
Hydrol. Earth Syst. Sci., 29, 6181–6200, 2025
https://doi.org/10.5194/hess-29-6181-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Integrating historical archives and geospatial data to revise
flood estimation equations for Philippine rivers
Trevor B. Hoey1, Pamela Louise M. Tolentino2,3, Esmael Guardian3, John Edward G. Perez3,4,
Richard D. Williams2,5, Richard Boothroyd6, Carlos Primo C. David3, and Enrico C. Paringit7,8

1Department of Civil and Environmental Engineering, Brunel University London, London, UB8 3PH, United Kingdom
2School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
3National Institute of Geological Sciences, University of the Philippines, Diliman, the Philippines
4University of Vienna, Vienna, Austria
5Earth Sciences New Zealand, Kirikiriroa / Hamilton, 3216, Aotearoa / New Zealand
6Department of Geography and Planning, University of Liverpool, Liverpool, L69 7ZT, United Kingdom
7Department of Geodetic Engineering, University of the Philippines, Diliman, the Philippines
8Department of Science and Technology – Philippine Council for Industry, Energy and Emerging Technology Research and
Development, Manila, the Philippines

Correspondence: Pamela Louise M. Tolentino (pammie.tolentino@glasgow.ac.uk, plmtolentino.ac@gmail.com)

Received: 28 June 2024 – Discussion started: 8 July 2024
Revised: 14 August 2025 – Accepted: 15 August 2025 – Published: 11 November 2025

Abstract. Flood magnitude and frequency estimation are es-
sential for the design of structural and nature-based flood
risk management interventions and water resources planning.
However, the global geography of hydrological observations
is uneven, with many regions, especially in the Global South,
having spatially and temporally sparse data that limit the
choice of statistical methods for flood estimation. To ad-
dress this data scarcity, we pool all available annual maxi-
mum flood data for the Philippines to estimate flood mag-
nitudes at the national scale. Available river discharge data
were collected from publications covering 842 sites, with
data spanning from 1908 to 2018. Of these, 466 sites met
criteria for reliable estimation of the annual maximum flood.
Using the index flood approach, a range of controls was as-
sessed at both national and regional scales using modern land
cover and rainfall data sets, as well as geospatial catchment
characteristics. Predictive equations for 2 to 100 year recur-
rence interval floods using only catchment area as a predictor
have R2

≤ 0.59. Adding a rainfall variable, the median an-
nual maximum 1 d rainfall, increases R2 to between 0.56 for
Q100 and 0.66 for Q2. Very few other topographic or land
use variables were significant when added to multiple re-
gression equations. Relatively low R2 values in flood predic-
tions are typical of studies from tropical regions. Although

the Philippines exhibits regional climate variability, residu-
als from national predictive equations show limited spatial
structure, and region-specific equations do not significantly
outperform the national equations. The predictive equations
are suitable for use as design equations in ungauged catch-
ments for the Philippines, but statistical uncertainties must
be reported. Our approach demonstrates how combining in-
dividually short historical records, after careful screening and
exclusion of unreliable data, can generate large data sets that
can produce consistent results. Extension of continuous flood
records by continuous and rated monitoring is required to re-
duce uncertainties. However, the national-scale consistency
in our results suggests that extrapolation from a small num-
ber of carefully selected catchments could provide nationally
reliable predictive equations with reduced uncertainties.

1 Introduction and rationale

The impact of river flooding across Southeast Asia is severe
on a global scale, whether measured in terms of the inundated
area, the number of people affected, or fatalities (Ziegler et
al., 2020). Understanding the hazard and designing mitiga-
tion or adaptation strategies rely on estimating flood mag-
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nitude and frequency, which is achieved through empiri-
cal analyses of available data and, for forecasting, the re-
sults of climate and hydrological models. The resulting equa-
tions to estimate flows of specified recurrence are used for
a wide range of purposes, including insurance loss estima-
tion (Lyubchich et al., 2019), aquatic biodiversity assessment
(Parasiewicz et al., 2019), engineering design, and water re-
source planning.

Estimating flood magnitude and frequency is crucial for
designing mitigation strategies, and estimates are typically
made using empirical analyses that generate predictive mod-
els. A wide range of statistical methods have been applied
to flood frequency estimation (see Asquith et al., 2017 for
a recent listing). The index flood approach uses the median
or mean annual maximum flood, or equivalently a flood of
specified recurrence interval, and relates this to catchment
properties to develop regional predictive equations (e.g. Dal-
rymple, 1960; Kjeldsen and Jones, 2006; Stedinger and Lu,
1995). In data-rich settings, such approaches can be complex,
as illustrated by the United Kingdom (UK) Flood Estimation
Handbook (FEH). Kjeldsen et al. (2008; Table 4.1) show how
successive iterations of predictive equations for the UK have
added variables and statistical complexity. However, catch-
ment area and annual precipitation remain the most signif-
icant predictors even in this case (Meigh et al., 1997). Al-
though the index flood method is reliable and can yield high
R2 values, adding non-linear effects and spatially dependent
interactions has been proposed as a potential source of fur-
ther improvement (Muhammad and Lu, 2020).

In many countries, river flow data may be sparse in space
and/or time (Mamun et al., 2011), limiting the choice of sta-
tistical methods for flood frequency estimation and strongly
influencing the magnitude of associated uncertainties. The
lengths of records that are available impact the analytical
results (Fischer and Schumann, 2022), and uncertainty in-
creases with short data series. This uncertainty can be re-
duced by extending data series through use of historical
or proxy information (Macdonald et al., 2014; Merz and
Blöschl, 2008; Reinders and Muñoz, 2021; Ziegler et al.,
2020), by cross-validation against hydrological modelling
predictions (Haberlandt and Radtke, 2014), or by pooling in-
formation from many sites (Kjeldsen, 2013; Griffiths et al.,
2020).

For the Philippines, which exemplifies some of the chal-
lenges of using sparse hydrological data, some national-scale
analyses of flood magnitude and frequency have been under-
taken. Meigh (1995) analysed data mostly from up to 1980,
from 333 sites collected by the Bureau of Research and Stan-
dards (BRS). Growth curves and prediction equations for
flood magnitude were presented for different hydrological re-
gions and catchment sizes (Meigh, 1995; Meigh et al., 1997).
Liongson (2004) demonstrated a significant relationship be-
tween catchment area and mean annual flood (QMAF) for
29 sites in northern Luzon and analysed the form of growth
curves. Regional differences in climate and precipitation pat-

terns are well documented (Bagtasa, 2017), and projections
have been made of climate change impacts on river flow
(Tolentino et al., 2016), with some evidence for significant
changes having occurred in recent decades (Meigh, 1995).
Calibrating local data with global runoff data sets enables
the augmentation of catchment-specific data to a certain ex-
tent (Ibarra et al., 2021).

Studies of flood magnitude across South-East Asia provide
a valuable regional context for our Philippines analysis. Loe-
bis (2002) found significant correlations between mean an-
nual flood and catchment area in Indonesia, Laos, and Thai-
land, as did Meigh et al. (1997) for Indonesia, Papua New
Guinea, and Thailand. Mamun et al. (2011) provide updated
equations for peninsular Malaysia that use catchment area
and mean annual rainfall as predictors. In these studies, co-
efficients of determination (R2) values range from 0.5 to 0.9,
tending to be higher in smaller countries, where inter-annual
rainfall variability is lower; for example, Meigh et al. (1997)
report R2 values of 0.92 for Papua New Guinea and 0.46 for
administrative regions 3–8 in the Philippines (Fig. S1 in the
Supplement).

