001 2 67.384°N, 26.625°E  Coniferous forest

SAA0001 3 68.330°N, 27.550°E  Moors and heathland
SAA0002 2 68.339°N, 27.535°E  Transitional woodland-shrub
SAA0003 2 68.370°N, 27.614°E  Coniferous forest

Test set

DIS0001! 3 67.257°N, 26.749°E  Coniferous forest

I0A00022 1 67.362°N, 26.634°E  Coniferous forest
10A0003b2 8 67.362° N, 26.634°E  Coniferous forest

10A00072 2 67.362°N, 26.634°E  Coniferous forest
MET0010%4 1 67.362°N, 26.638°E  Coniferous forest

DIS00033 8 67.243°N, 26.660°E  Coniferous forest

@ KAI0002 has 3 spots, but one of them had abnormally low soil moisture values and was therefore removed.
% JOA0003 has 8 spots, but two of them had abnormally low soil moisture values and were therefore removed. ! Test
site A. 2 Test site B. 3 Test site C. 4 Test site D in 250 m resolution.

Table A2. In situ sites for model validation, sites located in Alaska. Data are from four different networks, SCAN (Schaefer et al., 2007),
SNOTEL (Leavesley et al., 2008), USCRN (Bell et al., 2013), and NEON (National Ecological Observatory Network, 2025). Land cover
information for SCAN, SNOTEL, and USRN sites is from ESA CCI Land Cover (ESA, 2017), and for NEON, the land cover information is
from NLCD (https://www.mrlc.gov/, last access: 23 May 2025).

Name Location Network  Land use Data years
Aniak 61.58°N, 159.58°W  SCAN Tree cover 20162023
Delta Junction 63.88°N, 145.75°W  NEON Evergreen Forest 2017-2022
Eagle Summit 65.49°N, 145.41°W  SNOTEL Sparse vegetation (tree shrub herbaceous cover) (< 15 %) 2016-2022
Granite Creek 63.94°N, 145.40°W  SNOTEL Sparse vegetation (tree shrub herbaceous cover) (< 15 %) 20162022
Gulkana River 62.41°N, 145.38°W  SCAN Tree cover 2018-2023
Little Chena Ridge 65.12°N, 146.73°W  SNOTEL  Mosaic tree and shrub (> 50 %) / herbaceous cover (< 50 %) 2016— 2023
Monahan Flat 63.31°N, 147.65°W  SNOTEL Mosaic tree and shrub (> 50 %) / herbaceous cover (< 50 %) 20162023
Monument Creek 65.08°N, 145.87°W  SNOTEL Mosaic tree and shrub (> 50 %) / herbaceous cover (< 50 %)  2016-2023
Mt. Ryan 65.25°N, 146.15°W  SNOTEL  Mosaic tree and shrub (> 50 %) / herbaceous cover (< 50 %)  2016-2022
Munson Ridge 64.85°N, 146.21°W  SNOTEL  Sparse vegetation (tree shrub herbaceous cover) (< 15 %) 2016-2023
Nenana 64.68°N, 148.92°W  SCAN Tree cover 2016-2023
Spring Creek 61.66°N, 149.13°W  SCAN Shrub or herbaceous cover 2018-2023
Summit Creek 60.62°N, 149.53°W  SNOTEL  Shrubland 2016-2023
Susitna Valley High  62.13°N, 150.04°W  SNOTEL  Shrub or herbaceous cover flooded fresh/saline/brakish water ~ 2016-2023
Tok 63.33°N, 143.04°W  SNOTEL Tree cover needleleaved evergreen closed to open (> 15 %) 2016-2023
Upper None Creek ~ 65.37°N, 146.59°W  SNOTEL Sparse vegetation (tree shrub herbaceous cover) (< 15 %) 2016-2023

https://doi.org/10.5194/hess-29-6237-2025
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