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Abstract. Rates of subsurface rock alteration by reactive
flows are often independent of kinetic rates and governed
solely by solute transport. This enables a major simplifica-
tion that makes models tractable even for complex kinetic
systems through the widely applied local equilibrium as-
sumption. Here, this assumption is applied to the reactive
Lauwerier problem (RLP), which describes non-isothermal
fluid injection into a confined aquifer, leading to chemi-
cal disequilibrium. Specifically, the thermal changes drive
temperature-dependent solubility variations, leading to un-
dersaturation and dissolution or supersaturation precipitation
reactions. Using this framework, solutions for reaction rate
and porosity evolution are developed and analyzed, yield-
ing a time-dependent criterion for their validity that incor-
porates time and thermal parameters. A key feature – the co-
alescence of thermal and reactive fronts – is used to explore
their evolution over time in different settings. The applicabil-
ity of the equilibrium model for important fluid–rock inter-
action processes is then examined and discussed, including
sedimentary reservoir evolution and mineral carbonation in
ultramafic rocks. Notably, the approach used here to extend
thermal solutions for reactive processes suggests broader ap-
plicability. The findings also highlight that thermally driven
reactive fronts, particularly near equilibrium, often become
stationary after a relatively short period. As a result, their
spatial evolution is governed by geological processes operat-
ing over much longer timescales.

1 Introduction

Natural and anthropogenic systems are often complex, in-
volving intricate interactions between various processes,
which makes developing a mechanistic understanding of the
system challenging. However, the disparity in timescales be-
tween these processes often allows for significant simplifi-
cation, as one process typically serves as the rate-limiting
step that controls the system’s overall evolution. This simpli-
fication, in turn, enables the recovery of the system’s mech-
anistic behavior. Such systems range from climate science,
where atmospheric and oceanic processes interact and oper-
ate at different timescales (Vallis, 2017), to multi-step bio-
chemical processes and enzyme kinetics (Cornish-Bowden,
2013), traffic flow analysis (Lighthill and Whitham, 1955),
epidemiology and disease spread (Anderson, 1991), eco-
nomics (Solow, 1956), and crystal growth (Mullins and Sek-
erka, 1963).

Similarly, in geothermal systems, thermo–hydro–chemical
(THC) processes often involve complex interactions. In par-
ticular, geochemical kinetics can be highly intricate, involv-
ing multiple species and reactions of varying orders, which
are influenced by flow and transport dynamics and thermal
variations (Appelo and Postma, 2004; Kolditz et al., 2016;
Phillips, 2009). This complexity hinders the understanding of
system behaviors and their description using tractable mod-
els. However, in many cases, the rate of transport is much
slower than the reaction kinetics, effectively controlling the
overall reaction rate. These conditions, known as transport-
controlled, occur when the transport of reactants or reaction
products dictates the reaction rate (Deng et al., 2016; Roded
et al., 2020; Steefel and Maher, 2009).
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Under transport-controlled conditions, the characteristic
timescale of transport, tA, is much larger than that of the re-
action, tR, with tA� tR, and the system is close to chemical
equilibrium (i.e., quasi-equilibrium). In such cases, the lo-
cal equilibrium assumption is often invoked, and the assump-
tion that the reaction rate depends solely on transport allows
one to greatly simplify models (Andre and Rajaram, 2005;
Lichtner et al., 1996; Molins and Knabner, 2019). The va-
lidity of the equilibrium assumption is determined by a large
timescale ratio and the Damköhler number, Da, which, as-
suming a first-order surface reaction, is given by

Da=
tA

tR
=
lAsλ

uA
� 1, (1)

where l is a local characteristic length scale, uA denotes the
characteristic Darcy flux [LT−1], As is the specific reactive
area (L2 to L−3 of a porous medium), and λ is the kinetic
reaction rate coefficient [LT−1] (Lichtner et al., 1996; Mac-
Quarrie and Mayer, 2005).

In this study, equilibrium-approximated solutions for
geothermal systems are derived. These build upon and ex-
tend previous work (Roded et al., 2024b), in which thermally
driven reactive transport solutions were developed within the
framework of the Lauwerier solution (Lauwerier, 1955). The
Lauwerier solution provides an analytical prediction of the
thermal field development resulting from the injection of hot
(or cold) fluid into a thin, non-reactive, confined layer system
(Lauwerier, 1955; Stauffer et al., 2014).

The thermally driven reactive transport solutions de-
veloped by Roded et al. (2024b) integrate temperature-
dependent solubility into a reactive flow formulation while
incorporating the thermal field based on the Lauwerier so-
lution. Specifically, this setting, referred to as the reactive
Lauwerier problem (RLP), accounts for thermal variations
that drive the system out of geochemical equilibrium, thereby
triggering chemical reactions. These disturbances stem from
shifts in mineral solubility within groundwater, where ther-
mal fluctuations can induce conditions of either supersatura-
tion or undersaturation. Over time, these thermally driven re-
actions lead to changes in rock porosity due to the precipita-
tion, dissolution, or replacement of solid minerals and the as-
sociated volumetric changes (Phillips, 2009; Woods, 2015).

Depending on the natural solubility of the minerals in the
system, an increase in temperature can lead to either dissolu-
tion or precipitation. This occurs because mineral solubilities
can either decrease with temperature (retrograde solubility)
or increase with it (prograde solubility; Jamtveit and Yard-
ley, 1996; Phillips, 2009). A notable example includes the
prograde solubility of silica, which commonly precipitates
in geothermal systems from the cooling of fluids (Pandey
et al., 2018; Rawal and Ghassemi, 2014; Taron and Elsworth,
2009). In contrast, carbonate minerals such as calcite and
dolomite exhibit an inverse relationship with temperature and
retrograde solubility, which is often pronounced and influ-
enced by CO2 concentration. Depending on the conditions,

either rapid dissolution or rapid precipitation can occur in
the case of common carbonate minerals (Andre and Rajaram,
2005; Coudrain-Ribstein et al., 1998).

Fluid recharge or injection under constrained physical
and chemical conditions, as in RLP settings, is common in
both natural and engineered geothermal systems and aquifers
(Phillips, 2009; Stauffer et al., 2014). These include aquifer
thermal storage, reinjection of geothermal water, and ground-
water storage and recovery applications (Diaz et al., 2016;
Fleuchaus et al., 2018; Maliva, 2019), as well as implications
for mineral carbonation in mafic or ultramafic rocks (Kele-
men et al., 2019; Roded and Dalton, 2024).

In what follows, the settings and equations are first
described, which then serve to derive the equilibrium-
approximated solutions for the RLP for both radial and pla-
nar flows. These solutions are then compared to the reference
solutions from Roded et al. (2024b) to validate them and
discuss their limitations, along with the derivation of spe-
cific criteria for the RLP setup. Next, a key feature of the
coalescence of the thermal and reactive fronts under quasi-
equilibrium conditions is used to examine their evolution.
Interestingly, under certain conditions, thermally driven re-
active fronts essentially cease to expand and become station-
ary after a short timescale, remaining governed by longer-
term tectonic processes. The applicability of the equilibrium
model to key processes, including sedimentary aquifer al-
teration and natural mineral carbonation, is discussed, along
with an outlook for further theoretical developments.

2 Settings and the equilibrium model equations

This section describes the RLP under the equilibrium as-
sumption and then outlines the specific settings and relevant
governing equations. These equations define the THC equi-
librium model (Phillips, 2009; Wood and Hewett, 1982) used
to derive the solutions in this work. A comprehensive review
of the more general RLP framework and its main assump-
tions is provided in Roded et al. (2024b) and further revised
in Appendix A of this work.

2.1 The equilibrium reactive Lauwerier scenario

The Lauwerier problem describes the injection of a hot or
cold fluid into a confined aquifer bounded by impermeable
bedrock and caprock. Along the horizontal flow path down-
stream from the injection well, heat is transferred between
the aquifer and the confining aquiclude layers, which con-
duct the heat (Lauwerier, 1955; Stauffer et al., 2014). The
horizontal flow direction is described using the ξ coordinate,
which can represent either the radial distance (r) in an ax-
isymmetric configuration or the Cartesian coordinate (x) in
planar configuration, i.e., ξ = r or x. These represent the
two primary geometric settings considered in this study. A
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Figure 1. Outline of the reactive Lauwerier problem (RLP) under the equilibrium assumption. Hot (or cold) fluid is injected into an aquifer,
confined between impermeable bedrock and caprock, at a steady flow rate, Q, and temperature, Tin. The initial temperature is T0, and the
aquifer thickness is H . Along the flow path, heat from the aquifer conducts through the confining layers. The resulting thermal variations
(depicted by color gradients) alter mineral solubility, cs(T ), driving chemical reactions that modify aquifer porosity from its initial value, θ0.
High Damköhler number conditions and the equilibrium assumption are considered. Under these conditions, the reaction rate, �, is directly
governed by variations in temperature-dependent mineral solubility, ∂cs(T )/∂ξ . Here, ξ denotes the horizontal coordinate, either the radial
coordinate (r) or the Cartesian coordinate (x), while z denotes the vertical coordinate. The reference point for both ξ and z is the center of
the injection well, which serves as the symmetry axis in the radial case (as shown in the sketch) or the symmetry plane in the Cartesian case
(modified after Roded et al., 2024b).

schematic overview of this system is provided in Fig. 1, with
the nomenclature summarized in Appendix E.

