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Abstract. Forecasting river discharge is essential for disaster
risk reduction and water resource management, but forecasts
of the future river state often contain errors. Post-processing
reduces forecast errors but is usually only applied at the
locations of river gauges, leaving the majority of the river
network uncorrected. Here, we present a data-assimilation-
inspired method for error-correcting ensemble simulations
across gauged and ungauged locations in a post-processing
step. Our new method employs state augmentation within the
framework of the Local Ensemble Transform Kalman Filter
(LETKF). Using the LETKF, an error vector representing the
forecast residual is estimated for each ensemble member. The
LETKF uses ensemble error covariances to spread observa-
tional information from gauged to ungauged locations in a
dynamic and computationally efficient manner. To improve
the efficiency of the LETKF we define new localisation, co-
variance inflation, and initial ensemble generation techniques
that can be easily transferred between modelling systems and
river catchments. We implement and evaluate our new error-
correction method for the entire Rhine-Meuse catchment us-
ing forecasts from the Copernicus Emergency Management
Service’s European Flood Awareness System (EFAS). The
resulting river discharge ensembles are error-corrected at ev-
ery grid box but remain spatially and temporally consistent.
A spatial cross-validation strategy is used to assess the abil-
ity of the method to spread the correction along the river net-
work to ungauged locations. The skill of the ensemble mean

is improved at almost all locations including stations both up-
and downstream of the assimilated observations. Whilst the
ensemble spread is improved at short lead-times, at longer
lead-times the ensemble spread is too large leading to an
underconfident ensemble. In summary, our method success-
fully propagates error information along the river network,
enabling error correction at ungauged locations. This tech-
nique can be used for improved post-event analysis and can
be developed further to post-process operational forecasts
providing more accurate knowledge about the future states
of rivers.

1 Introduction

River discharge forecasts are essential tools for taking effec-
tive preparatory actions for disaster mitigation and water re-
source planning (UNDRR, 2015). However, despite the in-
creased sophistication of forecasting systems over the past
few decades, river discharge forecasts still contain uncer-
tainty (Boelee et al., 2019). The uncertainty is introduced at
several stages of the forecasting system including the me-
teorological forcings, the initial conditions, and the hydro-
logical model structure and parameters (Valdez et al., 2022).
Ensemble river discharge forecasts typically aim to account
for the meteorological uncertainty by forcing a hydrologi-

Published by Copernicus Publications on behalf of the European Geosciences Union.



6158 G. Matthews et al.: Error-correction across gauged and ungauged locations

cal model with many meteorological forcings (Cloke and
Pappenberger, 2009; Wu et al., 2020). However, ensemble
forecasts can still contain biases and errors in the repre-
sentation of uncertainty. Different methods for correcting
these errors have been developed including pre-processing
of the meteorological forcings, calibration of the hydrologi-
cal model, improving the initial conditions using data assim-
ilation, and post-processing of the river discharge forecast
(Bourdin et al., 2012). Of these approaches post-processing
is often considered the most computationally efficient and
its ability to correct for multiple sources of errors simultane-
ously is appealing.

In meteorological forecasting, post-processing at non-
observed locations is common (see Vannitsem et al., 2021).
However, hydrological forecasting requires consideration of
the spatial heterogeneity introduced by the river network
(e.g., Li et al., 2017; Woldemeskel et al., 2018; Ye et al.,
2014; Xu et al., 2019; Liu et al., 2022; Lee and Ahn, 2024)
making hydrological post-processing at ungauged locations a
difficult challenge. The global river gauge network is sparse
(Krabbenhoft et al., 2022), and even in regions where gauges
exist, river discharge data are often not widely shared (Lavers
et al., 2019; Hannah et al., 2011). Therefore, the development
of post-processing techniques for ungauged locations is es-
sential. However, current techniques are generally too com-
putationally expensive for operational river flow forecasting
applications (Emerton et al., 2016). For example, defining
a joint distribution between the river discharge at multiple
locations would allow forecasts to be conditioned on obser-
vations available at specific locations (Engeland and Steins-
land, 2014). However, for large-scale distributed systems and
multiple lead-times the size of the joint distribution quickly
becomes too large. Alternatively, error-correction can be per-
formed at a gauged location and the results interpolated to
ungauged locations. One such method used to interpolate
error-correction parameters is top-kriging (Pugliese et al.,
2018; Skøien et al., 2021). Top-kriging takes into account
the river network but the relationship between errors at dif-
ferent locations is assumed static regardless of the hydrom-
eteorological situation (Skøien et al., 2016, 2006). Another
option is to use a river routing model to propagate error-
corrected river discharge forecasts between gauged locations
(Bennett et al., 2022). Whilst this approach maintains spa-
tial consistency between locations, the additional run of the
model could be computationally expensive for an operational
application.

The aim of this paper is to present and evaluate a
novel technique for spreading observation information from
gauged to ungauged locations in a computationally efficient
and temporally varying manner. The new method is based
on data assimilation techniques. Data assimilation is a math-
ematical technique that combines modelled predictions and
observations to produce a better estimate of the true state of
the river (Nichols, 2003, 2009). Data assimilation is often
used to improve the initial conditions of forecasts (Valdez

et al., 2022). However, in this paper we modify the tech-
niques to apply them in a post-processing environment such
that additional, computationally expensive, executions of the
hydrological model are not required. The error correction
method proposed in this study is based on state augmentation
(Dee, 2005) and the Local Ensemble Transform Kalman Fil-
ter (LETKF, Hunt et al., 2007). State augmentation is a tech-
nique that allows the estimation of the state and parameter-
s/biases of a system simultaneously, and is often used for on-
line bias-estimation in data assimilation (Ridler et al., 2018;
Gharamti and Hoteit, 2014; Smith et al., 2013, 2009; Martin
et al., 2002). The LETKF is part of the Kalman filter family
of methods and uses an ensemble of model states to estimate
the state error covariances. Due to their computational effi-
ciency and ability to handle non-linear dynamics without an
adjoint model, ensemble Kalman filters are common data as-
similation methods in hydrological research (Rouzies et al.,
2024; Li et al., 2023; Mason et al., 2020; Ridler et al., 2018;
Khaki et al., 2017; Xie and Zhang, 2010; Clark et al., 2008).

Whilst many studies have shown the benefits of data as-
similation for hydrological forecasting (Tanguy et al., 2025;
Valdez et al., 2022; Piazzi et al., 2021), the process is rare in
operational systems (Pechlivanidis et al., 2025), particularly
in large-scale systems (Wu et al., 2020). This limited uptake
is partly due to data latency issues (WMO, 2024), time con-
straints, and the potential impact on the interpretation of the
forecasts (e.g., thresholds based on model climatology may
no longer be consistent; Emerton et al., 2016). Additionally,
the benefit of data assimilation at longer lead-times is un-
certain (e.g., Valdez et al., 2022). In this paper, we leverage
key advantages of data assimilation – such as the ability to
propagate observational information to ungauged locations –
within a post-processing framework that is more readily in-
tegrated into operational systems.

The proposed method aims to improve the skill of the en-
semble mean and the reliability of the ensemble spread by ad-
justing each ensemble member, as will be discussed in more
detail in Sect. 2. However, it is equally, if not more, important
that the ensembles are spatially and temporally consistent
in order to aid with decision making (Bennett et al., 2022).
This is particularly important for large scale systems that pro-
vide forecasts across administrative boundaries, such as the
Copernicus Emergency Management Service’s (CEMS) Eu-
ropean Flood Awareness System (EFAS) used in this study
(Matthews et al., 2025). The specific research questions to
be addressed in this study are therefore,

1. Can data assimilation techniques be used in a post-
processing environment to propagate observation infor-
mation to ungauged locations?

2. Are the resulting ensemble predictions of river dis-
charge more skillful than the raw ensemble?

This paper is organised as follows. In Sect. 2 we define the
errors which we aim to correct and introduce some termi-
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nology and notation. In Sect. 3 we describe the data assim-
ilation techniques used within this study. In Sect. 4 we out-
line the proposed error-correction method and detail how the
ensemble is corrected. Section 5 provides some additional
components of the method that improve the efficacy of the
method but which can be adjusted to suit the data availability
of any system and/or domain. Section 6 outlines the strategy
used to evaluate the efficacy of the proposed method. Sec-
tion 7 presents the results, first investigating the impact of
assimilating the observations, and then assessing the skill of
the error-corrected ensembles. In Sect. 8 we discuss key fea-
tures of the proposed method and their impact on the error-
corrected ensembles. In Sect. 9 we conclude that the pro-
posed method successfully improves the skill of the ensem-
ble mean, and highlight priorities for future developments.

Please note that throughout the paper “hindcast ensemble”
refers to the ensembles of river discharge that we are error-
correcting. In this paper, these ensembles are past operational
EFAS forecasts (see Sect. 6.1). However, when we perform
the error-correction we use observations that are available
within the forecast (hindcast) period. Observations are not
available during the forecast period in an operational system,
since these timesteps are in the future. Therefore, we refer to
these river discharge ensembles as hindcasts to indicate that
the ensembles are not valid forecasts.

