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Abstract. The spatial distribution of mountain snow water
equivalent (SWE) is key information for water management.
We implement a tool to simulate snowpack properties at high
resolution (100 m) by using only global datasets of meteorol-
ogy, land cover and elevation. The meteorological data are
obtained from ERAS, which makes the method applicable
in near real time (5d latency). We evaluate the output us-
ing 49 SWE maps derived from airborne lidar surveys in the
Sierra Nevada. We find very good agreement at the catch-
ment scale using uncalibrated lapse rates. Larger biases at
the model grid scale are especially evident at high elevation
but do not alter the catchment-scale snow mass accuracy. We
additionally compare the simulated snow depth to Sentinel-
1 retrievals and find a similar accuracy with respect to syn-
chronous airborne lidar surveys. However, Sentinel-1 snow
depth products are sparse and often masked during the melt
season, whereas ERA5-SnowModel provides a spatially and
temporally continuous SWE.

1 Introduction

Many populated regions with dry summers and wet winters
depend on mountain snow for water supply (Mankin et al.,
2015; Sturm et al., 2017; Viviroli et al., 2020). Understanding
the catchment-scale seasonal snow storage before and during
the melt season is key to optimizing water use between hy-

dropower production, crop irrigation and freshwater supply.
In addition, an accurate prediction of the timing and magni-
tude of the snowmelt runoff is bound by our ability to char-
acterize the spatial distribution of mountain snow before the
melt season (Freudiger et al., 2017).

Despite its hydrological significance, snow water equiv-
alent (SWE) remains poorly monitored in many mountain-
ous regions, especially outside North America and Europe. In
situ measurements are often too sparse considering the spa-
tial variability of mountain snow (Fayad et al., 2017). To cope
with this issue, airborne measurement campaigns are now
routinely used in the western USA to measure snow depth,
but their cost remains prohibitive in other regions (Painter et
al., 2016). Meanwhile, several approaches have emerged to
retrieve mountain snow depth using satellite remote sensing
(e.g., Pléiades, ICESat-2 and Sentinel-1). Pléiades very-high-
resolution stereoscopic images can be used to generate snow
depth images by differencing two digital elevation models.
However, this approach is limited to small regions (Marti et
al., 2016). ICESat-2 lidar altimetry has the potential to pro-
vide snow depth data at a global scale but with sparse sam-
pling (Deschamps-Berger et al., 2023). Sentinel-1 has been
used to derive snow depth at 1km resolution in the North-
ern Hemisphere (Lievens et al., 2019) and 500 m resolution
over the European Alps (Lievens et al., 2022). This method,
which is based on an empirical change detection method ap-
plied to the cross-polarization ratio, is limited to dry snow
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conditions and therefore does not allow monitoring of the
snowpack during the melt season. However, it offers global
and spatially continuous coverage, which is a key advantage
with respect to the other approaches. All the above remote
sensing approaches require an estimation of snow density to
obtain the SWE, but it has been established that snow depth
explains most of the SWE variance (Guyennon et al., 2019;
Loépez-Moreno et al., 2013; Sturm et al., 2010; Bormann et
al., 2013).

Another approach to estimating mountain SWE distribu-
tion is to use a snowpack model, but the challenge then lies
in obtaining accurate meteorological forcing (Giinther et al.,
2019; Raleigh et al., 2016). To cope with the lack or spar-
sity of in situ meteorological measurements, one solution is
to use atmospheric model outputs as forcing data. In partic-
ular, climate reanalyses can provide long-term hourly me-
teorological data at a global scale. Climate reanalyses are
also becoming increasingly accurate (Hersbach et al., 2020)
with advances in atmospheric and land surface modeling and
the assimilation of a growing dataset of in situ and remote
sensing observations. These reanalyses have also seen no-
table progress in recent years in terms of latency. For exam-
ple, the preliminary ERAS reanalysis provided by the Eu-
ropean Centre for Medium-Range Weather Forecasts has a
short latency of 5 d (whereas it was 2—3 months with the pre-
vious ERA-Interim version). This preliminary product only
rarely deviates from the fully quality-checked final product
that is released 2 months later (Hersbach et al., 2020). This
timely product can fulfill the need for up-to-date meteoro-
logical forcing information. However, reanalyses cannot be
used directly to force a mountain snowpack model because
the grid cell size is too coarse (approximately 30 and 50 km
for ERA5 and MERRA-2 respectively), which creates large
biases in the computed SWE (Wrzesien et al., 2019; Liu et
al., 2022).

