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Abstract. Hydrological modeling in large mountainous
catchments faces challenges owing to the complex inter-
play of snowmelt, glacier dynamics, and groundwater con-
tributions, which introduce significant uncertainty in stream-
flow predictions. This study introduces a Bayesian multi-
objective parameter estimation framework to reduce pre-
dictive streamflow uncertainty in large mountainous catch-
ments by integrating streamflow likelihood with three aux-
iliary likelihoods, analyzed individually: snow cover area
(SCA), glacier mass balance (GMB), and isotopic compo-
sition (I). The well-established generalized likelihood uncer-
tainty estimation (GLUE) method is employed to investigate
trade-offs among these likelihoods, providing a detailed as-
sessment of their distinct and combined contributions to hy-
drological model performance across various flow regimes.
The semi-distributed tracer-aided Tsinghua representative el-
ementary watershed-tracer (THREW-T) hydrological model
applied in this work captures both rapid surface dynamics
and slow-response subsurface processes, offering a compre-
hensive representation of streamflow variability.

Results indicate that isotopic likelihood plays a criti-
cal role in reducing low-flow uncertainty by effectively
constraining subsurface flow and groundwater–surface wa-
ter interactions, particularly during winter and early spring
when these processes dominate. Conversely, while SCA and
GMB likelihoods demonstrate some effectiveness in cap-
turing rapid processes such as snowmelt and glacier melt,
their influence is most pronounced during the melting sea-
son, with limited effect on reducing overall streamflow un-

certainty. This seasonality is reflected in sharpness (SH) val-
ues, which measure how much uncertainty is reduced, with
isotopic likelihood achieving the highest peak of 0.34 in late
winter, whereas SCA and GMB reach maximum SH values
of 0.19 and 0.16, respectively, during the melting season.
Pareto plots further reveal the synergies and trade-offs asso-
ciated with each likelihood, underscoring the importance of
adopting a multi-objective calibration approach that accounts
for seasonal variations in hydrological processes. In addition,
the results highlight the critical role of seasonality in shaping
the effectiveness of auxiliary likelihoods, emphasizing their
potential to improve predictive accuracy and reduce uncer-
tainty in hydrological models.

1 Introduction

Accurate hydrological modeling in large mountainous catch-
ments remains particularly challenging owing to the inher-
ent complexity of these systems (Gupta et al., 2008). The in-
terplay of multiple water sources, such as snowmelt, glacier
dynamics, and groundwater, combined with substantial spa-
tiotemporal variability in streamflow generation, often results
in equifinality and significant uncertainty in predictions (e.g.,
Asong et al., 2020; Shuai et al., 2022; Dalla Torre et al.,
2024). These complexities call for advanced modeling ap-
proaches capable of improving our understanding of stream-
flow variability and supporting effective water resource man-
agement (Panchanathan et al., 2024).
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Recent advancements in hydrological modeling have ad-
dressed these demands by focusing on the integration of aux-
iliary variables, such as snow cover area (SCA), glacier mass
balance (GMB), and environmental tracers (e.g., stable oxy-
gen isotopes, δ18O), to improve model calibration and re-
duce parameter uncertainty (Di Marco et al., 2021; Nan et
al., 2021b; Mohammadi et al., 2023). These variables pro-
vide critical insights into cryospheric and subsurface pro-
cesses, enabling models to better capture hydrological re-
sponses that drive streamflow variability during periods of
low flow (Panchanathan et al., 2024). Incorporating such data
improves the representation of specific model components
and guides the evaluation of the model, ultimately enhancing
reliability and reducing equifinality (Birkel et al., 2014; Tet-
zlaff et al., 2014). Tracer-aided modeling has proven partic-
ularly effective in disentangling hydrological processes and
identifying critical contributions from snowmelt and ground-
water under varying conditions (Nan et al., 2021b). Bayesian
approaches have also been applied to explicitly address equi-
finality and uncertainty in hydrological modeling in various
mountain basins (e.g., Yang et al., 2007; Andraos, 2024).

Nonetheless, several challenges remain. Few studies have
systematically compared the relative effectiveness of auxil-
iary datasets – such as SCA, GMB, and isotopic tracers –
in reducing model uncertainty and equifinality across dif-
ferent flow regimes (Finger et al., 2011; Xu et al., 2012;
Nan and Tian, 2024). While some studies have explored the
role of individual datasets, such as isotopic tracers (Nan and
Tian, 2024) or GMB (Finger et al., 2011), a unified compar-
ison of their respective contributions within a single model-
ing framework remains absent. This is particularly true for
low-flow conditions, which are often dominated by slow-
response processes such as groundwater contributions and
subsurface flow dynamics (Betterle and Bellin, 2024). More-
over, the potential for these datasets to improve the repre-
sentation of hydrological processes under varying seasonal
conditions remains largely unexplored. Similarly, while pre-
vious work has explored the contributions of runoff compo-
nents (CRC) to total streamflow (e.g., subsurface flow, rain-
fall runoff, snowmelt, and glacier melt) (Stahl et al., 2008), a
comprehensive understanding of how these components in-
teract to influence streamflow dynamics under different con-
ditions remains insufficiently constrained by multi-source
datasets. Current Bayesian frameworks, while powerful, of-
ten fail to fully leverage the complementary strengths of
auxiliary datasets, particularly in large mountainous catch-
ments where complex cryospheric and subsurface interac-
tions drive streamflow dynamics (Zhang et al., 2018; Chang
et al., 2024).