2 Ensemble error-correction framework

Here, we define the errors which we aim to correct and pro-
vide some notation that is used throughout the paper. Where
possible we follow the standard data assimilation notation
provided in Ide et al. (1997). Let the true state of the system
at time k be defined as xtrue

k ∈ R
n, where each element rep-

resents the true river discharge in one of the n grid boxes in
the domain of interest. Hydrological forecasts generally esti-
mate the true state of the system using a modelled state, de-
noted xk , where the lack of superscript “true” indicates it is a
modelled estimate. In this study, the hydrological ensemble
forecasts consist of N potential realizations of future river
discharge, referred to as ensemble members. We define the
ensemble river discharge hindcasts as{
xk : x

(i)
k , for i = 1,2, . . .,N and k = 0,1, . . .,L

}
. (1)

where the superscript (i) indicates the ith member of the en-
semble, N is the ensemble size, the timestep k refers to the
lead-time of the hindcast, and L is the maximum lead-time.
The ensemble mean is defined as

xk =
1
N

N∑
i=1

x
(i)
k ∈ R

n. (2)

The ensemble perturbation matrix is defined as

Xk =
(
x
(1)
k − xk x

(2)
k − xk · · · x

(N)
k − xk

)
∈ Rn×N (3)

where the ith column represents the ith ensemble member’s
departure from the ensemble mean at lead-time k. The per-
turbation matrix contains information about the spread of the
ensemble and the spatial structure of the deviations of each
ensemble member from the mean. From the definition of the
perturbation matrix, the ensemble covariance matrix is de-
fined as

Pk =
1

N − 1
XkXT

k ∈ R
n×n. (4)

where the superscript “T” indicates the matrix transpose.
In this paper, we propose a method to spread an error-

correction from gauged locations to every grid box in the
domain. The proposed method estimates an additive error
vector for each hindcast ensemble member at each timestep.
Each element of the error vector represents the error associ-
ated with a single grid box in the domain. Collectively, these
error vectors form an ensemble defined as,{
b
(i)
k ∈ R

n for i = 1,2, . . .,N
}

(5)

where N is the same ensemble size as the river discharge
hindcast, n is the number of grid-boxes in the hindcast do-
main, and k is the timestep. The error ensemble mean, bk ,
and the ensemble perturbation matrix, Bk , are calculated by
substituting b(i)k in place of x(i)k in Eqs. (2) and (3), respec-
tively. We assume there is an additive relationship between
each hindcast ensemble member and the corresponding error
vector such that the ith error-corrected ensemble member,
x

new,(i)
k , is defined as

x
new,(i)
k = x

(i)
k + b

(i)
k ∈ R

n. (6)

The estimation of the error ensemble at each timestep is de-
scribed in Sect. 4.

To aid with the estimation of the error vectors, we assume
that at each timestep the system is observed at pk river dis-
charge gauges. We assume the observation vector, yk ∈ Rpk ,
is related to the true state of the system as

yk =Hk(x
true
k )+ εk (7)

where εk ∈ Rpk is a vector of unbiased Gaussian noise with
covariance matrix Rk ∈ Rpk×pk , and Hk ∈ Rpk×n is the lin-
ear observation operator. The observation operator maps the
variables from the state space to observation space. In this
study, the observation operator selects the grid boxes within
the modelled drainage network that correspond to the loca-
tions of the river gauges.

3 Data Assimilation

As discussed in Sect. 1, the proposed method is based on
common data assimilation techniques: state augmentation
and the Local Ensemble Transform Kalman Filter (LETKF).
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In this section, we provide an overview of these techniques
and introduce the necessary equations. In Sect. 4, we adapt
and apply these methods in a non-standard way due to their
application in a post-processing environment.

3.1 State augmentation

State augmentation is a technique used for online bias-
correction in data assimilation that allows the simultaneous
estimation of the system state and biases. An augmented state
is defined by appending the biases to the state vector, allow-
ing both to be updated by the data assimilation method. In
this study, the ith member of the augmented ensemble is de-
fined as

w
(i)
k =

(
x
(i)
k

b
(i)
k

)
∈ R2n. (8)

where x(i) ∈ Rn and b(i) ∈ Rn are the i-th hindcast and error
ensemble members, respectively. The augmented ensemble
mean and perturbation matrix are given by

wk =

(
xk
bk

)
∈ R2n and Wk =

(
Xk
Bk

)
∈ R2n×N (9)

where x and b are the ensemble means of the hindcast and er-
ror ensembles, respectively, and X and B are the perturbation
matrices of the hindcast and error ensembles, respectively.

In this study, state augmentation is used within an LETKF
(described in Sect. 3.2) and it is therefore necessary to de-
fine the evolution of the augmented states between timesteps.
The evolution of the hindcast and error ensembles determines
the evolution of the augmented states. The hindcasts used in
this study were generated using the LISFLOOD hydrolog-
ical model, which is used in the EFAS operational system
(Van Der Knijff et al., 2010). As the true evolution of the er-
ror vectors at all grid-boxes is unknown, we assume a simple
persistence model, such that b(i)k = b

(i)
k−1. This is a common

assumption used in state augmentation (Pauwels et al., 2020;
Ridler et al., 2018; Rasmussen et al., 2016; Martin, 2001).
Based on the independent evolution of the hindcast and error
ensembles, and the additive relationship between their mem-
bers (Eq. 6), we define the propagation of the augmented en-
semble members as

w
(i)
k =

(
Mk−1 Ik−1
0k−1 Ik−1

)(
x
(i)
k−1
b
(i)
k−1

)
=

(
x
(i)
k + b

(i)
k−1

b
(i)
k−1

)
. (10)

where Mk−1 ∈ Rn×n is a linear evolution operator represent-
ing the LISFLOOD hydrological model and Ik−1 ∈ Rn×n is
the identity matrix. Since we use precomputed hindcast en-
sembles the propagation of the hindcast ensemble members
requires no additional computation. The full non-linear LIS-
FLOOD hydrological model is also used without the need to
define a linear approximation.

3.2 Local Ensemble Transform Kalman Filter
(LETKF)

The Local Ensemble Transform Kalman Filter (LETKF;
Hunt et al., 2007) updates the mean state and the perturba-
tion matrix of an ensemble by combining the modelled and
observed data. As a sequential data assimilation method, the
LETKF consists of a propagation step (also known as a fore-
cast step) and an update step (also known as an analysis step)
that are cycled. In this method, we use the LETKF to update
the ensemble of error vectors at each hindcast timestep for
which observations are available. However, we modify the
propagation step to use precomputed hindcasts. The prop-
agation step evolves the augmented states forward in time
from time k− 1 to k, as described in Eq. (10). Rather than
evolve the hindcast ensemble explicitly (which would require
the hydrological model), we use the precomputed hindcast at
timestep k.

The update step of the LETKF calculates the state of the
system at timestep k by combining the modelled augmented
states and observations. Both data are weighted by their re-
spective uncertainties, represented by their covariance matri-
ces. As the LETKF is a well documented method we only
provide the key update equations. For more detailed deriva-
tions, we direct the reader to Hunt et al. (2007) and Livings
et al. (2008). To apply the LETKF to the augmented ensem-
ble, we create a model-observation ensemble with an ensem-
ble mean, yxk , defined as

yxk = (Hk 0)wk =Hkxk +Hkbk−1 (11)

where Hk ∈ Rpk×2n is the observation operator defined in
Eq. (7). The LETKF can then update the augmented ensem-
ble mean, wk , such that,

wa
k = w

f
k +

(
Kxk

Kbk

)
(yk − y

xf
k ), (12)

where the superscripts “f” and “a” indicate the state be-
fore and after the update step, respectively; Kxk ∈ Rn×p and
Kbk ∈ Rn×p are the components of the Kalman gain ma-
trix acting on the hindcast ensemble and the error ensem-
ble respectively; and yk ∈ Rp is the observation vector de-
fined in Eq. (7). The difference between the observations
and the model state in observation space (i.e., yk − y

xf
k )

is called the innovation vector. The Kalman gain matrix
determines the impact of the innovation vector in the up-
date step. The respective uncertainties of the prior modelled
state and the observations determine their weight within the
LETKF. Large observation uncertainties reduce the Kalman
gain, while large uncertainties in the prior state increase the
Kalman gain. Both the hindcast and the error components
of the Kalman gain are functions of the covariance matrix
of the augmented ensemble (see Appendix A; Bell et al.,
2004). The covariance matrix describes the state error co-
variances between grid-boxes allowing the Kalman gain to
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spread the observation information to ungauged locations.
To update the error component specifically, it is the cross-
covariances between the error component and the hindcast
component that control the spread of the observation infor-
mation to ungauged locations (see Eq. 9 in Bell et al., 2004).
This ability to spread the observational information is key to
the error-correction method presented in this study.

The LETKF updates the augmented ensemble perturbation
matrix, Wk , such that,

Wa
k =Wf

kTk (13)

where Tk ∈ RN×N is the square root transform matrix (Liv-
ings et al., 2008). The square root transform matrix is derived
using the Kalman gain matrix which gives the weighting be-
tween the modelled state and the observations (Livings et al.,
2008). Using an eigenvector decomposition, the square root
transform matrix rescales and rotates the ensemble mem-
bers such that the updated perturbation matrix represents the
uncertainty in the updated ensemble mean. The square root
transform matrix allows the covariance matrix of the ensem-
ble to be updated without the need for the covariances to be
explicitly calculated which can be computationally expensive
(Bishop et al., 2001; Hunt et al., 2007). These update equa-
tions are used to update the error component only, as will be
discussed in Sect. 4.1.

4 Spatially consistent error-correction method for
river discharge

In this section, we describe how we use the data assimilation
techniques discussed in Sect. 3, to post-process the hindcasts
across the domain, including at ungauged locations (Fig. 1).
The correction is applied in a post-processing environment,
avoiding the need for additional executions of the hydro-
logical model which can be computationally expensive. In
Sect. 4.1, we describe how the error ensemble is updated at
every timestep. In Sect. 4.2, we describe how the updated er-
ror ensemble is used to error-correct the ensemble. Specific
experimental design choices are discussed in Sect. 5.

