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Abstract. Long short-term memory (LSTM) networks have
shown strong performance in rainfall-runoff modeling, often
surpassing conventional hydrological models in benchmark
studies. However, recent studies raise questions about their
ability to extrapolate, particularly under extreme conditions
that exceed the range of their training data. This study ex-
amines the performance of a stand-alone LSTM trained on
196 catchments in Switzerland when subjected to synthetic
design precipitation events of increasing intensity and vary-
ing duration. The model’s response is compared to that of
a hybrid model — a model that combines conceptual hydro-
logical approaches with the LSTM — and evaluated against
hydrological process understanding. Our study reiterates that
the stand-alone LSTM is not capable of predicting discharge
values above a theoretical limit (which we have calculated
for this study to be 73 mm d_l), and we show that this limit
is below the maximum value of 183 mmd~" in the train-
ing data. Furthermore, the LSTM exhibits a concave runoff
response under extreme precipitation, indicating that event
runoff coefficients decrease with increasing design precip-
itation — a phenomenon not observed in the hybrid model
used as a benchmark. We show that saturation of the LSTM
cell states alone does not fully account for this characteristic
behavior, as the LSTM does not reach full saturation, par-
ticularly for the 1d events. Instead, its gating structures pre-
vent new information about the current extreme precipitation
from being incorporated into the cell states. Adjusting the
LSTM architecture, for instance, by increasing the number
of hidden states and/or using a larger, more diverse train-
ing dataset, can help mitigate the problem. However, these

adjustments do not guarantee improved extrapolation perfor-
mance, and the LSTM continues to predict values below the
range of the training data or show unfeasible runoff responses
during the 1d design experiments. Despite these shortcom-
ings, our findings highlight the inherent potential of stand-
alone LSTMs to capture complex hydrometeorological rela-
tionships. We argue that more robust training strategies and
model configurations could address the observed limitations,
preserving the promise of stand-alone LSTMs for rainfall-
runoff modeling.

1 Introduction

Deep learning models, particularly long short-term memory
(LSTM; Hochreiter and Schmidhuber, 1997) networks, have
become important tools in rainfall-runoff modeling. The cur-
rent prototypical setup was introduced by Kratzert et al.
(2019), who trained a single LSTM model for 531 basins
across the United States (and achieved superior performance
compared to several traditional process-based models). Sim-
ilar results were confirmed in follow-up work, such as the
study by Lees et al. (2021) in Great Britain or Loritz et al.
(2024) in Germany. However, as with any model, certain
best practices for setting up LSTM-based models are essen-
tial to achieve good predictive performance. Among the most
important is training the LSTMs on large, comprehensive,
and diverse datasets (Kratzert et al., 2024) — such as Catch-
ment Attributes and Meteorology for Large-sample Studies
(CAMELS-US; Addor et al., 2017; Newman et al., 2015).
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A behavior that LSTMs exhibit is that their states can satu-
rate when they ingest new inputs. The mechanism that leads
to this behavior is the use of hyperbolic tangent (tanh) and
sigmoid activation functions inside the LSTM cell. These
saturate when the output approaches their asymptotic ex-
tremes (Chen and Chang, 1996; Rakitianskaia and Engel-
brecht, 2015). Kratzert et al. (2024) identified the saturation
of the tanh function in the computation of the hidden states
(hy = oy ©®tanh(c;) , where ¢, denotes the cell states and o, is
the output gate; Appendix Al) as a key factor that limits the
ability of the LSTMs to predict extreme discharge values. As
c; grows, tanh caps it, restricting the transmission of mean-
ingful information, such as meteorological forcing signals.
The severity of this saturation effect depends on the learned
weights and biases and hence on the range and diversity of
the training data. In hydrological modeling, the circumstance
that model predictions are restricted to the empirical support
of the data is unsatisfactory — particularly for the prediction
of extremes, which is a key modeling aspect. Considering
the rapid rise in the application of LSTMs and other deep
learning models in rainfall-runoff modeling, we believe that
a deeper understanding of their current limitations is essen-
tial. This study therefore aims to examine the extrapolation
behavior of LSTMs to extreme rainfall-runoff events that lie
outside the range of the training data. Although the term “ex-
trapolation” is difficult to define technically — especially in
the context of high-dimensional datasets and deep learning
models (Balestriero et al., 2021) — the events that we con-
sider in our study are, by construction, either at the edge of
or outside the range of the observed data (with regard to pre-
cipitation).

Previous studies (e.g., Frame et al., 2022; Acufia Espinoza
et al., 2024a; Song et al., 2024) have explored the predictive
accuracy of LSTMs in extreme runoff scenarios by adopting
training/test splits that deliberately exclude certain high-flow
values during training. In a stress test setting, Frame et al.
(2022) found that, when compared with two conceptual hy-
drological models, a stand-alone LSTM outperformed one
of the former for the most extreme rainfall-runoff events in
the CAMELS-US and was only slightly worse than the sec-
ond. Acufia Espinoza et al. (2025b) used the same setting
to demonstrate that a hybrid model, combining a conceptual
hydrological model with an LSTM, was slightly better than
a stand-alone LSTM at predicting the most extreme events
in the CAMELS-US dataset. In the study, the stand-alone
LSTM performed particularly well for the overall evalua-
tion, but for the most extreme events, the LSTM’s response
showed major deviations from the hybrid model and a con-
ceptual model — exhibiting a distribution of simulated ex-
treme values with no tail (see Fig. 5a in Acufia Espinoza
et al., 2025b). On the other hand, Song et al. (2024) (in a
slightly different setting) found that a hybrid model, similar
to the one used in Acufla Espinoza et al. (2025b), outper-
formed the stand-alone LSTM. The stand-alone LSTM, the
mass-conserving LSTM (MC-LSTM in Frame et al., 2022),
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and hybrid models performed similarly when evaluated using
standard metrics; however, the studies provided notably dif-
ferent interpretations regarding whether, and to what extent,
LSTMs can successfully extrapolate to extreme events.

Although the stress tests in Frame et al. (2022) and Acuiia
Espinoza et al. (2025b) systematically test the model’s ability
to handle increasingly extreme events, they are not realistic
from a practical perspective. In real-world applications, mod-
elers would not intentionally exclude known extremes from
their training datasets, particularly when using data-driven
models. In this study, we propose a complementary approach
for investigation: rather than withholding extreme events dur-
ing training, we force the LSTM with design precipitation
values (as commonly used in infrastructure planning and en-
gineering; Global Water Partnership and World Meteorolog-
ical Organization, 2013). These precipitation values, which
are derived using statistical models, can exceed historical
observations but are considered physically plausible (World
Meteorological Organization, 1973, 2009). This allows us to
probe the model’s extrapolation capabilities without impos-
ing artificial constraints on the training data. An intrinsic lim-
itation of our approach is that our augmentation destroys the
covariate structure of the inputs. Hence, in theory, we can-
not directly disentangle the effect of the general LSTM out-
of-distribution behavior and the one introduced by an actual
extreme event of the same kind. This restricts us to a certain
coarseness of the analytical depth of our study. However, we
argue that the pattern that emerges from our experiments is
so clear that it is indicative for the extrapolation behavior of
LSTMs in hydrology. Specifically, we compare the LSTM’s
output with that of a mass-conserving hybrid model (Feng
et al., 2022) and assess how both models respond under un-
precedented forcing conditions to evaluate the physical real-
ism of the LSTM’s predictions.

This study addresses the following research questions:

1. Can LSTMs extrapolate to discharge values beyond the
training distribution when forced with statistically de-
rived design precipitation events?

2. Is the saturation of LSTM memory states the primary
reason that limits their ability to extrapolate to extreme
and unprecedented hydrological conditions?

3. How do the inherent assumptions and structural char-
acteristics (inductive biases) of LSTMs influence their
ability to simulate realistic hydrological responses un-
der conditions that exceed observed training ranges?