There are few continuous multi-decadal river flow records
available for the Philippines, but many short (3–20 years)
records exist from across the country. This scarcity of data
leads to the Philippines being omitted from databases used
for global flow frequency analyses (e.g. Zhao et al., 2021).
Pooling of the information from the available records to max-
imise the value of these extensive data forms the basis of the
analysis in this paper. The approach uses elements of the UK
FEH methodology (Kjeldsen et al., 2008), adapted to reflect
the nature of the river flow and other data that are available,
and considers whether there are significant regional differ-
ences in flood magnitude across the country. The paper aims
to demonstrate and evaluate the use of pooled short data se-
ries to deliver estimates of flood magnitude for the Philip-
pines. Using these estimates, the hypothesis that regional
equations do not reduce the uncertainties associated with a
single, national-scale predictive equation is tested. Finally,
we assess the potential use of our new results as predictive
design equations applicable to catchments that are ungauged
or that have records that are insufficiently long to be used by
themselves to estimate flood magnitude records.

2 Data sources

Daily mean river discharge data were collated from 842 sites
(Table 1) reported by three sources. The first, “SWS” data
set, comes from four volumes of the “Surface Water Supply
of the Philippine Islands” (Irrigation Division, 1923–1924)
that contain rating curves and daily flow measurements over
the period 1908–1922. Water level measurements were made
at constructed weirs, and rating curves were computed us-
ing discharges obtained by the velocity-area method. Rating
information is supported by detailed information on the mea-
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surement site, bank and bed characteristics, and river chan-
nel stability. Data from 248 SWS stations across the country
(Fig. 1) were used. The second data set (“BRS”) was ini-
tially managed by the Bureau of Research Standards, later
being transferred to the Bureau of Design, also under the De-
partment of Public Works and Highways (DPWH). The BRS
data set (Fig. 1) is in three parts: BRS_A contains 364 gaug-
ing sites with data in the period 1940–1980; BRS_B has an-
other 181 sites with data from 1980 onwards. BRS_C in-
cludes 27 of the sites from BRS_A and BRS_B that are ei-
ther at identical locations or are sufficiently close (within a
few km, without any significant tributaries in between) to al-
low for their records to be combined. This produces a max-
imum record length of 62 years. Some of these sites had
automated water level sensors, but most sites had a gaug-
ing structure at which manual observations were made three
times per day. Rating curves were obtained by velocity-area
gauging. The source of the third data set (“Cagayan”) is the
“Feasibility Study of the Flood Control Project for the Lower
Cagayan River in the Republic of the Philippines” produced
by Nippon Koei Co. and Nikken Consultants Inc. in collab-
oration with the DPWH in 2002 (Nippon Koei, 2002). This
study only considers the Cagayan watershed, northern Lu-
zon, the largest catchment in the Philippines. Out of 78 gaug-
ing stations in the watershed, 48 stations (Fig. 1) were used
in this study since some of the stations only reported gauge
height data and others had a lot of gaps. Daily mean water
level data were recorded from 1955 to 1991 and converted
to discharge using rating curves (details not reported; Nip-
pon Koei, 2002).

The data were initially filtered to remove sites with very
short records (< 7 years), those with inadequate rating be-
tween water level and discharge, and those from the SWS
data set where the gauging site location could not be reliably
determined. The Philippines has four distinct climate types
(Coronas, 1920), as shown in Fig. 1. For convenience, hydro-
logical data are often reported for 15 administrative regions
(Fig. S1), and we use this regionalisation to consider whether
there is variation in flood hydrology across the country.

3 Analysis methods

3.1 Curve fitting for annual daily maximum flows

The maximum flows in each calendar year were extracted
from the daily flow data and fitted to three distributions:
(1) generalised logistic distribution (GLO) (Kjeldsen and
Jones, 2006; Kjeldsen, 2013); (2) Weibull; and (3) log-
Pearson Type III (LPIII). The median annual flood (Qmed)
was used as the index flood, rather than the mean, to min-
imise the effect of outliers in the data (Kjeldsen and Jones,
2006), and the parameters of the distributions were esti-
mated using L-moments (Hosking, 1990; Hosking and Wal-
lis, 1997). L-moments are linear combinations of probability-

weighted moments, and the GLO distribution uses ratios be-
tween the first three L-moments, l1, l2, and l3, to define the
L-CV (coefficient of variation) t2 and L-Skewness t3 as:

t2 = l2/l1 t3 = l3/l2. (1)

The GLO is a three-parameter distribution, which has loca-
tion, scale, and shape parameters. The location (ξ ) is the me-
dian of the distribution. The shape (κ) and scale (β) parame-
ters are estimated from the L-moment ratios (Eq. 1) as:

κ̂ =−t3 β =
t2κ̂ sin

(
πκ̂

)
πκ̂ sin

(
κ̂ + t2

)
− t2 sin

(
πκ̂

) , (2)

where ˆ indicates an estimate of the distribution parameter.
Further details on L-moments and their application to distri-
bution fitting are provided by Hosking and Wallis (1997) and
Asquith et al. (2017). The GLO distribution can be used to
calculate a flood, QT , with a recurrence interval of T years
as

QT = ξ

[
1+

β

κ

(
1− (T − 1)−κ

)]
= ξzT , (3)

where zT is the “growth curve” at T . The Weibull and log-
Pearson Type III distributions are also three parameter distri-
butions, described fully by Asquith et al. (2017) and Hosk-
ing and Wallis (1997) who define the relevant L-moments
and parameter calculations. The Gringorten (Cunnane, 1978)
plotting position (Eq. 4) was used,

xi = (i− 0.44)/(n+ 0.12), (4)

where xi is the ith quantile of the distribution, i is the rank of
the annual maximum flood in a given year, and n is the total
number of years in the record. This method allows for the
estimation of an event with a return period of up to 1.79n+
0.2 years (Stedinger et al., 1993). Figure 2 shows typical data
sets and curve fits.

Analysis was undertaken in R (R Core Team, 2021), using
the package lmomco (Asquith, 2020) to derive the L-moment
estimates, to fit the distributions and to calculate their signifi-
cance. Of the 513 sites with records of at least 7 years’ length
(Table 1), the minimum required for L-moment calculation,
two had invalid L-moments and therefore were excluded
from further analysis. For the remaining 511 sites, goodness-
of-fit between the data and the three distributions was as-
sessed using the Cramér–von Mises (CvM) test (Asquith,
2020). Such goodness-of-fit tests are unable to definitively
identify the best distribution to use or if any of the distri-
butions are adequate (Asquith, 2020), particularly with rela-
tively short records, as used here. Rather, the CvM p values
provide an indication of the performance of the three dis-
tributions. The annual maximum series and the three curve
fits were inspected for each site, and those with visually very
poor fits were excluded. Mostly, these excluded sites corre-
sponded with low CvM p values, although this was not al-
ways the case. The median CvM p value for best-fit curves
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Figure 1. (a) Locations of gauging sites from the data sources used in the analysis (n= 466; Table 2). The background map (after Tolentino et
al., 2016) shows elevation shading overlain by the four climate types that have been identified for the Philippines (Coronas, 1920). (b) Mean
daily rainfall (after Bagtasa, 2017). (c) Proportion of annual rainfall generated by tropical cyclones (after Bagtasa, 2017). The climates can
be summarised as in Ibarra et al. (2021): type I – distinct wet and dry seasons; type II – no distinct dry season and relatively high rainfall;
type III – lower overall rainfall with short dry and wet seasons; and type IV – reasonably even distribution with lower total rainfall.

Table 1. Summary of available discharge data sets. Candidate sites are sites retained after removing sites with no or poor rating or indeter-
minate locations. Record length is the number of years for which reliable annual maximum flow estimates exist after removal of erroneous
data.