4.1 Updating the error ensemble

At each timestep the error ensemble is updated to estimate
the optimal set of error vectors to correct the hindcast at that
timestep. The update is performed using the LETKF defined
in Sect. 3.2. Using the definition of the augmented state in
Eq. (8) the update equations for the error ensemble only are,

b
a
k = b

f
k +Kbk (yk − y

x
k ) (14)

and

Ba
k = Bf

kTk. (15)

As the hindcast component is not explicitly evolved, we as-
sume that the raw hindcast is a good approximation for the

hindcast analysis state if the component were to be updated.
This allows the substitution of the precomputed hindcast in
place of the propagated state at the next timestep. Thus, the
updated mean of the augmented ensemble can be defined as

wa
k =

(
xk

b
a
k

)
∈ R2n. (16)

where xk is the ensemble mean of the raw hindcast ensemble
and b

a
k is the updated error ensemble mean (Eq. 14). The per-

turbation matrix of the updated augmented ensemble follows
a similar pattern such that

Wa
k =

(
Xk
Ba
k

)
. (17)

where Xk is the ensemble perturbation matrix of the raw
hindcast ensemble and Ba

k is the updated error ensemble per-
turbation matrix (Eq. 15). The assumptions made in Eqs. (16)
and (17) make our system sub-optimal from a data assimila-
tion perspective but are necessary to avoid rerunning the hy-
drological model. Importantly, we aim to estimate the error
of the precomputed model output at each lead time. There-
fore, while the lack of state evolution makes the hindcast
component update sub-optimal, the update of the error en-
semble remains mathematically consistent. In this study, we
provide proof-of-concept that the resulting error ensemble
improves the skill of the hindcast (see Sect. 7).

The Kalman filter is not constrained to enforce non-
negativity of the analysis state, and therefore, could lead
to negative discharge values for some grid boxes if the
cross-covariances are incorrectly defined. We enforce non-
negativity by further adjusting the error ensemble members
after the LETKF update step. For any ensemble member and
grid box where the sum of the hindcast discharge and the up-
dated error is negative, we modify the error value so that the
total becomes a small positive value, mitigating the potential
for instabilities caused by zero-values. This small positive
value is sampled from a Gaussian distribution with a mean
of zero and a standard deviation equal to 10 % of the stan-
dard deviation of the updated error ensemble at the grid-box
of interest.

The updated positive-definite augmented states are propa-
gated to the next timestep as defined in Eq. (10). The updated
positive-definite augmented states are also used to error-
correct the hindcast (Sect. 4.2).

4.2 Adjusting the forecast

After the error component of the augmented state has been
updated using Eqs. (14) and (15), and non-negativity has
been enforced (Sect. 4.1), the error ensemble members are
added to the respective hindcast ensemble members such that

x
new,(i)
k = x

(i)
k + b̂

(i)a
k (18)

where xnew,(i)
k and x

(i)
k are the ith ensemble members of

the error-corrected and raw hindcast ensembles, respectively,
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Figure 1. Schematic of the new error-correction method for gauged and ungauged locations. Coloured boxes indicate different components
of the method. An initial error ensemble is created for timestep k = 1 (green box). Then, the error ensemble is augmented to the hindcast
ensemble (purple box). At each timestep the covariance of the augmented ensemble is inflated (cyan box) before being updated using the
LETKF, which uses localisation to improve the results of the update (collectively the orange box). The updated error ensemble is adjusted
to ensure non-negative discharge values (light grey box) before being used to error-correct the hindcast (yellow box). The non-negative error
ensemble is propagated to the next timestep (red arrow). More details are provided for each component in the section indicated in the top left
corner of the corresponding box.

and b̂(i)ak is the error vector associated with the ith error en-
semble member where the caret indicates a non-negativity
check has been applied. Consequently, the error-corrected
hindcast ensemble mean and perturbation matrix are given
by

xnew
k = xk + b̂

a

k (19)

and

Xnew
k = Xk + B̂a

k. (20)

This update results in an additive spread correction matrix,
0k , with the form

0k = XkB̂aT
k + B̂a

kX
T
k + B̂a

kB̂
aT
k (21)

where Xk and B̂a
k are the perturbation matrices of the raw

hindcast and error ensembles, respectively, and the super-
script “T” indicates the matrix transpose (Sect. 5.2 in Martin,
2001). Whilst 0k can be negative it should be noted that the
covariance matrix of the corrected ensemble, Xnew

k Xnew,T
k , is

positive-definite by definition.

5 Experimental implementation

In Sect. 4 we presented a new method of spreading observa-
tion information to ungauged locations in a post-processing
environment based on common data assimilation techniques.
In this section, we describe three key components of the

method – localisation, covariance inflation, and the genera-
tion of the initial error ensemble – which are crucial for its
performance but can be implemented in various ways.

5.1 Localisation

Localisation is used to reduce the effect of spurious corre-
lations which can arise due to sampling errors caused by
the small ensemble size (Hamill et al., 2001; Hunt et al.,
2007). The LETKF uses observation localisation which re-
duces the impact of observations by multiplying the inverse
of the observation-error covariance matrix by a localisation
matrix, ρ ∈ Rpk×pk , such that

R−1
= ρ ◦R−1

nl (22)

where R ∈ Rpk×pk is the localised observation-error covari-
ance matrix used in the LETKF (Sect. 3.2), Rnl ∈ Rpk×pk
is the non-localised observation-error covariance matrix, and
the symbol ◦ indicates the Schur product (also known as the
Hadamard product) which is an element-wise matrix multi-
plication (Golub and Van Loan, 2013). We assume that Rnl
and, by definition, R are diagonal matrices. In this study we
use distance-based localisation so the impact of the multipli-
cation described in Eq. (22) is to increase the effective uncer-
tainty of distant observations and thus decrease their impact
on the analysis state. The impact of the localisation on the
spatial extent of the analysis increments is demonstrated in
Sect. 7.1.

The localisation matrix is defined using the Gaspari-Cohn
function which has a parameter called the localisation length
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scale (Appendix B; Gaspari and Cohn, 1999). The Gaspari-
Cohn function smoothly decreases the weights assigned to
an observation as the distance from the observation location
increases, starting from a value of 1 at the observation lo-
cation and reaching 0 for distances greater than twice the
localisation length scale (pink box, Fig. 1). In this study,
the distance is calculated along the river network which
has been shown to improve the analysis for fluvial applica-
tions (García-Pintado et al., 2015; El Gharamti et al., 2021;
Khaniya et al., 2022). The distance between a grid-box and
the location of an observation is calculated using the local
drainage direction map and the channel length of the hy-
drological model (Choulga et al., 2023). As the distance is
defined along the river network, observations cannot impact
grid-boxes in a different drainage basin.

Sensitivity experiments conducted during the development
of this method found that the optimal length scale varied by
location, lead-time, and tuning metric of choice, but over-
all, the differences were small for length scales from 65 to
786 km (not shown). Therefore, we propose instead for the
localisation length scale to be defined as the maximum dis-
tance between any grid point and its closest observation. This
(1) ensures that all grid boxes are updated in the update step
of the LETKF reducing the potential for discontinuities in the
analysis state, (2) can adapt to changes in the availability of
observations, and (3) can be applied to different domains and
hydrological model configurations without requiring a tuning
experiment.

5.2 Covariance inflation

Small ensemble sizes can cause underestimation of the en-
semble spread, reducing the impact of the observations on
the analysis (Furrer and Bengtsson, 2007). Additionally, we
assume the error ensemble is constant between timesteps
which, while simplifying implementation, could introduce
model errors into the ensemble (Evensen et al., 2022). To
ameliorate these issues, various covariance inflation tech-
niques are often used (Duc et al., 2020; Scheffler et al.,
2022). We implement a heuristic covariance inflation method
inspired by the relaxation-to-prior perturbations technique
(Zhang et al., 2004; Kotsuki et al., 2017). However, as we
are working within a post-processing context, we adapt the
method for use with predefined ensembles (i.e., without
evolving the inflated perturbations between timesteps).

We blend the prior perturbation matrix at k+ 1 with an
estimated perturbation matrix West

k+1 similar to the use of a
climatological covariance matrix in Valler et al. (2019). The
resulting perturbation matrix is given by

Winf
k+1 = (1−α)

(
Mk Ik
0k Ik

)
Wa
k +αWest

k+1 (23)

where α is an inflation parameter to be defined (and the defi-
nition of the matrices Mk and Ik are given in Sect. 3.1). This
blending of matrices introduces both additive and multiplica-

tive inflation. We define West
k+1 as

West
k+1 =

(
Xest
k+1+Best

k+1
Best
k+1

)
. (24)

where Xest
k+1 and Best

k+1 can be estimated separately. When
substituted into Eq. (23), this form of West

k+1 maintains con-
sistency between the hindcast and error components of the
augmented ensemble.

During development, it was found that the estimated ma-
trices must have spatial structures consistent with the river
network and be forecast and lead-time-dependent. For sim-
plicity, and as the raw hindcast perturbations satisfy these
requirements, we set both Xest

k+1 and Best
k+1 equal to the raw

hindcast perturbation matrix (Dee, 2005; Martin et al., 2002).
In future studies, the estimated perturbation matrices could
be defined using alternative models to evolve the analysis
perturbation matrix between timesteps or be climatological
matrices (Valler et al., 2019).