Within the aquifer, thermal variations influence mineral
solubility (i.e., saturation concentration, cs(T )). These sol-
ubility changes, in turn, lead to undersaturation and disso-
lution reactions or, conversely, to supersaturation and pre-
cipitation reactions, which modify the aquifer porosity (θ ).
Porosity changes, whether increases or decreases, depend on
thermal changes (heating or cooling) and the solubility na-
ture of the minerals (prograde or retrograde).

In this study, the focus is on conditions where reaction ki-
netics are fast, the Damköhler number is large (Da> 1), and
the local equilibrium assumption holds. Under these condi-
tions, the reaction rate, �, as shown in the next section, can
be directly calculated from the thermally driven solubility
changes in the system; that is, �∝ ∂cs(T )/∂ξ . Hence, such
a solution is independent of the specific reaction kinetics in-
volved.

In terms of geometry and hydrogeological scenarios, the
radial setting pertains to injection from a single well or
accounts for naturally focused flow of deep-origin fluids
through faulted or fractured rock, discharging into a shal-
lower aquifer (Craw, 2000; Micklethwaite and Cox, 2006;
Roded et al., 2013, 2023; Tripp and Vearncombe, 2004). The
planar setting describes injection from a row of wells ar-
ranged in a straight-line configuration, as initially formulated
by Lauwerier (1955).

2.2 The equilibrium-based approach

The steady-state, solute advection–reaction equation in the
aquifer is

0=−u
∂c

∂ξ
−�(ξ, t), (2)

where ξ is the horizontal coordinate (ξ = r or x), u is the
Darcy flux, c is the solute concentration, and �(ξ, t) is the
reaction rate, which varies in space and time, t (Chaudhuri
et al., 2013; Szymczak and Ladd, 2012). In Eq. (2), tran-
sient variations are neglected, and the quasi-static approach
to reactive flow is applied (see Appendix A and Roded et al.,
2024b).

The solute disequilibrium, 3, is the difference between
the dissolved ion concentration, c, and the temperature-
dependent solubility (i.e., saturation concentration), cs(T ),
viz.,

3= c− cs(T ). (3)

Equation (2) can then be rewritten as

0=−u
[
∂3

∂ξ
+
∂cs

∂ξ

]
−�(ξ, t). (4)

Next, conditions of a high Da number are considered,
where reaction rates significantly exceed the rate of advec-
tive transport. In this regime, local quasi-equilibrium is main-
tained along flow paths, and the solute disequilibrium magni-
tude remains small compared to the overall solubility varia-
tion. Specifically, 3�1cs, where 1cs denotes the absolute
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solubility change in the system,1cs= |cs(Tin)−cs(T0)|, that
is, between solubility at the injection temperature, Tin, and at
ambient conditions, T0.

Under this assumption, the first advective term in Eq. (4)
(u∂3/∂ξ ) becomes negligible compared to the other terms.
The governing equation can thus be approximated as (Andre
and Rajaram, 2005; Phillips, 2009, p. 237)

�(ξ, t)=−u
∂cs(T )

∂ξ
. (5)

The expression in Eq. (5) provides the THC equilibrium
model and demonstrates that, under quasi-equilibrium condi-
tions, the solute concentration, c, closely follows the spatially
varying solubility determined by the temperature field, cs(T ).
Notably, it shows that in this regime, the solution for the over-
all reaction rate, �(ξ, t), can be independent of the specific
reaction kinetics involved and can be calculated from the sol-
ubility gradient.

Lastly, it is noted that the current study focuses on the
equilibrium assumption and solves the reduced form given in
Eq. (5). This contrasts with the preceding work (Roded et al.,
2024b), which focused on solving the full form of Eq. (2) (or
Eq. 4) under the assumption of first-order kinetics.

2.3 Initial and boundary conditions

The thermal Lauwerier solution incorporates an initial con-
dition of uniform temperature T0 across the system, along
with boundary conditions that specify a constant fluid injec-
tion rate at temperature Tin at the injection point (ξ = 0). It is
assumed that the thicknesses of the bedrock and caprock, as
well as the extent of the aquifer, are infinite.

With respect to the solute transport boundary conditions,
the RLP is defined by a constant fluid injection rate at temper-
ature Tin, with an initial solute disequilibrium of 3= 0 (i.e.,
saturated fluid) at the inlet (Roded et al., 2024b). In contrast,
the equilibrium-approximated solutions derived from Eq. (5)
calculate the reaction rate under the assumption that it is pro-
portional to the temperature-driven solubility gradient every-
where. Consequently, as will be shown in the next section,
solute transport boundary conditions are not incorporated.
This discrepancy is the focus of the analyses in Sect. 3.3.

3 Results: the equilibrium solutions and their
applicability

3.1 Derivation of the equilibrium solutions

3.1.1 Axisymmetric (radial) flow

Aquifer temperature

The Lauwerier solutions for the temperature distribution in
the aquifer (Lauwerier, 1955; Stauffer et al., 2014) serve as
the basis for developing the equilibrium-approximated RLP

solutions presented here. These solutions are derived by solv-
ing the advective heat transport equation in the aquifer, to-
gether with the corresponding conductive heat transfer equa-
tion in the confining bedrock and caprock (Eqs. A1–A3
and A6 in Appendix A). The solution for axisymmetric set-
tings is given by

T (r, t)= T0+1T erfc[ζ(r, t)r2
], (6)

where erfc is the complementary error function, 1T = Tin−

T0 is the difference between the injection and ambient aquifer
temperatures, and ζ is defined as

ζ(r, t)=
π
√
KbCpb

QCpf

√
t ′
, (7)

where Q is the total volumetric flow rate, K is the ther-
mal conductivity, and Cp is the volumetric heat capacity,
with the subscripts b and f denoting bulk rock and fluid, re-
spectively. The time variable is defined as t ′ = t − tlg, where
tlg = πr

2HCpb/(CpfQ), with H denoting the aquifer thick-
ness (see Fig. 1). Assuming flow is uniform across the verti-
cal thickness (H ), the fluid velocity can be calculated from
the volumetric flow rate as u=Q/(2πrH).

The solution of Eq. (6) is valid when t ′ > 0 (Stauffer et al.,
2014), and it is further assumed here that a sufficiently long
time has passed such that t ′ ≈ t . Specifically, the term tlg rep-
resents a thermal retardation time. It accounts for the delay
in the arrival of the thermal front due to advective transport
and the thermal energy required to heat the aquifer solid ma-
trix along the flow path (for an analysis of the validity of this
assumption, see Roded et al., 2024b).

Additionally, for simplicity, it is assumed that the heat ca-
pacities of both the confining rocks and the aquifer are iden-
tical. To account for non-uniform heat capacities, an alter-
native definition of Eq. (6) can be applied (see Eqs. 3.122
and 3.131, along with the corresponding definitions in Stauf-
fer et al., 2014).

Thermally driven solubility changes

The THC equilibrium model in Eq. (5) shows that the reac-
tion rate, �(r, t), depends on the thermally driven solubility
gradient, ∂cs(T )/∂r . Here, the temperature-dependent solu-
bility is calculated using

cs(T )= cs(T0)+β(T − T0), (8)

where the parameter β = ∂cs/∂T . In Eq. (8), a linear relation
between cs and T is assumed, with a constant proportionality
factor β, which is positive for minerals of prograde solubil-
ity and negative for minerals of retrograde solubility (Corson
and Pritchard, 2017; Woods, 2015).