This study addresses these gaps by systematically evaluat-
ing the role of SCA, GMB, and isotopic tracers in reducing
model uncertainty and equifinality within a fully Bayesian
framework. Focusing on the Yarlung Tsangpo River (YTR)
basin – a large mountainous catchment where streamflow
variability arises from snowmelt, glacier dynamics, and

groundwater contributions – we investigate how these aux-
iliary datasets can complement each other in constraining
hydrological models across different flow regimes. Special
emphasis is placed on low-flow periods, during which iso-
topic data provide particularly strong constraints on sub-
surface flow and groundwater—surface water interactions
(Rodgers et al., 2005). By adopting a multi-source calibra-
tion approach, we explore trade-offs in model performance
and quantify how each dataset influences the contributions of
snowmelt, glacier melt, rainfall runoff, and subsurface flow.
By shedding light on streamflow generation processes, par-
ticularly during low-flow periods, these findings may offer
a first step toward more integrated and nuanced water man-
agement strategies in complex mountainous regions facing
increasing drought risk (Wu et al., 2023).

To address these objectives, the paper is organized as fol-
lows: the adopted tracer-aided hydrological model, the study
area, and the Bayesian framework are described in Sect. 2.
In Sect. 3, we present the results, including parameter dis-
tributions, uncertainty analysis, and flow regime-specific im-
provements. In Sect. 4, we discuss the implications of the
findings, while in Sect. 5, we provide concluding remarks
and future research directions.

2 Materials and methods

2.1 Study area and data

The YTR basin was selected as the focus area of this study
(Fig. 2); the basin is the upstream part of the Brahamaputra
River basin, located on the southern Tibetan Plateau (TP).
The YTR basin, as one of the longest rivers originating from
the TP, extends in the range of 27–32° N and 82–97° E with
an elevation extent of 2900–6900 m above sea level. The
outlet hydrological station of the YTR basin is the Nuxia
station, with a drainage area of approximately 2× 105 km2.
There are four hydrological stations along the mainstream of
YTR: Nuxia, Yangcun, Nugesha, and Lazi, from downstream
to upstream (Table 1). During 1990–2015, the mean annual
precipitation in the YTR basin was approximately 490 mm,
which was dominated by the South Asian monsoon in the
Indian Ocean hydrosphere-atmosphere system resulting an
obvious wet season during June to September. The mean an-
nual temperature is −1.5 °C, leading to widely distributed
snow and glacier, covering approximately 16.3 % and 1.5 %,
respectively, of the basin.

Datasets of meteorological input, topography, underlying
surface, streamflow, and isotope were collected to estab-
lish the model. The 30 m resolution digital elevation model
(DEM) was downloaded from the Geospatial Data Cloud
(https://www.gscloud.cn, last access: 1 January 2019) for
simulation unit dividing. Daily precipitation and tempera-
ture data were extracted from the 0.1° China Meteorologi-
cal Forcing Dataset (Yang and He, 2019), which was pro-
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Table 1. Data and sample information at four hydrological stations adopted.

Station Coordinate Elevation (m) Streamflow Isotope

Period Period (in 2005) Precipitation Stream water

number of δ18O number of δ18O
samples (‰) samples (‰)

Nuxia 94.65° E, 29.47° N 3691 2001–2015 14 Mar–23 Oct 86 −10.33 34 −15.74
Yangcun 91.82° E, 29.27° N 4541 2001–2010 17 Mar–5 Oct 59 −13.14 30 −16.57
Nugesha 89.71° E, 29.32° N 4715 2001–2010 14 May–22 Oct 45 −14.29 25 −17.84
Lazi 87.58° E, 29.12° N 4889 / 6 Jun–22 Sep 42 −17.41 22 −16.52

duced by merging multiple satellite datasets with the na-
tional meteorological station data. The daily potential evap-
otranspiration were obtained from the 1.0° reanalysis dataset
ERA5_Land (Muñoz-Sabater et al., 2021). For the under-
lying conditions, the MODIS leaf area index (LAI) prod-
uct MOD15A2H (Myneni et al., 2015) and the normalized
difference vegetation index (NDVI) product MOD13A3 (Di-
dan, 2015) were used to represent the vegetation conditions
and determine the ratio of vegetation covered area, and the
Harmonized World Soil Database (He, 2019) was used to es-
timate the soil property parameters not obtained by model
calibration (including saturated hydraulic conductivity, soil
porosity, soil pore distribution index, field capacity, and air
entry value). For the cryospheric elements, the second glacier
inventory dataset of China (Liu, 2012) was adopted to de-
termine the boundary of regions where glacier simulation
should be performed. The daily TP snow cover extent (TP-
SCE) product (Chen et al., 2018) during 2001–2015 and the
0.5° yearly glacier elevation change dataset developed by
Hugonnet et al. (2021) during 2001–2010 were used to val-
idate the simulated SCA and GMB. Daily streamflow ob-
servation data at the Nuxia, Yangcun, and Nugesha stations
were collected to evaluate the performance of the hydrologi-
cal simulations. However, owing to Chinese national regula-
tions, streamflow data for the YTR – a transboundary river
system – are considered sensitive and classified as confi-
dential. As such, these data cannot be publicly disclosed or
shared in this publication. This restriction reflects broader
geopolitical concerns, as highlighted by Lin et al. (2023),
who emphasize the particular sensitivity of hydrological data
in transboundary basins and regions subject to resource and
geopolitical tensions. Considering the availability period of
the supporting datasets, the simulation period was set from
1 January 2001 to 31 December 2015, aligned with the time
span of the meteorological and vegetation input data.