The inflation parameter αk controls the weighting between
the prior and estimated matrices. To account for changing un-
certainty across lead-times and forecasts, we define αk using
a smoothed estimate of the relative change in hindcast en-
semble variance

αk =
1
k

l=k∑
l=k−2

max
{∣∣Tr(Pl)− T r(Pl+1)

∣∣
Tr(Pl)

,1
}

(25)

where k is the current timestep and Tr(Pl) is the trace of the
raw hindcast covariance matrix at timestep l. A maximum
value of 1 is set to avoid instabilities, particularly at short
lead-times where the change in variance between timesteps
can be large. The average over the past three timesteps
is taken to ensure that α is smoothly changing between
timesteps, again to avoid instabilities. This approach of es-
timating α was selected after sensitivity testing (not shown
for brevity), which indicated that the inflation factor must be
both lead-time dependent and forecast dependent. While α
is not spatially varying, it is applied to perturbation matri-
ces with spatial structures consistent with the river network,
ensuring physically plausible ensemble perturbations.

5.3 Initialising the error ensemble for the first timestep

We must define an initial error ensemble to perform the
state augmentation at the first timestep. In a forecast post-
processing environment there is no “warm-up” period in
which a state of equilibrium can be reached, and therefore
the initial error ensemble must be physically plausible. Here,
the initial error ensemble is defined using three sets of river
discharge data: in-situ observations, simulations created by
forcing a hydrological model with meteorological observa-
tions, and the ensemble mean and ensemble perturbation ma-
trix of a single lead-time from a previous hindcast. A single
ensemble is generated for the full EFAS domain, from which
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the elements associated with the domain of interest (in this
study the Rhine-Meuse catchment) are extracted.

The estimation has two main steps: estimating the mean
error and generating the perturbations around that mean. The
ensemble mean is intended to capture biases in the hydrolog-
ical model at the initial time. It is computed as follows:

1. Calculate the errors at gauged locations. For each river
gauge location, we calculate the average relative error
between observed and simulated river discharge over
the past 10 d. To limit the influence of outliers or rep-
resentation errors, these errors are capped at ±100 %.

2. Interpolate the errors to ungauged locations. Using in-
verse distance weighting, we interpolate the errors from
gauged to ungauged locations. The value at each grid-
box is a weighted average of relative errors from the
100 nearest stations, with closer stations given more in-
fluence (Lu and Wong, 2008). All available stations, in-
cluding those outside the catchment of interest, are used
in this calculation to capture spatial variability.

3. Impose the river network structure. The interpolated er-
ror field is then multiplied by the simulated river dis-
charge values at each grid point. This enforces the spa-
tial structure of the river network, ensuring errors are
proportional to the size of the river.

Since the true error covariance is unknown, we assume a rea-
sonable estimate can be derived from a previous river dis-
charge ensemble forecast as follows:

1. Calculate the ensemble statistics. We calculate the en-
semble mean and perturbation matrix from the second
lead-time of a hindcast issued 2 d prior. This choice
avoids unrealistically low spread often seen at the first
lead-time due to a single set of initial conditions.

2. Inflate the covariance matrix. The perturbation matrix
is adjusted by calculating the error of the hindcast en-
semble mean at each grid-box relative to a simulation
forced by meteorological observations. This provides a
set of scaling factors used to inflate the perturbation ma-
trix. To avoid underestimating uncertainty, we impose a
minimum threshold on the resulting standard deviation
of 10 % of the local simulated river discharge.

The resulting error ensemble mean and perturbations define
the initial ensemble, which is then updated using the LETKF
with state augmentation, as described in Sect. 4.1.

6 Evaluation strategy

6.1 European Flood Awareness System (EFAS)

The hindcasts used in this study were produced by the
European Flood Awareness System (EFAS) as operational

forecasts (Barnard et al., 2020). EFAS is part of the Early
Warning component of the European Commission’s Coper-
nicus Emergency Management Service (CEMS), and aims
to provide complementary forecast information to hydro-
meteorological services throughout Europe (Matthews et al.,
2025). EFAS streamflow forecasts are produced by forcing
a calibrated hydrological model, LISFLOOD (De Roo et al.,
2000; Van Der Knijff et al., 2010; Arnal et al., 2019), with
the output from meteorological numerical weather predic-
tion (NWP) systems. Whilst the operational EFAS system is
a multi-model system with four sets of meteorological forc-
ings, we focus only on the medium-range river discharge
forecasts generated with meteorological forcings from the
51-member medium-range ensemble from the European
Center for Medium-range Weather Forecasts (ECMWF) due
to its large ensemble size. The meteorological forcings are
interpolated to the EFAS grid. A single set of initial hydro-
logical conditions is used for all ensemble members often
leading to small ensemble spreads at short lead-times. The
spread then increases as the different meteorological forc-
ings propagate through the system. No data assimilation is
performed in the generation of the initial hydrological condi-
tions. Instead, the LISFLOOD hydrological model is forced
with meteorological observations (and meteorological fore-
casts when observations are not available) to generate the
initial conditions (Smith et al., 2016).

As an operational system, EFAS is constantly evolving.
For the evaluation presented here we use EFAS version 4
(operational from 14 October 2020 to 20 September 2023)
aggregated to daily timesteps with a maximum lead-time
of 15 d. The ensembles have 51 members and predict the
average river discharge for each timestep for each grid-
box within the domain. The hindcasts have a spatial reso-
lution of 5 km× 5 km with a ETRS89 Lambert Azimuthal
Equal Area Coordinate Reference System. Hindcasts from
the 00:00 UTC daily cycle are used resulting in a total of 365
hindcasts used in the evaluation.

6.2 Rhine-Meuse catchment

The Rhine-Meuse catchment has a drainage area of
195 300 km2, a channel length of about 38 370 km in EFAS,
and consists of 7812 grid-boxes. It is the 5th largest catch-
ment in EFAS. The Rhine river originates in the Swiss Alps,
flows through the Central Uplands and the North European
Plain, before finally discharging into the North Sea. The
Meuse river originates from the Langres Plateau in France,
flows through the Ardennes Massif and the low-lying plains
of the Netherlands, before merging with the Rhine and enter-
ing the North Sea. The catchment consists of rivers of differ-
ent sizes, topologies, and levels of human influence, making
it an ideal test catchment to see how the method deals with
changes along the river network.
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6.3 Observations

The Rhine-Meuse catchment has a dense river gauging sta-
tion network. The main set of observations used in this
study are daily river discharge observations from 89 stations
across the Rhine-Meuse catchment for the time period from
21 December 2020 to 15 January 2022. The minimum value
across the stations is < 1 m3 s−1 and the maximum value is
7663 m3 s−1. These observations were assimilated as part of
the error-correction method to update the error ensemble and
used in the evaluation of the corrected forecasts (Sect. 6.4 de-
scribes the cross-validation approach used). Whilst the error-
correction method can adapt to missing observations, these
89 stations were selected as they have no missing data for
the time period of interest allowing this analysis to focus on
the spread of observational information to ungauged loca-
tions. The maximum distance between any grid-box and the
closest of the 89 stations is 262 km which is set as our local-
isation length scale (cut-off distance is therefore 524 km; see
Sect. 5.1). In addition to these stations, all available observa-
tions from across Europe were used to generate the initial er-
ror ensembles (total 505 stations). All river discharge obser-
vations were provided by local and national authorities and
collated by the CEMS Hydrological Data Collection Cen-
tre (see https://confluence.ecmwf.int/display/CEMS/EFAS+
contributors, last access: 1 October 2025).

The construction of the non-localised observation error co-
variance matrix, Rnl

k , is a key component of all data assimi-
lation methods. The matrix describes the uncertainty asso-
ciated with each observation (defined in Eq. 7). This uncer-
tainty arises due to instrument uncertainty, observation pro-
cessing, observation operator error and scale mismatch be-
tween the observations and the model resolution (Janjić et al.,
2018). The matrix also describes the correlation between er-
rors of different observations (Stewart et al., 2013; Fowler
et al., 2018). In this study, we assume that the observation
errors from different gauge stations are uncorrelated such
that Rnl

k is a diagonal matrix with all off-diagonal elements
set to 0. Observation errors are also assumed to be uncorre-
lated with the prior errors, which is a standard assumption in
data assimilation (Janjić et al., 2018). We estimate the stan-
dard deviation of the observation errors as 10 % of the ob-
servation magnitude (Refsgaard et al., 2006; McMillan et al.,
2018, 2012).

In the leave-one-out verification experiments (see
Sect. 6.4) we use the observations from the non-assimilated
station as validation data and assume they are the truth with
no errors.

6.4 Experiments

We use three experimental schemes to investigate the effect
that the error-correction scheme has on the ensemble hind-
casts.

1. Single station experiments. Only observations from one
of the 89 stations are assimilated when estimating the
error-vector. All available observations are used in the
generation of the initial error ensemble. These experi-
ments allow the impact of an observation to be identi-
fied and allow the effects of localisation to be explored.

2. All station experiments. Observations from all stations
are assimilated when estimating the error-vector and
used in the generation of the initial error ensemble.
These experiments allow the complete method to be as-
sessed and for any spatiotemporal inconsistencies to be
identified.