To address the mismatch in spatial resolution between re-
analysis datasets and snow distribution, previous studies used
downscaling algorithms based on a digital elevation model
before running a snowpack model on a finer grid (Armstrong
etal., 2018; Baba et al., 2018; Billecocq et al., 2024; Mernild
et al., 2017; Weber et al., 2021). This approach enables es-
timation of high-resolution SWE and snow depth without
ground data. For example, Mernild et al. (2017) and Baba
et al. (2018) studied the snowpack properties over large and
ungauged regions in the Andes and High Atlas mountain
ranges using the MicroMet/SnowModel package (Liston et
al., 2020; Liston and Elder, 2006a, b). The evaluation of these
simulations relied on in situ observations or remote sensing
snow cover areas. Weber et al. (2021) used 10 years of snow
depth measurements from two automatic weather stations to
assess their simulations in the Research Catchment Zugspitze
(12km?). Mernild et al. (2017) used 13 years of MODIS data
over the Andes Cordillera (~ 9 x 10° kmz) along with 4 km
grid maps of snow depth that were reconstructed from in situ
observations. Baba et al. (2018) used 18 years of MODIS
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data to assess simulations in the High Atlas of Morocco,
snow depth at a single automatic weather station, precipi-
tation at three meteorological stations and river discharge of
the Ourika catchment (503 km?). However, in situ data are
sparse and MODIS snow cover area does not allow a thor-
ough evaluation of the model ability to capture snow mass
across the landscape.

In this study, we focus on the Tuolumne River catchment
in the Sierra Nevada, USA (Fig. 1). Since 2013, this site
has been surveyed regularly by the Airborne Snow Obser-
vatory (ASO) to determine snow depth and SWE. The ASO
dataset on the Tuolumne River catchment is the densest time
series of high-resolution snow depth (3 m) and SWE (50 m)
maps publicly available at this scale (1100 km?) in the world.
The dataset contains 49 surveys and spans several years with
contrasted climatic conditions, including California’s most
severe drought in the last 1200 years during 2012-2014
(Griffin and Anchukaitis, 2014) and the “snowpocalypse”
20162017 winter that was characterized by near-record
snow accumulation (Painter et al., 2017). We leverage this
observational dataset to evaluate a new processing pipeline
which generates gridded SWE and snow depth with a reso-
Iution of 100m from ERAS5 or ERAS5-Land. This pipeline,
inspired by previous works (Baba et al., 2018; Mernild et al.,
2017), is a wrapper around the MicroMet/SnowModel code.
It was designed to work with global meteorological forcing
datasets. As such, the workflow can generate high-resolution
snow cover simulations in any region of interest across the
globe from 1940 up to the present, with any resolution be-
tween 1 and 200 m (Liston and Elder, 2006b). Furthermore,
we compare the output of this pipeline with the more di-
rect approach of Sentinel-1 snow depth on dates matching
the ASO measurements.

2 Data and methods
2.1 Data

We used two reanalyses in this study, ERAS and ERAS-
Land. ERAS is a reanalysis of the global climate and weather
since 1940, with a 0.25° resolution (approximately 30 km). It
provides hourly atmospheric, oceanic and land surface vari-
ables computed with a global model and improved by the
assimilation of multiple in situ and remote sensing datasets
(Hersbach et al., 2020). ERAS5-Land is produced by re-
computing ERA5-Land variables at finer resolution using a
downscaled meteorological forcing (Mufioz Sabater, 2019).
It delivers these variables at a global scale at a 0.1° reso-
lution from 1950 to the present. As mentioned above, pre-
liminary versions of ERAS and ERAS5-Land are distributed
with a short latency of 5d. These datasets are freely avail-
able from the Copernicus Climate Change Service (C3S) and
can be queried via their application programming interface
(with tutorials that can be found on their website: Retriev-
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Figure 1. Map representing the SWE variability measured by the ASO, along with ERAS5 and ERAS5-Land cell centers and the Tuolumne

River catchment border overlaying the DEM hillshade.

ing data — Climate Data Store Toolbox 1.1.5 documentation;
CDS, 2025). We focused on ERAS5 here as we found that it
yielded slightly better results than MERRA-2 in a previous
case study using the same approach (Baba et al., 2021). In
addition, the latency of MERRA-2 is 3 weeks, which may be
too long for operational water resource applications. To run
the model (see Sect. 2.2.1), we also used the 30 m Coperni-
cus DEM (CDS, 2023) and the 100 m Copernicus land cover
(Buchhorn et al., 2020).