Grab samples of stream and precipitation water were col-
lected in 2005 at four stations to analyze the isotope com-
position (δ18O) to validate the tracer simulation (Table 1).
The outputs of the Scripps Global Spectral Model with an
isotope incorporated (isoGSM, Yoshimura et al., 2008) with
1.875° resolution were extracted to represent the spatiotem-

poral variation of the isotope composition in precipitation.
Our previous evaluation on isoGSM (Nan et al., 2021a) in-
dicated that it can effectively capture the seasonal varia-
tion in precipitation δ18O, but exhibited a systematic over-
estimation bias in the study region and performed relatively
poorly in accurately capturing the isotope signature of spe-
cific events (Figs. S1 and S2 in the Supplement). The bias
corrected isoGSM product produced by Nan et al. (2022) was
adopted as the input data, in which the bias of isoGSM was
adjusted based on a linear regression with altitude. Rainfall
and snowfall were assumed to have the same isotope compo-
sition as the precipitation δ18O in isoGSM. The glacier melt-
water δ18O is calculated using the offset-parameter method,
in which the glacier meltwater δ18O is assumed to be tem-
porally constant and 5 ‰ lower than the weighted average
of local precipitation δ18O. The value of the offset parame-
ter was estimated from the data collected by Boral and Sen
(2020).

2.2 The tracer-aided hydrological model

A semi-distributed tracer-aided cryospheric-hydrological
model, Tsinghua representative elementary watershed-tracer
aided version (THREW-T) developed by Tian et al. (2006)
and Nan et al. (2021b) was adopted to simulate the hydro-
logical, cryospheric and isotopic processes in the YTR basin
(Fig. 1). The THREW-T model uses the representative water-
shed method (REW) for spatial discretization, which divides
the whole catchment into REWs based on DEM data. Two
vertical layers including eight subzones (i.e., surface layer in-
cluding vegetation zone, bare soil, sub-stream network zone,
snow-covered zone, glacier-covered zone, and main channel
reach zone; subsurface layer including unsaturated zone and
saturated zone) are defined for each REW-based on the un-
derlying surface type. The YTR basin was divided into 297
REWs with average area of 694 km2 in this study. The areal
averages of the gridded datasets were calculated for each
REW, which were used as the input for simulation. More
detailed descriptions of the REW method can be found in
Reggiani et al. (1999) and Tian et al. (2006).

The cryospheric module was incorporated into the model
to simulate the evolutions of snowpack and glacier. The total
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Figure 1. Schematic representation of the THREW-T model.

Figure 2. The location and topography of (a) the TP and (b) the
YTR basin.

precipitation was partitioned into liquid (rainfall) and solid
precipitation (snowfall), according to a temperature thresh-
old set as 0 °C. For the simulation of snowpack, the snow
water equivalent of each REW was updated based on the
snowfall and the snowmelt, which was calculated using the
degree-day factor method. The SCA was determined by the
snow cover depletion curve (Fassnacht et al., 2016) and then
compared with the satellite observation data. The snow sub-

limation was not simulated in the model, because previous
studies estimated that the sublimation losses in the study re-
gion only accounted for 2 %–3 % of the annual snowfall, as
the results of the wet climate condition (Khanal et al., 2021;
Sun et al., 2024; Lutz et al., 2016). For the simulation of
glacier, each REW was further divided into several elevation
bands with an interval of 200 m, to represent the variation
in temperature and precipitation along the altitudinal profile.
The glacier within the intersection of each REW and eleva-
tion band was regarded as the representative unit for glacier
simulation. The processes related to glacier evolution in the
model included the snow accumulation and snowmelt over
glaciers, the turnover of snow to ice, and the ice melt. The ice
melt was also calculated using the temperature index method
but with a different degree-day factor from snowmelt. The
volume of the glacier was updated based on the mass bal-
ance equation and was transferred to the glacier cover area
based on a scale equation (Grinsted, 2013). The glacier melt
was assumed to generate streamflow directly through the sur-
face pathway, considering the low permeability of glacier
surface. The output of the glacier simulation included the
glacier mass balance (GMB) and the glacier cover area, and
the simulated GMB were compared with the measurement
data. More details of the cryospheric module can be found in
Nan et al. (2021b) and Cui et al. (2023).

The tracer module was incorporated into the model to sim-
ulate the isotope composition in multiple water bodies, which
characterized the isotopic variations during water mixture
and phase change processes. The isotope fractionation during
water evaporation and snowmelt processes was simulated by
the Rayleigh equation (Hindshaw et al., 2011). The isotope
compositions in each simulation unit were calculated based
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on the complete mixing assumption, meaning that the tracer
concentration homogeneity within a unit was achieved dur-
ing a simulation time step (Nan et al., 2023). Forced by the
precipitation isotope input, the model can simulate the iso-
tope composition of all the water bodies, including river wa-
ter, groundwater, and snowpack, and the simulated isotope
composition of river water was compared with the observa-
tion data. More details of the tracer module are provided in
Nan et al. (2021b).

The CRC were analyzed to better understand the influence
of multiple datasets on hydrological simulations. Two defini-
tions are commonly used to quantify CRC (He et al., 2021).
One is based on water sources, describing where the water
originates; under this definition, the three components are
rainfall, snowmelt, and glacier melt. The other is based on the
runoff generation pathway, describing how water produces
runoff; here, the two components are surface and subsurface
runoff. The THREW-T model quantified the runoff compo-
nents based on the definition that combines water sources
and runoff generation pathways. Specifically, the runoff was
first divided into surface runoff and subsurface runoff based
on the runoff generation pathway. The surface runoff was
further divided into three components induced by different
water sources: rainfall, snowmelt, and glacier melt. Conse-
quently, the total runoff was divided into four components:
subsurface runoff, rainfall surface runoff, snowmelt surface
runoff, and glacier melt surface runoff. For the sake of com-
pleteness, Table 2 reports the list of the calibration parame-
ters of the hydrological model adopted, with their units and
range of variation.