3. Leave-one-out experiments. Observations are withheld
from one of the 89 stations and are not assimilated when
estimating the error-vector nor used in the generation of
the initial error ensemble. This cross-validation frame-
work allows the skill of the adjusted hindcasts to be as-
sessed at the locations of stations as if they were un-
gauged locations. To avoid confusion, we refer to with-
held sites as “proxy-ungauged” when comparing the
corrected ensemble to observations. This distinction ap-
plies only in the evaluation context; from the perspec-
tive of error correction, these locations are treated as
ungauged.

Each experimental scheme is applied to all hindcasts from
1 January 2021 to 31 December 2021. However, for brevity,
for the single station and all station experiments we only
discuss two hindcasts: 7 July 2021 and 8 October 2021.
These dates represent high and normal flow conditions, re-
spectively, allowing the ability of the method to be assessed
for different circumstances.

6.5 Evaluation metrics

The following metrics are used to investigate the skill of the
error-corrected hindcast ensemble mean and the reliability of
the ensemble spread.

For the ensemble mean, the three components of the modi-
fied Kling-Gupta Efficiency: correlation, mean bias, and vari-
ability bias are used to assess different types of errors within
the ensemble mean (Kling et al., 2012; Gupta et al., 2009).
Pearson’s correlation coefficient measures the linear relation-
ship between the simulated timeseries and the observations
indicating timing errors (score range [−1,1]). The mean bias
given by the ratio between the mean of the simulated time-
series and mean of the observations indicates whether the
flow is consistently over or under-estimated (score range
(−∞,+∞)). The variability bias given by the ratio between
the coefficient of variation of the simulation and the coeffi-
cient of variation of the observations indicates whether the
variability in the flow is consistently over or under-estimated
(score range (−∞,+∞)). All three components have a per-
fect score of 1. Additionally, to investigate whether the mag-
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nitude of the forecast mean error is reduced by the proposed
method we use the Normalised Root Mean Square Error (N-
RMSE Hodson, 2022; Jackson et al., 2019). The metric is
normalised by dividing the RMSE by the mean of the ob-
servations for that station. Normalising the metric makes the
scores at different stations comparable. The N-RMSE has a
perfect score of 0.

To analyse the reliability of the spread of the ensemble
forecast we use the rank histogram (Harrison et al., 1995; An-
derson, 1996; Hamill and Colucci, 1997; Talagrand, 1999).
To generate the histogram the rank of the observation rela-
tive to the sorted ensemble values is calculated for each hind-
cast. The frequencies with which the observation has a rank
from 1 to M + 1 are plotted as a histogram. The shape of the
histogram provides information about the reliability of the
ensemble spread and bias of the ensemble (Hamill, 2001).

7 Results

In this section, we discuss the efficacy of the proposed error-
correction method. In Sect. 7.1, we discuss how observation
information is propagated along the river network and, in par-
ticular, we explore how the method reacts to different flow
scenarios, both spatially and across different lead-times. In
Sect. 7.2, we evaluate the skill of the resulting error-corrected
ensembles in terms of their means and distributions.

7.1 How is observation information propagated along
the river network?

7.1.1 Spatial propagation of the observation
information

Here, we investigate how the observation information is
propagated spatially from gauged locations to ungauged lo-
cations. We investigate the analysis increments of the mean
– the difference between the ensemble mean before and af-
ter the update step (term 2 in Eq. 14) – for single-station and
all-station experiments (Fig. 2). Specifically, we focus on the
single-station experiments for the Bonn station on the Rhine
and the Uckange station on the Moselle. To investigate the
impact of different flow scenarios, we study the hindcasts
generated on 8 October 2021 (upper panels) and 7 July 2021
(lower panels), which represent normal and high flow scenar-
ios, respectively.

In Fig. 2, the shaded regions show the parts of the catch-
ment that are outside the localisation region for the assimi-
lated observation. The number of grid-boxes within the lo-
calisation regions of the Bonn and Uckange stations differ
because the distance is calculated along the river network
and the channel length within each grid box is not con-
stant (4662 grid boxes and 2451 grid boxes, respectively).
Increasing (decreasing) the localisation length scale results
in a more (less) gradual dampening of the analysis incre-
ments and more (fewer) grid-boxes being impacted by a sin-

gle observation (not shown). The square markers indicate
the innovation – the difference between the observation and
the error-corrected ensemble mean prior to the update step
(Fig. 2). Ideally, the analysis increment (background colour
in Fig. 2) should reflect similar spatial behavior to the inno-
vations within the localisation region. This would imply the
ensemble is being adjusted towards the observations at each
station.

For the October experiment, the innovation at Bonn is neg-
ative and results in negative analysis increments across the
domain (Fig. 2a). For the Uckange experiment, the innova-
tion is positive and the analysis increments are also all pos-
itive (Fig. 2b) indicating positive ensemble covariances. For
both experiments, the analysis increments match the sign of
the innovations at neighbouring stations (Fig. 2a and b), but
at greater distances this is not the case. For example, the inno-
vations along the Rhine in the Uckange experiment are neg-
ative whilst the analysis increments are positive.

The localisation implemented in this study allows the as-
similated observations to influence the error ensemble both
up- and downstream, although the influence is dampened at
longer distances. We here discuss whether this choice of im-
plementation is useful by studying the spatial patterns of the
innovations. Focusing first on the Bonn experiment for Oc-
tober (Fig. 2a), we see that downstream (north) of the assim-
ilated observations the innovations can be both positive and
negative. Upstream of the assimilated observation the inno-
vations are negative, matching the innovation at the Bonn sta-
tion. The assimilation of the observation at Bonn is therefore
primarily beneficial upstream, with some benefit also seen at
specific locations downstream. For the Uckange experiment
(Fig. 2b), the pattern is reversed with downstream innova-
tions showing more consistency with the innovation at the
assimilated location. The inconsistent spatial patterns could
be because, in the LETKF, we update the errors rather than
the river discharge directly. The errors are dependent not only
on the observed hydrological conditions but also the model
structure and configuration. The spatial structure of the errors
may therefore extend both up- and downstream. For exam-
ple, if the drainage area within an upstream grid-box is over-
estimated due to the hydrological model spatial resolution,
all grid-boxes downstream will be impacted by that overes-
timation. The benefit, in terms of consistency between the
innovations and analysis increments, that is seen both up and
downstream suggests that the localisation implementation is
appropriate. However, we note that there may be additional
factors other than distance, that could be included in the lo-
calisation to better modulate the observation influence (e.g.,
river confluences, regulation, or river size).

In the July experiments, we see that the innovations both
up and downstream of the assimilated observations are posi-
tive, matching the innovations at the Bonn and Uckange sta-
tions, respectively. For the July experiment, the innovations
are spatially homogeneous for greater distances along the
river network (Fig. 2d and e). This indicates a greater spa-
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Figure 2. Analysis increments of the mean for a lead-time of 9 d for single station (a, b, d, e) and all station (c, f) experiments for the
hindcasts generated on 8 October 2021 (upper panels) and 7 July 2021 (lower panels). Assimilated stations for the single station experiments
(cyan outline) are the Bonn station on the Rhine (a, d) and the Uckange station on the Moselle (b, e). The shaded region of the catchment is
outside the localisation length of the assimilated station. Markers show the innovation at all stations. Catchment area: 195 300 km2. Panel g
shows the Rhine-Meuse catchment and highlights the rivers and stations discussed within this section.

tial correlation length, likely due to the low-pressure system
which covered large parts of the west of the catchment dur-
ing this period (Mohr et al., 2023). The different correlation
scales suggest that an adaptive localisation length scale may
be beneficial.

The spatial heterogeneity for the October experiments sug-
gests that assimilating a single observation cannot correct the
entire domain. However, when all observation are assimi-
lated the analysis increments vary across the domain, demon-
strating the method’s ability to adapt to the errors on different
stretches of the river. In both all-station experiments (Fig. 2c
and f), the analysis increments vary smoothly along the river
network, which suggests the error-corrected ensemble will
also change gradually. This is important because it ensures
the hindcasts remain spatially consistent, with no abrupt tran-
sitions between adjacent grid boxes.

In general, for the July experiment, small rivers exhibit
larger increments than in the October experiment. This in-
dicates the assimilated observations have a greater impact
across more of the domain. For October, the assimilation of
an observation at Bonn results in the largest analysis incre-
ments near the observation location, with the increments di-
minishing to zero at distances greater than 524 km due to lo-
calisation (Fig. 2a). Interestingly, in the Uckange experiment,
the largest increments occur not near the station, but along
the Rhine near the confluence with the Moselle (Fig. 2b). In
both experiments, the increments tend to be larger along big-

ger rivers, with smaller rivers showing smaller increments.
This occurs due to large ensemble covariances between the
location of the assimilated observation and locations along
the bigger rivers (Fig. 3).

The spreading of observational information along the river
network is dictated by the cross-covariances of the aug-
mented ensemble prior to the update step. The magnitude
of the cross-covariance between two locations depends on
the correlation between the locations and the ensemble vari-
ance at both locations. The correlation between the location
of the Uckange station and any grid-box is highest along the
same river stretch (the Moselle) and decreases at longer dis-
tances from the station (Fig. 3a). Nearby grid boxes that are
not on the same river stretch have lower correlations in gen-
eral (Fig. 3a and b). Downstream from the Uckange station
the correlation is highest along the Moselle and downstream
along the Rhine. On the other hand, the correlation upstream
is more uniform across the grid-boxes (Fig. 3b). Whilst there
are regions in the south of the catchment for which the cor-
relation is small, in general there is a correlation of around
0.3 even with distant locations (Fig. 3b). This is likely spu-
rious correlation and exemplifies the need for localisation.
The correlations begin to rise again at longer distances due
to grid-boxes that are geographically close to the station but
the distance along the river network is large, such as the
Meuse (Fig. 3b). Note that the similarity between the locali-
sation length scale (dashed line) and the distance between the
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Figure 3. Ensemble correlations (upper panels) and cross-covariances (lower panels) between the error ensemble and the hindcast component
of the augmented ensemble averaged across all all-station experiments. (a) Map of the correlation between the Uckange station and all other
grid-boxes and (c) the same for the cross-covariances. (b) Scatter plot of the correlation between the Uckange station and all other grid-boxes
and (d) the same for the cross-covariances. Grid-boxes on rivers discussed in the text are broadly indicated by the arrows. Dashed black line
shows the localisation length scale and the solid black line shows the effective cut-off point beyond which the observation has no impact.