We obtained Sentinel-1 snow depth between 2016
and 2019 from the C-SNOW repository (C-SNOW, 2022).
Sentinel-1 C-band backscatter observations were used to de-
rive ~ 1 km resolution snow depth using empirical change
detection (Lievens et al., 2019). This product has a revisit
time of approximately 3d over the Tuolumne River catch-
ment during winter but provides almost no data in spring
because the algorithm is considered to be invalid when the
snowpack contains liquid water. When the snowpack is wet,
there is higher absorption and reflection of the microwave
signal emitted by Sentinel-1, which greatly decreases the per-
formance of the C-SNOW algorithm (Lievens et al., 2019;
Tsai et al., 2019).
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For the evaluation of model outputs and Sentinel-1 prod-
ucts, we used 49 SWE and snow depth maps collected be-
tween 2013 and 2019 by the ASO. The ASO acquires hy-
perspectral data for snow albedo and lidar data for snow
depth and computes SWE as a derived product (Painter et
al., 2016). Snow depth is available at 3 m resolution, while
SWE has 50 m resolution. The reported accuracy of the 3m
snow depth products is 0.08 m (Painter et al., 2016), and
from spatially intensive sampling the reported accuracy for
the 50m snow depth products is < 0.01 m (Painter et al.,
2016; Fig. 15). There are no published references for the
50 m SWE product. However, Raleigh and Small (2017) es-
timated an uncertainty in the modeled density of 48kgm™3
in the Tuolumne River basin. This uncertainty can be re-
garded as a conservative estimate as in situ measurements of
snow density are also used by the ASO to adjust their density
model (Painter et al., 2016). Therefore, for a I m deep snow-
pack and an uncertainty in the snow density of 50kgm™3,
we estimate the uncertainty of the 50 m SWE products to be
0.05 m w.e. (meters of water equivalent).
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2.2 Methods
2.2.1 SnowModel

SnowModel is designed to simulate snow evolution on a
high-resolution grid (1 to 200 m increments) and at a time
step from 1 min to 1d (Liston et al., 2020; Liston and Elder,
2006a). It is separated into four submodels: (i) MicroMet re-
distributes meteorological forcings (air temperature, relative
humidity, wind speed and direction, precipitation, solar radi-
ation, longwave radiation and surface pressure) to the target
simulation grid (Liston and Elder, 2006b). (ii) EnBal com-
putes the snow surface energy balance. (iii) SnowPack com-
putes the snow density and snow depth. (iv) SnowTran-3D
computes the blowing snow sublimation and snow redistribu-
tion due to wind transport (Liston et al., 2007). SnowModel
accounts for the vegetation effects on the snow cover, such
as coniferous forests or grassland, for the grid cell vegetation
type. MicroMet was originally designed to interpolate station
data on a regular grid. Here, a climate reanalysis grid cell is
considered a virtual station located at the grid cell center.

2.2.2 Model input

We developed a tool to automatically prepare SnowModel
input files from ERA5 and ERA5-Land data and run the
simulations. This tool uses a DEM of the region of inter-
est as input along with the start and end of the simula-
tion period. We let the user specify the DEM because it is
used to define the model grid, which is the main control
of the computation time. Here we used the 30 m Coperni-
cus orthometric DEM that we extracted and resampled to a
World Geodic System 1984, Universal transverse Mercator
zone 11N (WGS84 UTM 11N) grid at 100 m resolution us-
ing the bilinear method over a region covering the Tuolumne
River catchment. The simulation period was set to Septem-
ber 2012—August 2019 and spans 7 years of snowpack dy-
namics. Using the Climate Data Store Application Program
Interface, our tool downloads ERAS or ERAS5-Land hourly
meteorological data (2m temperature, 2 m dew point tem-
perature, precipitation, and 10 m wind eastward and north-
ward components) over the region of interest given by the
DEM bounding box extended to the adjacent ERAS and
ERAS5-Land neighboring cells (~ 30km and 11 km, respec-
tively). Once downloaded, the meteorological data are pro-
cessed to match SnowModel and MicroMet input formats
and units. ERAS-Land precipitation is provided as daily cu-
mulative values and is therefore converted into an hourly
precipitation rate. Wind components (¢ and v) are con-
verted into wind speed and direction (0-360° N). The dew
point temperature is converted into relative humidity using
Buck’s equation (Buck, 1981), the same equation that is
used in MicroMet. The elevations of ERAS and ERAS5-Land
cells are determined from the global geopotential file that
is first interpolated onto the model grid with a bilinear al-
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gorithm. The tool also resamples the Copernicus land cover
map on the model grid using the mode-resampling algorithm
(GDAL/OGR contributors, 2024). We built a correspondence
table to remap the Copernicus land cover classes to the Snow-
Model land cover classification (see Table Al). We set all
SnowModel parameters (the curvature length scale, curva-
ture and wind slope weights, minimum wind speed, precip-
itation schemes for downscaling or for rain—snow fractions,
subcanopy radiation schemes and various thresholds for wind
transport calculations) to the default values (see the parame-
ter file snowmodel.par in the “Code availability” section). A
simple parameterization of the albedo is used with a constant
value of 0.8 under dry conditions, whereas albedo values for
melting snow cover are set according to land covers (Liston
et al., 2020). We used the default monthly temperature lapse
rates and precipitation factors which adjust the precipitation
values to the elevation of the model grid. This tool is imple-
mented in Python. The source code and more detailed docu-
mentation are available in the “Code availability” section.