Source Time period Total Number of Number of Record length (years) for sites with ≥ 7
of data number candidate candidate years of data (figures in brackets are for all

of sites sites sites with ≥ 7 candidate sites)

years record Max Mean Total

SWS 1908–1922 248 119 30 10 7.7 (5.1) 230 (604)
BRS_A 1940–1980 364 337 310 34 18.3 (17.1) 5659 (5771)
BRS_B 1980–2018 154 144 115 33 16.1 (13.9) 1856 (2003)
BRS_C 1940–2018 27 27 27 62 36.2 (36.2) 978 (978)
Cagayan 1955–1991 49 46 31 20 11.6 (9.5) 361 (437)

Total 842 673 513 62 17.7 (14.6) 9084 (9793)

Hydrol. Earth Syst. Sci., 29, 6181–6200, 2025 https://doi.org/10.5194/hess-29-6181-2025
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Figure 2. Selected annual maximum flood data and curve fits. Red points are data. Fitted curves are generalised logistic distribution (black),
Weibull (red), and log-Pearson III (blue). Cramér–von Mises p values are shown. Left axes are flood magnitude (m3 s−1), and right axes
scale this by the median annual flood at each site. Values of 2, 10, 20, and 100 year recurrence interval floods are indicated and calculated
using the GLO method. (a) Site 76, Jalaur (Lat: 11.1195°; Long: 122.5386°; Area: 210 km2; BRS_C data set; 37 years of data; best-fit
curve: Weibull); (b) Site 210, Supang (Lat: 17.0073°; Long: 120.9086°; Area: 56 km2; Cagayan data set; 10 years; GLO); (c) Minalungao
(or Sumacbao) River (Lat: 15.3430°; Long: 121.0794°; Area 309 km2; SWS data set; 7 years; GLO).

was 0.93. The distribution (GLO, Weibull, or log-Pearson
Type III) with the highest p value from the CvM test was
used to provide Qx estimates for the site. This screening
process led to the elimination of a further 45 sites from the
data set, leaving 466 that were further analysed. The distribu-
tion of the best-fit curves (Table 2) does not show systematic
differences between data source, catchment area, or climate
type (Table 2).

Values of Q2, Q10 and Q100 were calculated from the fit-
ted curves, although the lengths of available records mean
that estimates of Q100 are subject to significant uncertainty.
Towards the high flow end of the data, the Weibull and
log-Pearson Type III curves are usually very similar, with
the GLO curve typically being steeper and more curved
(Fig. 2), providing higher flow estimates for high recur-
rence intervals (Q20 to Q100) than the other two curves
and often slightly lower estimates of Q2 and Q10. Ra-
tios between flow estimates from different curves (Fig. S2)
show this pattern: mean ratios between estimates from
the GLO and Weibull distributions are Q2GLO /Q2Wei =

1.07 (range 0.99–3.48), Q10GLO /Q10Wei = 0.92 (0.70–
1.00), and Q100GLO /Q100Wei = 1.09 (0.42–1.15). Equiva-
lent ratios for the GLO and log-Pearson Type III curves are
Q2GLO /Q2LPIII = 1.10 (1.00–4.27), Q10GLO /Q10LPIII =

0.91 (0.55–0.99), and Q100GLO /Q100LPIII = 1.09 (0.36–
1.15). These ratios show some systematic differences be-

tween the distributions (Figs. 2 and S1) and suggest that the
choice of distribution influences flow estimates.

Estimating uncertainty in the Qx estimates is not straight-
forward (Kjeldsen, 2013; Kjeldsen and Jones, 2004) and re-
flects variability in the index flood, in the growth curve, and
in covariance between the index flood and the growth curve
(Kjeldsen and Jones, 2004). For a single site, the factorial
standard error for the GLO distribution, fse, is defined as
(Kjeldsen, 2013):

fse= e
(

2β
√
n

)
. (5)

Derivation of Eq. (5) relies on approximations that limit the
reliability of the equation when n≤ 20 (Kjeldsen, 2013). On
account of this, fse values were calculated only for records
of at least 20 years’ length, all but one of which come from
the BRS data sets (Table 1).

Growth curves were calculated for each of the 466 sites
(Table 2) using Eq. (3) and equivalents for the Weibull
and log-Pearson Type III distributions, over the range of
−3.5≤ ln(T −1)≤ 5.0, i.e. return period T in the range 1 to
149 years. Curves were standardised by dividing discharge
by the median annual flood recorded at each site.
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Table 2. Best-fit curves with highest Cramér–von Mises test p value. A total of 207 sites were excluded from the analysis – two due to
L-moments not being valid and the remainder due to having short records (< 7 years) or a poor curve fit, based on the p value and visual
inspection.

Best-fit All Data source Catchment area (km2) Climate type

curve sites BRS Cag SWS < 100 100–199 200–399 400–799 ≥ 800 I II III IV
A/B/C

GLO 184 99/52/6 13 14 58 39 31 21 35 48 21 66 49

Weibull 207 131/42/18 8 8 75 42 26 35 29 58 22 86 41

Log-Pearson III 75 52/14/3 3 3 31 8 18 7 11 15 10 37 13

Excluded – 205 55/36/0 20 94 66 48 33 19 39 83 8 79 35
poor curve
fit or < 7
years data

L-moments 2 0 2 0 0 0 1 0 1 0 0 2 0
not valid

Total 673 337/144/27 46 119 230 137 109 82 115 204 61 270 138

Total used 466 282/108/27 24 25 164 89 75 63 75 121 53 189 103

Combined growth curves using data from sets of catch-
ments that are adjacent or have similar properties (e.g. catch-
ment area) can be used to provide estimates of the magni-
tude of floods at specified recurrence intervals, given an ini-
tial value of Qmed. There are several ways to construct such
pooled growth curves for (i) each of the administrative re-
gions of the Philippines; (ii) each of the four climate types
(Fig. 1); and (iii) catchments of different areas, as identi-
fied in Table 2. Firstly, the curves from each site within any
of these groups can be combined by calculating their mean,
mean weighted by record length, or median (Figs. S3–S5).
Secondly, the data can be amalgamated for all sites within
each group and GLO curves fitted to the pooled data. The me-
dian and weighted mean methods lead to under-estimation of
the longest recurrence interval floods (Figs. S3–S5), whereas
both the mean of the best-fit curves from each site and the
GLO curves fitted to the amalgamated data increase more
rapidly at long recurrence intervals. Note that the variabil-
ity between sites within a region (or climate type or within
catchments of similar area) provides an indication of the un-
certainty to be expected when using regionalised curves.

3.2 Predicting high magnitude floods from catchment
properties

The values ofQT provided by the best-fit curves for each site
individually determined above were correlated with catch-
ment properties. These catchment properties, precipitation,
and land use were derived from a range of data sources. Ta-
ble 3 summarises the variables used and provides a compar-
ison with the FEH method (Kjeldsen et al., 2008). Note that
much of the data used are not contemporary and significant
changes in some variables, particularly land use but poten-

tially also precipitation (Bagtasa, 2017), may have occurred
since the SWS data were collected in the early 20th century.

National-scale catchment physical properties for the
Philippines were previously calculated and are available as
an open-access geodatabase (Boothroyd et al., 2023). In
brief, topographic analysis was undertaken using a digital el-
evation model (DEM) acquired in 2013 with a 5 m spatial
resolution and 1 m root-mean-square error vertical accuracy
(Grafil and Castro, 2014). The DEM was resampled to a 30 m
spatial resolution in ArcGIS due to processing constraints.
Here, AREA, DPLBAR, and DPSBAR were extracted from
the geodatabase. Rainfall data were from the end-of-the-day
adjusted version of the APHRODITE data set (V1901, Yata-
gai et al., 2012). Land use variables (ATT, URB, AG, FOR)
were taken from the National Mapping and Resource In-
formation Authority (NAMRIA) 2010 land cover data set
(https://www.namria.gov.ph/, last access: 15 October 2025).