Uckange station and grid-boxes on the Rhine (change from
a Strahler order of 5 to 6) is coincidental but does suggest
that the method for defining the localisation length scale is
capable of capturing the order of magnitude of the relevant
spatial scales for the Rhine catchment.

Despite lower correlations, the magnitude of the cross-
covariances are larger along the Rhine than for grid-boxes
closer to the Uckange station on the Moselle (Fig. 3c). Whilst
the correlation is dependent on distance, the magnitude of the
cross-covariances is primarily dependent on the size of the
river (note the horizontal bands of Strahler orders (a mea-
sure of stream size where larger orders indicate larger rivers
Strahler, 1957) in Fig. 3d). Larger cross-covariances can lead
to larger analysis increments as can be seen in Fig. 2b where
the analysis increments along the Rhine are larger than those
along parts of the Moselle. Localisation enforces a depen-
dence on distance such that observations have less impact on
large rivers very far from the station but this may not out-
weigh the larger cross-covariances.

7.1.2 Lead-time dependence of the analysis increments

Here, we investigate how the impact of assimilating observa-
tions changes over different lead-times. Figure 4 shows the
trajectories of the three intermediate ensembles used in the
LETKF for the 7 July hindcast for a single-station experi-

ment where observations are assimilated at the Uckange sta-
tion: the raw hindcast (left columns), the hindcast component
of the augmented ensemble (middle columns), and the error
component of the augmented ensemble (right columns). It
should be noted that none of these ensembles are the final
error-corrected ensemble but intermediate ensembles used in
the LETKF. The lower panels show the trajectories at the
Bonn station for which no observations are assimilated dur-
ing this experiment. By plotting the raw hindcast trajectories
and the observations we can visualise the errors to be es-
timated. We can see that for both stations the error of the
hindcast mean is negative (observations are smaller than the
hindcast mean) for lead-times up to 8 d, and positive at longer
lead-times. Whilst this behaviour is similar for the Bonn sta-
tion, the magnitude of the error is different by a factor of 10
at most lead-times.

The middle column of Fig. 4 shows the hindcast com-
ponent of the augmented ensemble. To propagate this com-
ponent between time steps without rerunning a hydrologi-
cal model, we assume that the raw hindcast is a reasonable
approximation of the analysis state (discussed in Sect. 4.1).
As expected, this assumption results in a sub-optimal ensem-
ble mean estimate. For example, at lead times beyond 10 d
at Uckange, the update moves the ensemble mean further
from the observations (Fig. 4b), and a similar effect is seen
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Figure 4. Ensemble trajectories for a single station experiment for the hindcast generated on 7 July 2021 for the location of the assimilated
observation (Uckange station on the Moselle; panels a–c) and a location where an observations is not assimilated (Bonn station on the Rhine;
panels d–f). The plots show the trajectory of all members and the ensemble mean of the raw hindcast ensemble (left panels), the hindcast
component of the augmented ensemble (middle panels), and the error ensemble members (right panels; different y axis scale). Markers show
the river discharge observations (a, b, d, e), and the error of the raw hindcast mean (c, f).

at Bonn (Fig. 4e). Also by using the precomputed ensem-
ble, the assimilated observations do not update the ensemble
perturbations; although the perturbations do change between
lead-times as the precomputed ensemble is lead-time depen-
dent. This assumption ensures the analysis hindcast compo-
nent is always physically plausible (e.g., the river discharge
is always positive as this is a constraint within LISFLOOD),
and provides a reasonable estimate of the uncertainty as the
raw hindcast is generated using the output from an ensemble
NWP. Additionally, at each timestep we aim to correct the
raw hindcast, therefore this assumption provides consistency
between the hindcast component and the error component of
the augmented ensemble.

It is the error ensemble that is most important for our
application (Fig. 4c and f). Despite the non-optimal forma-
tion of the analysis augmented ensemble, the error ensem-
bles are updated beneficially, with the analysis error ensem-
ble mean moving closer to the error of the raw hindcast mean
(i.e., the difference between observations and the hindcast
mean) at each lead-time for the assimilated location (Fig. 4c)
and the non-assimilated location (Fig. 4f). At short lead-
times, the updates to the error ensemble at the Bonn sta-
tion do not appear to be beneficial (Fig. 4f). However, as
this experiment only assimilates observations from one sta-
tion this discussion should be considered a demonstration
of how the method updates ungauged locations rather than
an evaluation of the error-corrected ensemble (which is pro-

vided in Sect. 7.2). First we note that the updates at the as-
similated location do not result in the error ensemble mean
(dark blue line) matching the error of the mean (markers).
This is expected and is due to the consideration of the ob-
servational uncertainty within the LETKF. This ensures spa-
tial consistency across assimilated and non-assimilated loca-
tions, whilst combining the modelled and observed data to
estimate the true state of the system across the domain.

The error ensemble is narrow after the update step and it
is the covariance inflation that increases the spread between
time steps. The spread of the hindcast is due to meteoro-
logical forcings, predominantly precipitation. Therefore, in
general, the hindcast spread is larger for longer lead-times
as the precipitation forecasts become more uncertain. Since
the covariance inflation technique presented here results in
the blending of the hindcast perturbation matrix with the er-
ror ensemble from the previous timestep, this behaviour in
the hindcast spread is transferred to the error ensemble. As
demonstrated in Fig. 4c and f, this can result in the error en-
semble spread being large for the rising limb of an event and
smaller for the falling limb. This can result in the error not
being updated sufficiently and the spread of the analysis state
being too narrow, as seen after the peak in Fig. 4c and dis-
cussed later along with Fig. 5b.
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7.2 How skillful are the error-corrected ensemble
hindcasts?

In this section, we investigate whether the updated ensem-
ble is more skillful than the raw hindcast ensemble. Using
leave-one-out experiments we evaluate the ensemble mean
and ensemble spread at proxy-ungauged locations. The hy-
drographs in Fig. 5 show the raw and error-corrected ensem-
bles for three proxy-ungauged locations from the leave-one-
out experiments. The hydrographs are used to illustrate the
method’s ability to correct the ensemble and some of the lim-
itations.

7.2.1 Skill of the ensemble mean

To investigate the skill of the ensemble mean we calculate the
correlation, mean bias, variability bias and the N-RMSE for
each station and each lead-time. Figure 6 compares the skill
of the ensemble means of the raw and the error-corrected en-
sembles focusing on the spatial dependency of the skill (a–d),
and the lead-time dependency of the skill (e–h).

The error-corrected ensemble means show a stronger cor-
relation with observations than the raw hindcast ensemble
means, with an average increase from 0.82 to 0.92 (not
shown). Figure 5a shows an example of how the error-
corrected ensemble can better capture the dynamics of the
river discharge resulting in an increased correlation. It can
be seen that the resulting ensemble is temporally consistent
(i.e., does not have improbable changes between time steps).
The correlation is worsened compared to the raw hindcast
ensemble at four stations (Fig. 6a). Focusing on the two most
southern of these stations, we see that the correlation val-
ues of the raw ensembles at nearby stations are very differ-
ent compared to the correlation at the two stations of interest
(note the much lighter colours for nearby stations; Fig. 6a).
The ensemble covariances are not capturing this change in
regime correctly so the observational information is not be-
ing advantageously spread between these rivers. The remain-
ing two stations that have degraded correlation are the most
upstream stations on their rivers. At these stations the updates
made to the error-corrected ensemble are dependent on ob-
servations assimilated downstream. The assimilated observa-
tions are therefore providing information about a past state of
the river upstream which could be the cause of the decreased
correlation (a measure of timing errors) at these upstream
stations. Whilst most upstream stations are improved by the
error-correction method, stations which have much smaller
upstream areas than their closest downstream station tend to
be improved less than those that have a similar upstream area,
particularly if the distance to the neighboring station is large.

Just over half of the stations (47) show improvement in
the mean bias averaged across all lead times (Fig. 6b), but
no clear spatial pattern emerges, as most rivers have a mix
of improved and worsened stations. This spatial heterogene-
ity is also seen in the raw hindcast ensemble, with stations

on the same river stretch often showing different biases. For
example, stations on the Neckar and upstream of the Meuse
show stations that are under- and overestimated, as well as
stations with very little bias. The heterogeneity suggests lo-
cal factors, which are not fully captured in the hydrological
model, considerably influence flow bias. Stations showing
the most improvement tend to have similar mean bias values
to their neighboring stations in the raw hindcast ensemble,
such as on the middle stretch of the Meuse, where four sta-
tions with similar biases show improvement (Fig. 6b). Spa-
tial patterns of errors that are related to domain-wide model
structure rather than local factors, such as weirs, are more
likely to be portrayed by the ensemble covariances allowing
observational information to be more helpfully spread along
the river network.