2.2.3 Comparison with the ASO SWE

We resampled the ASO SWE (n = 49 surveys) to the model
grid, which has a resolution of 100 m. The resampling was
done using the weighted average of all valid contributing pix-
els (GDAL/OGR contributors, 2024). We also created a va-
lidity mask to select cells in the Tuolumne River catchment
that were always observed by the ASO during this period
(some regions were not always available, representing 2.5 %
of the catchment area). ASO data and ERA-SnowModel out-
puts were averaged over the valid cells to compute the tem-
poral evolution of the catchment-mean SWE. Then, we ana-
lyzed the spatially distributed residuals in the catchment for
each observation date of a dry year (2014-2015), a wet year
(2016-2017) and an average year (2015-2016). We used the
validity-masked SWE maps to subtract the ASO observations
from the ERA-SnowModel output. A positive bias means the
simulated SWE is higher than the observations.

Additionally, we extracted ERAS5 and ERAS5-Land daily
SWE over the Tuolumne River catchment and computed
the catchment-scale SWE using an area-weighted average
(i.e., each SWE value was weighted by the fraction of the
grid cell area within the catchment). Since these SWE prod-
ucts have very coarse resolutions of approximately 31 and
9km (Figs. 1 and 2), we did not use them to analyze the
residual distribution as above.

2.2.4 Comparison with Sentinel-1 snow depth

Over the entire study period, we identified three matchup
dates for which we have both ASO and Sentinel-1 snow
depth observations with a minimum coverage of 60 % of the
catchment area. On these dates, the snow depths given by
the ASO, Sentinel-1 and ERA-SnowModel were resampled
to a common 1 km UTM grid. We applied another validity
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comparison between the different data.

mask for cells where the snow depth was not always avail-
able to all three snow depth datasets (representing 8.5 % of
the catchment changed to missing data). The missing values
in the 3m ASO dataset are propagated at the 1km validity
mask. This decreases the number of observations but ensures
that the resampled 1 km snow depth maps are not biased by
the spatial distribution of invalid pixels in the 3 m ASO snow
depth dataset. We computed the distributed residuals by sub-
tracting the ASO snow depth from both SnowModel simu-
lations and Sentinel-1 data. For each date, we averaged the
residuals to compute the mean bias, and we computed the
standard deviation of the error. We also computed the RMSE
over the catchment for each date.

3 Results
3.1 Comparison with the ASO SWE

Figure 3 shows the temporal evolution of the catchment-
scale SWE from ASO observations and SnowModel simu-
lations forced with ERA5 and ERAS5-Land. There is very
good agreement between the observations and both simula-
tions, with an overall correlation of 0.99 for both ERAS5 and
ERAS5-Land-SnowModel simulations (with 49 observation
dates). First, both simulations capture the large interannual
variability of SWE in the Tuolumne River catchment dur-
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ing the study period. The observed annual peak SWE ranges
from 0.11 min 2015 to 1.27 m in 2017, while the SnowModel
simulations range from 0.17 to 1.19 m with ERAS and from
0.12 to 1.24 m with ERAS5-Land during the same years (but
on different dates). In addition, the model reproduces the sea-
sonal evolution of SWE, with an annual RMSE ranging from
0.03 to 0.13 m. The catchment-scale SWE accumulation in
the ERA5-SnowModel simulations is captured well. We note
an underestimation of the snow ablation rates in late spring,
which caused a delay in the date of complete meltout of a few
days (2013) to approximately 1 month (2019). This issue is
mostly evident in 20162017 since the ablation rates are in-
sufficient for reaching complete removal of the snowpack in
August as observed by the ASO. Interestingly, we also note
that ERAS-Land without resampling almost always reports
the lowest RMSE at the catchment scale, though at 0.1° the
distribution of the snow is not represented well.