The paper is structured as follows: we give a description
of the datasets and the models in Sect. 2. This section also
details the setup for the design precipitation experiments and
the methodology for calculating saturation in the LSTM net-
work. This is followed by Sect. 3, where we present the over-
all model performance and a comparison of model simula-
tions from our design experiments. We discuss the findings
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and their implications with regard to the three research ques-
tions in Sect. 4 and give our conclusion in Sect. 5.

2 Data and methods

In this section, we describe the CAMELS-CH dataset
(Sect. 2.1) and the CAMELS-US dataset (Sect. 2.2) used
for model training and testing. The subsequent subsections
(Sect. 2.3 and 2.4) briefly describe the LSTM networks, the
hybrid model, and their respective model configurations em-
ployed in this study. Following these, Sect. 2.5 details the
selection of catchments and the experimental setup for the
design precipitation events. Finally, Sect. 2.6 explains how
we estimate network saturation in the LSTM.

2.1 The CAMELS-CH dataset

The CAMELS-CH dataset (Hoge et al., 2023) provides daily
hydrometeorological time series data for 331 basins within
Switzerland and neighboring countries, along with static
catchment attributes that include topography, climate, hy-
drology, soil, land cover, geology, glacier, hydrogeology, and
human influence. Due to its diverse topography and climate,
Switzerland is often referred to as the “water tower of Eu-
rope” (Hoge et al., 2023), and despite its small size, it ex-
hibits significant hydrological variability across different re-
gions. CAMELS-CH includes data for 298 river catchments
and 33 lakes. The available data span from 1 January 1981
to 31 December 2020. In this study, we exclude the lakes
and 102 river catchments belonging to France, Germany,
Austria, and Italy and focus only on the 196 catchments
in Switzerland. From this subset, we exclude another four
catchments where preliminary model simulations had neg-
ative Nash—Sutcliffe efficiency (NSE). For the CAMELS-
CH dataset, the maximum precipitation during the training
period is 234mmd~' and was recorded for the Krumm-
bach stream located in southern Switzerland. The maximum
observed specific discharge is 183 mmd~!, which occurred
during a flood in the Chli Schliere stream in the Alpnach
village in central Switzerland, triggered by torrential rains
in August 2005 (Federal Department for the Environment,
Transport, Energy and Communications DETEC, 2005).

2.2 The CAMELS-US dataset

We use a subset of 531 catchments from the CAMELS-
US dataset, which was originally identified by Newman
et al. (2015). This provides daily meteorological forcing from
three datasets — Daymet, Maurer, and NLDAS — and daily
stream flow measurements from the United States Geolog-
ical Survey (USGS) spanning from 1980 to 2015. Catch-
ment topographical characteristics, climate and hydrological
indices, and soil, land cover, and geological characteristics
are also provided. The maximum observed specific discharge
for this training dataset is 299 mm d~!, which is recorded
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for the Medina River in Texas. The precipitation observed in
Krummbach stream (234 mmd~!) in Switzerland is also the
maximum precipitation for this combined training dataset.

2.3 LSTM model

The hyperparameters of our LSTM network (see Table 1) are
guided by the work of Lees et al. (2021) and Acufia Espinoza
et al. (2024a), and the model implementation is done using
PyTorch (Paszke et al., 2019). We train an ensemble of five
LSTMs, all with a single layer of 64 nodes, to account for
random initialization and stochasticity in the network opti-
mization algorithm. The head layer for our LSTMs is a fully
connected linear layer with a dropout rate of 0.4. We use a
batch size of 256 and a sequence length of 365d for train-
ing our LSTMs for a total of 20 epochs. We use a learning
rate of 1 x 1073 for the first 10 epochs and 5 x 103 for the
remaining 10 epochs. The basin-averaged Nash—Sutcliffe ef-
ficiency (NSE*) proposed by Kratzert et al. (2019) is used as
a loss function, and the algorithm for optimization is ADAM
(Kingma and Ba, 2017). We refer the reader to Kratzert et al.
(2019) for a detailed description of the LSTM architecture
and specific details regarding how it is typically applied in
hydrology. For easy reference, we present the equations de-
scribing the forward pass of the LSTM in Appendix Al. The
training and testing periods, as mentioned in Table 1, span
from October 1995 to September 2005 and from October
2010 to September 2015, respectively. For models trained
on the CAMELS-CH dataset alone, five dynamic forcing
variables, i.e., precipitation (mm d_l), minimum and maxi-
mum temperature (°C), relative sunshine duration (%), and
snow water equivalent (mm d—1), and 22 static catchment at-
tributes (see Appendix A2) form the model input, and we
trained the models to target specific discharge (mmd~").
While training the LSTM ensemble on the CAMELS-CH
and CAMELS-US datasets together, we reduce the number
of dynamic and static inputs for similarity within the inputs
for catchments belonging to the two datasets. For this ensem-
ble, we use only three dynamic forcing variables — precipita-
tion (mm d~!) and minimum and maximum temperature (°C)
from the CAMELS-CH dataset and from the Daymet meteo-
rological forcing data of the CAMELS-US dataset — and 12
static catchment characteristics (listed in Appendix A2) from
both the datasets as inputs and the daily stream flow data as
the target.

2.4 The hybrid model

We use a type of hybrid model introduced by Feng et al.
(2022). The hybrid model uses a modified version of the
Hydrologiska Byrans Vattenbalansavdelning (HBV) model
(Bergstrom, 1992; Aghakouchak and Habib, 2010; Seibert
and Vis, 2012; Beck et al., 2020) as a backbone concep-
tual model. Differentiable parameter learning (dPL) using
a single LSTM is used to parameterize a number of modi-
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Table 1. Hyperparameters for LSTM network and hybrid model en-
semble.

Hyperparameter Value
LSTM Hybrid model
Number of layers 1
Number of nodes 64
Dropout rate 0.4
Initial forget gate bias 3
Initial learning rate 0.001
Sequence length 365 730
Batch size 256
No. of epochs 20

Training period
Test period

1 October 1995 to 30 September 2005
1 October 2010 to 30 September 2015

fied HBVs. The discharge signal produced by the modified
HBVs is averaged and routed through a unit hydrograph,
which produces the final simulated discharge. We implement
the 8, (8", y") version of the hybrid model with a collection
of 16 modified HBV models with dynamic parameterization.
A detailed description of this model can be found in Feng
et al. (2022). While the stand-alone LSTM produces specific
discharge as the output, in the hybrid model, the LSTM pro-
duces as many outputs as the number of parameters required
by 16 HBVs and the unit hydrograph routing. In our hybrid
model, the LSTM estimates 210 model parameters at each
time step (13 HBV parameters*16 HBV models+2 routing
parameters). The hyperparameters of the LSTM component
and in the hybrid model and the data split implemented for
training and testing are described in Table 1. The hybrid
model receives a sequence length of 730d, the first 365 val-
ues from which are used to initialize the internal states of
the HBV models (warm-up period) and do not contribute
to the loss calculation. We choose to train the two models
with different sequence lengths because we wish to imple-
ment the models in a manner consistent with methodologies
presented in studies by Kratzert et al. (2019) and Acufia Es-
pinoza et al. (2025b). Thus, we train the LSTM using a seq-
to-one approach with a sequence length of 365 and the hybrid
model using a seq-to-seq approach with a sequence length
of 730. Please note that increasing the sequence length of
the LSTM to 730 does not increase the model performance.
The static and dynamic inputs to the hybrid model are given
in Appendix A2. The LSTM component, which parameter-
izes the conceptual part within the hybrid model, uses the
same five dynamic and 22 static inputs as the stand-alone
LSTM. However, an additional input — potential evapotran-
spiration (pet_sim (mmd~!)) — is explicit to the HBV com-
ponent therein. Training the stand-alone LSTM with this ad-
ditional dynamic input, for the sake of similarity across all
inputs, is redundant, as pet_sim is computed using tempera-
ture and radiation data via the Penman—Monteith equation in
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CAMELS-CH. When we trained an LSTM ensemble with an
additional dynamic input pet_sim, it did not change our re-
sults. The daily time series for pet_sim (mmd~!) is obtained
from the simulation-based hydrometeorological time series
of the CAMELS-CH dataset. The optimizer and learning rate
schedule is the same for both the models.