2.3 Multi-objective parameter estimation

The uncertainty estimation of model parameters was per-
formed using the generalized likelihood uncertainty estima-
tion (GLUE) methodology (Beven, 2006). GLUE employs
Monte Carlo simulations to generate a large ensemble of
model realizations, where each realization corresponds to a
specific parameter set associated with a likelihood measure.
Unlike traditional optimization methods that focus on iden-
tifying a single best parameter set, GLUE emphasizes equi-
finality by retaining an ensemble of acceptable parameteri-
zations (Efstratiadis and Koutsoyiannis, 2010; Brazier et al.,
2000), thus acknowledging that multiple parameter sets can
produce similarly good simulations, which is particularly im-
portant when modeling complex hydrological systems where
uncertainties in processes and inputs can lead to varied but
equally plausible outcomes (Di Marco et al., 2021).

The selection of likelihood measures and thresholds to dis-
tinguish behavioral from non-behavioral simulations is in-
herently subjective and problem-dependent (Blasone et al.,
2008; Jin et al., 2010). In this study, the parameter space
was sampled using Latin hypercube sampling (McKay et
al., 1979), assuming a uniform distribution for all parame-
ters listed in Table 1. In the absence of prior information,

all parameter sets were initially considered equally proba-
ble, ensuring non-informative priors (e.g., Gan et al., 2018;
Teweldebrhan et al., 2018). The effect of this uniformity as-
sumption on posterior results was evaluated through sensitiv-
ity analyses.

A total of 25 000 parameter sets were generated and eval-
uated using a likelihood measure to quantify model perfor-
mance. Behavioral simulations were identified based on a
predefined threshold, the value of which is provided in the
results section. Non-behavioral simulations were assigned a
likelihood of zero, while the likelihood values of retained
simulations were rescaled to sum to one, forming a posterior
probability density function for the model parameters.

Predictive uncertainty of outputs, such as streamflow, was
assessed by ranking behavioral simulations according to their
rescaled likelihoods. The empirical cumulative distribution,
weighted by these likelihoods, was used to define uncertainty
bounds by excluding the lower and upper 5th percentiles
(Teweldebrhan et al., 2018; Franks et al., 1998).

The Nash–Sutcliffe efficiency (NSE) index (Nash and Sut-
cliffe, 1970) was selected as the likelihood measure for
streamflow, SCA, and I (Lamontagne and Barber, 2020;
Araya et al., 2023), while the volumetric deviation efficiency
(VE) (He et al., 2018) was adopted for GMB. These two met-
rics were chosen to reflect both dynamic performance and
cumulative accuracy across key hydrological variables.

The NSE was used as the likelihood measure for stream-
flow, SCA, and I. Its formulation is provided for complete-
ness:

NSEX = 1−
∑N
t=1(Xsim(t)−Xobs(t))

2∑N
t=1(Xobs(t)−Xobs,mean)2

, (1)

where X represents the variable of interest, Xsim(t) and
Xobs(t) are the simulated and observed values at time step
t , Xobs,mean is the mean of the observed values, and N is the
number of time steps.

For GMB, the VE was deemed more appropriate as it di-
rectly evaluates the accuracy of the simulated mean relative
to the observed mean, aligning better with the cumulative na-
ture of GMB:

VEGMB = 1−
GMBmean,sim−GMBmean,obs

GMBmean,obs
, (2)

where GMBmean,sim and GMBmean,obs are the simulated and
observed mean GMBs, respectively.

The multi-objective parameter estimation followed an
informal Bayesian framework. The streamflow likelihood,
LH(Q|pi), was first used to constrain the model parameters,
forming the prior likelihood distribution. Auxiliary variables
(X) were then incorporated to produce a posterior likelihood
distribution (cLH), defined as

cLH(pi |Q,X)=
1
C
·LH(Q|pi) ·LH(X|pi), (3)
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Table 2. Parameter table with descriptions, ranges, and units.

Symbol Range Units Description

nt 0–0.2 – Manning roughness coefficient for hillslope
WM 0–10 m Tension water storage capacity used to calculate the saturation area
B 0–1 – Shape coefficient used to calculate the saturation area
Gatr 0–10 – Coefficient representing spatial heterogeneity of exchange term between t-zone and r-zone
KKA 0–6 – Exponential coefficient to calculate the subsurface runoff outflow rate
KKD 0–0.5 – Linear coefficient to calculate the subsurface runoff outflow rate
DDFS 0–10 mm°C−1 d−1 Degree-day factor for snowmelt
DDFG 0–10 mm°C−1 d−1 Degree-day factor for glacier melt
LL 0–1 – Coefficient to transfer snow water equivalent to SCA using snow depletion curve
T0 −5–5 °C Temperature threshold above which snow and glacier melting occurs
α 0–1 – Coefficient in the Muskingum method for runoff concentration calculation
β 0–1 – The proportion to the α coefficient in the Muskingum method for runoff concentration

calculation

where pi represents a parameter set, LH(Q|pi) and
LH(X|pi) are the likelihoods for streamflow and auxiliary
variables, respectively, and C is a normalization constant en-
suring∫

cLH(pi |Q,X)dpi = 1. (4)

In the absence of explicit guidelines for auxiliary datasets,
except for streamflow, thresholds of NSE> 0 and VE> 0,
commonly used as minimal performance criteria, were sys-
tematically applied to all target variables, including stream-
flow (Q), SCA, GMB, and I. The use of NSE> 0 for stream-
flow ensures consistency across all metrics, even though
stricter thresholds are typically recommended to ensure the
reliability of streamflow simulations (Moriasi et al., 2007).
Furthermore, following Di Marco et al. (2021); Ma et al.
(2024), the 75th percentile was chosen as the cutoff for both
the prior and posterior distributions to select parameter sets,
ensuring a consistent and robust identification of the most
likely parameters while balancing model accuracy and diver-
sity.