The raw hindcast ensemble mean generally underesti-
mates flow variability, with a variability bias below 1 (red
in Fig. 6c). The error-corrected ensemble improves this, al-
though there is an increase in the frequency of overestimation
of the flow variability. Stations where the error-corrected en-
semble overestimates the variability are often the most up-
stream station on their rivers (e.g., Plochingen station on the
Neckar) or are closer to downstream neighbours (e.g., Chooz
station on the Meuse). This suggests the hindcast covariances
between downstream stations and upstream locations are too
large, causing excessive adjustment at upstream locations.
Ten stations show worsened variability bias, including two
stations downstream on the Rhine (Fig. 6h). For the two sta-
tions on the Rhine, the degradation is caused by the forecasts
of the falling limb of a flood peak in July (Fig. 5b). Here,
the hindcast uncertainty was very small at short lead-times,
causing the analysis to ignore observations, leaving the error
ensemble relatively unchanged, despite changes in the error
behaviour after the peak (also shown in Fig. 4f).

Overall, the error-corrected ensemble reduces the N-
RMSE but there are 14 stations where the skill is reduced.
Typically, these stations are on the upstream reaches of their
respective rivers (Fig. 6d; see discussion on correlation). In-
terestingly, the N-RMSE does not follow the same spatial
pattern as the mean bias. This divergence indicates that the
correction method is more effective at reducing large errors
than at addressing systematic biases. One possible explana-
tion is that the error vectors adjust too slowly to changes
in forecast errors between time steps. This slow adjust-
ment is particularly problematic when errors fluctuate around
0 m3 s−1, since alternating positive and negative deviations
may not be corrected quickly enough and can accumulate
into a worsening mean bias. When the error magnitude is
large, the gradual adjustment is less detrimental because the
sign of the error is usually captured correctly even if its mag-
nitude is not. However, at upstream stations, where rivers are
smaller and respond more quickly to rainfall, large errors of-
ten persist for shorter durations, making the slow adjustment
of the error vectors more detrimental. This likely contributes
to the increase in N-RMSE observed at these upstream sta-
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Figure 5. Raw and error-corrected hydrographs for proxy-ungauged locations in leave-one-out experiments at the Rees station on the Rhine
(upstream area: 159 320 km3) and the Mainleus station on the Main (upstream area: 1164 km3). Catchment illustrations indicate the location
of the station (see Fig. 2 for river names and scale).

tions. Further development of the method – for example, al-
lowing the error vectors to evolve during the propagation step
of the LETKF in addition to the update step – could enable
faster adaptation to changing forecast errors.

The raw and error-corrected ensemble means both de-
crease in skill in terms of correlation, variability bias, and
N-RMSE with increasing lead-times. The raw hindcast en-
semble loses skill more quickly in particular for lead-times
longer than 5 d (Fig. 6e–h). The uncertainty in the observa-
tions is not lead-time dependent. However, Fig. 3d shows that
the ensemble covariances do change across lead-times, in-
creasing for longer lead-times. The greater gain in skill for
longer lead-times is likely due to larger covariances allow-
ing the observations to have more influence (e.g., in Fig. 5b).
However, the decrease in skill of the error-corrected ensem-
ble means at longer lead-times suggests that the ensemble
covariances are not as accurate at longer lead-times.

7.2.2 Skill of the ensemble distribution

The reliability of the ensemble distribution is assessed us-
ing rank histograms at different lead times (Fig. 7). At short
lead times, the raw hindcast ensemble is underdispersed, due
to the use of a single set of initial conditions (Fig. 7a). Al-
though the error-corrected ensemble shows slight improve-
ment, it remains overconfident with minimal correction to
the spread. Both the raw and error-corrected ensembles gen-
erally appear unbiased, with observations falling both above
and below the ensemble predictions at similar frequencies.
However, some bias may be masked by the narrow ensemble
spread as it is known that some stations are biased (Fig. 6b),
likely contributing to the peaks at ranks 0 and 51 in the rank
histograms.

As the lead-time increases, the spread of both ensembles
becomes more reliable, and fewer observations fall outside
the ensemble (Fig. 7b). However, even at a 15 d lead time,
both ensembles show a tendency to overestimate observa-
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Figure 6. Skill of the ensemble means in terms of the correlation (a, e), mean bias (b, f), variability bias (c, g) and normalised root mean
square error (N-RMSE; d, h). The catchment maps show the metric averaged across all lead-times at all 89 stations (a–d). The left (right)
half of the markers show the skill for the raw (error-corrected) ensemble. Black outlines indicate stations for which the updated ensemble has
worse skill than the raw hindcast ensemble (Correlation: 4/89, Mean bias: 42/89, Variability bias: 10/89, N-RMSE: 14/89). Line plots show
the distribution of the metric pooled over all 89 stations for each lead-time for the raw (orange) and error-corrected (purple) ensembles (e–h).
The solid line shows the median value of the metric and the shaded region shows the interquartile range (IQR) of the metric. A perfect score
for the metric is shown by the dashed black line.

Figure 7. Reliability of the ensemble. Histograms show the rank of the ensemble pooled over all forecasts and stations for lead-times of
1 d (a), 7 d (b), and 15 d (c).

tions, leading to a peak at rank 0, mostly due to a few stations
consistently overestimating flow (Fig. 6b). Up to 7 d lead
times, the rank histograms for both raw and error-corrected
ensembles show similar shapes. Beyond 7 d, the raw hindcast
ensemble’s histogram flattens, suggesting a reliable ensem-
ble, while the error-corrected ensemble shows a peak around
ranks 25–35, suggesting overdispersion (Fig. 7c). The left-
skewness of the histograms is likely due to the inherent skew-
ness in river discharge distributions. The LETKF update step
seeks to minimise the difference between the ensemble mean

and the true state of the system. The ensemble mean is often
larger than the ensemble median leading to the observations
falling in ranks above 25 if the adjustment method is success-
ful at minimising the error of the mean (Fig. 5a and c).

As discussed in Sect. 4.1, the Kalman filter is not restricted
to ensure positive discharge and there is therefore a need to
adjust the error ensemble before correction of the hindcast.
Enforcing non-negative discharge was necessary, for exam-
ple, for the Mainleus station on the Main for the hindcast
generated on the 22 March 2021 (Fig. 5c). Whilst the ensem-
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ble mean is error-corrected at most lead-times, several mem-
bers indicate river discharge values of 0 m3 s−1. The river
discharge is below 10 m3 s−1 but a zero flow is unlikely in
reality. This suggests the ensemble spread is not sufficiently
corrected even though the ensemble mean is improved as is
also suggested by Fig. 7c.

8 Discussion

In general, the proposed data-assimilation-inspired method
successfully spreads observational information along the
river network, thereby improving the skill of the ensem-
ble mean at proxy-ungauged locations (i.e, locations where
observations were withheld for cross-validation). Locations
downstream from assimilated observations are improved
most although locations upstream are usually improved as
well, even if they are far from neighbouring stations. This is
likely due to two reasons: (1) constant biases in the river dis-
charge estimates that are propagated downstream and hence
can be accounted for when a downstream observation is as-
similated, and (2) the daily aggregation of the river discharge
extending the time period for which a downstream observa-
tion provides relevant information. If the error patterns of the
ensemble mean at a location differ from those at nearby sta-
tions the method struggles to spread the observational infor-
mation correctly. At shorter lead-times the reliability of the
ensemble is slightly improved due to the decrease in the error
of the ensemble mean. However, at longer lead-times the en-
semble spread is often too large leading to an under-confident
forecast.

The ability of the method to correct the forecasts typi-
cally depends on the consistency of the error vectors between
nearby locations. The localisation method implemented here
depends only on the distance from the station along the river
network. The method does successfully correct the forecast
both up- and downstream; however, if the station is on a dif-
ferent river, or if there is a confluence between the station
and the grid-box of interest, the errors are often not consis-
tent for as long a distance along the river network. There-
fore, it could be beneficial to investigate the impact of in-
cluding information about the river stretch into the localisa-
tion length scale. Additionally, the errors were found to be
more consistent when the catchment was impacted by large-
scale weather systems. It may therefore be useful to incorpo-
rate information about the meteorological situation into the
localisation function as well.

The covariance inflation method used here maintains con-
sistency between the spread of the error ensemble and the
spread of the hindcast (Sect. 5.2). This successfully stops the
error ensemble from collapsing such that the observations
are not ignored. However, in situations where the uncertainty
of the hindcast ensemble is over- or under-estimated the co-
variance inflation does not correct the error ensemble covari-
ances correctly. This can lead to the observations being ig-

nored as for short lead-times in Fig. 5b. Additionally, if the
hindcast perturbations do not provide an accurate estimate of
the true error ensemble perturbations, this method may intro-
duce errors which could be the cause for the slight degrada-
tion in skill of the ensemble mean with lead-time shown in
Fig. 6e, g, and h. Correcting the spread of the hindcast be-
fore using it in the inflation of the error covariances could
solve this issue. Covariance inflation techniques that use the
innovation statistics could be used to first adjust the hindcast
ensemble (e.g., Kotsuki et al., 2017). Alternatively, a lower
threshold for the variance of the ensemble could be set – say
10 % of the ensemble mean, similar to the observation error
covariance matrix, or the root mean square-error of the ini-
tial conditions. However, caution is needed not to artificially
inflate the covariances too much such that the analysis incre-
ments become too large.