In Eq. (5), the derivative of the solubility can be expanded
to ∂cs/∂r = (∂cs/∂T )(∂T /∂r), and by further substituting
the definition β = ∂cs/∂T , it can be expressed as

�(r, t)=−uβ
∂T

∂r
. (9)
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The temperature gradient ∂T /∂r is calculated by substi-
tuting the Lauwerier solution (Eq. 6) and performing differ-
entiation, yielding

�(r, t)= 4uβ1T
ζr
√
π
e(−ζ

2r4), (10)

which provides the solution for the reaction rate. The evolu-
tion of porosity, θ , is described by

∂θ

∂t
=−

�(r, t)

νcsol
, (11)

where csol is the concentration of soluble solid mineral and
ν accounts for the stoichiometry of the reaction. Substituting
the solution for the reaction rate, � (Eq. 10), into Eq. (11)
and integrating over time yields the solution for the porosity
change:

θ(r, t)= θ0− 4u1T
βζ 2r3t

υcsol
√
π
0

(
−

1
2
,ζ 2r4

)
, (12)

where 0 is the incomplete gamma function.

3.1.2 Planar flow

For the Cartesian case, with injection occurring along a
plane, the Lauwerier solution is

T (x, t)= T0+1T erfc[ω(x, t)x], (13)

where ω is defined as

ω(x, t)=

√
KbCpb

HCpfu
√
t ′

(14)

and t ′ = t − tlg, with tlg= xCpb/(Cpfu). Similarly to the ra-
dial case, it is assumed here that a sufficiently long time has
passed such that the condition t ′ ≈ t applies.

Following steps analogous to those in the radial case, the
solutions are derived as

�(x, t)= 2u1T
βω
√
π
e(−ω

2x2) (15)

and

θ(x, t)= θ0− 2u1T
βω2xt

υcsol
√
π
0

(
−

1
2
,ω2x2

)
. (16)

3.2 Comparison to reference solutions (High-Da)

In this section, the results of the equilibrium solutions are
compared with the more general solutions to the RLP model,
which will henceforth be referred to as the “reference so-
lutions”. These reference solutions account for far-from-
equilibrium conditions and assume surface-controlled reac-
tions and first-order kinetics. The case study considered in
the comparison involves a common scenario: dissolution of

a fractured carbonate aquifer due to the injection of CO2-
rich hot water and cooling-driven calcite dissolution. First,
the results presented by Roded et al. (2024b) for the refer-
ence solutions are briefly summarized to facilitate the com-
parison with the equilibrium solutions. The reference solu-
tions, along with the case study considered here, are detailed
in Roded et al. (2024b). The reference solution equations are
also provided in Appendix B, and the parameter values used
are listed in Appendix D. These values are identical to those
in Roded et al. (2024b), including the radial case flow rate
(Q= 500 m3 d−1).

In Fig. 2, the results of CO2-rich hot water injection are
shown at successive times since the start of injection. These
represent both engineering-relevant conditions (t = 25 years)
and longer geological timescales (t = 10 and 100 kyr), as-
sociated with natural processes such as focused deep-origin
flow discharging into a shallower aquifer (Craw, 2000; Roded
et al., 2023; Tripp and Vearncombe, 2004). The Lauwerier
solution and reference solutions are shown by continuous
lines (Eqs. 6, B2, and B3), while the equilibrium solution
for the porosity evolution is indicated by circle markers in
Fig. 2c (Eq. 12).

During the radial flow within the aquifer, the hot fluid
cools by transferring heat into the confining layers, which
heat up with time, resulting in the gradual advancement of the
thermal front downstream (Fig. 2a). The cooling induces so-
lute disequilibrium (3) associated with undersaturation (note
that 3 is negative for undersaturation and positive for super-
saturation; see Eq. 3). The magnitude of |3| in the aquifer is
small compared to the absolute solubility change in the sys-
tem, |3|/1cs� 1 % (1cs= |cs(Tin)− cs(T0)|; see Fig. 2b).
The small magnitude of disequilibrium is associated with rel-
atively high CO2 partial pressure considered (0.03 MPa) and
rapid kinetics under these conditions.

Despite its small magnitude, the disequilibrium, 3, gov-
erns the alteration of the aquifer and the evolution of its
porosity. Notably, because the water at the inlet is hot and sat-
urated with calcite, c= cs(Tin), disequilibrium and the reac-
tion rate are zero at the inlet, resulting in no change in poros-
ity (see Fig. 2b and c, along with their magnified views). Dis-
equilibrium (undersaturation) abruptly develops downstream
of the injection well, initially forming a small minimum (at
r ≈ 20 m) before gradually diminishing to zero further down-
stream.

In accordance with the disequilibrium, the porosity pro-
file sharply increases near the inlet and then gradually de-
creases downstream (Fig. 2c). Undersaturation and dissolu-
tion along the flow path are governed by the interplay of
three processes: (I) dissolution, which reduces undersatura-
tion (bringing 3 closer to 0), (II) progressive cooling, which
enhances undersaturation, and (III) advection, which trans-
ports reaction products (calcium ions) radially outward from
the well, sustaining undersaturation. Here, fluid velocity and
advection decay with distance, following a 1/r relationship.
The transient thermal effect is also evident in the time evolu-
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Figure 2. Reference solutions for a case study of carbonate aquifer dissolution by cooling hot water, presented for comparison with the
equilibrium solution in a radial flow setting. Panels (a)–(c) show temperature (T ), solute disequilibrium (3), and porosity (θ) plotted as
functions of radial position (r) at different times. The continuous lines represent the Lauwerier solution and the reference solutions (Eqs. 6,
B2, and B3), while the circles in panel (c) denote the equilibrium solution (Eq. 12). Magnified panels show solute disequilibrium (3) and
porosity (θ ) near the inlet region. 3 is scaled by the total solubility variation in the system, 1cs. The equilibrium solution closely matches
the reference solution except near the inlet (see magnified panel and text). Quasi-equilibrium conditions are further supported by the small
magnitude of 3.

tion of the disequilibrium: at early times (t = 25 years), dis-
equilibrium and its gradients are relatively high, but as the
thermal front advances and thermal gradients decrease, the
disequilibrium curves flatten.

The equilibrium solution matches the reference solution
closely and is violated only near the inlet (r < 20 m; Fig. 2c).
The agreement between the solutions and the existence of
quasi-equilibrium conditions is supported by the small mag-
nitude of the disequilibrium in the reference solution. This
is because the equilibrium model assumes 3= 0 (cf. Eqs. 4
and 5); therefore, a small 3 confirms the validity of this ap-
proximation. Consequently, solute disequilibrium provides
an effective metric for quantifying the spatial and tempo-
ral extent to which the equilibrium assumption holds. This
will be used next to further assess the applicability of the
equilibrium-approximated solutions (Sect. 3.3).

With respect to the discrepancy near the inlet between
the solutions, the injection of hot, saturated water results
in no porosity change in the reference solution. In contrast,
the equilibrium model, which assumes the reaction rate de-
pends on the temperature gradient alone, does not capture
this effect. Particularly, the solute transport boundary condi-

tion of inlet saturation (3= 0) is not incorporated into the
equilibrium-approximated solutions, leading to this discrep-
ancy (referred to hereafter as the “inlet advective discrep-
ancy”).

Under the conditions here, the deviation between the solu-
tions is limited to a very narrow region near the inlet. How-
ever, in some cases, locally reduced porosity and permeabil-
ity can still influence the overall estimation of aquifer per-
meability (Roded et al., 2024b). While the deviation in these
cases can be accounted for by assuming no reaction at the in-
let, as will be shown in Sect. 3.3, this cannot capture advec-
tive effects that may become significant near the inlet under
low Da conditions. It is also noted that in most practical sce-
narios, the injected fluid is expected to cool slightly during
its descent in the well and may therefore already be reactive
upon entering the aquifer.

For completeness, Fig. 3 presents results for the same case
study shown in Fig. 2 under a planar flow setting, with a
fluid velocity of u= 10−6 ms−1. Similar to the radial case,
the equilibrium solution closely matches the reference solu-
tion, with deviation occurring only near the inlet (magnifi-
cation not shown). A key difference from the radial case is
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Figure 3. Reference solutions for a case study of carbonate aquifer dissolution by cooling hot water, presented for comparison with the
equilibrium solution in a planar flow setting. Panels (a)–(c) show temperature (T ), solute disequilibrium (3), and porosity (θ ) as functions
of position (x) at different times. The continuous lines represent the thermal Lauwerier solution and the reference solutions (Eqs. 13, B5,
and B6), while the circles in panel (c) denote the equilibrium solution (Eq. 16).3 is scaled by the total solubility variation in the system,1cs.
Similar to the radial case, the equilibrium solution closely matches the reference solution except near the inlet. This is also supported by the
small magnitude of 3.

that the aquifer is heated over significantly greater distances.
This results from the uniform flow velocity and more effi-
cient heat retention in the planar configuration. In contrast,
radial flow involves velocity decay with distance, which in-
creases residence time and enhances conductive heat loss to
the surrounding rock.