Each of the variables listed in Table 3, together with the es-
timates of Q2, Q10, and Q100, was tested for normality and
transformed as required (Table 4). log10 transformation was
used as the default, most variables being moderately posi-
tively skewed, with square-root transformation for two land
use (areas of attenuation features and urban land use) and
one rainfall (standard deviation of rainfall) variables that con-
tained numerous zero values. Cross-correlation plots and ma-
trices of the transformed variables, where relevant (Fig. S7),
show expected autocorrelation between climate variables and
no significant non-linear relationships elsewhere in the pre-
dictor variables. Note (Table 4) that mean annual rainfall
(SAAR) is poorly correlated with each of the Qx measures.

Hydrol. Earth Syst. Sci., 29, 6181–6200, 2025 https://doi.org/10.5194/hess-29-6181-2025
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Table 3. Variables used in the flood prediction analysis.

FEH variable
name

Units FEH definition Philippine data equivalent Variable name
(this paper)

AREA km2 Catchment area Area from DEM of the catchment, calculated
in ArcGIS

AREA, A

BFIHOST – Baseflow index from
soil data

Excluded –

DPLBAR km Drainage path length Mean average drainage path length to
catchment outlet for all segments of the stream
network

DPLBAR

DPSBAR m km−1 (FEH)

m m−1 (this
study)

Mean catchment slope Mean average drainage path slope for all
segments of the stream network

DPSBAR

EVAP mm Average annual
potential evaporation

Excluded –

FARL - Flood attenuation index
(lakes etc.)

Percentage/proportion of catchment area
occupied by attenuation features (inland waters
and fishing ponds)

ATT

FPEXT – Floodplain extent Excluded –

PRAT none (FEH)
mm (this study)

Ratio of P100/P2 for
1 d rainfall

Standard deviation of annual rainfall within the
catchment from mean annual rainfall
(1998–2015) APHRODITE data set

RFSD

PROPWET – Proportion of time
when soil moisture
deficit< 6 mm

Excluded –

RMED mm Median annual
maximum 1 d rainfall

Mean of maximum daily rainfall within the
catchment from maximum daily rainfall
(1998–2015) APHRODITE data set

RMED

SAAR mm Annual mean rainfall
1961–1990

Mean of annual rainfall within the catchment
from mean annual rainfall (1998–2015)
APHRODITE data set

SAAR

URBEXT2000 – Proportion of urban
land cover in 2000

Percentage of catchment area occupied by
urban features (built-up)

URB

None – – Percentage of catchment area occupied by
agriculture (annual crop, fallow plus perennial
crop)

AG

None – – Percentage of catchment area occupied by
closed and open forest

FOR

4 Results

4.1 Validity of L-moment calculations

The L-moment ratio diagram (Figs. 3 and S6) shows the re-
lationship between L-skew and L-kurtosis differentiated by
catchment area and the optimal best-fit curve. Sites where
each of the distribution types fits the data best cluster close

to the theoretical relationships for each of those distribu-
tions as expected. Neither climate type (Fig. 3), data source,
catchment area, nor record length (Fig. S6) shows signifi-
cant segregation on the L-moment diagram. Consequently,
the 466 retained sites are considered as a single data set in
subsequent analysis.

Only for sites (N = 71) that had at least 20 annual maxima
and for which the GLO distribution provided the best fit to
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Table 4. Summary statistics for variables used in the flood prediction analysis (466 sites). All values are in original units, prior to trans-
formation (Trans). Land use variables expressed as % were converted to proportion (0–1 scale) for analysis. Correlation coefficient, R,
significance: ∗ p < 0.01. Geometric mean (Geom mean) shown for variables with no zero values. + One slope of 0.0 was excluded when
calculating geometric mean. XT = transformed value of variable X. NA= geometric mean not able to be computed due to zero values.

Variable Min Max Mean s.d. Geom Trans R (logQx −XT )

(units) mean/ Qmed Q2 Q10 Q100
median

AREA (km2) 1.13 27450 656 2040 172/163 log10 0.77∗ 0.77∗ 0.74∗ 0.70∗

DPLBAR (km) 0.02 245.7 27.2 27.7 18.0/18.9 log10 0.74∗ 0.74∗ 0.71∗ 0.67∗

DPSBAR (m m−1) 0.00 0.145 0.041 0.024 0.034+/0.044 No 0.03 0.03 0.07 0.10
ATT (%) 0 37.0 1.11 2.4 NA/0.68 √ 0.34∗ 0.34∗ 0.30∗ 0.28∗

RFSD (mm) 0 444 101 100 NA/78.0 √ 0.48∗ 0.48∗ 0.47∗ 0.45∗

RMED (mm) 62.5 331 172 57.9 161/170 No 0.20∗ 0.20∗ 0.20∗ 0.19∗

SAAR (mm) 1169 3877 2316 475 2269/2238 log10 0.06 0.06 0.05 0.03
URB (%) 0 51.3 1.80 5.1 NA/0.48 √

−0.06 −0.07 −0.07 −0.08
AG (%) 0 100 36.9 27.6 NA/32.5 No −0.31∗ −0.31∗ −0.30∗ −0.29∗

FOR (%) 0 86.4 25.9 23.9 NA/19.2 No 0.28∗ 0.28∗ 0.29∗ 0.29∗

QMED 0.72 6029 380 722 132/136 log10 – 1.00∗ 0.93∗ 0.59∗

Q2 (m3 s−1) 0.63 6211 374 717 131/141 log10 – – 0.93∗ 0.61∗

Q10 (m3 s−1) 1.73 15 230 831 1590 319/325 log10 – – – 0.82∗

Q100 (m3 s−1) 3.75 91 040 1801 5170 632/619 log10 – – – –

Figure 3. Relationships between L-skewness and L-kurtosis compared with theoretical curves (Hosking and Wallis, 1997). Data are classified
by (a) best-fit curve and (b) catchment area. Panel (a) shows segregation between sites with different best-fit curves, with higher positive
L-kurtosis associated with the GLO curve and low to negative L-kurtosis associated with the sites where the Weibull curve fits the data
best. Panel (b) shows overlap between the best-fit curve type and catchment areas with no clustering of different-sized catchments. Colours
indicate catchment areas, as shown at the top of the figure, and symbol shapes (as shown in the legend of panel a) indicate best-fit curves.
Figure S6 plots the data classified by climate type, length of record, and data source; in all cases, there is no segregation according to the
classifying variable.

the data, was it possible to compute the factorial standard
error (fse) using Eq. (5). The values of fse range from 1.03
to 1.32, with mean= 1.18. It is noted that uncertainty will be
greater for sites with records of less than 20 years.

