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Abstract. Accurate quantification of wetland depression wa-
ter storage capacity (WDWSC) is imperative for compre-
hending the wetland hydrologic regulation functions to sup-
port integrated water resources management. Considering
the challenges posed by the high acquisition cost of high-
resolution lidar DEM or the absence of field measurements
for most wetland areas, urgent attention is required to de-
velop an accurate estimation framework for WDWSC using
open-source, low-cost, multi-source remote sensing data. In
response, we developed a novel framework, WetlandSCB,
utilizing coarse-resolution terrain data for accurate estima-
tion of WDWSC. This framework overcame several techni-
cal difficulties, including biases in above-water topography,
incompleteness and inaccuracy of wetland depression iden-
tification, and the absence of bathymetry. Validation and ap-
plication of the framework were conducted in two national
nature reserves of northeast China. The study demonstrated
that, by integrating the priority-flood algorithm, morpholog-
ical operators, and prior information, one can accurately de-
lineate the wetland depression distribution, with overall ac-
curacy and kappa coefficient both exceeding 0.95. The use of
a water occurrence map can effectively correct numerical bi-
ases in above-water topography, with Pearson coefficient and
R? increasing by 0.33 and 0.38, respectively. Coupling spa-
tial prediction and modeling with remote sensing techniques
yielded highly accurate bathymetry estimates, with <3 %
relative error compared with field measurements. Overall, the
WetlandSCB framework achieved estimation of WDWSC
with < 10 % relative error compared with field topographic
and bathymetric measurements. The framework and its con-

cept are transferable to other wetland areas globally where
field measurements and/or high-resolution terrain data are
unavailable, contributing to a major technical advancement
in estimating WDWSC in river basins.

1 Introduction

Wetlands are multifunctional ecosystems, considered as
nature-based solutions for effective water management in
river basins (Thorslund et al., 2017). They exert a profound
influence on watershed hydrologic processes and water re-
source availability through their hydrologic regulation func-
tions, such as maintaining baseflow, buffering floods, and
delaying droughts (Acreman and Holden, 2013; Wu et al.,
2023). These functions are essential for enhancing watershed
resilience and ensuring water security (Cohen et al., 2016;
Evenson et al., 2018; Lane et al., 2018). Wetland depression
water storage capacity (hereafter abbreviated as WDWSC)
represents a critical component of wetland hydrologic reg-
ulation functions. Quantitative study of the WDWSC con-
tributes to advancing scientific understanding of wetland hy-
drologic regulation functions and to improving integrated
water resources management at the watershed scale (Ahmad
et al., 2020; Fang et al., 2019; Jones et al., 2018; Shook et al.,
2021).

The WDWSC can be defined as the maximum surface wa-
ter volume that each wetland depression can store without
spilling to down-gradient waters (Jones et al., 2018). Pre-
vious studies predominantly employed wetland depression
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identification algorithms to derive wetland depression topog-
raphy from terrain data. In a vector-based contour represen-
tation, wetland depressions are shown as nested closed con-
tours, with inner contours at lower elevations than the outer
ones (Wu and Lane, 2016). Area—depth pairs are derived
from the contour lines of wetland depressions and hypsomet-
ric curves are constructed by applying curve-fitting methods
to the obtained pairs (e.g., Haag et al., 2005; Wu and Lane,
2016). Therefore, the key determinants for the accuracy of
the WDWSC calculation are the rationality of the wetland
depression identification algorithms and the precision of ter-
rain data.

Many scholars have conducted research on wetland de-
pression identification algorithms, which can be mainly
categorized into three types: depression filling, depression
breaching, and hybrid, combining both filling and breach-
ing approaches (Wu et al., 2019). Among these, the priority-
flood algorithm within the depression filling category is
widely adopted as a prevalent algorithm for wetland depres-
sion identification (Barnes et al., 2014; Lindsay, 2016; Wu
et al., 2019; Zhou et al., 2016). The priority-flood algorithm
works by flooding DEM cells inward from their edges us-
ing a priority queue to determine the sequence of cells to
be flooded. Wu et al. (2019) and Rajib et al. (2020) demon-
strated the feasibility of accurately deriving wetland depres-
sion topography using the priority-flood algorithm in the
Pipestem watershed and Upper Mississippi river basin, re-
spectively.

Bare-earth high-resolution airborne light detection and
ranging (lidar) DEM can provide accurate topographic infor-
mation of wetland depressions, significantly improving the
estimation accuracy of the WDWSC. For example, Jones et
al. (2018) used high-resolution lidar DEM to estimate WD-
WSC in the Delmarva Peninsula. However, the high acquisi-
tion cost of lidar DEM renders it impractical for large-scale
estimation of WDWSC. Global open-access spaceborne-
derived DEMs (hereafter referred as global DEMs), such
as the Shuttle Radar Topography Mission (SRTM), the
ALOS Global Digital Surface Model, and the Terra Ad-
vanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER) Global Digital Elevation Model, offer to-
pographic information at a fine spatial scale. However, com-
pared with the bare-earth lidar DEM, the global DEMs ex-
hibit three obvious limitations. First, radar altimetry can-
not penetrate water surfaces, so the global DEMs produced
from radar altimetry do not provide any bathymetric infor-
mation. Second, in certain regions, there may be substan-
tial numerical discrepancies in above-water topography. The
above-water DEMs demonstrate systematic overestimation
caused by canopy height and their accuracy is significantly
influenced by terrain slope (MareSova et al., 2024; Simard et
al., 2024). Third, the global DEMs often suffer from lower
horizontal and vertical resolutions (Chen et al., 2022; Liu et
al., 2019; Liu et al., 2024).
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Due to the limitations in global DEMs, delineation of wet-
land depression areas using the advanced priority-flood al-
gorithm also suffers from three problems: the bias in above-
water topography (Fig. 1a and b), incompleteness and inac-
curacy of wetland depression identification (Fig. 1c), and the
absence of bathymetric information (Fig. 1d) (Gdulové et al.,
2020; Hawker et al., 2019; Li et al., 2011; Liu et al., 2024).