To go beyond this coarse catchment-scale diagnostic
(1100 kmz), we also analyzed the distribution of the resid-
uals at the pixel scale (0.01 km?). We computed a map of the
RMSE using all 49 validation dates we have between 2013
and 2019; 10 % of the cells in this map have an RMSE above
0.5 m w.e. Figure 4 shows the distribution of the residuals for
every date with the ASO observations for 3 contrasted hydro-
logical years. The spread of the residuals is shown with the
interquartile range (i.e., the difference between the 25th and
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75th percentiles) inside the colored boxes and with the 5th
to 95th percentiles inside the whiskers. This figure indicates
that the spread of the residuals increases with the mean SWE
depth. For the dry year, the interquartiles of the SnowModel
SWE residuals for ERAS and ERAS5-Land do not exceed
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0.17 and 0.09 m w.e., respectively. For the average year, the
interquartiles reach 0.31 and 0.38 mw.e., and for the wet
year 2017 they peak at 0.64 and 0.82 m w.e., respectively.
Figure 5 shows the distribution of the residuals for two
dates (1 April and 27 May 2016) by slope, elevation and
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aspect. We aimed to distinguish the model performance in
terms of accumulation and ablation processes to better sepa-
rate the sources of uncertainties in future studies. Therefore,
we selected a date before the melting season (1 April 2016)
and a date near the end of the melting season (27 May 2016).
The interquartile of the error distribution never exceeds
0.41 mw.e. in the slope or aspect categories but peaks at
0.67 mw.e. in the highest-elevation band on 1 April for the
simulations forced with ERAS5-Land.

3.2 Comparison with Sentinel-1 snow depth

Between 2016 and 2019, there are three dates for which we
have both Sentinel-1 and ASO snow depth data. Figure 6
presents snow depth maps of the Tuolumne River catch-
ment at 1 km resolution with Sentinel-1, ASO and ERA5-
SnowModel data. Some pixels are not always observed with
ASO data, and these missing values are propagated at 1 km
resolution (if there is at least one missing value among the
contributing pixels, a missing value is attributed to the target
1 km cell). The same mask is applied to the SnowModel sim-
ulations and the Sentinel-1 data. Additional missing values
are observed on the Sentinel-1 snow depth maps. Therefore,
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the statistics of Fig. 7 are not computed in the exact same
area. We chose to take all possible data into account.

Figure 7 shows the Sentinel-1-observed and SnowModel-
simulated snow depth compared to the ASO-observed snow
depth, resampled to 1km resolution. On 3 March 2017,
Sentinel-1 has the lower bias (—0.43 m), standard deviation
(0.86 m) and RMSE (0.96 m). These statistics are close to the
ERA5-SnowModel simulations (—0.49, 0.9 and 1.02 m, re-
spectively), while the ERA5-Land-SnowModel simulations
have a greater bias (—0.83m) and RMSE (1.2m) with a
comparable standard deviation (0.86 m). On the second date,
1 May 2018, Sentinel-1 still performs best, with a bias of
—0.05m and a standard deviation and RMSE both equal to
0.21 m. On this date, ERA5-Land—SnowModel simulations
are similar to Sentinel-1, with a bias of —0.09 m, a standard
deviation of 0.26 m and an RMSE of 0.27 m, while ERA5—
SnowModel simulations underperform with a 0.16 m bias, a
0.41 m standard deviation and a 0.44 m RMSE. Finally, on
24 March 2019, the data closer to the ASO snow depths
seem to be the ERA5-SnowModel simulations with a bias
of —0.65 m, a standard deviation of 0.81 m and an RMSE of
1.04 m. Sentinel-1 data have the highest bias (—1.24 m) and
RMSE (1.38 m) but the lowest standard deviation (0.61 m).
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Figure 6. Snow depth maps at 1 km resolution with Sentinel-1, ASO and ERA5-SnowModel data.

ERAS5-Land-SnowModel simulations also have a high bias
(—=0.92 m) and RMSE (1.17 m), with a standard deviation of
0.73 m. We see an underestimation of the snow depth above
2m with Sentinel-1 in 2017 and 2019, which is very clear
for 2019, when the mean bias is highest with a relatively low
standard deviation. In 2018, both the ASO and Sentinel-1 ob-
served really low snow depths (< 1 m), but there is still a
negative bias (—0.05 m) in the Sentinel snow depth distribu-
tion. With the ERA5-SnowModel simulations, most of the
distribution is centered around a negative bias that underesti-
mates the snow depth in 2017 and 2019. We note several cells
with a high positive error. In 2018, the situation is reversed:
most of the snow depth estimated with ERA5-SnowModel
is overestimated. Finally, the simulations with ERA5-Land
seem to have a cap at 4m snow depth in 2017 and 2019,
with a declining accuracy with the ASO snow depth starting
at 2m. In 2018, the ERA5-Land—SnowModel simulations
mostly underestimate the snow depths.