Additionally, in the radial case, the heat source (e.g., an
injection well) acts as a source from which hot fluid spreads
outward radially. In contrast, the planar configuration can be
conceptualized as injection from a distributed source (e.g., a
row of wells), generating a uniform planar front. More pre-
cisely, under the perfect thermal mixing assumption, the ra-
dial case is treated mathematically as a point source, while
the planar case is treated as a line source oriented out of
the plane. Hence, in the radial case, heat conduction is mul-
tidirectional, whereas in the planar case, heat is conducted
only in the vertical directions. These differences influence the
shape of the temperature profile: in the radial case, effective
heating near the injection well and subsequent rapid decay
lead to a sigmoidal (or diffusive front-like) profile, whereas
in the linear case, there is a decaying profile (cf. Figs. 2a
and 3a). These differences are further quantified in Sect. 3.4.

With respect to the results in Figs. 2 and 3, recall that
the solutions in Sect. 3.1 rely on the fundamental assump-
tion of spatial uniformity and symmetry in the reactive flow.
However, in practical scenarios, dissolution channels (worm-
holes) may develop at the reaction front (Chadam et al.,
1986; Furui et al., 2022; Roded et al., 2021). These worm-
holes localize reactive flow, creating heterogeneous flow
fields that deviate from the assumed symmetry and unifor-
mity. Consequently, the results in Figs. 2 and 3 represent only
an average solution and do not capture local flow variations
accurately.

Furthermore, the equilibrium solutions were also found to
be applicable to the injection of hot, silica-rich water into
a sandstone aquifer, where cooling induces supersaturation,
silica precipitation, and porosity reduction, as discussed in
Roded et al. (2024b) (not presented). In summary, this sec-
tion validates the equilibrium solutions against the reference
solutions and highlights the inlet advective discrepancy, ex-
amined next (Sect. 3.3). These findings also demonstrate the
broader applicability of the equilibrium solutions across a
range of characteristic conditions in natural and applied sys-
tems, as further elaborated in the Discussion section.

3.3 Applicability of the RLP equilibrium solutions

This section further examines the applicability of
equilibrium-approximated solutions, focusing on the
inlet advective discrepancy. This is done by considering
lower Da, conditions farther from equilibrium, and changes
in the system state over time. Accordingly, a scenario of
relatively slow precipitation (β > 0) is considered, using a
kinetic rate coefficient nearly 4 orders of magnitude lower
(λ= 5× 10−10 ms−1), while all other conditions remain
consistent with Sect. 3.2. This setup is representative, for
example, of carbonate mineral precipitation from water of
alkaline composition originating in carbonate or mafic rock
aquifers (e.g., basaltic formations). Upon reinjection and
subsequent heating, the solubility of carbonate phases de-
creases, promoting CO2 mineralization through precipitation
reactions (Etiope, 2015; Plummer et al., 1978; Steefel and
Lichtner, 1998).

Figure 4a presents the results for the reaction rate, �, for
the reference solution (solid lines; Eq. B3) and the equilib-
rium solution (dashed lines with circle markers; Eq. 10). The
slower kinetics and reduced Da result in a significantly larger
deviation compared to the case shown in Figs. 2c and 3c.
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Figure 4. Comparison of the reference and equilibrium solutions
over time under low Da conditions. (a) Reaction rate, �, as a func-
tion of radial position (r) at different times. The continuous lines
represent the reference solution (Eq. B3), and dashed lines with cir-
cle markers represent the equilibrium solution (Eq. 10), denoted as
“Ref” and “Equ” in the legend, respectively. (b) The deviation be-
tween the solutions, shown using the local error, Err, is visualized
as a shaded region. Err is defined as the radially weighted difference
between the solutions (see text for details). � and Err are normal-
ized by their maximum values at t = 0.2 kyr, where �max refers to
the reference solution.

Note that the results in Figs. 2c and 3c, rather, present the
porosity evolution, which reflects the time-integrated behav-
ior of � (see Eq. 11).

Significantly, the peak of the reaction rate curve in Fig. 4a
is reached further downstream, rather than occurring imme-
diately near the inlet as observed in Figs. 2 and 3. This shift
reflects a much more dominant advective effect but still pre-
serves the same general behavior: advection of saturated fluid
from the inlet and the progressive buildup of disequilibrium
and elevated� occur downstream of the injection well. How-
ever, in this case, the effect extends over a much greater dis-
tance.

Another prominent effect visible in Fig. 4a is the reduc-
tion in deviation between the solutions over time. This trend
is quantified in Fig. 4b, which shows the weighted local er-
ror, defined as the difference between the two solutions and
multiplied by the radial perimeter, Err= (�Ref−�Equ)2πr ,

where the subscripts Ref and Equ denote the reference and
equilibrium solutions, respectively.

The Err shaded regions show a progressive decrease and
flattening over time. This reduction in Err and the closer ap-
proach to equilibrium are attributed to the downstream ad-
vancement of the thermal front. As the thermal front ad-
vances and extends, the temperature gradients near the inlet
become milder (see Fig. 2a). This leads to a decrease in the
reaction rate in this region, and the inlet advective discrep-
ancy of the equilibrium model becomes less pronounced (the
Supplementary Material (SM) presents results for the planar
case, which exhibits the same effects).

As noted in the Introduction, the applicability of the equi-
librium model is governed by Da, with quasi-equilibrium
conditions expected when Da> 1 (Eq. 1). In the THC equi-
librium model and RLP settings, the deviation of the equi-
librium solutions, mainly from the local inlet effect, evolves
over time and is influenced by thermal dynamics. This obser-
vation motivated the derivation of a more specific applicabil-
ity criterion, presented in Appendix C. This analysis is based
on a key feature of quasi-equilibrium behavior: the close
alignment of the thermal and reactive fronts in the aquifer,
which occurs when Da is high (cf. Fig. 2a and b). This be-
havior is leveraged to establish a criterion for when the fronts
coincide and equilibrium conditions may be assumed. This
functional relation, which applies to both planar and radial
settings, is given by

1�
2
√
πt

(
1
Asλ

)(√
KbCpb

HCpf

)
. (17)

In accordance with the results in Fig. 4, the criterion
shows that the system approaches equilibrium as time pro-
gresses (with a proportionality of t−1/2). The second term in
the brackets represents the characteristic reaction timescale,
tR= 1/Asλ, which, in agreement with the high Da condi-
tion, indicates that a smaller tR leads to a faster approach
to equilibrium. The final term in the brackets captures the ra-
tio of thermal parameters and accounts for the evolution of
the temperature gradients. When the confining rock’s ther-
mal conductivity (Kb) and heat capacity (Cpb ) are low, the
thermal front advances downstream more rapidly, promot-
ing mild temperature gradients and equilibrium. Similarly, a
large product of the aquifer thickness and fluid heat capac-
ity (HCpf) also facilitates faster thermal front advancement
and equilibrium.

Notably, the fluid velocity does not appear in the criterion
of Eq. (17). This is attributed to the fact that solute advection
enhances disequilibrium (in accordance with the Da crite-
rion), while thermal advection promotes equilibrium by ex-
tending and stretching the thermal front. By introducing the
characteristic fluid velocity, uA, into the expression, the crite-
rion in Eq. (17) reproduces the Damköhler number criterion
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(Eq. 1):

l(t)Asλ

uA
� 1, where l(t)=

√
π

2
uAHCpf√
KbCpb

t1/2. (18)

Thus, this RLP-specific Da criterion incorporates a defini-
tion of the local characteristic length scale, l, in terms of time
and thermal parameters (dynamic Da). Recall that the length
scale l denotes the distance over which substantial tempera-
ture variation occurs (e.g., 2 % of the total change) and cap-
tures the influence of the thermal field on reactive transport.

The functional criterion in Eqs. (17) and (18), consis-
tent with the results in Fig. 4, indicates that the equilib-
rium solutions are not applicable as t→ 0 and are less ac-
curate during the initial stages. Nevertheless, as shown in
Fig. 2, the equilibrium-approximated solutions may remain
fully valid even at relatively early times. Such behavior
is observed under common conditions involving fractured
carbonate aquifers and silica precipitation, where the va-
lidity extends to timescales of engineering relevance (e.g.,
t < 25 years).

It should also be recalled that several inherent assump-
tions in the Lauwerier solution reduce its accuracy during
the initial stages (see Appendix A). In addition, for the re-
active Lauwerier solution, the assumption of negligible ther-
mal retardation time (tlg) and the approximation t ′ ≈ t fur-
ther affect the accuracy at early times (see Eqs. 6 and 13).
This assumption, which is particularly relevant for the radial
case, contributes to the reduced accuracy at early times (e.g.,
t < 10 years; see Appendix C in Roded et al., 2024b).