In an effort to minimize the impact of the absence of bathy-
metric information in global DEMs on the estimation ac-
curacy of the WDWSC, researchers have conducted studies
on the estimation of underwater hypsometric relationships of
wetland depressions and the methods can be divided into two
types: spatial prediction and modeling methods and remote
sensing technologies. The spatial prediction and modeling
methods assume that the bathymetry can be considered as
a spatial extension of the surrounding exposed terrains due
to long-term tectonic and geophysical evolution processes.
Consequently, the underwater hypsometric relationship is as-
sumed to be fundamentally similar to the above-water hyp-
sometric relationship in wetland depressions (e.g., Ahmad
et al., 2020; Bonnema et al., 2016; Bonnema and Hossain,
2017; Liu and Song, 2022; Tsai et al., 2010; Vanthof and
Kelly, 2019; Verones et al., 2013; Wu and Lane, 2016; Xiong
et al., 2021). However, the large numerical bias in the above-
water topography of global DEMs in certain regions can dis-
tort the constructed above-water hypsometric relationship of
wetland depressions, thus introducing significant uncertainty
to the underwater hypsometric relationship estimated by this
method (Khazaei et al., 2022; Zhan et al., 2021). Over the
past few decades, remote sensing technologies have demon-
strated remarkable capabilities in estimating underwater hyp-
sometric relationships at large spatial scales, facilitated by
the rapid emergence of various advanced satellite sensors,
including optical, passive microwave, and radar instruments
(Duan and Bastiaanssen, 2013; Gao, 2015; Liu et al., 2022).
The commonly employed approach for estimating underwa-
ter hypsometric relationships requires simultaneous obser-
vations of water area provided by optical images (e.g., the
Landsat series) and the corresponding water level provided
by altimetry satellites (e.g., Sentinel-3, CryoSat-2, ICESat-
2, Envisat). However, accuracy challenges arise due to nu-
merical biases of altimetry satellites, cloud contamination in
some optical images, and the occasional occurrence of one
water area value corresponding to multiple water level val-
ues or vice versa (Li et al., 2019a, b; Liu et al., 2024).

In summary, previous studies using the global DEMs have
overlooked critical issues, such as the incompleteness and
inaccuracy of wetland depression identification, as well as
biases in above-water topography, leading to significant un-
certainties in WDWSC estimation. In addition, insufficient
attention has been paid to the drawbacks and limitations
of both spatial prediction and modeling methods and re-
mote sensing technologies in estimating bathymetry. Con-
sequently, a comprehensive and systematic solution for the
accuracy estimation of WDWSC based on the global DEMs
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Figure 1. (a—c) Wetland depression extraction based on the priority-flood algorithm and global DEMs showing the issues caused by the bias
of above-water topography. Panels (a)—(c) illustrate the discrepancies in above-water topography between the lidar DEM and ALOS DEM,
where (a) shows the 1 m spatial resolution lidar DEM and (b) displays the lidar DEM resampled to 30 m spatial resolution using the nearest-
neighbor method. Panel (c) presents the 30 m spatial resolution ALOS DEM. (d—f) Incompleteness and inaccuracy of wetland depression
identification. Panel (d) shows a historical satellite image from 2013, and panel (e) depicts the spatial distribution of wetland depressions
extracted using the priority-flood algorithm and ALOS DEM, which exhibits noticeable characteristics of incomplete boundaries and spatial
fragmentation. The absence of bathymetric information is shown in (f), where the entire water surface is represented by a single elevation

value of 129 m.

has not yet been developed. Therefore, this study aims to de-
velop a framework for accurately estimating WDWSC by in-
tegrating multi-source remote sensing data and prior knowl-
edge. Specifically, we integrated the priority-flood algorithm,
morphological operators, and prior information on the wa-
ter distribution map to delineate the spatial extent of wetland
depression areas. We then corrected the bias in above-water
topography based on the water occurrence map. Finally, we
utilized remote sensing techniques to couple spatial predic-
tion and modeling to estimate the bathymetry of wetland de-
pression areas. The principle contribution of this developed
framework, termed WetlandSCB, lies in addressing the chal-
lenges hindering the improvement of accuracy in estimating
WDWSC based on global DEMs.
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2 Methodology

The WetlandSCB framework can be summarized in four
steps, as illustrated in Fig. 2: step 1, delineation of wetland
depression areas; step 2, above-water topography reconstruc-
tion; step 3, bathymetric information estimation; and step 4,
hypsometric curve construction and WDWSC calculation.
Each of the four steps is described in the following sections.