2.4 Metrics for quantifying uncertainty

To assess the added value of multi-objective model con-
ditioning compared to single-objective approaches based
solely on streamflow observations, we utilized two uncer-
tainty metrics: the first, known as the containing ratio (CR),
evaluates the ability of the simulated prediction intervals
to capture the observed values and reads as follows (e.g.,
Teweldebrhan et al., 2018; Jin et al., 2010):

CR=
1
N

N∑
t=1

0(Qobs(t);Qsim,0.05(t),Qsim,0.95(t)), (5)

where Qsim,0.05(t) and Qsim,0.95(t) indicate the lower and
upper bounds of the simulated 90 % streamflow prediction

interval, respectively, while 0 returns a value of 1 if the ob-
servation falls within the prediction interval and 0 otherwise.
A higher CR value indicates that the prediction intervals are
better at capturing observed values, reflecting improved re-
liability of the model outputs. Conversely, a lower CR sug-
gests that the prediction intervals fail to encompass the ob-
served data as effectively, indicating potential deficiencies in
the model’s calibration or input data.

The second metric, SH, is a measure that quantifies the
reduction in prediction uncertainty achieved through the in-
tegration of additional information and reads as follows:

SH= 1−
cLH(pi |Q,X)

LH(Q | pi)
. (6)

A higher SH value signifies that the prediction intervals are
narrower, implying reduced uncertainty in the model’s pre-
dictions and a more precise representation of the streamflow
dynamics. On the other hand, a lower SH value suggests
broader prediction intervals, indicative of higher uncertainty
or less precise modeling.

Note that in an ideal scenario, a perfectly constrained
model would achieve CR and SH values close to 1. In prac-
tice, this would imply that the prediction intervals consis-
tently capture observed values (CR= 1) and that the model
uncertainty diminishes to the point where the simulated out-
put closely aligns with the observations, indicating that there
is no uncertainty in the predictions.

3 Results

3.1 Behavioral simulations

For each run of the overall Monte Carlo ensemble, we com-
puted likelihood values for streamflow (NSEQ) and for the
additional performance metrics: SCA likelihood (NSESCA),
GMB likelihood (VEGMB), and isotope likelihood (NSEI).
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The bi-objective relationships between NSEQ and each of
these metrics are illustrated in Fig. 3, where each panel shows
the distribution of the full ensemble of simulations. Specif-
ically, the red markers indicate simulations on the Pareto
front, defined as the subset of ensemble members that are
not dominated with respect to the two metrics shown. In
other words, a simulation is considered non-dominated (i.e.,
Pareto-optimal) if no other simulation in the ensemble per-
forms at least as well in both objectives and strictly better in
at least one (e.g., Yapo et al., 1998; Efstratiadis and Kout-
soyiannis, 2010). These points thus represent optimal trade-
offs between the two objectives, as improving one necessar-
ily implies a deterioration in the other. The Pareto front was
computed over the full ensemble and independently of any
behavioral classification, so red markers should not be in-
terpreted as behavioral simulations. The blue lines in each
panel indicate the thresholds used to define behavioral solu-
tions and are included solely for visual reference. The rel-
atively small number of Pareto-optimal simulations reflects
the selective nature of such trade-offs, as most parameteriza-
tions are dominated in at least one objective. This is consis-
tent with findings by Di Marco et al. (2021), who showed that
Pareto-optimal solutions typically represent only a small sub-
set of behavioral ones. The remaining gray points correspond
to dominated simulations and delineate the broader trade-off
landscape, offering insight into the variability of model per-
formance across the ensemble.

The SCA likelihood (NSESCA) exhibits a strong positive
relationship with streamflow likelihood (NSEQ). As shown
in Fig. 3a, the Pareto front points (red markers) are con-
centrated in the upper-right quadrant of the plot, indicat-
ing that high streamflow likelihood values can coexist with
high NSESCA values. This suggests strong compatibility be-
tween these two objectives, meaning that improving stream-
flow performance does not inherently result in a reduction
in NSESCA. The dominated solutions (gray points) show a
wider spread across the plot, including regions where both
NSEQ and NSESCA values are low. This indicates variability
in model performance when considering different parameter
sets. The clustering of Pareto-optimal solutions in the high-
likelihood region reflects the shared role of snow processes
in regulating both streamflow and snow cover dynamics sug-
gest that it is possible to improve NSESCA without significant
trade-offs when calibrating the model to optimize streamflow
performance.