2.5 Design precipitation events: selection and
experimental setup

In this study, we use design precipitation values from an ex-
treme value analysis published by the Federal Office of Mete-
orology and Climatology (MeteoSwiss; MeteoSwiss, 2022).
This includes 1 to 5d precipitation analyses with an an-
nual return interval (ARI) from 1 to 300 years at more than
300 meteorological observation stations. Given that the de-
sign precipitation values are valid only at the exact locations
of the stations (Frei and Fukutome, 2022), we identified a
smaller subset of 25 CAMELS-CH catchments that have a
meteorological observation station within or at a distance
of 2.5km from the catchment boundary. We acknowledge
that, given the diversity in terrain and elevation in Switzer-
land and its small-scale spatial climate patterns, access to
sophisticated tools enabling better interpolation (Bardossy
and Pegram, 2013) of the extreme values would be ideal.
However, due to the lack of such methods and the explicit
admission of added uncertainty in the related documenta-
tion (Frei and Fukutome, 2022), we proceed with the chosen
subset of catchments. The models in our study are trained
on catchment-averaged precipitation values but tested using
point-scale data, which may introduce inconsistencies and
serve as a potential source of error. Nonetheless, given the
exploratory nature of our objectives, it is less critical that the
exact magnitude of extreme precipitation is captured, as long
as the values are physically plausible and reflect regionally
extreme conditions. We consider this assumption acceptable
for our experimental design, which aims to explore the limi-
tations of LSTM-based hydrological simulations rather than
to support infrastructure planning or flood defense design.
To systematically analyze the simulations of our models
in extreme scenarios, we force our models with precipitation
events of varying ARI during the test period. For each of the
above-mentioned 25 catchments, we identified dates where
the observed precipitation value (mmd~!) belonged to the
top 99.5th percentile of the distribution of precipitation val-
ues during the test period in the respective catchment. A total
of 201 events/dates distributed among the 25 test catchments
were identified and form a part of the subsequent experimen-
tal setup. The minimum replaced precipitation is 34 mmd~!,
and the maximum is 139 mmd~!. We replaced these by the
1, 3, and 5d design precipitation values with ARIs of 50,
100, and 300 years. In the case of 3 and 5d values, the pre-
cipitation volume was distributed uniformly over 3 and 5d,
respectively, centered around the identified dates. The LSTM
and hybrid model then received this synthetic input for dis-

https://doi.org/10.5194/hess-29-5871-2025



S. Baste et al.: Unveiling the limits of deep learning models in hydrological extrapolation tasks 5875

charge simulations. This approach allows us to test the im-
pact of extreme, but physically plausible, magnitudes of pre-
cipitation input for the LSTM-based discharge simulations,
under different initial conditions. Our experimental setup is
constrained by the fact that we manipulate only precipitation.
Given that other meteorological variables, such as tempera-
ture or radiation, are not fully independent of precipitation,
our approach does not account for the complex correlation
among climate inputs. However, by replacing precipitation
values only at times when observed extremes had already oc-
curred, we try to minimize inconsistencies in other meteoro-
logical inputs. Although this approach has its limitations, it
provides a controlled setting to examine how the LSTM and
hybrid models respond to unprecedented precipitation mag-
nitudes and reflects, to a certain degree, a classical hydrolog-
ical use case, i.e., the design of infrastructure.

2.6 Measuring saturation in the LSTM

Although saturation can occur at any tanh or sigmoid ac-
tivation within an LSTM, we focus on the saturation that
arises during the computation of the hidden state (the second
term in Eq. A6 in Appendix Al), as discussed by Kratzert
et al. (2024). Defining a precise threshold for when tanh sat-
urates is challenging due to its continuous nature. However,
previous studies have noted that the useful (non-saturated)
region extends until approximately 90 % of the saturation
level (Chen and Chang, 1996). We hence identify satura-
tion in the said activation when the absolute value of its out-
put equals or exceeds 0.9. We define network saturation as
the total number of saturated activations (out of the 64 units
in the hidden layer). In the following, we will use the term
“cell state saturation” to refer specifically to the saturation
of the tanh activation function when computing hidden states
(hy =tanh(c;) - o).

3 Results
3.1 LSTM and hybrid model performance

Figure 1 presents the test performance of the LSTM and hy-
brid model ensemble as a cumulative distribution function
(CDF) of individual catchment performance measured by the
NSE (panel a). The models’ testing is spatially in-sample
but temporally out-of-sample, which means that the models
are tested using the same 196 catchments used during the
training process but in a different test period (gauged sim-
ulations). The average median NSE achieved by the LSTM
ensemble is 0.84, while that for the hybrid model ensemble
is slightly lower at 0.79. Both models perform better than the
PREVAH model (Viviroli et al., 2009) (median NSE = 0.50;
see Fig. B1 in Appendix B), simulated discharge time series
from which are provided with the CAMELS-CH dataset. It is
worth noting that the hybrid model performed similarly to the
LSTM ensemble in studies by Feng et al. (2022) and Acuiia
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Espinoza et al. (2025b) for the CAMELS-US dataset. How-
ever, in this study, we could not replicate the same perfor-
mance, despite using the exact same model setup and train-
ing procedure, possibly because we train and test our models
on catchments belonging to the CAMELS-CH dataset. Our
investigations did not reveal a specific cause for the slightly
lower NSE of the hybrid model. Interestingly, in four specific
catchments where the hybrid model exhibited a pronounced
drop in performance compared to the LSTM ensemble, the
hybrid model accurately predicted timing patterns (high cor-
relation) but showed an increasing bias over the duration of
the test period. This suggests larger mass balance errors in
these catchments that could not be corrected due to the hy-
brid model’s mass-conserving structure. Given that the hy-
brid model primarily serves as a benchmark for the LSTM
ensemble, the observed difference in the global NSE is con-
sidered negligible for the objectives of this study. This differ-
ence in the global performance of the two models is also true
for the subset of the 25 catchments (see Sect. 2.5) identified
for the design experiments.

A comparison of the two model ensembles based on the
high flow bias (FHV), fraction of missed peaks, and peak
mean absolute percentage error (MAPE) is shown in pan-
els (b), (¢), and (d) of Fig. 1, respectively. The FHV repre-
sents the peak flow bias of the flow duration curves for the
observed and simulated discharge. The fraction of missed
peaks represents the peaks in the observed data that are
missed in the simulation. The MAPE is the absolute percent-
age error for observed peaks and their respective simulated
values. All discharge values belonging to the top 2 % of the
observed (or simulated) distribution are considered as peak
values for the calculation of the fraction of missed peaks and
MAPE (or FHV). Both model ensembles show a similar dis-
tribution of the FHV and fraction of missed peaks across all
catchments. The hybrid model, however, has a higher median
MAPE and generally shows greater error associated with
peaks. For the 201 events identified in Sect. 2.5, we calcu-
lated the root-mean-squared error (RMSE) of the two model
ensembles when they were tested for the observed test dataset
(without any synthetic precipitation input). The LSTM en-
semble has an RMSE of 1.08 mmd~!, whereas the hybrid
ensemble has a slightly higher RMSE of 1.22 mmd~".

3.2 Theoretical prediction limit and maximum
simulated value of the LSTM ensemble

Kratzert et al. (2024) discuss the existence of a theoreti-
cal prediction limit (TPL) for a trained LSTM network and
provide a mathematical derivation (Appendix C in Kratzert
et al., 2024). This theoretical prediction limit depends on
the learnable parameters (weights and biases) of the linear
head layer that maps the LSTM’s hidden states to a sin-
gle output value. For our LSTM ensemble, the mean theo-
retical prediction limit is 73 mmd~'. This limit means that
under no circumstances can the stand-alone LSTM produce
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Figure 1. Cumulative density function (CDF) showing the (a) NSE, (b) high flow bias (FHV), (c) fraction of missed peaks, and (d) peak
mean absolute percentage error (MAPE) of the LSTM and hybrid model ensemble tested on 196 CAMELS-CH catchments during the test
period from 1 October 2010 to 30 September 2015. The solid line represents the mean of the ensemble, and the shaded region depicts the
variation within the ensemble. The average median NSE achieved by the LSTM network ensemble is 0.84, whereas that for the hybrid model

ensemble is 0.79.

a simulated discharge higher than 73mmd~!. This theo-
retical prediction limit is notably smaller than the maxi-
mum specific discharge observed during the training period,
about 183 mm d—!, which occurred during a flood in the Chli
Schliere stream, located in central Switzerland. In total, there
are 66 d in the training period during which discharge values
exceed 73 mmd ™!, representing approximately 0.01 % of the
total training data.