2.1 Wetland depression spatial delineation

We extracted the original wetland depression map from the
SRTM DEM based on the priority-flood algorithm and wet-
land maps (Fig. 3). The priority-flood algorithm was applied
to identify and fill sinks in the DEM, resulting in a depres-
sionless DEM. By subtracting the original DEM from the
depressionless DEM, an elevation difference grid was gen-
erated, with each cell value representing the depth of the de-
pression. Subsequently, cells with elevation changes greater

Hydrol. Earth Syst. Sci., 29, 6023-6041, 2025
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Figure 2. Flowchart of the WetlandSCB framework for accurate estimation of wetland depression water storage capacity (WDWSC) compris-
ing four technical steps. In step 1, spatial distribution of wetland depression areas are delineated. In step 2, wetland above-water topography
is reconstructed. In step 3, bathymetric information of wetland depression areas is estimated. In step 4, a hypsometric curve (i.e., depth—area

relation) is developed and WDWSC is quantified.

than zero were extracted and identified as topographic de-
pressions. To eliminate the artifact wetland depressions, it
was necessary to transform the wetland depression map into
a binary image consisting of pixels of the required area, la-
beled as logical ones (wetland depression) and zeros (non-
wetland depression). We then employed the eight-neighbor
connectivity algorithm to extract the spatial extent of each
wetland depression from the binary image. Artifact wetland
depressions (e.g., rivers and channels) typically exhibit low
circularity,

ey

circularity =

P
2T A
where P (m) and A (m?) are the perimeter and area of the
wetland depression, respectively, and high eccentricity,

@)

.. Dy
eccentricity = L_ s
m

where D¢ (m) and L, (m) represent, respectively, the dis-
tance between foci and the length of the major axis of the
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wetland depression, whereas true wetland depressions gen-
erally display high circularity and low eccentricity. By iter-
atively refining the threshold values of these indicators and
validating the results through visual inspection, the optimal
thresholds were established to effectively eliminate artifact
wetland depressions (Ahmad et al., 2020).

Due to incompleteness and inaccuracy in identification of
some wetland depressions in the original wetland depression
map (Fig. 4a), morphological operators of erosion and dila-
tion are applied for the initial spatial processing (Fig. 4b).
The erosion operator erodes away the boundaries of wet-
land depressions to enhance their edges and remove noise.
The dilation operator fills up any small hole (non-wetland
depression pixels) surrounded by a group of wetland depres-
sion pixels (Pulvirenti et al., 2011a). The combined effect
of the two operators is to remove noise while preserving the
substantive features in the image. Specifically, on the Python
platform, morphological operation was performed by first ap-
plying the erosion operator, followed by the dilation opera-
tor. These operations require a binary-valued kernel, where
the output pixel value in the erosion step is determined by

https://doi.org/10.5194/hess-29-6023-2025
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Figure 3. (a) Conceptual diagram of wetland depression profile. (b) Representative wetland depression area located in Nenjiang river basin,

China. (c) 3-dimensional diagram of wetland depression area.

the minimum value within the kernel. A disk-shaped ker-
nel with a 3-pixel radius was used, which is significantly
smaller than typical wetland depressions but sufficient to
eliminate speckle noise. The water distribution map, which is
defined as the maximum water body distribution map, serves
as prior information and effectively characterizes the spatial
extent of wetland depressions (Fig. 4c). Therefore, after ap-
plying morphological operators, the wetland depression map
is merged with the water distribution map within the depres-
sion boundaries through a union operation, ensuring the cre-
ation of a comprehensive and finalized wetland depression
map (Fig. 4d).

2.2 Above-water topography reconstruction

The basic idea is that the greater the water occurrence for
a pixel (i.e., the more frequently it is covered by water),
the deeper the water (Li et al., 2021). Therefore, if there is
an accurate water occurrence map, a close relationship be-
tween the water occurrence and the topography for wetland
depressions can be found. The water occurrence map is gen-
erated by summing the times that the pixel is detected as wa-
ter and dividing it by the number of total valid observations.
The open-source Global Surface Water Mapping Layers pro-
duced by the European Commission’s Joint Research Cen-
tre (JRC) contains a water occurrence map, which has been
widely used to describe the topography of wetland depres-
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sions globally or in different regions (Luo et al., 2019; Pick-
ens et al., 2020; Yao et al., 2019; Zou et al., 2018b). More-
over, the global surface water dynamics maps produced by
Global Land Analysis and Discovery (GLAD), also include
a water occurrence map (Pickens et al., 2020). However, the
cloud-free JRC water distribution images have temporal dis-
continuity. They are more available during dry seasons than
wet seasons, which leads to deviations in the representation
of real topography at the scale of individual wetland depres-
sions (Chu et al., 2020).

To address this issue, this study proposes a method to re-
store the cloud-contaminated JRC water distribution images
to improve the accuracy of the JRC water occurrence map.
For wetland depression areas, the JRC water distribution im-
ages are classified into cloud-free and cloud-contaminated
images using the cloud screening algorithm (a rudimen-
tary cloud-scoring algorithm called simpleCloudScore) of
the Google Earth Engine platform (Mullen et al., 2021). The
Canny edge detection algorithm is used to obtain the water
body boundary for the two types of image (Canny, 1986).
Theoretically, if the water areas are the same, the water body
boundary of the cloud-free image should overlap with the ex-
posed water body boundary in the cloud-contaminated image
(Fig. 5a). Therefore, by overlapping the water body bound-
aries of the cloud-free images with the cloud-contaminated
images, the missing spatial extent of water bodies in the
cloud-contaminated images can be filled. Theoretically, this

Hydrol. Earth Syst. Sci., 29, 6023-6041, 2025
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method can be applied to wetland depression areas exceeding
0.0144 km?.