4.2 Regional annual maximum daily flow growth
curves

Growth curves for all sites (Fig. 4a) show considerable vari-
ability within and between regions, reflecting the number,
length, and quality of available data records as well as catch-
ment properties. To assess variation across the country, we
use the administrative division of the Philippines into 15 re-
gions (Fig. S1), which are aligned to hydrological and topo-
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Figure 4. Dimensionless growth curves. (a) Individual curves (GLO, Weibull, or log-Pearson Type III, according to which produced the
highest p value in the Cramér–von Mises test) for 466 sites, overlain by pooled GLO curves for each region. (b) GLO curves fitted to data
pooled from all sites in each climate type; IQ range lines represent the interquartile range (25th and 75th percentiles) of the curves for
individual sites within each climate zone. (c) GLO curves fitted to all data within bins of catchment area, with interquartile ranges from
individual sites shown. (d) Comparison of GLO curves fitted to all data within each climate zone and the median value from curves fitted
to individual sites within that zone. (e) Comparison of GLO curves fitted to all data from sites within each catchment area bin and the
median value from individual sites within that bin. (f) Overall GLO curves for each catchment area bin and adjusted equivalent curves from
Meigh (1995). Adjustment was necessary because Meigh (1995) used the mean annual flood as the index flood rather than the median. See
the text for details.

graphic patterns (Fig. 1). Different climate zones (Fig. 4b)
and catchment areas (Fig. 4c) indicate some grouping that
may form the basis for hydrologic regionalisation. Climate
types II and III plot higher than the others (Fig. 4b), although
the median growth curves for all four climate types are very
similar (Fig. 4d). The pooled data provide steeper growth
curves, reflecting the larger data series used and the increas-
ing influence of large events in these larger samples. Conse-
quently, the pooled data curves match high percentiles of the
individual curves (shown by plotting close to or sometimes
outside of the 75th percentile limits, as shown in Fig. 4b

and c). The steeper curves for pooled data are also seen
when grouped according to catchment area (Fig. 4e). Small
(< 25 km2) catchments plot separately from all larger areas,
and there is little differentiation between any larger catch-
ments. This contrasts with Meigh’s (1995) results, which
suggested a steady decrease in Qx/Qmean as the catchment
size increased.
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Table 5. Best-fit equations for the data set covering the whole of the
Philippines (n= 466). SE= standard error of residuals.

Event return Equations R2 SE
period

Q2 Q2 = 3.013A0.733 0.59 0.424
Q2 = 4.989× 10−2(A ·RMED)0.770 0.66 0.387

Q10 Q10 = 10.666A0.660 0.55 0.417
Q10 = 2.576× 10−1(A ·RMED)0.696 0.62 0.383

Q100 Q100 = 25.645A0.622 0.49 0.442
Q100 = 7.568× 10−1(A ·RMED)0.658 0.56 0.413

4.3 Flood estimation equations

4.3.1 Flood prediction from catchment area and
rainfall

The correlations in Table 4 show that catchment area alone
provides the most significant prediction of flood magnitude.
Drainage path length (DPLBAR) is an equally good predic-
tor, as path length is correlated with catchment area (Hack’s
law; Rigon et al., 1996). However, R2 for catchment area
and DPLBAR is in the range 0.45–0.6, so there is potential
for additional variables to improve flood magnitude predic-
tion. Initially, the rainfall variables were introduced to mul-
tiple regression relationships to account for the volume of
water entering catchments as catchment area × rainfall. Ta-
bles 3 and 4 show two relevant rainfall variables: SAAR, the
mean annual rainfall, and RMED, the maximum daily rain-
fall, which serve as a measure of the magnitude of rainfall
extremes that may be expected to be correlated with flood
peaks.

Equations using catchment area alone (Table 5) provide
R2 values between 0.49 (Q100) and 0.6 (Q2). These rise to
0.55–0.65 when area is multiplied by RMED (Table 5). P99,
the 99th percentile of daily rainfall, produces equations that
fit the data equally well as RMED.

The residuals from the equations using A ·MED as the
predictor were examined for effects of data source, climate
type, or region (Fig. 5). One-way ANOVA indicates signifi-
cant differences between regions forQ2,Q10, andQ100, with
regions 7 (p = 0.003; 0.0043; 0.026, respectively), 11 (p =
0.012; 0.001; 0.005), and 12 (p < 0.001 for all Qx) being
significantly different for all three return periods, region 3
(p = 0.02; 0.02) for Q10 and Q100, and region 9 (p = 0.02)
for Q100 only. Differences between climate types are only
significant for Q10 and Q100, in both cases Type IV being
significantly different from the others (p < 0.01). For data
source, significant differences are noted for Q2 and Q10,
in both cases due to BRS_B (p = 0.006 for both) and the
early 20th century SWS (p < 0.001 and 0.014 for Q2 and
Q10, respectively) data sets. While these results suggest pos-
sible benefits from subdividing the data to produce predictive
equations, inspection of Fig. 5, the boxplots, and ANOVA re-

sults all show considerable inter-group variance. Hence, the
alternative approach of introducing additional variables to
the analysis is considered as the next stage of the analysis,
before regionalisation is considered in Sect. 4.3.3.

4.3.2 Comprehensive stepwise regression prediction

Stepwise regression yielded equations (Table 6) with be-
tween three and six significant (p < 0.05) predictors but
overall R2 values of 0.68, 0.63, and 0.57 for Q2, Q10, and
Q100, respectively. The modest improvements in R2 associ-
ated with these additional variables suggest that there is lim-
ited value in using these complex equations for flood magni-
tude prediction.

This limitation is enhanced by consideration of the vari-
ables in the equations. Each equation contains land use vari-
ables (ATT, URB, and AG) that are determined from modern
conditions. The relevance of these values to historical data is
uncertain given historic and contemporary land use change
across the Philippines. Their inclusion in equations for all
three return periods does suggest that land use may play a
significant role in flood magnitude. In all three cases, catch-
ment areaA enters the equation first, followed by RMED.R2

values after each of these steps forQ2,Q10, andQ100 are A:
0.59, 0.55, and 0.49 and A and RMED: 0.66, 0.62, and 0.55.
Adding further variables (Table 6) improves R2 by ≤ 0.02;
hence, only catchment area (A) and median annual maximum
daily rainfall (RMED) are considered necessary for develop-
ing predictive equations. Whether these two predictors are
added sequentially or are multiplied together (Table 5) does
not affect overall model performance (note that the RMSE
values quoted in the equations are for the transformed vari-
ables). Subsequently, the product A ·RMED is used as a sin-
gle measure of flood event rainfall volume across the catch-
ments.

4.3.3 Regionalisation of predictive equations

The dimensionless growth curves (Fig. 4a), inspection, and
ANOVA of regression residuals suggest that regionalisation
may be able to improve predictive equations. Although the
growth curves also show some segregation between climate
types, this is not found to be a significant cause of variation
in the residuals from predictive equations. Fitting equations
to each region separately (Fig. 6a) yields improvement in R2

and residual standard error for some regions, but this is in-
consistent. The regional equations suggest that some group-
ing of regions may be beneficial.

Three ways of dividing the 15 regions into groups were
considered: (a) classification by visual inspection of the
growth curves, (b) K-means cluster analysis of the in-
tercepts (a) and gradients (b) for regression equations
(Fig. 6a), and (c) the regionally contiguous groups used by
Meigh (1995). Each grouping was tested for Q2, Q10, and
Q100 predictions. Results were consistent between these re-
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Figure 5. Observed values, predictions, and residuals for Q10 as a function of catchment area (A) multiplied by median daily maximum
rainfall (RMED). (a–c) Stratified by data source and (d–f) by climate type. Panels (a) and (d) show predicted vs. observed values with
1 : 1 (solid) and 1 : 2 and 2 : 1 (dashed) lines. Residuals in (b) and (e) are normally (Gaussian) distributed and show no systematic variation
with predicted Q10. Density plots of residuals in (c) and (f) confirm the absence of systematic variation with data source and climate type.
Equivalent figures for Q2 and Q100 are provided in the Supplement (Figs. S8 and S9).

Table 6. Best-fit stepwise equations for the data set covering the whole of the Philippines (n= 466). SE= standard error of residuals.

Event Equation R2 SE
return
period

Q2 8.75× 10−3A0.753SAAR0.68510[0.002RMED−2.423DPSBAR−0.165AG−0.676
√

URB] 0.68 0.377

Q10 3.44(A)0.67910[0.003RMED−0.75
√

URB] 0.63 0.378

Q100 8.49(A)0.66710[0.003RMED−0.838
√

URB−0.673
√

ATT] 0.57 0.407

turn periods, and results forQ10 are given in Table 7 (see the
Supplement for Q2 and Q100 results).