Our design experiments revealed that the maximum sim-
ulated discharge value from the LSTM ensemble is not the
theoretical limit of 73mmd~! but 60mmd~!. This maxi-
mum was reached during a 1d design precipitation event,
which had a total precipitation volume of 304 mm, in the
Magliaso-Ponte catchment located in southern Switzerland.
To further investigate how closely the stand-alone LSTM can
approach its theoretical maximum, we tested scenarios with
extremely high precipitation intensities up to 1000 mmd~!
sustained over 3 and 5 d durations. Such values exceed real-
istic conditions by far, especially considering the fact that the
highest total annual precipitation recorded in Switzerland is
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4173 mma~! (MeteoSwiss, 2024). Even under these extreme
forcing conditions, the model did not produce a discharge
value beyond 60 mmd~'. We hence refer to this simulated
maximum as the “design limit” of the LSTM. The design
limit being smaller than the theoretical prediction limit can
be understood as a consequence of not all linear head-layer
units contributing fully to the final output.

Training LSTMs with a higher number of hidden states
and on a larger, more diverse dataset (as recommended in
Kratzert et al., 2024) can raise the theoretical limit but
does not necessarily affect the design limit to the same de-
gree. For instance, a single LSTM network with 256 hid-
den states, compared to one with 64 hidden states, trained
on the CAMELS-CH dataset demonstrates a theoretical pre-
diction limit of 120 mmd~!. The design limit also increases
to 75mmd~". Similarly, a single LSTM with 256 hidden
states, trained on both the CAMELS-CH and CAMELS-
US datasets together, achieves a theoretical prediction limit
of 194mmd~" and a raised design limit of 110mmd—".
Despite the substantial improvements in theoretical pre-
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diction limits, the design limits remain significantly lower
than the maximum discharges encountered during training:
299 mmd~! in CAMELS-US and 183 mmd~! in CAMELS-
CH. While the theoretical limit reflects the maximum poten-
tial output based on model parameters, the design limit is
constrained by the interplay of network weights and activa-
tions during inference. Thus, increasing the theoretical max-
imum by expanding the number of hidden states does not
necessarily translate to a higher design limit.

In contrast, the hybrid model used in our experiments does
not exhibit a theoretical limit to discharge predictions. The
highest simulated value observed was 144 mm d~1, which is
still lower than the maximum discharge seen during train-
ing. However, when forced with increased precipitation, the
model’s outputs scale more or less linearly with the forcing,
demonstrating greater flexibility than the stand-alone LSTM.

Panels (a)-(c) in Fig. 2 show the evolution in the sim-
ulated specific discharge for three catchments for a partic-
ular catchment-specific 1d design precipitation event with
varying ARI from 50 to 300 years. We highlight these three
events, as they have the highest runoff generation among the
201 events from the 25 catchments and most clearly exhibit
the limiting behavior of the LSTM. Notably, the maximum
simulated discharge by the stand-alone LSTM ensemble in-
creases only marginally from ARI 50-year to ARI 300-year
in all three catchments. For these events, the simulations in-
crease on average by 6 % from ARI 50-year to ARI 300-year,
in contrast to the precipitation, which increases by 39 %.
The maximum simulated values of these three catchments,
which are 48, 43, and 60 mmd—!, respectively, are well be-
low the theoretical limit of the LSTM ensemble but close to
the design limit. From a hydrological viewpoint, this entails
that, although rainfall increases significantly, the LSTM sim-
ulations have decreasing runoff coefficients. In contrast, we
typically observe an increase in runoff coefficients with in-
creasing intensity of extreme events, as increasing area of a
catchment becomes saturated (Beven et al., 2021). The hy-
brid model ensemble, on the other hand, responds consider-
ably more to the increasing precipitation input, and there is
an increase of 51 % from ARI 50-year to ARI 300-year. The
identified patterns in the three events shown in Fig. 2 are also
true for the events with the highest runoff generation in each
of the 25 test catchments. Such events are specifically impor-
tant because they are more likely to push the LSTM to its
simulation limits and display the saturation effect. While the
precipitation increases by 43 % from ARI 50 to ARI 300,
the LSTM simulations show an average increase of 25 %.
By contrast, the hybrid simulations increase by 48 %. For the
rest of the design events, as runoff generation varies depend-
ing on the state of the catchment, saturation behavior may or
may not be observed as starkly. In catchments with particu-
larly low rainfall-runoff generation, the LSTM ensemble of-
ten produces higher runoff estimates than the hybrid model.
In such cases, the saturation in LSTM runoff generation is
not pronounced either. The closer the LSTM estimates ap-
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proach the design limit, the greater is the difference between
the hybrid model and the LSTM simulation.

Figure 3 shows the results of a 3d (panels a, ¢) and a 5d
(panels b, d) event at the Magliaso-Ponte gauge, one of the
test catchments exhibiting the most pronounced runoff re-
sponses. Consistent with observations from the 1d events,
the LSTM network simulations reveal certain characteristic
limitations. Nonetheless, for both the 3 and 5 d events, the hy-
brid model’s peak discharge simulations increase with higher
ARIs (see panel a for the 3d event and panel b for the 5d
event in Fig. 3). For most of the test catchments, the stand-
alone LSTM response shows similar patterns. However, the
discrepancy between the hybrid and the LSTM simulations
is much smaller for the 3 d events than for the 1 d events and
is even further reduced for the 5 d events.

3.3 Evolution of saturation in the LSTM ensemble

For the events identified in Sect. 2.5, on average, at least
19 % and at most 58 % network saturation is observed for
precipitation input within the test dataset, meaning without
the input of synthetic extreme precipitation. This shall serve
as a baseline to observe how much the network further satu-
rates when subject to the synthetic precipitation data during
the design events. Table 2 shows the maximum (and mini-
mum) number of saturated LSTM cells (out of 64) for three
test catchments across various design events. Notably, in
none of the cases do the LSTM’s cell states fully saturate. For
the 1 d events, on average, the maximum saturation across the
ensemble ranged from about 50 % to 75 %, whereas the mini-
mum ranged from approximately 41 % to 63 %. Interestingly,
this degree of saturation remained nearly unchanged even as
the ARI increased, and the associated precipitation became
more intense. Even pushing the model with a very high 1d
precipitation of 1000 mm d~! did not cause the cell states to
approach complete saturation.

A different pattern emerged, however, when we examined
longer-duration events. For the 3 d events, we observed a sub-
stantial increase in cell state saturation. This indicates that
some cells require more than a single day to accumulate suf-
ficient input signals to reach higher saturation levels. This is
thereby controlled by the input and forget gates in an LSTM
(Egs. Al and A2 in Appendix Al). The input gate controls
how much new information enters the cell state, while the
forget gate determines how much past information is retained
or discarded. Over multiple days, the continued influx of
rainfall data (regulated by the input gate) and the retention
of previously encoded information (controlled by the forget
gate) allow the cell states to build up more gradually. With
this prolonged input, more cell states move closer to satura-
tion. For the 5d events, saturation did not increase further,
which at first seems contradictory. However, the total precip-
itation of the 5d events does not greatly exceed that of the
3d events. Because the rainfall is spread uniformly over a
longer period, it results in a lower daily precipitation inten-
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Figure 2. Evolution of LSTM and hybrid model ensemble simulation for three catchment-specific 1 d events with increasing ARI for gauges
located at (a) Andermatt, (b) Pollegio-Campagna, and (c) Magliaso-Ponte and their respective hydrographs (d)—(f). The LSTM ensemble
does not simulate discharge higher than its theoretical prediction limit (d—f). The increase in the hybrid model simulation is more consistent
with hydrological expectation than the LSTM (a—c).