The corrected JRC water occurrence map is utilized to re-
construct above-water topography. This is because the water
occurrence values within the same wetland depression cor-
respond to elevation values of SRTM DEM (Fig. 5b and c).
However, each corrected water occurrence value may cor-
respond to multiple elevation values in the global DEMs.
Therefore, the median of multiple elevation values is used
as the unique elevation value corresponding to the water oc-
currence value.

2.3 Bathymetric information estimation

Using remote sensing technologies, simultaneous observa-
tions of water areas provided by optical images (e.g., Global
Surface Water datasets) and the corresponding water lev-
els from altimetry satellites (e.g., Sentinel-3) are employed
to obtain underwater area—level pairs (Fig. 6). Furthermore,
based on the principle of spatial prediction and modeling
methods, the continuity of the slope profile between the
above-water and underwater topography is used as a filter-
ing criterion to refine the underwater area—level pairs, en-
abling precise characterization of the underwater topography
of wetland depressions.

Multi-source altimetry satellites are matched with optical
images to construct all area—level pairs for wetland depres-
sions. By identifying water surface distributions in global
DEMs, the area—level pairs that represent underwater hypso-
metric relationships within wetland depressions are filtered.
Since altimetry satellite data are subject to various factors
that influence the accuracy of water level monitoring, in-
cluding intrinsic factors such as sensor performance and in-
strument resolution, as well as extrinsic factors like natural
elements, the geometry of the wetland water body, bound-
ary conditions, and vegetation characteristics (Zhou et al.,
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©

B. Hu et al.: Quantifying wetland depression water storage capacity with coarse-resolution terrain data

Water distribution map Final wetland depression

E

Figure 4. Final wetland depression map derived from morphological operators and prior water distribution information. (a) Spatial distri-
bution of the wetland depression before processing, with pink indicating wetland depression pixels. (b) Spatial distribution of the wetland
depression after morphological operator processing, represented in white. (¢) Maximum water extent within the wetland depression bound-
aries, highlighted in blue. (d) Refined spatial distribution of the wetland depression, obtained by combining (b) and (c¢) through a union
operation. The red dotted ellipses indicate wetland depression pixels supplemented with prior information.

2023), some of the derived water level data exhibit substan-
tial variability and uncertainty and are regarded as outliers.
The 30 rule is used to identify outliers in the underwater
area—level pairs, defining an area—level pair as an outlier if
its least squares residual exceeds three times the standard de-
viation. Moreover, DEM errors can be categorized into two
types: systematic and random errors. To mitigate data noise,
it is common practice to smooth the DEM before apply-
ing it for terrain analysis. Several filters commonly used for
smoothing DEMs include median and mean filters, Gaussian
filters, adaptive filters, and K -nearest mean filters (Lindsay,
2016). In this study, we use the smoothed SRTM DEM de-
rived from the Gaussian filter to calculate the slope profile.
As the slope profile is a crucial indicator reflecting the hypso-
metric relationship of wetland depressions (Clark and Shook,
2022; Sjoberg et al., 2022), we first form various combina-
tions of the processed underwater area—level pairs (each wa-
ter area value uniquely corresponds to a water level value in
each combination), and calculate the slope profile value py,
for each combination. Then the combination with p, clos-
est to the above-water slope profile p, is taken as the opti-
mal solution, which can effectively represent the underwater
bathymetry of wetland depressions.

In this study, a logarithmic transformation is applied to the
calculation formula for the slope profile p of wetland de-
pressions established by Hayashi and van der Kamp (2000)
to obtain

210 (hy/ha) )
In(Aw/Ag)

where i (m) and A (m2) represent the depth and area of wet-

land depressions, respectively, and w and d represent the dif-

ferent area—depth pairs. The least squares method is used to

solve Eq. (3) to obtain the slope profile p value of wetland

depressions.
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Figure 5. Above-water topography reconstruction of wetland depression areas. (a) Restoration method of cloud-contaminated satellite im-
ages. (b) Lidar DEM and (c) JRC water occurrence map of Lake Mead in the United States. (d) SRTM DEM and (e) JRC water occurrence
map of a representative wetland depression area located in the Nenjiang river basin. (f) Correlation between elevations and water occurrences

in the wetland depression area.