3.4 Development of coalesced fronts

As mentioned in the previous section, a key feature of quasi-
equilibrium behavior is the close alignment of the thermal
and reactive fronts in the aquifer, which occurs when Da
is high and reactions dominate over transport. Under these
conditions, any disequilibrium induced by thermal changes
diminishes rapidly and essentially does not extend down-
stream of the thermal front, resulting in the coalescence of
the fronts. This property is leveraged to infer, in a simple
manner, the spatial distribution and temporal advancement of
the coalesced fronts using the thermal Lauwerier solutions.

First, we define the thermal fronts’ outer-end posi-
tions, ξF(t), as the furthest distances of thermal perturbation
due to the injection at a given time. The thermal perturbation
is quantified by ε= (T (ξF)−T0)/1T , where ε is a prescribed
small value (ε� 1); here, ε= 0.01. This threshold uniquely
determines the position ξF(t) at which the temperature per-
turbation is considered negligible.

Next, rearranging and substituting the definition of ε cor-
responding to the conditions at the fronts’ outer-end positions
into the Lauwerier solutions (Eqs. 6 and 13) yield

ε = erfc(a), where a =

{
ζ(t)r2

F, for ξ = r

ω(t)xF, for ξ = x
. (19)

Here, a is a constant determined by ε, and for ε = 0.01,
a ≈ 1.8. Then, the fronts’ outer-end positions can be ex-
pressed as

rF(t)=

√
a

ζ(t)
and xF(t)=

a

ω(t)
. (20)

Finally, substituting the definitions of ζ and ω (Eqs. 7
and 14) into Eq. (20) gives explicit expressions for the ad-
vancement of the coalesced fronts under quasi-equilibrium
conditions:

rF(t)=

√
aQCpf

π
√
KbCpb

t
1
4 , and xF(t)=

aHCpfu√
KbCpb

t
1
2 . (21)

These relations provide a simple way to estimate the spa-
tial positions of the coalesced fronts as a function of time
using the thermal solutions alone.

To demonstrate the fronts’ advancement, Eq. (21) is used
to plot xF and rF for three different velocities (u) and flow
rates (Q), presented in Fig. 5a and b. This illustrates the de-
cay of the advancement rate over time in both cases: the hot
fluid heats the confining rocks as it flows, and the thermal
fronts gradually advance downstream. However, front exten-
sion overall enhances heat loss to the confining layers, reduc-
ing the advancement rate over time and distance.

The key difference between the radial and planar cases, as
noted in Sect. 3.2, is clearly reflected in Eq. (21) and the re-
sults shown in Fig. 5a and b. The planar case exhibits signif-
icantly greater heat retention and a higher advancement rate.
This is demonstrated by the green dashed lines in Fig. 5a
and b, which indicate that half of the final calculated ex-
tent, 1/2xFinal, is reached in one-quarter of the final time,
while in the radial case, 1/2rFinal is approached after 1/16 of
the time. Alternatively, differentiating Eq. (21) with respect
to time yields ∂rF/∂t ∝ t−3/4 in the radial case, compared to
∂xF/∂t ∝ t

−1/2 in the planar case.
Another case considered here, shown in Fig. 5c and d, is

the low-flow-rate limit in radial geometry, where conduction
dominates and effectively distributes heat. This is illustrated
using two different approaches: (I) the analytical conduction-
only solution, representing the limitQ→ 0 (black lines), and
(II) numerical results for low flow rates (Q= 1 and 5 m3 d−1,
red and orange curves).

The analytical solution describes a sphere at constant tem-
perature in an infinite medium, modeling heat conducted
from the sphere into the surrounding medium. This time-
dependent solution converges to a quasi-steady-state temper-
ature profile that remains essentially unchanged over time
(Stauffer et al., 2014; see details in the SM). The numeri-
cal simulations for low flow rates use equations and settings
identical to those of the Lauwerier solution but with an im-
portant distinction: they do not assume negligible radial con-
duction. This simplification makes the Lauwerier solution in-
adequate under conditions of low flow rates and sharp lateral
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Figure 5. Advancement of the coalesced thermal and reactive fronts over time, xF(t) and rF(t), for different velocities (u) and flow rates (Q),
respectively. Panels (a) and (b) show results for high flow rates, whereas panels (c) and (d) illustrate the low-flow-rate limit. (a, b) xF and
rF are calculated using Eq. (21). The green dashed lines illustrate the difference between the radial and planar cases and highlight the greater
advancement of the front in the planar case: half of the final extents (1/2xFinal and 1/2rFinal) are reached at 1/4 and 1/16 of the final time,
respectively. (c, d) The low-flow-rate limit refers to the radial case where conduction effectively distributes heat. This is analyzed using the
solution for the conduction-only setting, representing the limitQ→ 0 (analytical, black lines), and the results for low flow rates ofQ= 1 and
5 m3 d−1 (numerical, red and orange, respectively). Panel (c) shows rF for these cases, whereas panel (d) displays the temperature profiles
as a function of radial position, r . The black line in (d) represents the conduction-only quasi-steady-state profile, and the colored dashed and
continues lines indicate early and later times, respectively, for each flow rate. The close alignment of the lines demonstrates that the thermal
field remains nearly unchanged after the initial stage. For further details on the calculations, refer to the text.

geothermal gradients (see Appendix A). Further details of the
numerical calculations are given in Roded et al. (2023).

Figure 5c shows rF for the conduction-only case and for
Q= 1 and 5 m3 d−1 (other parameter values are consistent
with Appendix D). Unlike the high-flow-rate planar and ra-
dial cases in Fig. 5a and b, the low-flow-rate cases exhibit
a more pronounced decrease in the advancement rate over
time, reflected in the flattening of the curves. This effect is es-
pecially pronounced for the lower flow rate (Q= 1 m3 d−1),
which exhibits behavior closer to the conduction-only case,
in which the advancement rate essentially levels off as the
system approaches the quasi-steady state.

This is more clearly shown in Fig. 5d, which presents the
temperature profiles for these cases as a function of the radial
position, r . It includes the analytical quasi-steady-state tem-
perature profile (conduction-only case) and numerical pro-

files at low flow rates shown for two consecutive times. The
close alignment of the dashed (early time) and continuous
(later time) lines, and their near overlap, demonstrates that
the temperature profiles change very little after the early
stage. The profiles become nearly stationary over tens to hun-
dreds of years, which is a very brief geological timescale.
Hence, even though the front’s outer position in the low-flow-
rate cases continues to advance slowly, the temperature pro-
file does not change meaningfully. This contrasts with the
high-flow-rate cases shown in Figs. 2a and 3a over the long
timescale considered.

The results also show effective heat distribution by con-
duction, with nearly complete cooling occurring within 10–
100 m from the inlet, depending on the flow rate. Overall,
both the analytical solution for the limit Q→ 0 and the nu-
merical solutions at low flow rates demonstrate similar heat-
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transport behavior under these conditions. This low-flow-rate
scenario is particularly relevant to natural conditions, which
often involve low flow rates and can manifest on the surface
as low-flow-rate thermal springs (Garven, 1995; Klimchouk
et al., 2017; Roded et al., 2013).

These findings have important implications, suggesting
that thermally driven reactive fronts can also become nearly
stationary, as will be further discussed in the Discussion sec-
tion. Lastly, it is important to note that the solutions as-
sume an infinite caprock thickness. However, if the thermal
front reaches the surface, greater heat exchange between the
aquifer and the caprock is expected, reducing the thermal
front’s advancement rate and extent (see also Appendix A).

4 Discussion and outlook

4.1 Equilibrium model applicability to hydrothermal
systems

Figure 6 presents an illustrative phase diagram distinguish-
ing between conditions where the THC equilibrium model
(Eq. 5) is applicable and those far from equilibrium. The
diagram is based on the Damköhler number, which repre-
sents the ratio between the characteristic timescales of trans-
port and reaction, Da= tA/tR. The diagonal line marking the
transition at Da� 1 (Dacr) and hotter colors denote higher
Da values and conditions closer to equilibrium. As reactivity
(1/tR) increases, the equilibrium model becomes applicable
over a wider range of flow velocities, u, or smaller charac-
teristic length scales, l, represented as 1/tA = uA/l. Here,
l represents the local characteristic length scale of thermal
and solubility variations and accounts for the thermal field
effect on reactive transport, which may vary with time (see
Sect. 3.3). Equation (1), which assumes first-order kinetics
and presents Da= lλAs/uA, is useful for quantifying differ-
ent fluid–rock interactions that can be approximated by first-
order kinetics.