Table 2. Number of nodes (out of 64) of the LSTM network such that the output of |tanh(c;)| > 0.90. Ensemble maximum (ensemble
minimum) values are reported for single events in each catchment. Due to poor reliability of 5 d extreme precipitation analyses for Andermatt
(MeteoSwiss, 2022), the corresponding results are not reported here.

ID Gauge name Event date Number of saturated nodes
Design experiment ARI

50 years ‘ 100 years ‘ 300 years
1d 3d 5d | 1d 3d 5d | 1d 3d 5d
2087  Andermatt 8 August 2013 37(28) 45(42) - | 3527) 46(43) - | 3426) 4543) -
2494 Pollegio-Campagna 22 May 2014 3226) 51(42) 50(44) | 32(26) 52(39) 50(45) | 32(26) 50(40) 51(45)
2461  Magliaso-Ponte 11 October 2014~ 48(40)  50(41)  47(41) | 48(40) 51(42) 49(42) | 48(37) 51(44) 51(43)

sity. Without sufficiently large daily inputs, the cell states do 4 Discussion

not accumulate to higher saturation levels, even over multiple

days. Thus, while longer durations can facilitate higher sat- We structure our discussion around the three research ques-

uration when daily precipitation is intense, simply extending tions posed at the end of our introduction.

the time frame without maintaining high-intensity input does

not necessarily lead to further saturation. The number of sat-

urated cell states, hence, provides useful insights. However,

the saturation of the cell states is not the only kind of satura-

tion that limits the LSTM. Our study highlights limitations in current LSTM train-
ing strategies. While LSTMs are undeniably powerful tools
for modeling complex relationships in hydrological systems
(Kratzert et al., 2018, 2019; Loritz et al., 2024; Nearing et al.,
2024), their response to inputs outside the training range ex-

1. Can LSTMs extrapolate to discharge values beyond the
training distribution when forced with statistically de-
rived design precipitation events?
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Figure 3. Evolution of LSTM and hybrid model ensemble simulation for the gauge located at Magliaso-Ponte for a (a) 3d eventand a (b) 5d

event with their respective hydrographs (c) and (d).

poses critical challenges (Acufa Espinoza et al., 2025b; Song
et al., 2024). In order to use machine learning (ML) models
responsibly, users should be aware of how the training data
limit the model applicability (see also Meyer and Pebesma,
2021).

Although we train the LSTM ensemble using state-of-
the-art methods following the current benchmarks (Kratzert
et al., 2019; Lees et al., 2021; Acuiia Espinoza et al., 2025b),
it still underestimates discharge values with low exceedance
probabilities (high floods), even when these are present in
the training data. For instance, although the model saw
the largest flood in the training period of 183 mmd~' and
66 other events higher than the theoretical prediction limit
(73mmd~") 20 times during training (once every epoch
of training), the maximum value it could simulate is much
lower (60 mm d~1). Extreme hydrological events often coin-
cide with distinct regime shifts, such as the switch to runoff
generation dominated by surface runoff, which was previ-
ously dominated by subsurface runoff. This may necessi-
tate the model to adopt a completely different set of net-
work weights and a unique mapping of inputs to outputs to
accurately capture these phenomena. However, reallocating
network capacity in this way could compromise the model’s
ability to simulate more common flow conditions. Thus, the
model is potentially disincentivized from fitting to these rare
but critical extremes effectively. Another contributing factor
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may be the inherent bias of minimizing the mean squared er-
ror (MSE), which disproportionately penalizes rare outliers
and can lead to systematic underestimation of their magni-
tude. Furthermore, both the inputs and targets are frequently
noisy, adding another layer of complexity to accurately cap-
turing extreme events. While our experiments cannot defini-
tively determine which of these factors — or their combination
— is primarily responsible for the observed underestimation
of extreme floods, the inherent flexibility of LSTMs suggests
that this limitation is not intrinsic to the model itself. Instead,
it highlights the need for an improved training strategy that
better balances the representation of rare extremes and com-
mon flow conditions.

Scaling the LSTM by increasing the number of hidden
states and/or providing more training data from a broader
range of hydrologic conditions seems to be an avenue to mit-
igate this problem. For instance, our LSTM with 256 hidden
states, trained on a combined CAMELS-US and CAMELS-
CH dataset, results in improved simulations of the extreme
events in our test catchments. This corroborates the intuition
given by Kratzert et al. (2019) and studied in Kratzert et al.
(2024). Howeyver, the theoretical limit of the ensemble, in this
case, was still well below the maximum observed training
data in Switzerland and far below those of CAMELS-US.
Once again, it is imprudent to state with certainty the under-
lying reason or combinations thereof — whether it is the rarity

Hydrol. Earth Syst. Sci., 29, 5871-5891, 2025



5880 S. Baste et al.: Unveiling the limits of deep learning models in hydrological extrapolation tasks

of the extreme events or the training strategy that minimizes
the squared error. Our study provides some indications on
how we can overcome these limits: for one, our results show
that stronger structural priors — as, for example, implemented
by the hybrid approach — can lead to behavior that is more
plausible. However, we do not yet know how strong or weak
the structural choices need to be (the study by Frame et al.,
2022 indicates that mass conservation alone is not enough).
Another potential avenue could come from the training itself:
during the training process, there are no technical limits to a
prediction made by the LSTM. Hence, the issue could most
likely be reduced by a well-chosen training strategy. For ex-
ample, changing the loss function (for instance, by weight-
ing high flow events more; Tanrikulu et al., 2024) improves
the predictions for flood peaks but is accompanied by a de-
crease in overall performance. In this study, we tried training
the LSTM with different loss functions as well as training
on more diverse datasets. Both strategies only mitigated the
issue to some extent. We believe there is indeed a need for
improvement in the way we train and set up LSTMs in order
to seek better, if not complete, resolution of this issue. We
leave the further exploration of potential solutions to future
work.

2. Is the saturation of LSTM cell states the primary rea-
son that limits their ability to extrapolate to extreme and
unprecedented hydrological conditions?

Our multi-day design precipitation experiments highlight
that saturation of the cell states can be an important rea-
son for the threshold behavior, as increasing inputs leads to
large values of ¢; (Eq. AS) for certain cells — which are then
asymptotically limited to —1, 1 by the tanh function. How-
ever, the theoretical limit of the LSTM derived in Kratzert
et al. (2024) can only partly explain why the model does
not respond to increasing inputs. The reason for this is that
the other gating mechanisms can, in practice, saturate much
earlier. Hence, one has to consider the model response as a
whole, and empirically the design limit lies below the the-
oretical maximum from Kratzert et al. (2024). As a matter
of fact, a deeper examination of the internal mechanisms —
particularly the behavior of the gating functions (see Ap-
pendix Al) — showed that, most 1d design precipitation
events never reach the cell state because the input gate (Eq.
Al) in the LSTM filters them out or the forget gate (Eq.
A2) discards most of the historical information. This sug-
gests that the LSTM’s inherent assumptions and structural
characteristics can prevent it from effectively processing ex-
treme inputs, leading to an underestimation of extreme high-
flow events, as additional mass is effectively “deleted” (in
contrast, we posit that, for low-flow events, this property
should not be antagonistic to the hydrological intuition, as
saturation behavior naturally occurs there). In principle, an
LSTM could also be built with its gating functions employ-
ing non-saturating activation functions, but this would typi-
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cally introduce significant new challenges (e.g., due to van-
ishing gradients; Hochreiter and Schmidhuber, 1997). Non-
saturating functions (e.g., rectified linear units) do not natu-
rally bound the values that flow through the network, mak-
ing it harder to control the internal state dynamics. Without
the built-in constraints provided by sigmoid or tanh activa-
tions, the cell states could grow without bound, potentially
leading to exploding gradients and destabilized training. In
this regard, it is of interest to compare the mechanism of the
original LSTM with its latest iteration, the xLSTM (Beck
et al., 2024) — more specifically, the SLSTM variant. It in-
corporates a non-saturated exponential function for the input
gate. However, it also relies on additional stabilizing mecha-
nisms, which also leads to a form of saturation, ensuring that
values remain within manageable ranges. In this way, while
alternative architectures and activation functions might cir-
cumvent certain limitations, they often introduce new chal-
lenges related to stability and training dynamics. Ultimately,
these findings again highlight that, when it comes to purely
data-driven models, there is no simple, one-size-fits-all solu-
tion; rather, careful architectural choices, tailored activation
functions, and potentially new inductive biases are needed
to effectively capture and represent extreme events within
LSTM-based models.