2.4 Estimation of wetland depression water storage
capacity

We derived the hypsometric relationship from the corrected
above-water area—level pairs and estimated underwater area—
level pairs of wetland depressions. The monotonic cubic
spline and power function are employed to fit the hypso-
metric relationships (i.e., depth—area relations) to derive the
above-water hypsometric curve fa(L) and the underwater
hypsometric curve fg(L) (Messager et al., 2016; Yao et al.,
2018), respectively (Fig. 7). Subsequently, based on the un-

https://doi.org/10.5194/hess-29-6023-2025

derwater hypsometric curve fg(L), the area enclosed by the
water level from O to the maximum value and fg(L) is de-
fined as the underwater storage capacity of the wetland de-
pression. Similarly, based on the above-water hypsometric
curve fa(L), the area enclosed by the water level from the
minimum value (corresponding to the maximum value of
/(L)) to the maximum value (the elevation of the spilling
point) and fg(L) is defined as the above-water storage ca-
pacity of the wetland depression. The total wetland depres-
sion water storage capacity is then obtained as the sum of

Hydrol. Earth Syst. Sci., 29, 6023-6041, 2025
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both components (V):

hwater surface
V= / Fa(L)dL + / fe(L)dL . )
hwater surface 0

3 Validation sites and datasets
3.1 Validation sites

We applied the WetlandSCB to two wetlands in the Nen-
jiang river basin (NRB), northeast China, to validate the
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framework. Draining a total area of 297 100 km?, the NRB
is one of the largest river basins in north China. In this river
basin, agricultural lands and wetlands (lakes and swamps)
are prevalent (Wu et al., 2023). Recognized as critical reg-
ulators of the water balance within the NRB, wetlands are
considered more important than other ecosystems in mitigat-
ing future hydrologic extremes and increasing water avail-
ability for agriculture (Chen et al., 2020; Wu et al., 2020a,
b; 2022). For method validation and application of the Wet-
landSCB framework, we focused on two national nature re-
serves within the NRB: Baihe Lake and Chagan Lake. Baihe
Lake, characterized as a marsh wetland, covers approxi-
mately 40 km?, predominantly comprising seasonal inunda-
tion zones, with an average water depth of less than 1 m. In
contrast, Chagan Lake is a large lacustrine wetland of about
372km?, mainly composed of perennial inundation zones,
with an average water depth of 2.5m. These two valida-
tion wetlands represent different characteristics in terms of
type, area, and average water depth to verify the applica-
tion robustness of our developed framework. Field measure-
ments of topographic and bathymetric information (elevation
and depth) were conducted for both Baihe Lake and Chagan
Lake, consisting of 248 and 657 measurement points, respec-
tively (Fig. 8). Specifically, we combined an ultrasonic echo
sounder (D390, Chcnav, China) with a Global Positioning
System (GPS) device and applied the field measurements ac-
cording to the sectional method. Crewed vessels were used in
areas of greater water depth and uncrewed remotely operated
vessels were used in areas of lower water depth, with the aid
of water rulers and hammers.
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northeast China.

3.2 Datasets

The application of the WetlandSCB framework requires the
following data: (i) the global DEMs sourced from SRTM
DEM, with water distribution map sourced from the accom-
panying SRTM Water Body Data (https://earthexplorer.usgs.
gov, last access: 10 February 2023, Farr and Kobrick, 2000;
NASA, 2013); (ii) wetland maps extracted from the 30m
resolution land cover data for the years 1990-2019 (https:
//zenodo.org/records/5816591, last access: 2 August 2022,
Yang and Huang, 2021), and the 30 m resolution wetland
map in 2015 (http://northeast.geodata.cn/index.html, last ac-
cess: 3 August 2022, Mao et al., 2020) (this study over-
lays the data from both sources to reduce the uncertain-
ties in the wetland maps); (iii) water distribution maps and
water occurrence maps obtained from the Global Surface
Water datasets (https://earthengine.google.com, last access:
23 April 2023, Pekel et al., 2016); and (iv) altimetry satel-
lite data sourced from the Sentinel-3A/3B products (https:
//scihub.copernicus.eu/, last access: 5 September 2023). In
addition, pre-processing of Sentinel-3 altimetry data is per-
formed using the geophysical and atmospheric correction
method developed by Huang et al. (2019) to improve data
accuracy:

Hyaterlevel = Hae — R — Cor, 5)

where Hyaerlevel 18 the water level referenced to the EGM96
geoid, Hyy is the altitude of the altimeter derived from mod-
eling the satellite trajectory, R is the range computed through
the time duration of the echoes, and Cor refers to the geo-
physical and environmental corrections:

Cor = Clry + Cwet + Ciono + CsolidEarth + Cpole + CEGMY6 » (6)
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where Cdrys Cwet> Cionos> CsolidEarth> Cpole, and Cggmoe are the
dry tropospheric, wet tropospheric, ionospheric, solid Earth
tide, polar tide, and EGM96 geoid corrections, respectively.