Several notable fluid–rock interaction processes are shown
on the diagram, positioned according to their characteristic
reactivity. At the top are common carbonates, i.e., limestone
and dolomite, which typically exhibit high reaction rates and
are highly prone to alteration (with values of λ typically rang-
ing from 10−8 to 10−4 ms−1 under engineering applications;
Dreybrodt et al., 2005; Peng et al., 2015; Plummer et al.,
1978).

Silica precipitation is also prevalent in hydrothermal set-
tings (e.g., quartz vein formation and mineral scaling; Glass-
ley, 2014; Huenges and Ledru, 2011; Oliver and Bons,
2001) and is characterized by relatively high reactivity,
with a typical rate constant of λ= 5× 10−10 ms−1 (Rimstidt
and Barnes, 1980). In contrast, while non-crystalline silica
(amorphous) precipitates relatively quickly, quartz dissolu-
tion is typically slower by several orders of magnitude (Rim-
stidt and Barnes, 1980). An additional interesting behavior

Figure 6. A schematic diagram illustrating the applicability of
the THC equilibrium model and the positioning of several notable
fluid–rock interaction processes according to their typical reactiv-
ity. The diagram is plotted based on the characteristic timescales of
reaction and transport that define Da and shows 1/tR versus 1/tA
(Da= tA/tR). The equilibrium model can be assumed when Da >
Dacr, with Dacr defined as a threshold where Dacr� 1. Dacr is rep-
resented by the diagonal black line on the diagram, with hot colors
indicating high Da values and proximity to equilibrium.

associated with quartz occurs at much higher temperatures
(e.g., T > 300 °C), which can prevail near magmatic intru-
sions. At these high temperatures, quartz exhibits retrograde
solubility, which switches to prograde solubility upon cool-
ing (Glassley, 2014; Scott and Driesner, 2018).

Importantly, the specific reactive surface area, As (L2 to
L−3 of a porous medium), may vary widely across different
rock lithologies, and its effect on the applicability of the equi-
librium model is comparable to that of kinetics. Specifically,
As can vary, e.g., from 10−1 m−1 in fractured rock (Deng and
Spycher, 2019; Pacheco and Van der Weijden, 2014) to above
105 m−1 for porous medium (Noiriel et al., 2012; Seigneur
et al., 2019) and can also evolve during reactive flow (Noiriel,
2015; Seigneur et al., 2019).

The position of these processes on the diagram, supported
by calculations in Sect. 3.2, demonstrates the applicability
of the equilibrium model even at relatively high flow rates.
This is especially significant, as high flow rates are charac-
teristic of applications such as groundwater storage and re-
covery, aquifer thermal storage, and geothermal reinjection
(Diaz et al., 2016; Fleuchaus et al., 2018; Maliva, 2019).

Additional important settings where thermally driven re-
actions may play a significant role involve mineral carbon-
ation. In particular, this includes the formation of carbonate
veins in ultramafic rocks, such as peridotites, by ascending
CO2-rich hydrothermal flow (Kelemen et al., 2011; Menzel
et al., 2024). The CO2-rich fluids first dissolve the rock min-
erals, primarily olivine. Then, as the pH rises and cation en-
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richment occurs, carbonate precipitation, primarily magne-
site, takes place further along the upward flow path. The rate-
limiting step in the mineral carbonation process is commonly
suggested to be the relatively slower kinetics of dissolution
compared to precipitation (Hänchen et al., 2006; Kaszuba
et al., 2013; Kelemen et al., 2019).

The solubility of olivine is retrograde, as evidenced by
the exothermic nature of the reaction (Kaszuba et al., 2013;
Prigiobbe et al., 2009). Under such conditions, ascending
flow along a decreasing geothermal gradient is expected to
promote undersaturation. This continued renewal of under-
saturation in turn may facilitate the development of an ex-
tended, thermally driven dissolution-precipitation front. The
typically low rates of ascending hydrothermal flow (e.g.,
u < 10−7 ms−1; Garven, 1995), along with characteristic
high reaction rates of olivine dissolution at high temperatures
(T > 150 °C; Rimstidt, 2015; Rimstidt et al., 2012), suggest
that Da can be large. Consequently, mineral carbonation and
vein formation can be controlled by thermally driven solubil-
ity changes and described by the THC equilibrium model.

4.2 Development of thermally driven reactive fronts in
Earth systems

The quasi-equilibrium conditions, characterized by the ther-
mal front’s control over the reactive front and their coales-
cence, allowed examination of their evolution in different set-
tings in Sect. 3.4. A particularly interesting finding is that in
radial (or similar) settings, and at relatively low flow rates,
a quasi-steady state develops over brief timescales of tens to
hundreds of years. Such a cooling process can also produce
very steep thermal gradients, as shown in the temperature
profile in Fig. 5d, and can cause localized, thermally driven
reactive effects. These thermal gradients may be up to 2 or-
ders of magnitude greater than the typical geothermal gra-
dient resulting from Earth’s heat flow (e.g., ∼ 0.025 °Cm−1;
Turcotte and Schubert, 2014).

A relevant example includes hypogenic karst cave forma-
tion driven by upwelling hydrothermal flow through a con-
duit pathway within a fault. This flow discharges and spreads
radially in a confined aquifer while cooling rapidly, promot-
ing localized carbonate dissolution around the water inlet
(Roded et al., 2023, 2024a). In this case, the results in Fig. 5d
suggest that the cave system or alteration front may reach
approximately constant final dimensions. These settings may
also apply to additional alterations by hypogenic flows and
thermal seepages.

Additional relevant settings that can involve coalesced
fronts include ascending hydrothermal flow along a decreas-
ing geothermal gradient, leading to cooling and thermally
driven reactions. Particularly, as mentioned above (Sect. 4.1),
this may induce olivine dissolution followed by mineral car-
bonation in veins in ultramafic rocks. Alternatively, quartz
vein formation dominantly occurs due to cooling along the
flow path (Bons, 2000; Sibson et al., 1975). In these settings,

coalesced fronts may become stationary as the hot ascending
flow alters the background geothermal gradient, producing a
modified steady vertical thermal profile (Person et al., 1996;
Roded et al., 2013).

In these cases where the coalesced, thermally driven reac-
tive front remains stationary over geological timescales, spa-
tial alteration of the front depends on slower tectonic pro-
cesses. These tectonic timescales are associated with pro-
cesses such as erosion, subduction, and orogenic activity.
A well-known example is the alteration of the geothermal
gradient caused by surface erosion or sediment deposition
(Haenel et al., 2012; Turcotte and Schubert, 2014). In re-
sponse to tectonic changes, the slowly varying subsurface
thermal field drives the gradual migration of the reactive
front.

4.3 Theoretical modeling outlook

Finally, this study and Roded et al. (2024b) demonstrate the
extension of established heat transport solutions to THC-
coupled solutions. For future work, the possibility of ex-
tending these solutions and approaches in several directions
should be investigated. Specifically, it should be examined
how the solutions developed can be further extended to ad-
dress more realistic and complex scenarios. In particular, this
includes consideration of more complex kinetic systems in-
volving multiple species and additional or more intricate cou-
plings between variables and parameters.

In such cases, semi-analytical approaches could be espe-
cially useful. Due to the quasi-static assumption of reactive
flow, the set of equations for the reaction rate (Eqs. 10 and 15)
or solute disequilibrium (Eqs. B3 and B6) could potentially
be implemented in a semi-analytical, coupled, and iterative
manner.

Furthermore, the approach taken here and in Roded et al.
(2024b) can be adapted to extend additional thermal solu-
tions to significant thermally driven reactive transport sce-
narios. Notably, this may be especially practical and feasible
under the equilibrium assumption, where thermally driven
reactions depend solely on the thermal gradients.

5 Summary and conclusions

In this work, the equilibrium assumption was used to de-
rive thermally driven reactive transport solutions for the RLP
(reactive Lauwerier problem) in Cartesian and radial co-
ordinates. The solutions were then validated and analyzed
against reference solutions and case studies involving ther-
mally driven reactions of carbonates. In particular, the short-
coming of the equilibrium-approximated solutions associ-
ated with the advective boundary condition was analyzed. It
was found that as the thermal front advances, inlet tempera-
ture gradients become milder and the advective discrepancy
becomes less pronounced. This also motivated the deriva-
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tion of a functional criterion for quasi-equilibrium conditions
in the RLP, which reduces to the Damköhler criterion (dy-
namic Da). The criterion incorporates time and thermal pa-
rameters and supports this interpretation.