TheR2 and standard errors of residuals in Table 7 are com-
pared with the combined results for all regions in Table 5
(R2
= 0.62; SE= 0.383). Weighting both theR2 and residual

error values by the number of sites in each group/region sug-
gested that for Q2, Q10, and Q100 the highest R2 values are

those obtained using the overall regressions on the full data
set (Table 5). The residual standard errors are slightly lower
when obtained from the 15 individual regional curves (0.36,
0.35, and 0.37 for Q2, Q10, and Q100, respectively) than
from the overall regressions (0.39, 0.38, and 0.41). However,
these differences are small, and there is insufficient evidence
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Table 7. Equations for different groups of regions. Results for Q10 are presented. Meigh (1995) did not include regions 13 or CAR, so the
total number of sites in the three contiguous regional groups is 431.

Group Regions in group Number Equation R2 SE
of sites

Growth curve

A 1, 13, CAR 65 Q10 = 0.234(A ·RMED)0.730 0.78 0.245
B 2, 3, 4A, 6, 11, 12 241 Q10 = 0.0945(A ·RMED)0.779 0.64 0.390
C 4B, 5, 7, 10 126 Q10 = 1.303(A ·RMED)0.530 0.36 0.427
D 8, 9 34 Q10 = 0.628(A ·RMED)0.603 0.69 0.211

K-means clustering of regional regression equations

E 1, 6, 7, 8, 11 142 Q10 = 0.095(A ·RMED)0.796 0.75 0.298
F 2, 3, 4A, CAR 167 Q10 = 0.071(A ·RMED)0.813 0.69 0.389
G 4B, 9, 10, 12, 13 103 Q10 = 1.24(A ·RMED)0.534 0.50 0.370
H 5 54 Q10 = 5.10(A ·RMED)0.388 0.19 0.475

Meigh (1995) contiguous regional groups

I 1, 2 86 Q10 = 0.166(A ·RMED)0.753 0.63 0.357
J 3, 4A, 4B, 5, 6, 7, 8 264 Q10 = 0.334(A ·RMED)0.674 0.56 0.402
K 9, 10, 11, 12 81 Q10 = 0.851(A ·RMED)0.535 0.45 0.331

to justify the use of curves either for individual regions or for
groups of regions.

4.3.4 Spatial distribution of flood magnitudes and
residuals

The spatial distribution of calculated specific flood magni-
tudes (Qxx divided by catchment area A) (Fig. 7a) shows
a concentration of higher values through the central Philip-
pines, with relatively lower values in NE Luzon and across
Mindanao in the south. The underlying annual rainfall map
shows a general decline from east to west, and some of the
highest rainfall areas are associated with highQxx/A values,
for example, in the Bicol region. Residuals from the overall
equations (Table 5) do not show strong regional trends, al-
though there are clusters of positive and negative residuals in
different regions. The residuals are not correlated with catch-
ment area (R =−0.04; p = 0.39) and are correlated only
weakly with annual rainfall (R = 0.15; p < 0.001). How-
ever, there is a significant positive correlation between resid-
uals and specific flood magnitude (R = 0.62; p < 2×10−16),
with only negative residuals forQ10/A < 0.46 and only pos-
itive residuals when Q10/A > 6.4. These results are repli-
cated for Q2 and Q100, with significant correlations of 0.6
(p < 2× 10−16) for both Q2/A and Q100/A.

5 Discussion

5.1 Design equations for the Philippines

5.1.1 Data availability and quality

Flow data were combined from four data sets that are partly
independent, having been collected by different agencies and
using different methods, but they overlap significantly in col-
lecting data at the same or nearby locations. Catchment prop-
erties, such as area and gradients, were derived from a high-
resolution DEM that covers the whole of the Philippines.
Although some station locations are ambiguous in the data
records, the locations of all stations included in the analy-
sis have been reliably identified using the descriptions in the
original data sources. Land use data rely on a single time, and
no historical land use data are available. This introduces un-
certainty to the analysis, especially for data collected a cen-
tury or more prior to the land use data in areas that have un-
dergone urban development or forest replacement by agricul-
ture.

The proportions of variance in flood estimates that are sta-
tistically explained by the best-fit equations (R2; Tables 5–
7) are within the range from studies in other tropical regions
(Meigh et al., 1997), from 0.38 (Malawi) to 0.92 (Papua New
Guinea). The relatively low R2 values reflect a range of fac-
tors, including data quality and length of flow records, chang-
ing climate and hydrological conditions during the time pe-
riod covered by the study, and controls over flood magnitude
in these tropical catchments being influenced by hydrologi-
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Figure 6. (a) Regression curves for each region in the form Q10 = a(A ·RMED)b. Curves are grouped according to growth curve shapes
(Table 7): group A (black), B (blue), C (red), and D (purple), and bold lines represent the regional curves given by the equations in Table 7.
(b) Probability density functions for residuals from the individual regional curves in panel (a) and the three groupings of regions in Table 7
(GC= growth curve; k= k-means). Note the similarity in the distributions of residuals, although those for the individual regions are clustered
slightly more closely around the mean than those from the grouping methods.

cal parameters that are not considered in the analysis. Data
quality has been assessed throughout, with sites excluded if
their growth curves are based on short records or do not fit ex-
pected shapes (Tables 1 and 2). Further, there is no evidence
of bias in the data, shown both by the original variables and
the behaviour of residuals from the final predictive curves.
For example, the best-fit curves are not biased by data source,
climate type, or record length (Figs. 3, S6, S8, and S9). The
residuals show neither systematic variation across these same
categories (Fig. 5) nor consistent spatial dependence (Fig. 7).

Some spatial dependence is visible in Fig. 7, although
attempts to produce regionally consistent predictive curves
(Table 7; Fig. 6) do not improve the overall performance of
the equations compared with national equations. The residu-
als in Fig. 7 do not correlate clearly with either total rainfall
(Fig. 1b) or the relative importance of tropical cyclones in
generating precipitation (Fig. 1c). Further analysis of the role
of regional climate in flood generation may be able to provide
some improvements to predictions, although this is compli-
cated by ongoing climate change and potential changes in the
importance of cyclonic precipitation (Bagtasa, 2017).

5.1.2 Recommended design equations

Neither the addition of further catchment variables (Eq. 6),
nor regionalisation (Table 7) generated significant improve-

ment in the predictive capabilities of the discharge equations.
Hence, it is recommended that single national equations are
utilised. This approach has the advantage of maximising the
size of the data set used in generating the equations, particu-
larly for the largest catchments, where the small sample size
reduces confidence in the predictions in some regions. Re-
gionally grouped equations (Table 7) can provide additional
estimates of flood magnitude that may be helpful in some
cases.

The recommended design equations for Q2, Q10, and
Q100 are those for the whole of the Philippines given in Ta-
ble 5. Using only catchment area, A, will provide usable
flood magnitude estimates, the uncertainty of which can be
estimated from the residual standard errors given in Table 5.
Here, we obtained RMED values from the APHRODITE
database. RMED can be determined in other ways, and the
sensitivity of flood predictions to changing RMED can be as-
sessed directly. Along with catchment area, other catchment
properties that provide information to contextualise the flood
magnitude estimates can be obtained from an open-access
database (Boothroyd et al., 2023). Utilising design equations
based on catchment area alone has the advantage of simplic-
ity of computation, but the relatively low R2 values (Tables 5
and 7) obtained suggest that a simple multivariate regression
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Figure 7. (a) Specific 10 year flood discharge (Q10/A), showing generally higher values in the central Philippines and southern Luzon and
lower values across Mindanao. (b) Residuals (in log10 units) from Philippines-wide (Table 5) equations forQ10. Note the absence of regional
trends, although there are some sub-regional clusters of both positive and negative residuals.

approach offers only partial improvement to the predictive
capability of the equations.