4 Results and discussions

4.1 Performance evaluation of wetland depression
spatial delineation and uncertainty analysis

The actual topographic and bathymetric information ob-
tained from field measurements, along with the contour-tree
method, provides the actual spatial distribution of wetland
depression areas. Additionally, two spatial distributions of
wetland depression areas are derived: one using the SRTM
DEM combined with the priority-flood algorithm and the
other using the SRTM DEM with the WetlandSCB frame-
work. A comparative analysis of these three approaches is
conducted to assess the accuracy differences in wetland de-
pression spatial delineation by using four indicators: overall
accuracy, kappa coefficient, producer’s accuracy, and user’s
accuracy (Fig. 9a—f). The confusion matrix, also known as
an error matrix, is a crucial method for evaluating land cover
classification accuracy. It intuitively reflects the classifica-
tion relationship between the evaluated data and the refer-
ence data. Key evaluation metrics include the above four in-
dicators. For detailed calculation equations, refer to Liu et
al. (2007). The results indicate that the WetlandSCB frame-
work can accurately determine the spatial distribution of wet-
land depressions, with all four indicators exceeding 0.95. In
contrast, the user’s accuracy is above 0.93 in both validation
wetlands (error of commission is 0.07) and the producer’s
accuracy is only 0.37 (error of omission is 0.63) in Baihe
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Lake, based on the priority-flood algorithm. Since the over-
all accuracy of wetland depression spatial delineation derived
using the priority-flood algorithm exceeds 0.6 for both vali-
dation wetland sites, with a peak accuracy of 0.97 for Cha-
gan Lake, the results demonstrate that the algorithm is highly
effective in identifying wetland depressions but is limited
by the numerical errors of the global DEMs, which lead to
lower extraction accuracy of the spatial distribution of wet-
land depressions (Zhou et al., 2016). Since the overall accu-
racy, kappa coefficient, and producer’s accuracy of wetland
depression spatial delineation obtained using the Wetland-
SCB framework show significant improvements over those
derived from the priority-flood algorithm for both validation
wetlands, and there is a slight increase in user’s accuracy
for Chagan Lake, the results effectively demonstrate that the
WetlandSCB framework outperforms the priority-flood algo-
rithm in wetland depression spatial delineation.

Uncertainty in wetland depression spatial delineation us-
ing the WetlandSCB framework primarily arises from mor-
phological operators and prior information on a water distri-
bution map. Figure 9g and h show that, compared with mor-
phological operators, prior information on the water distribu-
tion map can significantly alter the performance of wetland
depression spatial delineation and is a key factor in deter-
mining the level of uncertainty. For instance, in Baihe Lake,
the overall accuracy and kappa coefficient improved by 0.29
and 0.56, respectively, after processing with prior informa-
tion on the water distribution map. Similar studies have also
found that the type and reliability of prior information are
major factors affecting the spatial filling performance of sur-
face water maps (Aires et al., 2017; Pulvirenti et al., 2011b).
Therefore, this study compared the wetland depression spa-
tial delineation results based on three sets of prior infor-
mation on water distribution: GLC-FCS30 (from Zhang et
al., 2021), CLCD (from Yang and Huang, 2021), and JRC
(Fig. 91 and j), where GLC-FCS30 and CLCD are 30 m res-
olution land cover datasets and JRC provides 30 m resolu-
tion water surface data. The overall accuracy differences for
Baihe Lake and Chagan Lake ranged from 0.68 to 0.98 and
from 0.93 to 0.99, respectively. In general, the accuracy lev-
els of prior information from high to low were JRC > GLC-
FCS30 > CLCD. This suggests that selecting highly reliable
prior information on a water distribution map is an essential
way to reduce uncertainty in the WetlandSCB framework.

4.2 Performance evaluation of above-water topography
correction and uncertainty analysis

The consistency between the original and corrected above-
water topography and the actual above-water topography ob-
tained from field measurements can be evaluated using Pear-
son correlation coefficients and R?. The results indicate that
the consistency between the original (the elevation informa-
tion directly obtained from the SRTM DEM as the original
above-water topography) and actual above-water topography
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is remarkably low, with R? < 0.2 for both validation wet-
lands. Previous studies have also observed significant nu-
merical discrepancies between the original and actual above-
water topography in some regions (e.g., Mukul et al., 2017;
Uuemaa et al., 2020). Compared with the original results, the
consistency between the corrected and actual above-water to-
pography significantly improves (Fig. 10). For example, the
Pearson correlation coefficient and R* reach 0.74 and 0.55
in Baihe Lake, respectively, demonstrating that the Wetland-
SCB framework can effectively correct numerical biases in
above-water topography.

Uncertainty in correcting above-water topography using
the WetlandSCB framework depends primarily on the ac-
curacy of the water occurrence map. Therefore, due to the
negative relationship between water occurrence values and
elevations in wetland depressions, this study compared the
correlation differences between two sets of global-scale wa-
ter occurrence maps, namely GLAD and JRC, and the actual
above-water topography of two wetland depressions. The re-
sults show that the correlation level of GLAD is superior to
JRC in Baihe Lake, while the opposite is observed in Cha-
gan Lake. Additionally, the R? values for both sets of wa-
ter occurrence maps are less than 0.4 (Fig. 11c—f), and are
significantly lower than the accuracy level of the corrected
above-water topography. This clearly shows the superiority
of the water occurrence map generated by the WetlandSCB
framework over the GLAD or original JRC map.

It is to be noted that the water occurrence map generated
by the WetlandSCB framework still has a certain level of un-
certainty. First, the extraction of complete and accurate wa-
ter spatial distribution from cloud-free images is constrained
by such factors as the classification algorithm (Fig. 11a)
(Pekel et al., 2016), but some correction algorithms have
been proposed to enhance raw water distribution images
(Zhao and Gao, 2018). Second, there is currently a lack of
high-precision, temporally and spatially continuous, water
distribution maps (Fig. 11b). Future efforts could include
the use of image fusion methods, such as the Spatial and
Temporal Adaptive Reflectance Fusion Mode, to fuse data
from multi-source remote sensing products such as Sentinel-
2, MODIS, and Landsat, which can effectively enhance the
accuracy of the water occurrence map (He et al., 2019; Wang
et al., 2016).