Following this, a unique feature of quasi-equilibrium con-
ditions – the coalescence of the thermal and reactive fronts –
was used to explore their evolution over time. This was ex-
amined in both planar and radial settings and under the low-
flow-rate limit where conduction effectively distributes heat.
The advancement rate in the radial case decays much more
rapidly, and, notably, under the low-flow-rate limit, the front
can become essentially stationary within a very short period.
Additionally, under these conditions, very sharp temperature
gradients are created near the inlet, which can induce local-
ized fluid–rock interactions.

The applicability of the THC equilibrium model for no-
table fluid–rock interaction processes was then discussed.
These include sedimentary reservoir evolution through reac-
tions involving silica and carbonates, as well as natural min-
eral carbonation in ultramafic rocks. These processes were
positioned on a phase diagram based on the Damköhler num-
ber, illustrating the applicability of the equilibrium model.

Notably, the theoretical approach used here – extending
established heat-transport solutions to thermally driven re-
active transport – may also be applicable to other impor-
tant Earth system scenarios. Finally, it is emphasized that
because thermally driven reactive fronts often become es-
sentially stationary within a short period, their evolution is
governed by geological processes. These processes, such as
tectonics or surface erosion and deposition, operate on much
longer timescales.

Appendix A: Underlying assumptions and equations of
the equilibrium RLP

This appendix describes the main assumptions of the RLP
under the equilibrium assumption. It follows the main pre-
sentation from Roded et al. (2024b) and extends it to account
for the quasi-equilibrium conditions considered in this study.
First, the main assumptions are detailed, followed by a com-
prehensive overview of the basic conservation equations.

A1 Main model assumptions

The thermal Lauwerier (Lauwerier, 1955) solution involves
several simplifying assumptions. These include neglecting
the initial geothermal gradient and assuming that the basal
geothermal heat flux is negligible compared to the heat sup-
plied by the injected fluid. The aquifer is also assumed to
be situated at depth, preventing heat from being transferred
to the surface; otherwise, there would be greater heat ex-
change between the aquifer and the caprock. This assump-
tion also depends on the timescale of interest: the thermal
front, which rises over time, may not extend to the surface

on a short timescale. However, over a longer period, it may
transfer heat to the surface, which can be calculated using the
characteristic timescale of conduction tC (tC = l2C/αb, where
lC accounts for the characteristic length scale of conduction
and αb is the thermal diffusivity).

In the confining layers, heat is transferred solely through
conduction in the vertical direction (z), while neglecting
lateral (ξ ) heat conduction. This assumption restricts the
model’s applicability to cases with high injected fluid fluxes,
where mild lateral temperature gradients evolve. To evalu-
ate the validity of this assumption, a thermal Péclet number
is employed, which compares heat advection in the aquifer
to lateral heat conduction in the confining layers: PeT =

uAl/αb, where l is a length scale at which substantial temper-
ature variation occurs (e.g., the distance corresponding to 2 %
of the total temperature change,1T ). A posteriori inspection
confirms that PeT� 1 beyond the initial moments under all
conditions considered here. Moreover, after a very short ini-
tial phase, the length scale l should exceed the vertical di-
mension of the aquifer, H , where complete thermal mixing
is assumed (l�H ). This assumption may not hold if a thick
aquifer (i.e., large H ) is considered, and significant vertical
temperature gradients are expected to develop.

Additionally, thermal and solute dispersions within the
aquifer are neglected, as both thermal (PeT) and solute (Pes)
Péclet numbers are assumed to be large. Properties of the
fluid and solid phases, such as density and thermal conductiv-
ity, are assumed to be constant and temperature-independent.
Finally, it is assumed that Da> 1, making the equilibrium
assumption applicable. As a result, reaction rates are essen-
tially independent of kinetics and reactive surface area, as
demonstrated in Sect. 2.2 of the main text.

A2 The basic conservation equations

Heat transport:

Here, the basic conservation equations that underlie the
Lauwerier solutions (Eqs. 6 and 13) and the THC equilibrium
model (Eq. 5) are presented. More general versions of the
conservation equations are provided in Roded et al. (2024b).
In what follows, the radial case (ξ = r) is considered first,
followed by the planar flow case and Cartesian coordinates
(ξ = x).

Assuming that heat transfer in the radial direction, r , is
negligible, the heat equation in the bedrock and caprock con-
fining the aquifer is

∂T

∂t
= αb

∂2T

∂z2 , for

{
z ≤−H2

z ≥ H
2

, (A1)

where T denotes temperature, t is time, z is the vertical co-
ordinate originating at the center of the injection well, and
H denotes the aquifer thickness (see Fig. 1). The thermal
diffusivity is given by αb =Kb/Cpb , where the subscript b
denotes bulk rock, K is the thermal conductivity, and Cp is
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the volumetric heat capacity (Chen and Reddell, 1983; Stauf-
fer et al., 2014).

Assuming that heat transport in the aquifer is dominated
by advection and that perfect mixing prevails in the trans-
verse direction (z), a “depth-averaged” heat transport equa-
tion can be derived for the aquifer domain:

CpbH
∂T

∂t
= −CpfH

1
r

∂(ruT )

∂r
−n ·2(r, t),

for −
H

2
≤ z ≤

H

2
, (A2)

where subscript f denotes fluid and u is the Darcy flux, as-
sumed to be uniform along the z direction, which is calcu-
lated from the total volumetric flow rate, Q, using u(r)=
Q/(H2πr) (Andre and Rajaram, 2005; Lauwerier, 1955).
The function 2 accounts for the heat exchange between the
aquifer and the confining bedrock and caprock, calculated
using Fourier’s law, assuming continuous temperature at the
interfaces:

2=−2Kb
∂T

∂z
|
z=H2 ,−

H
2
. (A3)

The factor of 2 accounts for both the bedrock and caprock
(Stauffer et al., 2014). In Eq. (A2), n represents a unit vector
directed outward from the aquifer and perpendicular to the
interface between the aquifer and the bedrock or caprock.
This orientation ensures that, e.g., in the case of a warmer
aquifer, the upward and downward heat fluxes constitute a
heat sink.

Reactive transport:

The solute advection–reaction equation in the aquifer is

0=−u
∂c

∂r
−�(r, t), for −

H

2
≤ z ≤

H

2
, (A4)

where c is the solute concentration and � is the reaction rate
(Chaudhuri et al., 2013; Szymczak and Ladd, 2012). Note
that the transient and dispersivity terms in Eq. (A4) are ne-
glected, with the latter being omitted due to the assumption
of Pes� 1. The justification for neglecting the transient term
and invoking the quasi-static approximation in the derivation
of Eq. (A4) lies in the separation of timescales between the
relaxation of solute concentration (tA), heat conduction (tC)
in the confining rocks, and mineral alteration (for an in-depth
analysis and discussion, see Roded et al., 2024b, and as well,
e.g., Bekri et al., 1995; Ladd and Szymczak, 2017; Lichtner,
1991; Roded et al., 2020).

Using the reaction rate, the change in porosity, θ , can be
calculated as

∂θ

∂t
=−

�

νcsol
, for −

H

2
≤ z ≤

H

2
. (A5)

Here, csol represents the concentration of soluble solid
mineral, and ν accounts for the stoichiometry of the reaction.

For planar flow and Cartesian coordinates, r can be substi-
tuted with x in the equations above, while Eq. (A2) takes the
following form:

CpbH
∂T

∂t
= − uCpfH

∂T

∂x
−n ·2(x, t),

for −
H

2
≤ z ≤

H

2
. (A6)

The above set of heat transport equations underlies the
development of the thermal Lauwerier solutions presented
in Sect. 3.1 (Eqs. 6 and 13). Section 2.2 of the main
text provides the derivation of the equilibrium-approximated
form of Eq. (A4), which is used to obtain the equilibrium-
approximated solutions developed in this study.

Appendix B: RLP solutions

B1 Radial case

The solution to the RLP for solute disequilibrium in the radial
case is given by

3=1Tβe

(
η2

4ζ2−ηr
2
)(

erf
[
ζ r2
−
η

2ζ

]
+ erf

[
η

2ζ

])
, (B1)

where η = πHAsλ/Q and the definition of ζ is given in
Eq. (7).