3. How do the inherent assumptions and structural char-
acteristics (inductive biases) of LSTMs influence their
ability to simulate realistic hydrological responses un-
der conditions that exceed observed training ranges?

LSTMs are not just general function approximators but are
also proven to be Turing complete (Siegelmann and Sontag,
1992; Chung and Siegelmann, 2021). However, the inherent
assumptions and structural characteristics of an LSTM in-
troduce an inductive bias that can limit its ability to simu-
late hydrological responses when conditions strongly deviate
from those observed during training. In essence, the LSTM’s
model structure acts as a form of prior knowledge that guides
its predictions toward states that reflect its training experi-
ence (Hochreiter and Schmidhuber, 1997). The LSTM de-
sign, however, does not focus on yielding model behavior
that reflects hydrological intuitions in extrapolation regimes.
In the case of LSTM and the maximum runoff reaction, this is
due to its reliance on saturating activation functions (which,
for large precipitation values, results in an input-concave be-
havior), and in the case of the hybrid model and its use of lin-
ear reservoirs, the model results are close to linear (if the pa-
rameters remain unchanged during the extreme event, which
empirically they do, due to the saturation of the LSTM). In
contrast to both models, in hydrology, we might assume a
convex model behavior with increasing precipitation (assum-
ing no changes in the other input features). Thus, we typically
assume that runoff coefficients increase with increasing in-
tensity of extreme events, as increasing area of a catchment
becomes saturated (Beven et al., 2021; Kirchner, 2024). In
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other words, if we plotted runoff as a function of precipitation
for increasingly intense events, we might observe a curve that
bends upward (convex). This shape reflects the fact that once
critical saturation thresholds are reached, each additional unit
of rainfall generates disproportionately more runoff than be-
fore.

In a single linear reservoir type of hydrological model, the
runoff response is inherently linear, meaning the total runoff
volume remains proportional to the total rainfall input, as-
suming negligible losses or constraints. The runoff coeffi-
cient in such a system is constant irrespective of rainfall mag-
nitude (approximately what we found for the hybrid model
and also for a single HBV model (Seibert and Vis, 2012)),
locally calibrated for each test catchment (see Appendix B2).
Conceptual models such as TOPMODEL (Beven et al., 2021)
encode clear nonlinearities due to the exponential relation-
ship between subsurface flow and water-table depth. This
nonlinearity implies a substantial increase in runoff gener-
ation as saturation thresholds within the catchment are ap-
proached, resulting in runoff coefficients that vary strongly
with antecedent moisture conditions and rainfall magnitudes.
Froidevaux et al. (2015) showed in a study conducted in
100 Swiss catchments that 0 to 3d of accumulated precip-
itation is the main driver of floods, while longer-term (4d
to 1 month) antecedent precipitation and hydrological con-
ditions have only weak, region-specific effects and are neg-
ligible in Alpine catchments. Meanwhile, Staudinger et al.
(2025) highlighted the crucial role of antecedent soil mois-
ture and snow storage by showing that only 18 %—44 % of ex-
treme annual floods coincided with maximum precipitation.
The sensitivity of flood peaks to an increase in maximum
precipitation varies significantly; however, at a fundamental
level, one would generally expect runoff coefficients to in-
crease or at least remain the same with increasing rainfall,
particularly under extreme precipitation scenarios. Interest-
ingly, our analysis instead revealed that the LSTM model ex-
hibited an unexpected and physically counterintuitive trend:
runoff coefficients start decreasing with increasing precipita-
tion magnitudes, especially for extreme precipitation values.
This is particularly true for catchments with higher runoff
generation. If we trust our hydrological theory, this knowl-
edge should also be reflected in the “inductive bias” of the
model we are using. In reality, hydrology is much more com-
plex, and we could observe concave hydrological responses
to increasing precipitation, but the a priori assumption of a
convex reaction seems reasonable.

The hybrid model (and the HBV model (Appendix B))
effectively avoids the unrealistic behavior observed in the
stand-alone LSTM by enforcing an almost linear behavior
due to its use of linear reservoirs. Under the design pre-
cipitation events, the LSTM component within the hybrid
model does saturate, showing a similar behavior to that of the
purely data-driven approach. This implies a theoretical pre-
diction limit to every parameter of the subsequent HBV mod-
els, which is the upper limit of its parameter range specified
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during the initialization. However, similar to a stand-alone
LSTM, the LSTM component of the hybrid model does not
reach full saturation for any of the observed extreme events,
and the saturated parameters of the HBV component still
remain well below their theoretical prediction limits. Cru-
cially, the conceptual structure of the hybrid model ensures
that predicted discharges increase consistently with increas-
ing precipitation. This alignment with hydrological princi-
ples allows the hybrid model to provide predictions that re-
main hydrologically plausible even when the model is forced
with inputs outside the observed regime. In other words, the
structural choices of the hybrid model effectively mitigate
the saturation behavior observed in the stand-alone LSTM —
making the hybrid approach more suitable for applications
like infrastructure design where plausible extrapolation be-
havior is essential. On the other hand, the hybrid model,
by following the physical constraints, is also biased towards
prior knowledge and assumptions. Asserting whether the ac-
tual behavior reflects a real-world response of the underlying
basin and whether it is actually meaningful to use these mod-
els in such a way is beyond the scope of this study.

For operational flood forecasting, the situation may dif-
fer. Recent work by Nearing et al. (2024) highlights the
potential advantages of LSTMs over classical hydrological
models, particularly when trained on a global database. Our
results support this, showing that in catchments with low
runoff generation, the LSTM behaves in a hydrologically
consistent manner. Additionally, the stand-alone LSTM of-
fers numerous advantages over classical hydrological mod-
els. For instance, its flexible use of embedding layers enables
the model to seamlessly transition between different tempo-
ral frequencies and switch between simulation and forecast-
ing modes (Acufia Espinoza et al., 2025a). This adaptabil-
ity makes LSTMs a powerful tool in operational settings,
where diverse conditions and forecasting needs must be ad-
dressed efficiently. By emphasizing high-flow events (Tan-
rikulu et al., 2024) during training or employing data aug-
mentation techniques like weather generators combined with
classical hydrological models (Nguyen et al., 2021), the sim-
ulation of extreme events included in the training data could
probably be improved.

5 Conclusion

This study investigates the ability of LSTMs to extrapolate
under extreme rainfall-runoff conditions and compares their
performance with a hybrid model. Based on our findings, we
conclude the following:

— Limitations of LSTMs: state-of-the-art LSTMs struggle
to predict discharge values beyond a theoretical predic-
tion limit, and this limit is below the range of the train-
ing data.
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— Saturation of LSTM states: although saturation of
LSTM cell states contributes to limiting the model’s
ability to simulate extreme hydrological events, the gat-
ing mechanisms play a significant role in filtering or dis-
carding information, especially during 1d design pre-
cipitation events.

— Inconsistent runoff responses: increasing (extreme) in-
tensity of design precipitation events leads to decreas-
ing runoff coefficients, contrary to the hydrological ex-
pectation. This highlights structural limitations in the
LSTM architecture for hydrological extreme value sim-
ulation.

— Hybrid model benchmark: the hybrid model aligns bet-
ter with hydrological principles, demonstrating consis-
tent scaling of discharge with increasing extreme pre-
cipitation. Its mass-conserving structure and use of con-
ceptual hydrological components make it more robust
under extreme forcing conditions.

— Potential for improvement: increasing the number of
LSTM hidden states and training on larger, more di-
verse datasets can raise the theoretical and design pre-
diction limits. However, these adjustments do not fully
address the observed limitations, particularly during the
1d events. Incorporating stronger structural priors or
adapting training strategies that weigh extreme events
more during optimization could mitigate these issues.