4.3 Performance evaluation of bathymetric
information estimation

The slope profile p is used to describe the bathymetry of
wetland depression areas. The calculated p values for Baihe
Lake and Chagan Lake using the WetlandSCB framework
are 7.45 and 4.08, respectively (Fig. 12). The actual bathy-
metric information obtained from field measurements is used
to construct area—depth pairs. Subsequently, the actual slope
profile p of the wetland depression is calculated based on
the calculation formula established by Hayashi and van der
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Figure 9. (a—c) Spatial distribution of wetland depression areas in the Baihe Lake based on (a) priority-flood algorithm, (b) WetlandSCB
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framework.

Kamp (2000). The relative errors with respect to the actual p
values obtained from field measurements are both less than
3 %, demonstrating the high accuracy of the framework in
estimating underwater bathymetry.

To further prove the superiority of the WetlandSCB frame-
work in estimating bathymetry, this study employed spatial
prediction and modeling methods, which assume that the un-
derwater slope profile is fundamentally similar to the above-
water slope profile in wetland depressions, resulting in p val-
ues of 8.65 for Baihe Lake and 4.78 for Chagan Lake. The
relative errors with respect to the actual p values are both

https://doi.org/10.5194/hess-29-6023-2025

greater than 18 %, indicating that this method may lead to
substantial errors in some regions, as also reported by Papa
et al. (2013) and Vanthof and Kelly. (2019). Furthermore,
previous studies have often applied smoothing methods to
the global DEMs to enhance the accuracy of topographic
characterization in wetland depressions (e.g., Jones et al.,
2018; Wu et al., 2019). In this regard, we further used the
Gaussian-smoothed global DEMs and the spatial prediction
and modeling methods to calculate p for Baihe Lake and
Chagan Lake. The resulting values were 8.51 and 4.37, with
relative errors of 17.63 % and 7.9 %, respectively. This un-
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derscores that smoothing methods do indeed contribute to
improving the accuracy of topographic information in wet-
land depressions. Notably, the relative error for Chagan Lake
is significantly lower than that for Baihe Lake, as is con-
sistent with the findings of Liu and Song (2022), who re-
ported that the spatial prediction and modeling methods are
suitable for wetlands with long and narrow shapes. In sum-
mary, the comparative analysis reveals that the WetlandSCB
framework demonstrates superior performance in bathymet-
ric estimation for wetland depression areas. For Baihe Lake,
the slope profile p derived from the WetlandSCB frame-
work (7.45) exhibits closer agreement with the actual mea-
sured value (7.29) than those obtained from the spatial pre-
diction and modeling method (8.65) and its enhanced version
incorporating the smoothed SRTM DEM (8.51). Similarly,
for Chagan Lake, the WetlandSCB framework yields a slope
profile p (4.08) that more accurately approximates the actual
value (4.05) compared with both the conventional spatial pre-
diction and modeling method (4.78) and its enhanced version
(4.37). These comparative results demonstrate the improved
accuracy and reliability of the WetlandSCB framework in
bathymetric characterization of wetland depression areas rel-
ative to the other methods.
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4.4 WetlandSCB framework application and
implications for integrated water resources
management

Wetland depressions are largely disregarded in many hydro-
logic modeling practices. Rare studies exist on how their
exclusion can lead to potentially inaccurate model projec-
tions and understanding of hydrologic dynamics across the
world’s river basins (Rajib et al., 2020). This study applied a
novel framework, delineating the topography and bathymetry
of wetland depression areas and focusing on two distinctive
wetlands to estimate WDWSC. Using field measurements
of topography and bathymetry of Baihe Lake and Chagan
Lake, depth—area hypsometric curves were constructed and
the WDWSCs of Baihe Lake and Chagan Lake were es-
timated to be 61 and 526 x 10® m3, respectively (Fig. 13).
The estimation results based on the WetlandSCB framework
were, correspondingly, 55 and 521 x 106 m3. Furthermore,
the use of elevation (to compute wetland depression depths)
and areal extent has emerged as an efficient method to esti-
mate surface water storage volume (Gao, 2015). After iden-
tifying wetland depressions, previous studies estimated the
area and volume of each depression, based on a statistical
analysis of the DEM cells comprising that wetland depres-
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sion (Rajib et al., 2020; Wu et al., 2019; Wu and Lane, 2016).
This study compared and analyzed the water storage capac-
ities of Baihe Lake and Chagan Lake calculated using three
medium-resolution 30 m DEM datasets: SRTM DEM, ALOS
DEM, and MERIT DEM (Fig. 13c). The results show that the
accuracy of WDWSC calculation is highly dependent on the
DEM data quality, with the MERIT DEM providing the most
accurate results, with relative errors averaging 25.7 % com-
pared with the actual WDWSC. In contrast, the WDWSC cal-
culation based on the WetlandSCB framework had relative
errors of less than 10 %, which is a good level of accuracy
in estimation precision (Moriasi et al., 2015), demonstrating
that the WetlandSCB framework has the ability to accurately
estimate WDWSC and can be applied to regions lacking field
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measurement data for global-scale wetland water storage ca-
pacity estimation.