A closed-form expression for the temporal and spatial evo-
lution of porosity, θ , is given by

θ(r, t)= θ0+ 4
ζ 2t

η2
λAs1Tβ

νcsol

(
−e

η/4
(
η

ζ2−4r2
)

×

(
erf
[
ζ r2
−
η

2ζ

]
+ erf

[
η

2ζ

])
+

η

ζ
√
π
e−ηr

2
+ erf[ζ r2

](1− ηr2)

−
η

ζ
√
π
e−ζ

2r4
+ ηr2

− 1
)
. (B2)

For efficient computation and preventing integer overflow,
an approximate solution of Eq. (B1) is developed using the
first-order asymptotic expansion of erfc:

3=
1Tβ
√
π
e(−ηr

2)

(
e(ηr

2
−ζ 2r4)

η
2ζ − ζ r

2 −
2ζ
η

)
. (B3)

B2 Planar case

For the planar case, the corresponding solutions are given by

3=1Tβe

(
σ2

4ω2−σx
)(

erf
[
ωx−

σ

2ω

]
+ erf

[ σ
2ω

])
(B4)
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and

θ(x, t)= θ0+ 4
ω2t

σ 2
λAs1Tβ

νcsol

(
−e

σ/4
(
σ

ω2−4x
)

×

(
erf
[
ωx−

σ

2ω

]
+ erf

[ σ
2ω

])
+

σ

ω
√
π
e−σx + erf[ωx](1− σx)

−
σ

ω
√
π
e−ω

2x2
+ σx− 1

)
. (B5)

An approximate expression for Eq. (B4) is given by

3=
1Tβ
√
π
e(−σx)

(
e(σx−ω

2x2)

σ
2ω −ωx

−
2ω
σ

)
. (B6)

Here, σ = Asλ/u, and the definition of ω is given
in Eq. (14).

To prevent integer overflow errors, Eqs. (B3) and (B6)
are used to calculate the undersaturation profiles shown in
Figs. 2b and 3b and the reaction rate profiles in Fig. 4a. These
expressions are also employed in the iterative numerical so-
lution to obtain the porosity profiles at t = 100 kyr, shown
in Figs. 2c and 3c. Prior validation confirmed the accuracy
of the approximate solutions (Eqs. B3 and B6; Roded et al.,
2024b).

Appendix C: Derivation of the applicability criterion

In this appendix, the derivation of the applicability crite-
rion shown in Sect. 3.3 is presented. This criterion pro-
vides a functional relationship between key parameters, vari-
ables, and the system equilibrium state in RLP settings.
The derivation of the criterion leverages a key feature of
the quasi-equilibrium regime: the coalescence of the thermal
and reactive fronts in the aquifer, which occurs when Da is
high (compare the curves in Fig. 2a and b). In this regime,
reactions dominate over transport, and thermally induced
disequilibrium dissipates rapidly, essentially not extending
downstream of the thermal front.

It is noted that even when the fronts coincide downstream,
far-from-equilibrium conditions may still persist upstream.
This is observed in the results of Fig. 4, where the equilib-
rium solution (which aligns with the thermal front) and the
reference solution closely match downstream at later times
but diverge upstream. Nonetheless, the derived functional re-
lationships offer useful guidance.

First, the thermal front’s outer-end position, ξF(t), is de-
fined as the furthest distance of thermal perturbation due to
the injection at a given time. The thermal perturbation is
quantified by ε= (T (ξF)− T0)/1T , where ε is a prescribed
small value (ε� 1); here, ε= 0.01. Here, we consider the
radial case (ξF = rF), though applying the same steps to the
planar case equations yields the same result.

Rearranging and substituting the definition of ε into the
Lauwerier solution (Eq. 6) yield

ε = erfc(a), where a = ζ(t)r2
F, (C1)

where a is a constant, and for ε= 0.01, a ≈ 1.8. Then, rF can
be expressed as

rF =

√
a

ζ(t)
. (C2)

Next, an approximate form of the reference solution for
disequilibrium is used (Eq. B3 in Appendix B; Roded et al.,
2024b). The reasoning for using a far-from-equilibrium-
based solution, even though the equilibrium model strictly
assumes 3= 0 (cf. Eqs. 4 and 5), is that small 3 confirms
the validity of this approximation. Therefore, solute disequi-
librium serves as a metric to quantify the spatial and temporal
extent over which the equilibrium assumption is valid.

Assuming quasi-equilibrium at the front’s outer-end po-
sition, rF, and applying the condition ε ≥3/1cs, where
1cs denotes the solubility change in the system, 1cs =

cs(Tin)− cs(T0), which here may be positive or negative,
Eq. (B3) becomes

ε ≥
1T

1cs

β
√
π
e
(
−ηr2

F
)(e

(
ηr2

F−ζ
2r4

F
)

η
2ζ − ζ r

2
F
−

2ζ
η

)
. (C3)

Next, applying a few more steps by substituting the defi-
nition from Eq. (C2), neglecting early times, and assuming
high Da and η� ζ , Eq. (C3) can be simplified to

ε ≥
1T

1cs

β
√
π

2ζ
η
. (C4)

Noting that β =1cs/1T and explicitly substituting the
parameters using Eq. (7) and η = πHAsλ/Q, Eq. (C4) be-
comes

1�
2
√
πt

(
1
Asλ

)(√
KbCpb

HCpf

)
, (C5)

where As is the specific reactive area [L−1] and λ is the
kinetic reaction rate coefficient of the first-order reaction
[LT−1]. Equation (C5) defines the conditions under which
the thermal and reactive fronts coincide and provides a func-
tional relationship to the equilibrium state in RLP settings.
As shown in the main text, this criterion reduces to the Da
criterion (Eq. 1) but further defines the local characteristic
length scale, l, through time and thermal parameters (dy-
namic Da) in RLP settings.
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Appendix D: Parameter values

Table D1. Parameter values used in the simulation in Sect. 3.2.

Aquifer thickness H = 4 m
Initial porosity θ0= 0.05
Total volumetric flow rate1 Q= 500 m3 d−1

Fluid velocity u= 10−6 ms−1

Initial aquifer temperature2 T0= 20 °C
Injection temperature2 Tin= 60 °C
Fluid volumetric heat capacity2 Cpf= 4.2× 106 Jm−3 °C−1

Rock volumetric heat capacity2 Cpb= 3.12× 106 Jm−3 °C−1

Rock thermal conductivity2 Kb= 3 Wm−1 °C−1

Calcite rate coefficient3 λ= 10−6 ms−1

Fractured carbonate specific reactive surface area4 As= 10 m−1

Calcite mineral concentration3 csol= 2.7× 104 molm−3

Solubility change parameter for calcite5 β =−0.075 molm−3 °C−1

Stoichiometry coefficient3 ν= 1

1 – Glassley (2014); 2 – Huenges and Ledru (2011); 3 – Palmer (1991); 4 – see Sect. 4.1; 5 – Roded et al.
(2023).
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Appendix E: Nomenclature

Table E1. List of symbols.

Roman x Coordinate, m
a Error function argument xF Front’s outer-end position, planar case, m
As Specific reactive surface area, m2 m−3 xFinal xF final extent, planar case, m
c Solute concentration, molm−3 y Coordinate, m
cs Solubility (saturation concentration), molm−3 z Coordinate, m
csol Concentration of soluble solid, molm−3 Greek
Cp Volumetric heat capacity, Jm−3 °C−1 α Thermal diffusivity, m2 s−1

Da Damköhler number β Solubility change parameter, molm−3 °C−1

Dacr Critical Damköhler number 0 Gamma function
erf Error function 1 Total difference
erfc Complementary error function ε Number much smaller than 1
Err Weighted local error, molm−2 s−1 ζ Parameter group, m−2

H Aquifer thickness, m η Parameter group, m−2

K Thermal conductivity, Wm−1 °C−1 θ Porosity
l Local characteristic length scale, m 2 Heat exchange term, Wm−2

lC Characteristic length scale of conduction, m λ Reaction rate coefficient, ms−1

n Unit vector 3 Solute disequilibrium, molm−3

p Fluid pressure, Pa µ Fluid viscosity, Pa s
Pes Solute Péclet number ν Stoichiometric coefficient
PeT Thermal Péclet number ξ Lateral coordinate, ξ = r or x, m
Q Total volumetric flow rate, m3 d−1 ξF Front’s outer-end position, ξ = rF or xF, m
r Coordinate, m σ Parameter group, m−1

rF Front’s outer-end position, radial case, m ω Parameter group, m−1

rFinal rF final extent, radial case, m � Reaction rate, molm−3 s−1

t Time, s Subscripts
t ′ Time parameter, s b Bulk rock
tA Characteristic timescale of advection, s Equ Equilibrium solution
tC Characteristic timescale of conduction, s f Fluid
tlg Thermal retardation time, s in Inlet
tR Characteristic timescale of reaction, s max Max
T Temperature, °C Ref Reference solution
u Fluid velocity, ms−1 0 Initial average quantity
uA Characteristic fluid velocity, ms−1
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