4 Discussion

Downscaling ERAS forcing is critical to obtaining a realis-
tic SWE in the Tuolumne River catchment and is sufficient
to remove the strong negative bias that is otherwise present
in the original ERAS SWE (Fig. 3). The use of this pipeline
for long simulation periods could also bypass the disconti-
nuities in the ERAS5 SWE (Urraca and Gobron, 2023), which
are caused by snow capping in the data assimilation code and
the arrival of new snow depth data available for assimilation.
The main effect of the downscaling is a better representa-
tion of the air temperature distribution and therefore a better
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representation of the solid precipitation fraction. Then, the
performance of the SnowModel-simulated SWE largely re-
lies on ERAS precipitation. Our results suggest that the win-
ter precipitation is represented well by ERAS over the Sierra
Nevada, in agreement with previous studies highlighting the
good performances of ERAS precipitation, especially in the
extratropical regions (Lavers et al., 2022). We find an over-
estimation of snow accumulation at high elevations, which
only occurs above 3000 m a.s.1. In the study domain, the max-
imum elevations of the ERAS and ERAS-Land grid cells
are 2654 and 3100 m, respectively. Hence the overestimation
shown in Fig. 5 is likely due to the extrapolation of ERAS
precipitation by MicroMet. MicroMet uses monthly coeffi-
cients to adjust precipitation with elevation. These coeffi-
cients were derived from a large precipitation gauge dataset
in western North America that included the Tuolumne River
catchment (Liston and Elder, 2006b). As a result, they only
represent a first-order variation of precipitation with eleva-
tion and may only introduce large biases in areas whose fine-
scale elevations (i.e., at the scale of the 100 m grid) deviate
substantially from the ERAS grid cell elevation. A possible
source of error in high-elevation regions is the lack of grav-
itational transport in SnowModel. High-elevation and steep
slopes are prone to avalanches, thereby reducing the accumu-
lated snow in these areas during the winter season (Quéno et
al., 2024). However, we did not find a clear correlation be-
tween the terrain slope and the model error (Fig. 5). Slopes
above 15 % have a slightly wider error distribution, but the
mean absolute biases remain below 0.10 m w.e. for both sim-
ulations. We also verified the residuals distribution by aver-
age slope classes computed from a 3 m resolution slope raster
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Figure 7. Scatterplots representing the observed and SnowModel-simulated snow depth data as a function of ASO snow depth data, with a
1:1 line in black. All data are resampled at 1 km resolution. N is the number of values in each plot.

(computed from the ASO snow-off lidar DEM) and found
similar results (see Fig. Al). Hence, we do not see clear evi-
dence that the lack of gravitational transport is the main cause
of the high-elevation biases. Another significant source of
uncertainty is related to the albedo parameterization in Snow-
Model. The deposition of light-absorbing particles like dust
can reduce albedo and therefore increase melt, especially at
high elevation (Skiles et al., 2018; Dumont et al., 2020). This
might explain the relative increase in the SWE bias between
1 April and 27 May at all elevations above 2500 m (Fig. 5).
At the catchment scale we do not find a clear difference
between ERA5-SnowModel and ERAS-Land—SnowModel
outputs. This suggests that the details of the downscaling
scheme are not the primary factors in the simulation per-
formance. However, there is a deviation between both sim-
ulations at high elevation. As shown in Fig. 5, the down-
scaling of ERAS creates a strictly increasing bias with ele-
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vations above 2500 m, whereas ERA5-Land creates a more
complex bias that is negative between 2000 and 3000 m and
becomes positive above 3500 m. This more complex bias
distribution reflects the fact that the output of the ERAS-
Land-SnowModel pipeline is the result of two downscaling
schemes (first ERAS to ERA5-Land and then ERA5-Land
to 100 m using MicroMet; Fig. 2). ERAS-Land atmospheric
variables are generated by linear interpolation of their ERAS
counterparts. ERAS5-Land air temperature and humidity are
also adjusted using the grid cell elevation and a daily lapse
rate derived from the ERAS lower-tropospheric temperature
vertical profile (Dutra et al., 2020). This is similar to the Mi-
croMet algorithm. However, there are several differences. In
particular, the air temperature downscaling scheme in ERAS-
Land is based on a daily environmental lapse rate derived
from ERAS lower-tropospheric temperature vertical profiles
(Mufioz Sabater, 2019), whereas MicroMet lapse rates are
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fixed by month. Unlike ERAS5-Land, MicroMet also adjusts
the precipitation rates using a function of elevation (Liston
and Elder, 2006b). This is the cause of the nonmonotonic
evolution of the SWE bias by elevation from ERAS5-Land-
SnowModel. In future applications we will favor ERAS in-
stead of ERAS5-Land to avoid conflicting processes in the
downscaling of atmospheric variables. This will make it eas-
ier to adjust the precipitation correction factors from local
data. Using ERAS is also more practical as it significantly
reduces the download time, computing cost and memory us-
age of our pipeline.