Wetlands play a pivotal role in mitigating flood and
drought risks, as well as addressing water scarcity challenges
within a river basin. Previous studies underscore the signif-
icant impact of wetlands in attenuating future flood char-
acteristics, including peak flows, mean flows, duration, and
flow volume for various return period floods (Wu et al.,
2023). Concurrently, wetlands contribute to enhancing base-
flow during both summer and winter seasons in the NRB
(Wu et al., 2020b). Given that the NRB is an agriculture-
dominated river basin, wetlands serve as the main water sup-
ply nodes by collecting flash flooding and storing and pu-
rifying irrigation return flows. This reclaimed water can be
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efficiently reused for irrigation purposes in the NRB (Meng
et al., 2019; Smiley and Allred, 2011; Zou et al., 2018a). The
WDWSC is a key parameter for evaluating the flood con-
trol and water supply capacity of wetlands and is also an
important prerequisite for understanding the impact of wet-
lands on extreme hydrologic events (Acreman and Holden,
2013). Therefore, the developed WetlandSCB framework,
which can provide accurate estimation of the WDWSC, con-
tributes to the management of food and water security in the
NRB. Against the backdrop of global environmental change,
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characterized by an escalation in the intensity and frequency
of extreme hydrologic events and the increasing disparity
between water resource supply and demand, there is an ur-
gent need for a novel integrated water resources manage-
ment approach based on natural solutions (Rodell and Li,
2023; Thorslund et al., 2017; Yin et al., 2018). Wetlands
have emerged as a nature-based solution in various water re-
sources management practices (Ferreira et al., 2023). Tak-
ing advantage of the wetland hydrologic regulation functions
is instrumental in addressing the risks of flood and drought
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disasters arising from global climate change and land use
change, as well as the water scarcity risks stemming from
agricultural-ecological water competition. This can help de-
velop effective adaptation strategies and decisions for inte-
grated water resources management.

Additionally, using the WetlandSCB framework, raster-
scale wetland depression topographic information can be ac-
curately reconstructed. Through flow direction analysis and
watershed delineation methods, key parameters such as wet-
land inflow and outflow locations, wetland catchment bound-
aries, and other related characteristics can be identified (these
steps can be performed using QGIS software). By integrating
the hypsometric curve, water surface distribution data, and
morphological characteristics of the wetland derived from
the WetlandSCB framework, the initial wetland water level,
the number of wetland layers, and the corresponding area—
level pairs can be determined. Field surveys provide essen-
tial data on wetland soil and vegetation properties, as well
as inflow volumes within the study area. Finally, the hydro-
logic model, coupled with the wetland module, can be im-
plemented to support wetland eco-hydrologic research and
integrated water resources management (Fig. 14).

5 Conclusions

This study developed a novel framework to accurately quan-
tify wetland depression water storage capacity using coarse-
resolution terrain data. The developed framework, Wetland-
SCB, integrates multi-source remote sensing data, historical
maps, and prior knowledge, and achieves a high prediction of
wetland depression distribution and water storage capacity.
This is achieved through four steps: (1) integrating a priority-
flood algorithm, morphological operators, and prior informa-
tion on water distribution maps to delineate the spatial extent
of wetland depression areas; (2) correcting numerical biases
in above-water topography with a water occurrence map; (3)
coupling spatial prediction and modeling with remote sens-
ing techniques to estimate bathymetric information; and (4)
quantifying depression area water storage capacity based on
depth—area rating curves. The conclusions are listed next.

1. Processing the morphological operators and prior infor-
mation on a water distribution map can accurately delin-
eate the spatial extent of wetland depressions. The de-
rived wetland depression map shows high spatial agree-
ment with the true wetland depression map, with both
the overall accuracy and the kappa coefficient exceed-
ing 0.95. The performance of the WetlandSCB frame-
work is superior to the priority-flood algorithm in wet-
land depression spatial delineation.

2. The water occurrence map can effectively correct nu-
merical biases in above-water topography. Compared
with the original results, the corrected topography ex-
hibits high consistency with true above-water topogra-
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phy, with average increases of 0.33 and 0.38 in the Pear-
son coefficient and R?, respectively.

3. The coupling of spatial prediction and modeling meth-
ods with remote sensing techniques achieves high-
precision estimation of underwater bathymetry of wet-
land depressions, demonstrating relative errors below
3 %, compared with field measurements. The results
prove the superiority of the WetlandSCB framework
over spatial prediction and modeling methods in under-
water bathymetry estimation.

4. The WetlandSCB framework accurately estimates WD-
WSC with relative errors less than 10 %, compared with
calculations based on field topography and bathymetry.

The concept and technical approaches are applicable to
large-scale wetland depression water storage estimation, as
well as to the regions where field measurements and/or high-
resolution data are not available. Application of the Wetland-
SCB framework provides accurate distribution and depth—
area relations of wetland depression areas, which can be in-
corporated in wetland modules of hydrologic models (e.g.,
HYDROTEL, SWAT, HYPE, CHRM) to improve the accu-
racy of flow and storage predictions in river basins.

Data availability. The data used in this study are openly available
for research purposes. The SRTM DEM and SRTM water body
data can be downloaded at https://earthexplorer.usgs.gov (last ac-
cess: 10 February 2023, Farr and Kobrick, 2000; NASA, 2013).
Wetland maps are available at https://zenodo.org/records/5816591
(last access: 2 August 2022) and http://northeast.geodata.cn/data/
datadetails.html?dataguid=267682210636266&docid=579 (last ac-
cess: 3 August 2022, Mao et al., 2020). Water distribution maps and
water occurrence maps are available at https://earthengine.google.
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