The GMB likelihood (VEGMB) shows a slightly different
behavior, as illustrated in Fig. 3b. Although high streamflow
likelihood values are still associated with moderate to high
VEGMB values on the Pareto front, the vertical spread of the
red markers is more pronounced. This indicates a weaker
synergy between these two metrics compared to NSESCA.
While some Pareto-optimal solutions achieve high likeli-
hoods for both NSEQ and VEGMB, others show intermediate
VEGMB values despite high NSEQ performance. This pat-
tern suggests the presence of moderate trade-offs, where ac-

curately capturing glacial mass dynamics might be compro-
mised to achieve better streamflow performance.

The isotope likelihood (NSEI) exhibits the most significant
trade-offs among the three metrics, as illustrated in Fig. 3c.
The Pareto front (red markers) is notably dispersed, with
even the highest-performing solutions for NSEQ rarely ex-
ceeding an NSEI value of 0.4. This indicates a high degree
of independence and conflict between these two metrics. The
complexity of this relationship is further emphasized by the
dominated solutions (gray points), where many configura-
tions achieve high NSEQ values but fail to yield satisfactory
NSEI values.

3.2 Prior and posterior parameter distributions

Figure 4 shows the prior (black lines) and posterior parameter
distributions, conditioned on the likelihoods of SCA (SCA,
orange dashed lines), GMB (GMB, light blue dash-dotted
lines), and isotope concentrations (I, green dotted lines). All
distributions are derived from the Monte Carlo ensemble, but
only simulations with an NSE for streamflow (NSEQ > 0)
are retained. This threshold ensures that simulations out-
perform the climatological mean, thereby meeting a mini-
mum criterion for behavioral plausibility. These behaviorally
plausible simulations define the prior distribution, which is
then formally updated within a Bayesian framework using
the likelihoods associated with the additional observational
datasets (i.e., SCA, GMB, and I). Visual inspection of the
posterior distributions indicates that, in general, each dataset
provides meaningful information to constrain parameters re-
lated to the physical processes it represents.

For example, the parameters DDFS and LL (Fig. 4g and i),
which control SCA transfer and snowmelt processes, show
a stronger response when conditioned on the likelihood of
SCA, highlighting their direct influence on snow dynam-
ics. While DDFS regulates the magnitude of snowmelt, LL
primarily affects the spatial extent and persistence of snow
cover. As such, its influence is more pronounced in shaping
the spatial and temporal patterns of snow accumulation and
melt, rather than the total amount of snowmelt contributing
to runoff. This explains why the posterior of LL is well con-
strained under SCA conditioning, but does not manifest as
clearly in metrics focused on water yield, such as snowmelt
fraction. Similarly, the parameter DDFG (Fig. 4h), which
governs glacier melt processes, exhibits tighter posterior con-
straints when conditioned on the GMB likelihood, reflect-
ing its strong connection to ice melt dynamics. Interestingly,
the parameter DDFS shows a contrasting response under the
GMB likelihood, with the posterior distribution shifting in
the opposite direction compared to the SCA posterior distri-
bution.

A similar observation can be made for the isotopic likeli-
hood, which effectively constrains parameters related to sub-
surface flow and runoff partitioning. For example, the param-
eter KKA (Fig. 4e), which defines the subsurface runoff out-
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Figure 3. Pareto fronts (red markers) of streamflow likelihood (NSEQ) and likelihood metrics for (a) SCA likelihood (NSESCA), (b) GMB
likelihood (VEGMB), and (c) Isotope likelihood (NSEI). The thin blue lines represent the performance thresholds defined for the multi-
objective behavioral selection: NSEQ = 0, NSESCA = 0, NSEI = 0, and NSEGMB = 0. The dominated solutions are shown as gray points.

flow rate, shows noticeable convergence when conditioned
on isotope data. Although both KKA and KKD influence
subsurface runoff outflow, only KKA shows a marked pos-
terior convergence. This is probably due to its exponential
formulation, which increases its sensitivity to the calibration
targets, whereas KKD, as a linear coefficient, exerts a more
gradual influence that is harder to isolate and constrain. Other
parameters, such as the tension water storage capacity WM
(Fig. 4b) and the shape coefficient B (Fig. 4c), which influ-
ence the calculation of the saturation area, also exhibit tighter
posterior distributions, underscoring the capacity of isotope
data to inform processes related to water storage and release
in the subsurface. Furthermore, the runoff concentration co-
efficients α and β (Fig. 4k and l) are better estimated with
the inclusion of isotopic data with respect to the likelihoods
of SCA and GMB.

An interesting case is the temperature threshold param-
eter T0 (Fig. 4j), which defines the threshold above which
snow and glacier melting occur. The SCA likelihood has the
strongest influence on the posterior distribution of T0. How-
ever, both the GMB and the isotopic likelihoods can narrow
the posterior distribution of T0, albeit to a lesser extent, indi-
cating that the GMB and the isotopic data provide comple-
mentary constraints on this parameter.

In contrast, the posterior distribution of the parameter Gatr
shows minimal variation compared to the previous (Fig. 4d),
aligning with expectations, as Gatr reflects spatial hetero-
geneity, which reduces its sensitivity to individual physical
processes. Note that for the parameter nt, not only does none
of the data sets (SCA, GMB, or I) significantly constrain the
posterior distribution compared to the prior, but the isotopic
likelihood appears counterproductive in this case, as it in-
creases the uncertainty by broadening the posterior distribu-
tion and reducing its peak.