In Fig. 3, we note the very good performance of ERAS-
Land SWE at the catchment scale despite its coarse scale
(9 km resolution). This result is in line with Mufioz-Sabater
et al. (2021), who found better performances of ERAS-Land
than ERAS between 1500 m and 3000 m a.s.l. because 68 %
of the Tuolumne River catchment is in this elevation band.
Shao et al. (2022) found a similar accuracy of the ERAS-
Land SWE dataset, with an RMSE below 0.04 m w.e. in re-
gions north of 45°N. This evaluation was performed using
point-scale in situ measurements over large flat regions and
not in complex mountain terrain like the Tuolumne River
basin, where the high spatial variability of SWE makes such
evaluations more challenging (Mortimer et al., 2024). Over-
all, the performance of ERAS5-Land SWE needs to be con-
solidated in other regions and ideally over larger domains of
mountainous areas. Previous studies suggested that a resolu-
tion below 500 m is required to properly simulate the snow-
pack distribution (Baba et al., 2019; Bair et al., 2023). In ad-
dition, the ERAS5-Land resolution does not meet the essen-
tial climate variable requirements set by the World Meteoro-
logical Organization for SWE (the goal is 500 m resolution)
(WMO, 2022).

Regarding Sentinel-1, Fig. 7 suggests that the snow depth
is captured well by the C-SNOW algorithm at 1 km reso-
lution. Although we are interested in SWE and not snow
depth, the ASO program has shown that useful SWE prod-
ucts can be derived from remotely sensed snow depth when
combined with in situ measurements and modeled snow den-
sity (Painter et al., 2016). Figure 7 shows that the Sentinel-1
snow depth dataset agrees moderately with the spatial vari-
ability inside the catchment, although we note a slight under-
estimation for all three dates, before the melting period (2017
and 2019) and after it (2018). There is no clear pattern in
the errors that emerge from these three dates. Other studies
highlighted that the C-SNOW algorithm is not adapted for
retrieving the snow depth of a shallower snowpack (< 1.5m)
(Broxton et al., 2024; Hoppinen et al., 2024), which could be
a significant obstacle to operational use of this product. The
modeling approach with ERA5(-Land)-SnowModel yields
similar performances in terms of snow depth to the C-SNOW
product on the same dates. However, two patterns appear in
Fig. 7 for these approaches. (i) The simulations with ERAS
and SnowModel are mostly centered around a negative bias
constant with the observed snow depth before the melting
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period (2017 and 2019), probably representing a small nega-
tive bias in the ERAS precipitation. (ii) The simulations with
ERAS5-Land-SnowModel seem to have a cap at 4 m, which
could be the result of the two consecutive downscalings in
the precipitation, i.e., the combination of an underestimation
of ERAS precipitation and its downscaling plus the limita-
tion of the elevation difference between ERAS-Land stations
and the DEM, so the MicroMet precipitation factor cannot
enhance the high-resolution precipitation enough. Overall,
the key difference in the Tuolumne River catchment is that
the model provides temporally continuous SWE, snow depth
and other relevant variables like snowmelt runoff, whereas C-
SNOW snow depth products are temporally sparse and often
masked during the melt season.

Our study has several limitations. Despite the large amount
of data that were used for this study, our analysis is biased to-
wards the melt season since most of the ASO surveys were
performed during the melt season for operational purposes.
As a consequence, the evaluation of the Sentinel-1 snow
depth is limited to three dates only. In addition, we used the
ASO SWE, which is not a direct observation but a combi-
nation of accurate snow depth measurements and modeled
snow density. Previous work has shown that SWE variability
is mostly driven by snow depth variability (L6pez-Moreno et
al., 2013; Sturm et al., 2010). Another limitation is the fact
that ERAS meteorological forcings may not be homogeneous
across the globe due to the uneven distribution of the assim-
ilated observations. In addition, MicroMet precipitation cor-
rection coefficients were obtained from a large region cover-
ing the study area, and hence they may not be applicable in
other regions. Therefore, we cannot generalize our results to
other regions. However, the increasing weight of global satel-
lite observations in ERAS over time suggests that ERAS per-
formances should be more spatially homogeneous in recent
and upcoming years. As a consequence, ERAS uncertainty
varies with time since more and more data are available for
data assimilation (Bell et al., 2021). This could be a limita-
tion of computing trends over long periods (Bengtsson et al.,
2004).

However, these errors have a low impact at the catch-
ment scale, and we can conclude that ERA5-SnowModel is
promising for water resource applications. This pipeline can
be used to simulate SWE in near real time without the need
for in situ measurements. The development of a parallel ver-
sion of SnowMaodel opens the door for continental-scale ap-
plications (Mower et al., 2024).