Every modeling approach has inherent limitations within
its scope of application. While the constraints of conceptual
hydrological models are well understood, the same cannot be
said for deep learning models, where such limitations remain
less explored. We argue that addressing these gaps is crucial
for advancing their utility in hydrological applications. The
limitations outlined above are not beyond resolution; they
represent opportunities for further development. Future re-
search should focus on refining LSTM architectures to better
align with hydrological principles, improving training strate-
gies to give greater weight to extreme events during opti-
mization, and exploring innovative hybrid approaches that
combine the strengths of data-driven and process-based mod-
els. By addressing these challenges, we can move closer to
unlocking the full potential of deep learning in hydrological
modeling, particularly under extreme forcing conditions. All
of the above-stated limitations can potentially be overcome,
and we believe that future research should focus on refining
LSTM architectures, improving training strategies, and ex-
ploring and optimizing new hybrid approaches.
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Appendix A: Model inputs and LSTM equations
Al Equations describing the LSTM

The LSTM forward pass can be mathematically represented
by the following:

i;=0(W;x; +U;h;,_1+b;), (A1)
fi=0(Wyxi+Ushi1+by), (A2)
g, =tanh (Wox, + Ugh;_1 + b,), (A3)
0, =0 (Wox; +Uyh;_1+b,), (A4)
c=f0c_1+i;0g,, (AS)
h, = o0; ©tanh(c;), (A6)

where i;, f;, and o; are the input gate, forget gate, and out-
put gate, respectively, g; is the cell input, x; is the network
input at time step ¢, h,_p is the recurrent input, and ¢, is
the cell state from the previous time step. W, U, and b are
learnable parameters for each gate, where subscripts indicate
which gate the particular weight matrix/vector is used for, o
is the sigmoid function, tanh is the hyperbolic tangent func-
tion, and © is element-wise multiplication.

A2 List of the CAMELS-CH and CAMELS-US forcing
variables and catchment attributes used for
training

Table A1 gives the description of the static and dynamic in-
puts to the LSTM and hybrid models.
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Table Al. Dynamic and static inputs used to train the I LSTM ensembles using the CAMELS-CH dataset, 2 LSTM ensembles using the
combined CAMELS-CH and CAMELS-US dataset, and 3 hybrid model ensembles, as well as 4 explicit input to the HBV models in the

hybrid model.

CAMELS-CH

CAMELS-US

Description

Dynamic inputs

precipitation (mmd ™ 1 prep (mmd™ D) Observed daily summed precipitationl'z’3
temperature_min (°C) tmin (°C) Observed daily minimum temperaturel 2,3
temperature_max (°C) tmax (°C) Observed daily maximum tc—:mperaturel’z’3

rel_sun_dur (%)

Observed daily averaged relative sunshine (solar irradiance > 200 W m~2)
duration!-3

swe (mm)

Observed daily averaged snow water equivalent] 3

pet_sim (mmd™ 1)

Simulated daily averaged potential evapotranspiration (Penman—Monteith
equation without interception correction)>#

Static inputs

area (mz)

area_gages?2 (kmz)

Catchment area

elev_mean (ma.s.l.)

elev_mean (ma.s.l.)

Mean elevation within catchment

slope_mean (°)

slope_mean (m km™! )

Catchment mean slope over all grid cells

sand_perc (%)

sand_frac (%)

Percentage sand

silt_perc (%)

silt_frac (%)

Percentage silt

clay_perc (%)

clay_frac (%)

Percentage clay

porosity (-)

soil_porosity (-)

Volumetric porosity

conductivity (cmh™ 1 )

soil_conductivity (cmh™ 1 )

Saturated hydraulic conductivity

glac_area (kmz)

Glacier area of Swiss glaciers per catchment

dwood_perc (%)

Percentage of deciduous forest

ewood_perc (%)

Percentage of coniferous forest (evergreen)

crop_perc (%)

Percentage of agriculture

urban_perc (%)

Percentage of urban settlements

reservoir_cap (ML)

Total storage capacity of reservoirs in megaliters

p_mean (mmd™ 1)

p_mean (mmd™ 1)

Mean daily precipitation

pet_mean (mmd™ 1)

pet_mean (mmd™ 1)

Mean daily potential evapotranspiration (PET; Penman—Monteith equation
without interception correction)

p_seasonality (-)

p_seasonality (-)

Seasonality and timing of precipitation (estimated using sine curves to
represent the annual temperature and precipitation cycles, positive (negative)
values indicate that precipitation peaks in summer (winter), and values close to
0 indicate uniform precipitation throughout the year).

frac_snow (-)

frac_snow (-)

Fraction of precipitation falling as snow, i.e., while temperature is < 0 °C

high_prec_freq (d yr 1)

high_prec_freq (dyr—!)

Frequency of high-precipitation days (> 5 times mean daily precipitation)

low_prec_freq (dyr— )

low_prec_freq (dyr— 1

Frequency of dry days (< 1 mmd—1)

high_prec_dur (d)

high_prec_dur (d)

Average duration of high-precipitation events (number of consecutive days > 5
times mean daily precipitation)

low_prec_dur (d)

low_prec_dur (d)

Average duration of dry periods (number of consecutive days < 1 mmd—!
mean daily precipitation)
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Appendix B: LSTM, hybrid, and conceptual model
simulations for design experiments in 25 catchments

B1 Conceptual model description and performance

To enable model comparison across the entire range of mod-
els, in addition to the LSTM and hybrid model ensembles,
we locally trained stand-alone conceptual models for indi-
vidual catchments. The conceptual model is a variant of the
HBYV model (Seibert and Vis, 2012) plus a unit hydrograph
(UH) routing, with a total of 14 parameters (12 HBV and 2
UH routing parameters). For brevity, we refer the reader to
Seibert and Vis (2012) for a detailed description of the HBV
model. The models are calibrated locally for every catch-
ment using the “differential evolution adaptive metropolis”
(DREAM) (Vrugt, 2016) algorithm, which is implemented
within the SPOTPY (Statistical Parameter Optimization Tool
for Python) library (Houska et al., 2015), as done in the
CAMELS-DE dataset (Loritz et al., 2024). Using the best
catchment-specific calibration parameters, the models were
tested for the experimental setup described in Sect. 2.5.
The calibration period and evaluation periods for the con-
ceptual models are the same as the training and testing pe-
riods mentioned in Table 1. Figure Bla presents the CDF of
the NSE for 196 catchments from CAMELS-CH identified in
Sect. 2.1, and Fig. B1b shows the performance of the mod-
els for the subset of 25 catchments identified for the design
experiments. Though the HBV model (median NSE of 0.64)
is superior to the PREVAH model (median NSE of 0.50) in
terms of overall performance, the HBV model fails to accu-
rately simulate runoff during winter periods for some catch-
ments, potentially owing to it’s rather simple temperature de-
gree snow module.

(a)
1.0 1
— LSTM
—— Hybrid
084 HBV
—— PREVAH
0.6

CDF

S. Baste et al.: Unveiling the limits of deep learning models in hydrological extrapolation tasks

B2 Model comparison for design events simulation for
25 catchment-specific events

A comparison of the simulated discharge from the three mod-
els for 25 catchment-specific 1 and 3d events is given in
Figs. B2 and B3, respectively. The events shown in these fig-
ures are those for which the LSTM has the highest runoff re-
sponse. For such events, the LSTM is most likely to exhibit
the saturation behavior as it nears its prediction limits. For the
1 d events (see Fig. B2), the saturation behavior in the LSTM
is more apparent for events with runoff generation closer to
the “design limit” (see panels al, a2, b3, b3, c2, d1, d2, d5,
el, e5 in Fig. B3). For most of the events, the response of
the conceptual model is smaller than that of the LSTM, but it
shows greater increase with increasing intensity of precipita-
tion. For the 3 d events, owing to less intense daily precipita-
tion value, the saturation behavior of the LSTM is observed
only for a few events (see panels a2, b3, c4, d3, and e2 in
Fig. B3). The discrepancy between the hybrid and the LSTM
simulations is much smaller for these events than for the 1d
events. For most of the events, the conceptual and the hybrid
model responses are almost comparable.