3.3 Streamflow simulation uncertainty range

The prior and posterior likelihood distributions, as described
in Sect. 2, were used to estimate the 5th–95th percentile
prediction uncertainty ranges for daily streamflow simula-
tions. Figure 5 illustrates these predictive uncertainty ranges
in comparison to observed streamflow data recorded at the
Nuxia gauging station. Owing to dissemination restrictions
imposed by the data provider, streamflow values are pre-
sented in normalized form throughout the figure. Specifi-
cally, a linear normalization is applied to the time series pan-
els to enable relative comparison of flow magnitude over
time, while a logarithmic normalization is used in the flow
duration curves (FDCs), as is standard in FDC representa-
tion, to facilitate comparison across the full range of dis-
charges. The prior uncertainty, represented by dark gray
bands, corresponds to the hydrological model conditioned
solely on observed streamflow. By contrast, the posterior un-
certainty ranges, shown as lighter bands, result from the inte-
gration of additional datasets: SCA, GMB, and isotopic data.
Overall, the uncertainty bands are effective in capturing the
observed streamflow values. This is confirmed by the con-
taining ratio (CR) metric, which indicates that the prior dis-
tribution encloses approximately 96 % of the observations
(CR= 0.959). Posterior distributions derived from isotopic
likelihoods show a slightly lower coverage (CR= 0.921),
while those incorporating SCA and GMB yield CR values
of 0.947 and 0.960, respectively. These results suggest that,
although SCA and GMB maintain similar levels of cover-
age compared to the prior, they do not lead to a substantial
reduction in predictive reliability. Conversely, the posterior
conditioned on isotopic data demonstrates a modest decrease
in coverage, indicating a more selective constraint on the
model’s predictive range.

Inspection of Fig. 5 indicates no reductions in uncertainty
bands for higher streamflow values across all scenarios. On
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Figure 4. Parameter distributions obtained by conditioning the model with streamflow observations recorded at the Nuxia station (prior PDF,
black line) and by combining streamflow measures with: (i) SCA (posterior PDF, orange dashed line); (ii) GMB (posterior PDF, light blue
dash-dotted line); and (iii) isotope concentrations (posterior PDF, green dotted line).

the contrary, the most pronounced contraction of predictive
uncertainty occurs during low-flow periods when the model
is conditioned with isotopic data (Fig. 5e), whereas condi-
tioning with SCA and GMB does not produce comparable
reductions, Fig. 5a and c, respectively. In addition, FDCs,
presented in the right-hand panels of Fig. 5, provide further
insights into the effect of these datasets across different flow
regimes. For SCA and GMB (Fig. 5b and d) the posterior
uncertainty ranges are generally comparable to or slightly

narrower than the prior for medium-flow regimes. During
low-flow conditions, however, the posterior bands are wider
than the prior, indicating that incorporating SCA and GMB
datasets introduces additional variability in streamflow pre-
dictions during low flow dominated periods, probably due to
challenges in accurately constraining slow-response hydro-
logical processes. For medium- and high-flow regimes, these
datasets appear to modestly refine or maintain predictive un-
certainty. In contrast, conditioning the model with isotopic
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Figure 5. The 5 %–95 % percentile prior, conditioned solely on streamflow, and posterior predictive uncertainty ranges for streamflow,
calculated under different conditions: SCA, GMB, and isotopes (I). Panels (a), (c), and (e) show daily streamflow time series for the period
2010–2015, with insets highlighting low-flow dynamics; panels (b), (d), and (f) show FDCs for the full period 2001–2015. Streamflow
data are presented in dimensionless form owing to dissemination restrictions imposed by the data provider. A linear normalization, q∗ =
(Q−Qmin)/(Qmax−Qmin), is applied to the time series (a, c, e), while a logarithmic normalization, q∗log = (logQ−logQmin)/(logQmax−

logQmin), is used for the FDCs (b, d, f). In both cases, Qmin and Qmax refer to the minimum and maximum observed discharges at the
Nuxia station.

data (Fig. 5f) results in a significant reduction in uncertainty,
particularly during low-flow conditions. In contrast, condi-
tioning the model with isotopic data (Fig. 5f) results in a sig-
nificant reduction in uncertainty, particularly during low-flow
conditions. The posterior uncertainty range is substantially
narrower than the prior, indicating improved model consis-
tency in simulating low flow dominated periods.

To further enhance interpretability and provide a deter-
ministic reference alongside the probabilistic representation,
Fig. 5 includes the mean simulated streamflow trajectories
for both the prior and posterior distributions, in addition to
the uncertainty bands and observed data. As evident from the
figure insets and the FDCs, the prior and posterior means ex-

hibit slight differences across all cases, with a more notice-
able divergence of the posterior mean from the prior in the
case of isotope conditioning.

These patterns of uncertainty reduction – particularly the
distinct effect of isotopic data during low-flow periods – are
also evident at the Yangcun and Nugesha stations (Figs. S6
and S7 in the Supplement), further supporting the conclu-
sions presented above. To facilitate a direct comparison of
streamflow magnitude across the three stations, Fig. S8 in
the Supplement provides time series and FDCs of normal-
ized streamflow for the period 2001–2010. Note that any ap-
parent loss of fit at the interior stations primarily reflects the
fact that these sites (Yangcun and Nugesha) were not used
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for parameter selection. In other words, parameter sets were
derived at Nuxia and then transferred without adjustment to
these upstream gauges. As a result, performance at Yangcun
and Nugesha is affected by suboptimal parameter configura-
tions. This loss of accuracy is consistent with previous find-
ings (e.g., Khakbaz et al., 2012; Demirel et al., 2024), which
show that applying parameters calibrated at a single location
to different location of the basin, without re-evaluating them
locally, lead to reduced model performance.