5 Conclusion

We have evaluated a pipeline to simulate the snowpack in a
mountainous catchment from global datasets only. This tool
is based on the Copernicus land cover and DEM, ERAS (or
ERAS5-Land), and SnowModel. It uses SnowModel and Mi-
croMet to downscale meteorological variables from ERAS
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before computing accumulation and ablation processes using
other SnowModel submodels. It can generate a daily gridded
snow water equivalent over any region and any period of in-
terest since 1940. Based on 49 reference SWE surveys span-
ning 7 contrasted hydrological years, we find that the ERAS5-
SnowModel combination simulates the SWE well at the scale
of the Tuolumne River catchment, with an RMSE of 0.06 m
(and 0.08 m with ERAS5-Land) and a correlation of 0.99 (with
both datasets). The SWE is also simulated well by elevation
bands, except in the highest-elevation band, where unrealis-
tic SWE values were simulated. Of ERAS and ERA5-Land,
ERAS is more convenient to use, especially because it re-
quires fewer computing resources. Using the near-real-time
release of ERAS allows the simulation of SWE with 5d la-
tency. This makes the method usable in an operational con-
text and competitive with a satellite-based approach. In par-
ticular, we found that it simulates the snow depth and the
C-SNOW products derived from Sentinel-1, which are only
available under dry snow conditions.

Our study focused on a single catchment due to the avail-
ability of the ASO SWE products. However, ERAS skills
may vary geographically and temporally due to the hetero-
geneity of assimilated data sources. Therefore, the perfor-
mance of this method should be evaluated in other mountain
catchments. Recent remote sensing methods for retrieving
snow depth from very-high-resolution stereoscopic imagery
will be useful for that perspective. To further reduce the er-
rors in the simulation at finer resolutions, we also intend to
add a data assimilation module in order to take advantage of
other global datasets, such as the snow cover area from re-
mote sensing.

Appendix A
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Figure Al. Distribution of the residuals between the SnowModel-simulated SWE and the ASO SWE at 100 m resolution in the Tuolumne
River catchment (m w.e.) on 1 April 2016 (a) and 27 May 2016 (b), stratified by slope. Whiskers show the 5th to 95th percentiles, the line in
each box represents the median of the distribution and the green triangle shows the mean. Slope has been calculated using the DEM at 3 m
resolution and has been resampled with an average algorithm at 100 m.
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Table A1l. Correspondence table between Copernicus land cover and SnowModel vegetation classes. Correspondence table between Coper-

nicus land cover and SnowModel (SM) vegetation classes.

Copernicus  Copernicus vegetation Forest type  Leaf Chosen corresponding SM class SM
class type type class
number number
0 No data —9999
20 Shrubs Mesic upland shrub 6
30 Herbaceous vegetation Grassland rangeland 12
40 Cropland Short crops 23
50 Urban Residential/urban 21
60 Sparse vegetation Bare 18
70 Snow and ice Permanent snow/glacier 20
80 Permanent water bodies Water/possibly frozen 19
90 Herbaceous wetland Shrub wetland/riparian 9
100 Moss and lichen Bare 18
111 Closed forest Evergreen  Needle Coniferous forest 1
112 Closed forest Evergreen = Broad  Coniferous forest 1
113 Closed forest Deciduous  Needle Deciduous forest 2
114 Closed forest Deciduous  Broad  Deciduous forest 2
115 Closed forest Mixed Mixed forest 3
116 Closed forest Unknown Mixed forest 3
121 Open forest Evergreen  Needle Coniferous forest 1
122 Open forest Evergreen = Broad  Coniferous forest 1
123 Open forest Deciduous  Needle Deciduous forest 2
124 Open forest Deciduous  Broad  Deciduous forest 2
125 Open forest Mixed Mixed forest 3
126 Open forest Unknown Mixed forest 3
200 Open sea Ocean 24

Code availability. The wrapper around the SnowModel code can
be found here: SOURP Laura/ERA_SnowModel_Pipeline_GitLab
(https://src.koda.cnrs.fr/laura.sourp.1/era_snowmodel_pipeline;
Sourp and Gascoin, 2024).

Data availability. ERAS and ERAS-Land are freely available from
the Copernicus Climate Change Service (C3S) (CDS, 2025). The
Copernicus DEM GLO-30 is freely available on the Coperni-
cus browser or via their Python API (https://doi.org/10.5270/ESA-
¢5d3d65, Copernicus, 2025). The 100m Copernicus land cover
is freely available as part of the Copernicus Land Monitor-
ing Service (https://doi.org/10.5281/zenodo.3939050, Buchhorn
et al., 2020). ASO snow depths and SWE are freely avail-
able on the National Snow and Ice Data Center (NSDIC)
website (https://doi.org/10.5067/M4TUH28NHLA4Z, Painter, 2018).
Sentinel-1 snow depth data are freely available on the KU LEUVEN
website (https://ees.kuleuven.be/project/c-snow, C-SNOW, 2022).
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