As discussed in Sect. 7.2.2, the resulting ensemble must
be adjusted in some cases to avoid negative discharge val-
ues (Sect. 4.1). This does in some cases lead to ensemble
members close to 0 m3 s−1 when a zero flow value is unlikely
(e.g., Fig. 5c). This occurs due to the analysis increment be-
ing larger in magnitude than the value of some of the raw en-
semble members. In general, this is due to the skewed distri-
bution of discharge (Bogner et al., 2012). Future work could
look into applying anamorphosis, or normalising transforma-
tions, to make the ensemble distribution more Gaussian-like
(Nguyen et al., 2023; Bogner et al., 2012). This was not done
in this proof-of-concept study for simplicity and to facili-
tate the interpretation of the errors. The results also showed
that the covariances between grid boxes on larger rivers and
the station locations tend to be large even when the correla-
tion is small. This is due to larger rivers having larger vari-
ances which is partially due to their larger river discharge
magnitudes. Localisation enforces a distance dependence on
the covariance magnitudes. However, transforming the river
discharge values to be comparable across the domain may
help regulate the covariances based on river size. A transfor-
mation between river discharge and specific discharge (river
discharge divided by upstream area) could be used to ensure
that the ensemble covariances more accurately represent the
true relationship between locations.

In this study, the initial estimate of the error ensemble
mean is defined using the observations and the simulation
forced with meteorological observations from the 10 d be-
fore the forecast. The average difference between the ob-
servations and simulations is calculated at gauged locations
and interpolated to every grid-box using inverse distance
weighted interpolation. The aim is to provide a physically
plausible first guess of the errors which is then updated at
each timestep. By taking the average over a 10 d period, we
aim to capture the biases of the hydrological model but also
to allow for seasonal/dynamic variation in this bias. How-
ever, the choice of 10 d has not been tuned, and may be more
applicable to larger catchments with slowly changing errors
than for smaller catchments (Matthews et al., 2022). Further
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research into the accuracy of the initial error ensemble, and
how it influences the skill of the error-corrected ensemble, is
needed. It should be noted that this component of the method
is an implementation choice and can be adjusted depending
on system configuration and data availability. The only re-
quirement is that the initial error ensemble is physically plau-
sible as there is no warm-up period within this application
(Kim et al., 2018).

We assume that the errors are sufficiently slowly changing
such that a persistence model can be used to propagate the
errors between timesteps. It should be noted that the LETKF
updates the errors at each timestep so the analysis errors used
to correct the hindcasts are not constant for all timesteps.
However, the assumption that the errors are slowly changing
is likely only true for larger rivers that respond more slowly.
Future studies could investigate the use of a simple time-
varying evolution model. The model would need to be sim-
ple enough that the calculations do not add too much com-
putational time to the method. Additionally, the error values
at every grid-box would need to be evolved; therefore, the
evolution model should either rely only on the model out-
put or must be spatially interpretable if using observations.
For example, a model dependent on the hindcast river dis-
charge magnitude could be used to evolve the errors between
timesteps.

The leave-one-out approach used in this study allows the
corrected ensembles to be assessed at proxy-ungauged loca-
tions. However, only one station is omitted at a time. Future
work could use a block cross-validation strategy whereby
multiple stations are omitted simultaneously (Roberts et al.,
2017). This would allow the impact of the density of sta-
tions and their specific locations along the river network to
be investigated more thoroughly (Rakovec et al., 2012). The
impact of not having any observations along a river stretch
could also be more thoroughly investigated. One benefit of
this method is that the assimilated observations do not nec-
essarily need to be traditional in-situ observations but could
come from Earth Observation (EO; Durand et al., 2023),
crowdsourced or community observations (Le Coz et al.,
2016; Etter et al., 2020), or camera-based sensors (Vandaele
et al., 2021). The key requirement is that an observation op-
erator can be defined. Observation operators map the state
of the system from state space to observations space. In our
study the observation operator selects the grid box that rep-
resents the location of the station on the modelled river net-
work. The mapping of the station locations from the physi-
cal river network to the modelled river network is not triv-
ial and several studies have attempted to automate this step
(Isikdogan et al., 2017; Li et al., 2018). If this mapping is
incorrect then representation errors can be introduced (Janjić
et al., 2018). For example, if a station on a bypass channel is
incorrectly located on the main channel, observations from
the station will undoubtedly provide erroneous information
in the update step.

The code developed for this study is designed to allow for
research flexibility rather than operational efficiency. How-
ever, the error-adjustment of a single forecast took on average
8.5 min for the whole of the Rhine-Meuse catchment – a large
catchment. This suggests that, with proper parallelisation, the
method could be operationalized and applied to all gauged
catchments in Europe. Before that, though, the method needs
to be evaluated on additional catchments. The Rhine was se-
lected because it is highly gauged, but this also means that the
raw ensemble’s skill is relatively high due to the effectiveness
of the hydrological model calibration process. This could in-
fluence the method’s performance in two ways: (1) the error
ensemble may evolve more linearly than in less calibrated
catchments, and (2) the hindcast ensemble’s covariance may
better represent the covariances between the estimated errors.
The next step should be applying this method to a catchment
with lower skill than the Rhine.

The method presented in this study spreads observation
information along the river network but cannot yet be used
as a post-processing method because observations from the
hindcast period (the future) are assimilated. We envisage the
method being developed further to make it applicable oper-
ationally as a hydrological forecast post-processing method.
Nevertheless, it may still be useful in certain situations, such
as post-event analysis. After a flood event an assessment is
often performed estimating the severity of the event as well
as potential causes and mitigating factors. However, in-situ
river gauges only present a snapshot of the event at specific
locations and are often damaged during flood events, result-
ing in missing or incorrect data. EO estimations of river dis-
charge could fill in some of the gaps but this would depend
on the satellite’s orbit and its availability at the right time
(Douben, 2006). Reanalysis is another option, but it requires
additional hydrological model runs and may contain errors
due to the structure of the hydrological model or errors in
the meteorological observations. The method proposed here
could offer a domain-wide estimate of observations with-
out requiring additional model runs or a “warm-up” period
typically needed in hydrological simulations to stabilize an-
tecedent water storage within the catchment.

9 Conclusion

We present and evaluate a data-assimilation-inspired method
for spreading observation information from gauged to un-
gauged locations in a post-processing environment. This
method enables the error correction of ensemble simulations
at all grid boxes. The method utilises state augmentation
within an LETKF framework to estimate an ensemble of er-
ror vectors. The error vectors are then used to correct each
hindcast ensemble member separately.

Overall, the method successfully reduces the errors of the
ensemble mean at ungauged locations in leave-one-out ex-
periments. The adjusted ensemble mean has a higher corre-
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lation with the observed river discharge and is more able to
capture the variability of the river discharge at a point. Whilst
the magnitude of the errors is reduced the ensemble spread
is not adjusted sufficiently resulting in an under-confident
ensemble spread at longer lead-times. The adjusted ensem-
bles are spatially and temporally consistent with the river dis-
charge predictions showing smooth evolution both between
grid-boxes on the same river and between lead-times. The
method is most limited at locations further upstream than
the assimilated observations and for hindcasts with unreal-
istically small ensemble variance, which most often occurs
at shorter lead times. These limitations could be reduced by
further investigation into the localisation approach, for ex-
ample having a different localisation length upstream and
downstream from the assimilated observation, and the co-
variance inflation approach, which may involve applying a
spread-correction to the hindcast ensemble as well as the er-
ror ensemble.

Our method of spreading observation information could be
used to improve post-event analysis. However, as the compu-
tational requirements and processing time are both small the
method could also be developed further to allow for its ap-
plication to the post-processing of operational forecasts. The
prediction of river discharge at ungauged locations is a cru-
cial challenge for hydrological research and once success-
fully achieved will allow for better preparedness for floods.

Appendix A: Kalman gain matrix decomposition

The Kalman gain matrix has the following form for timestep
k:

Kk = Pf
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>
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>
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)−1

(A1)

where Pf
k is the prior ensemble covariance matrix, Rk is the

error-covariance matrix of the observations, and Hk is the ob-
servation operator (Livings, 2005; Hunt et al., 2007; Kalman,
1960). Substituting the definitions of the perturbation matrix
and the observation operator for the augmented state given in
Eqs. (9) and (11) gives:
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This can then be decomposed into the hindcast and error
components as
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The analysis of the ensemble mean of the augmented states
is therefore given by
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where xf
k and b

f
k are the ensembles mean of the raw hindcast

and the prior error ensemble at timestep k, yk is the observa-
tion vector, and yxk is the model-observation ensemble mean.

Appendix B: Gaspari-Cohn function

The Gaspari-Cohn function is correlation function com-
monly used in data assimilation to define the localisation
weights (Gaspari and Cohn, 1999). It has the following form:
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where r = d/c where d is the physical distance between two
points, and c is the localisation length scale. The function has
a value of 1 when r = 0 and a value of 0 when r > 2.

Code and data availability. The code used in this study for
the error-correction of river discharge forecasts, is available
from https://doi.org/10.5281/zenodo.17256468 (Matthews, 2025).
The river discharge forecast used in this study are from
the Copernicus Emergency Management Service (CEMS)’s
European Flood Awareness System (EFAS) and are avail-
able to download from https://doi.org/10.24381/cds.9f696a7a
(Barnard et al., 2020). The local drainage direction and channel
length data is available from https://data.jrc.ec.europa.eu/dataset/
f572c443-7466-4adf-87aa-c0847a169f23 (Choulga et al., 2023).
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