(b)

| e~ LsT™ (NSE 0.84)

—@— Hybrid (NSE 0.79)
HBV (NSE 0.64)

1 —@— PREVAH (NSE 0.50)

P

g
0.0

0.51 0.650.79 0.84
NSE

0.0 0.2 0.4 0.6 0.8 1.0
NSE

Figure B1. Model performance comparison in terms of the cumulative distribution function (CDF) of the Nash—Sutcliffe efficiency (NSE)
for PREVAH, the conceptual model, LSTM (ensemble mean), and the hybrid model (ensemble mean) for (a) 196 CAMELS-CH catchments

and (b) a subset of 25 catchments identified for design experiments.
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Figure B2. Model simulation comparison for 25 catchment-specific 1 d events with the highest runoff generation. Variation within the LSTM
and hybrid model ensembles is represented by the whiskers on their respective plots. The HBV results are from a single model. As the LSTM
prediction approaches the theoretical prediction limit, the saturation behavior is most pronounced.
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Appendix C: Effect of increased network size and larger
training datasets on theoretical prediction limit and
design limits

As mentioned in Sect. 3.2 of this paper, increasing the num-
ber of hidden states and/or training the LSTMs on larger
datasets increases the theoretical prediction limit, as given in
Table C1. LSTMs with more hidden states and/or trained on
larger datasets also simulate higher runoff for the design pre-
cipitation values. Nevertheless, this response, too, is concave
(Fig. C1), unlike the hybrid model response.

5887

Table C1. Theoretical prediction limits and design limits from design experiments for different LSTM networks. max(yops) indicates the
maximum observed target value during the training period from 1 October 1995 to 30 September 2005.

LSTM network ~ Number of  Training dataset max(yohs) Theoretical prediction  Design limit

nodes mmd~! limit mmd—! mmd~!
LSTM_CH* 64 73 60
LSTM_CH 256 229 CAMELS-CH catchments 183 120 76
LSTM_US_CH 64 229 CAMELS-CH 299 115 84
LSTM_US_CH 256 and 531 CAMELS-US catchments 193 110

* Results from this model are presented in Sect. 3 of the main text.
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Figure C1. Additional LSTM networks’ and hybrid model ensemble simulation for three catchment-specific events.

Appendix D: Effect of training an LSTM with a
modified loss function and modified activation functions
on design limits

In order to investigate training strategies that overcome the
characteristic behavior of the LSTM, we trained an LSTM
with a modified loss function instead of the basin-averaged
NSE suggested by Kratzert et al. (2019). The modified loss
function, in this case, weighs the maximum of the squared
errors between the observation and the simulation by a fac-
tor, thus forcing the LSTM to simulate tail end values of the
discharge distribution better. In other attempts, we focused
on replacing the tanh activation function in Eq. (A6) to over-
come the saturation in the LSTM. Replacing it with a non-
saturating softplus activation function made the LSTM train-
ing unstable, thwarting our efforts in this direction. We then

https://doi.org/10.5194/hess-29-5871-2025

implemented the SLSTM variant of the xXLSTM (Beck et al.,
2024), as it replaces the sigmoid activation in Egs. (A1) and
(A2) with an exponential activation function. Such a replace-
ment is hypothesized to enable better transmission of the ex-
treme input signal through the input and the forget gates of
the SLSTM. In Appendix D1, we first describe the modified
loss function (MSE™) and the mathematical equations de-
scribing the forward pass of the SLSTM. We also give a brief
description of the training and testing methods for these mod-
els. In Appendix D2, we present the results from these mod-
els for the same events shown in Fig. 2.

Hydrol. Earth Syst. Sci., 29, 5871-5891, 2025
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Table D1. Predictions for design events (and theoretical prediction limits) for LSTM, LSTMy g+, and sSLSTM for the three most runoff-

reactive design events.

Gauge ID  Catchment

Prediction for 1d design experiment at ARI 300-year (mm a1

Original LSTM from this study LSTMygg+ sLSTM

(73mmd~1)  (110mmd~!) (66mmd1!)

2087 Andermatt 48 53 40
2494 Pollegio-Campagna 43 44 36
2461 Magliaso-Ponte 60 63 52

D1 Method description: LSTMy;qp+ and sSLSTM
forward pass

An ensemble of five LSTM networks was trained with the
modified loss function given in Eq. (D1), henceforth referred
to as LSTMy;qg+. Another ensemble of five SLSTM net-
works was trained, and the equations describing the forward
pass of the SLSTM are described in Egs. (D2) to (D11). The
hyperparameters and the training and testing data split for
both the ensembles were the same as mentioned in Table 1.
Thus, LSTMqg+ differs from the stand-alone LSTM only
in terms of the loss function, and sLSTM differs only in its
forward pass.

MSE* = MSE + k - max ((obs — sim)2> (D1)
Here, MSE™ is the modified loss function, k is a factor (=

0.2 in this study), and “obs” and “sim” are the observed and
simulated discharge time series, respectively.

i, =exp(W;x; +U;h,_ +b;) (D2)
fi=exp(Wsx; +Ush;_; +by) (D3)
0r =0 (Wox; +Ushy_1 +b,) (D4)
z; =tanh (W,x, + U.hy_| + b;) (D3)
m; = max (log (f,) +m;—1,log (i) (D6)
i} =exp(log (i;) — m) (D7)
fi :exp(log(f,)—i—m,_l —m,) (DY)
¢ = fre—1+iz (D9)
ne=fim+i; (D10)
b =o, (”—> (d11)
n;

Here, i;, f;, and o; are the input gate, forget gate, and out-
put gate, respectively, z; is the cell input, x; is the network
input at time step ¢, h, is the recurrent input, ¢; is the cell
state, n, is the normalizer state, m; is the stabilizer state, and
i; and f/ are the stabilized input and forget gates, respec-
tively. W, U, and b are learnable parameters for each gate,
where subscripts indicate which gate the particular weight
matrix/vector is used for, o is the sigmoid function, tanh is
the hyperbolic tangent function, and exp is the exponential

Hydrol. Earth Syst. Sci., 29, 5871-5891, 2025

function. The sLSTM architecture replaces the sigmoid ac-
tivation function in the input and the forget gates with the
exponential activation, and in order to prevent overflow, a
stabilizer state m; is introduced to stabilize these gates.

D2 Design experiment results: LSTMy;gp+ and sSLSTM
forward pass

The results from the two models for the same events shown
in Fig. 2 are summarized in Table D1. The LSTMj;qg+ en-
semble has an improved mean theoretical prediction limit
of about 101 mmd~!, but the design limits did not show a
corresponding improvement. Such an ensemble also had a
lower median performance (median ensemble NSE of 0.75)
for the overall runoff simulation. The sSLSTM ensemble, on
the other hand, had a slightly better overall performance (me-
dia ensemble NSE of 0.78) compared to LSTMygg+ but did
not match the performance of the LSTM. The design experi-
ments with the sSLSTM ensemble show a decreased theoreti-
cal prediction limit of about 66 mm d . This is accompanied
by a decrease in the design limits as well. These results war-
rant efforts to further explore more such training strategies
and network architectures.

Code availability. All the codes for model training, testing, de-
sign experiments, and plotting the results presented in this paper
are available at https://doi.org/10.5281/zenodo.14771377 (Baste,
2025). This also contains the CAMELS-CH and CAMELS-US
datasets for ease of reproduction of the results.

Data availability. The CAMELS-US dataset is freely available at
https://doi.org/10.5065/D6MW2FAD (Newman et al., 2022, 2015;
Addor et al., 2017). The CAMELS-CH dataset is freely avail-
able at https://doi.org/10.5281/zenodo.15025258 (Hoge et al.,
2025, 2023). Extreme value analyses for Switzerland are available
at  https://www.meteoswiss.admin.ch/services-and-publications/
applications/standard-period.html (MeteoSwiss, 2022).
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