Being derived from a large data set, the design equations
have narrow confidence intervals (Fig. S10). For use as esti-
mators of flood magnitude, prediction intervals are required.
These (Fig. S10) are of 1 order of magnitude either side of
the regression lines, reflecting the scatter in the data (quan-
tified by the standard errors of residuals in Table 5). The
greatest challenge with the Philippines data lies in the rel-
atively short data records and the sparse data from recent
decades. Shorter records are associated with greater uncer-
tainty in growth curve shape (Fischer and Schumann, 2022;
Papalexiou and Koutsoyiannis, 2013) and derived flood es-
timates (Kjeldsen, 2013). The equations in Table 5 can be
analysed to assess the relative importance of catchment area
and rainfall in determining flood magnitudes, with catchment
area being the predominant control. This result suggests that
climate change impacts on rainfall patterns may have rela-
tively small, but potentially locally significant, impacts on

flood magnitude. Other impacts of climate change, for exam-
ple, on vegetation and sediment production rates, may lead
to indirect changes in flood patterns due to changes in sedi-
ment budgets and river mobility (Quick et al., 2025). Further
analysis of the data, including the structure of the predictive
models and the impacts of uncertainties in input data, may
prove informative. However, the combination of data from
different sources and the limitations in some of these data
sets, as explained above in Sects. 2 and 3.2, will constrain
interpretations from uncertainty analysis.

Table 8 shows sample calculations for two sites, one of
which (Agno) has 19 years of annual maxima available,
whereas the other (Sumlog) is ungauged. For Agno, all of
the equations from Tables 5 and 6 produce higher estimates
of Q10 than those from the observations. The reliability of
the predictive equations may be affected by this being one of
the largest catchments in the Philippines. Sumlog is a smaller
catchment for which no data are available. In this case, the
equations provide a smaller range, with the calculations us-
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ing the three regional methods (Table 7) spanning the result
from the national-scale equation using A ·MED in Table 5.

5.2 Comparison with other estimates

5.2.1 Comparison with similar approaches

The previous large-scale study of Philippine flood magnitude
(Meigh, 1995; Meigh et al., 1997) used a smaller data set than
that used here, based mainly on BRS data from before 1980,
and fitted only the general extreme value distribution to the
annual maxima time series. The overlap in data means that
Meigh’s (1995) study cannot be considered to be independent
of the present analysis and so does not provide a validation
of our results. Some comparison between the two studies is
valuable to illustrate the effects of using an expanded data
set and the GLO fitting approach (Fig. 4f). Liongson (2004)
used data from 29 stations and found that Qm = 5.90A0.763

(R2
= 0.65), which is consistent with results in Table 5, as

Qm lies between Q2 and Q10.
Meigh et al. (1997) presented global data although with

an emphasis on tropical regions. Their best-fit equations
contain few variables, often only the catchment area, with
mean annual rainfall as the secondary predictor. Compari-
son of equations between sites revealed the expected over-
all pattern of higher specific discharges in more humid ar-
eas with steeper growth curves in more arid locations that
have more variable rainfall, as also seen in the data of Loe-
bis (2002). The consistency of rainfall across the Philippines
leads to a clear catchment area effect (Fig. 4f) in growth
curves for small (< 25 km2) and large (> 2500 km2) catch-
ments, although using aggregated data shows no differenti-
ation for catchments of intermediate sizes. Individual catch-
ment growth curves show considerable variation within all of
the catchment area bins, suggesting that caution is needed in
using the aggregated curves for predictive purposes at indi-
vidual sites. Figure 4 provides a range of aggregated growth
curves that can be applied according to catchment area and/or
climate type. The differences between the median and mean
curves in Fig. 4 reflect skewness in the growth curve distri-
butions, which is likely to result from the use of relatively
short records, some of which will include long return period
events thus overestimating flood magnitudes. Median curves
(climate type – Fig. 4d; catchment area – Fig. 4e) can be used
in flood estimation, with the associated mean values and in-
terquartile ranges (Fig. 4b and c) giving indications of the
possible variability, and hence, uncertainty, associated with
these estimates.

5.2.2 Comparison with rainfall-runoff modelling

The Philippines “Nationwide Disaster Risk and Exposure
Assessment for Mitigation (DREAM) Program” produced
reports for major Philippine river basins (https://dream.upd.
edu.ph/products/publications/index.html, last access: 19 Oc-

tober 2025), which included flood magnitude estimation. In
the DREAM study, 24 h rainfall events with a range of re-
turn periods were calculated from data, and these events were
then used to model river flows in HEC-HMS 3.5 software.
Comparisons are made using catchment area equations (Ta-
ble 5) forQ10 andQ100 for sites with unambiguous locations
from which DREAM results are reported and for which we
are able to calculate catchment areas.
Q10 and Q100 comparisons (Figs. 8a and S11) cluster

around the 1 : 1 line of agreement. The HEC-HMS estimates
exceed the predictions using catchment area at 27 of 38 sites
for Q10 and at 24 sites for Q100. Mean ratios between HEC-
HMS and predicted values are 1.61 for Q10 and 1.76 for
Q100. The HEC-HMS results are for instantaneous flows,
which will be greater than the predicted daily mean flows,
with the magnitude of this difference depending on hydro-
graph shape and hence catchment size (Fig. 8b). Given the
uncertainties in the data and predictions noted above and the
limited calibration data available for the flood modelling in
the DREAM project, the results shown in Fig. 8 provide con-
fidence in both the HEC-HMS modelling undertaken for the
DREAM project and the catchment area-based predictions
developed herein, although results using both approaches are
subject to significant uncertainty.

5.3 Combining data from multiple sources

Long hydrological time series are not commonly available
worldwide, with particular challenges in developing coun-
tries (Cabrera and Lee, 2020). More usually, short, discon-
tinuous records are available, and the challenge is to make
best use of these to produce regional or national design equa-
tions. Combining data from different sources and over dif-
ferent time periods raises several issues, including changing
data gathering methodologies, climate and land use changes,
and rating curve changes due to relocation of measuring sites
and/or river bed morphological changes. Uncertainty in indi-
vidual measurements was assessed here through careful read-
ing of available metadata and quality control. Comparison of
results from different data sources (e.g. Fig. 5a–c) shows no
statistically significant differences between results from anal-
ysis for each of the data sets, thereby supporting our amalga-
mation of the data from different sources for aggregated anal-
ysis. The metadata available for the early 20th century SWS
data include very detailed site descriptions, rating curves, as-
sessment of site stability, and statements on data reliability
from the authors (Irrigation Division, 1923–1924). Such de-
tails are rarely available, at least in accessible public records,
for more recent data. The SWS reports provide useful in-
sight into the challenges of hydrometric monitoring in the
Philippines, with several sites showing evidence of channel
change and frequent shifts in rating curves. Although beyond
the scope of this paper, such changes in rating behaviour can
be used to assess the impacts of land use and climate changes
on river sediment budgets (e.g. Slater et al., 2015).
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Table 8. Sample calculations for Q10 using equations from Tables 5 and 6. The six Q10 estimates for each site are as follows: Q10 (data)
from annual maxima recorded at the Agno site only; Q10(A) using catchment area only – equation from Table 5; Q10(A ·RMED) using
catchment area and RMED – equation from Table 5; Q10 (GC), Q10 (k-means), and Q10 (Meigh) using equations from Table 6 for selected
groups of Philippine administrative regions. NA – not available.

River Lat. Long. Catchment Philippines RMED Number of
area, A admin. (mm) years of
(km2) region data

Agno 15.81357 120.45855 2432.1 1 185.6 19
Sumlog 6.97505 126.06849 430.0 11 93.55 NA

Q10 Q10 Q10 Q10 Q10 Q10
(data) (A) (A ·RMED) (GC) (k-means) (Meigh)

Agno 1471 1831 2221 3141 3011 3006
Sumlog NA 583.6 412.7 365.0 439.5 247.4

Figure 8. (a) Comparison between Q10 estimates based on catchment area (Table 5) and HEC-HMS estimates from the DREAM project.
The red line shows 1 : 1 equivalence. (b) Effect of catchment area on the ratio between Q10 values from this study and the DREAM HEC-
HMS modelling. The red line indicates equal Q10 values from both methods. DREAM estimates are instantaneous peak flows, whereas the
estimates herein are daily means. As catchment area increases, equivalence between the two methods would show the Q10 ratio increasing
towards 1.0, with lower values in smaller catchments in which flood peaks are shorter than 1 d duration. 95 % prediction intervals are shown
for selected points in (a) to indicate the magnitude of statistical uncertainty in the predictions. These are approximated as±2 SE, where SE is
the regression standard error given in Table 5. Figure S11 presents equivalent results for Q100.

The validity of combining data is difficult to assess di-
rectly. The residuals from predictive curves (Fig. 5c) and
similar disaggregation by data source for other parts of the
analysis herein show no significant differences between data
sources. This absence of evidence of systematic bias between
the data sources supports their aggregation. However, aggre-
gation must be undertaken carefully, with assessment of data
quality and comparability at all stages of the analysis.

5.4 Enhancing the predictions

There are several sources of river flow data for the Philip-
pines that report data in different ways. Using the annual
maximum flood ensures that the largest number of sites can
be included in the data set, but it does lead to valuable in-
formation on other flood peaks, seasonal variation, and event
spacing being overlooked. All available flow data have been

analysed and were inspected during the initial stages of the
work reported herein. For those sites with the longest con-
tinuous flow records, strong seasonality in daily mean flows
is observed, with flood peaks superimposed upon this annual
cycle. This temporal pattern leads to annual maxima occur-
ring at similar times each year, which lends some support
to analysing the maximum value recorded annually in com-
parison with, for example, temperate coastal regions where
flood peaks can occur throughout the year. Further analysis
of the timing of flood peaks and regional variation in growth
curve shapes may improve understanding, as could peak-
over-threshold or other techniques. Once again, it is noted
that the relatively short length of records from the Philip-
pines will constrain the use of these methods and that the
effects of record length on distribution shapes will need to be
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accounted for following Fischer and Schumann (2022) and
Papalexiou and Koutsoyiannis (2013).

Tropical cyclones generate many of the significant floods
in the northern Philippines, where they contribute over 50 %
of total rainfall (Fig. 1; Bagtasa, 2017), but are very infre-
quent south of 10° N. Annual rainfall totals show less vari-
ability (Fig. 1), although rainfall seasonality varies between
climate types. Climate models predict increasing flood mag-
nitudes across the Philippines north of 10° N for nearly all
scenarios, with smaller or no increases predicted in south-
ern regions (Tolentino et al., 2016). Hence, regional assess-
ments that consider cyclone frequency and annual precipi-
tation changes are required to assess the impacts of climate
change on flood magnitude.

The existing flow data base, coupled with geospatial infor-
mation (Boothroyd et al., 2023), can be used for further anal-
ysis. Regional spatially weighted grouping methods (Bocchi-
ola et al., 2003; Griffiths et al., 2020; Muhammad and Lu,
2020) may reveal sub-regional controls over flood magnitude
that could improve predictions. Hydrological similarity be-
tween catchments does not necessarily imply regional prox-
imity. In the Philippines, climatic gradients are observed both
east–west due to topographic influences and north–south as
a result of typhoon locations (Fig. 1). Coupled with topo-
graphic diversity due to the range of island sizes and relief,
a range of hydrological characteristics is expected across the
country. Hence, statistical grouping (e.g. clustering, Fig. 7;
Fischer and Schumann, 2022) of catchments is necessary
to identify hydrologically similar behaviour and provides a
more cost-effective and achievable approach than resource-
intensive rainfall-runoff modelling (Griffiths et al., 2020).
Regional studies from the Philippines have shown the relative
contributions that rainfall and topographic factors make to
flood magnitude (Cabrera and Lee, 2020), and this approach
may be extended nationally.

The methods in this study assume stationarity in the
data time series, which has increasingly been questioned as
the impacts of recent climate change and a range of an-
thropogenic factors on flood properties have been observed
(Kalai et al., 2020; Kundzewicz et al., 2017). Consequently,
approaches that explicitly consider non-stationary time se-
ries (e.g. François et al., 2019; Kalai et al., 2020) are be-
ing developed and refined. The data presented herein may
be analysed using quantile regression (Franco-Villoria et al.,
2019), copula methods (Fuentes et al., 2012), or max-stable
processes (Davison and Gholamrezaee, 2012), in each case
noting assumptions regarding record length that may require
further filtering of the data set. For local studies, incorpo-
ration of additional data into Bayesian models may allow
confidence intervals to be reduced (e.g. Parkes and Demeritt,
2016). Spatially variable responses to changing climate sug-
gest the need for spatio-temporal modelling (e.g. Franco-
Villoria et al., 2019) and regional calibration of predictive
equations (e.g. Griffiths et al., 2020). Our combined data set
will enable some of these analyses to be undertaken in the

Philippines, thereby potentially improving the understanding
and prediction of flood peaks.

6 Conclusions

Collation of historical data from multiple sources is a widely
used technique in climatological and hydrological studies to
extend modern records. Changes to data collection methods,
to the environment in which the data are collected, and to
the ways in which data are recorded and reported all af-
fect the reliability of such consolidated data sets. Here, we
accessed an extensive and well-documented data set from
the early 20th century (SWS data; Irrigation Division, 1923–
1924) that extends annual maximum flood records from the
Philippines. The data set is extended from that analysed by
Meigh (1995), although the results herein are largely consis-
tent with that study. Recent high-quality data on catchment
properties, precipitation, and land use have been added to
the analysis, enabling assessment of a range of controls over
flood magnitude.

Multivariate analysis shows that predictive equations for
floods of recurrence intervals from 2 to 100 years based on
catchment area alone have R2 values no greater than 0.59
but that incorporating RMED, the median annual maximum
1 d rainfall, as a precipitation variable only increases R2 to
between 0.56 for Q100 and 0.66 for Q2. Very few other
variables were significant when added to multiple regression
equations. The relatively low R2 values are typical of stud-
ies from tropical regions, suggesting that the Flood Estima-
tion Handbook approach developed for temperate climates
requires some re-design for application to the tropics. The
equations developed herein are suitable for use as design
equations for the Philippines, but the uncertainties in predic-
tions need to be assessed. This is particularly relevant when
predictingQ100 values for design purposes, as the uncertain-
ties in Q100 estimates are greater than those in estimates of
more frequent floods. Comparison with previous, indepen-
dent, HEC-HMS modelling is encouraging but serves to il-
lustrate the uncertainties in flood magnitude prediction that
remain using either of these methods.

The Philippines exhibits regional climate variability, and
there is some spatial structure in residuals from the predictive
equations. However, region-specific predictive equations do
not perform significantly better than the national equations.

This study demonstrates the potential for combining data
from multiple sources to generate flood magnitude predic-
tions. Combining individually short records, after careful
screening and exclusion of erroneous data, generates large
data sets that can produce consistent results. Enhanced data
gathering and extension of continuous flood records are re-
quired to reduce uncertainties and improve flood forecasting,
but the consistency across the Philippines suggests that ex-
trapolation from a small number of carefully selected catch-
ments could provide nationally reliable predictive equations
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with uncertainties that are considerably reduced from our re-
sults.
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