3.4 Runoff component analysis

Figure 6 shows the CRC produced by different behavioral
parameter sets. The boxplots illustrate the contributions of
the four runoff components under the prior parameter set and
the posterior parameter sets constrained by SCA, GMB, and
isotope likelihoods. The contributions of subsurface runoff
and rainfall surface runoff are similar, both accounting for
approximately 40 %–45 % of the total runoff (Fig. 6a and b).
In contrast, snowmelt surface runoff and glacier melt surface
runoff contribute approximately 8 % and 6 %, respectively
(Fig. 6c and d). The estimated contributions of snowmelt and
glacier melt are lower than some previous estimations in the
study area (Boral and Sen, 2020; Lutz et al., 2014), but are
close to some recent studies constraining the CRC estima-
tion based on multiple datasets (Nan et al., 2025; Zhang et
al., 2025; Chen et al., 2017).

The differences in the average CRCs among the parameter
sets are relatively small, with variations generally below 3 %
for all four components. However, the inferences drawn from
the different datasets reveal interesting patterns regarding un-
certainty reduction. The prior leads to a wider distribution of
contributions across all runoff components, reflecting higher
uncertainty in the model predictions. Posterior parameter sets
constrained by specific datasets help reduce this uncertainty
to varying extents. Constraining the model with the likeli-
hood of GMB leads to a significant reduction in the uncer-
tainty of glacier melt surface runoff (Fig. 6d), as evidenced
by the tighter interquartile range and fewer outliers in the box
plot. This indicates that the GMB simulation provides strong
constraints on glacier-related processes. In contrast, the SCA
does not lead to a significant reduction in the uncertainty of
snowmelt surface runoff (Fig. 6c). This is because SCA data
only constrains the area of snow but does not provide much
constraint on the volume of snow, as the snow area-volume
relation is determined by a calibrated parameter. Notably, the
isotope likelihood demonstrates a broader impact on reduc-
ing uncertainty across multiple runoff components. The box-
plots for I show narrower distributions for subsurface runoff,
rainfall surface runoff, and snowmelt surface runoff, indicat-
ing that isotope simulation provides valuable constraints on
both surface and subsurface hydrological processes.

The influence of each dataset on CRC uncertainties can
be further illustrated by the result of sensitivity analysis,
which evaluates the extent to which each performance metric

is influenced by the contribution of each runoff component.
To this end, Fig. 7 presents the sensitivity of model perfor-
mance metrics to the contributions of different runoff compo-
nents, namely, subsurface runoff (Css), rainfall surface runoff
(Csr), snowmelt surface runoff (Csm), and glacier melt sur-
face runoff (Csgm). The sensitivity analysis evaluates the ex-
tent to which each performance metric – streamflow NSEQ,
SCA NSESCA, GMB VEGMB, and isotope NSEI – is influ-
enced by the relative contribution of each runoff component
to total streamflow.

The results indicate that streamflow performance NSEQ
and SCA performance NSESCA respond differently to vari-
ations in the contribution of individual runoff components.
While NSESCA remains largely insensitive to CRC varia-
tions, showing consistently high values across a wide range
of runoff component contributions, NSEQ exhibits a more
noticeable response. The scatterplots reveal that although
streamflow performance remains relatively high (NSEQ >
0.8) even when CRC deviates from its optimal value, there
is a clear tendency for behavioral solutions to cluster to-
wards an optimal CRC, indicating a degree of sensitivity.
In contrast, GMB performance VEGMB shows strong sen-
sitivity to glacier melt runoff Csgm, with VEGMB dropping
significantly when Csgm exceeds approximately 10 %. The
most pronounced sensitivity is observed in the isotope perfor-
mance metric NSEI, which responds to variations in multi-
ple runoff components. The scatterplots reveal that NSEI de-
clines markedly when the contributions of subsurface runoff
Css, rainfall runoff Csr, or snowmelt runoff Csm deviate from
optimal values. In particular, NSEI decreases significantly
from 0.4 to below 0.2 when the contributions of these com-
ponents shift, indicating that isotopic simulations are much
more sensitive to changes in runoff contributions compared
to other performance metrics. This sensitivity underscores
the importance of accurately quantifying the partitioning
of different runoff components to achieve reliable isotope-
based model predictions. Overall, the analysis highlights that
VEGMB simulations are primarily sensitive to glacier melt
runoff, whereas isotope-based simulations NSEI are more
sensitive to a broader range of runoff components.

Note that, although NSE is not ideally suited to capture
spatial features of snow cover dynamics, our analysis focuses
on the catchment-integrated SCA, for which NSE remains
an informative metric to evaluate the agreement between ob-
served and simulated temporal patterns of areal extent. In this
regard, to better assess model performance, we provide the
time series of observed versus simulated SCA in Fig. S3 in
the Supplement, along with corresponding comparisons for
GMB and isotopic signatures in Figs. S4 and S5 in the Sup-
plement. These visualizations allow the reader to evaluate the
temporal evolution and potential systematic biases for each
variable, together with the associated posterior predictive un-
certainty ranges for SCA, GMB, and isotopic data.
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Figure 6. Boxplots showing the variability in the contributions of different surface runoff components under prior estimates conditioned
solely on streamflow (Q) and posterior estimates conditioned on additional datasets: SCA, GMB, and isotopic data (I). Panel (a): Subsurface
runoff; panel (b): rainfall surface runoff; panel (c): Snowmelt surface runoff; panel (d): glacier melt runoff.

4 Discussion

Overall, the results presented in Sect. 3 highlight the differ-
ential value of auxiliary datasets in hydrological model cal-
ibration. While SCA and GMB provide insights into snow
and glacier dynamics, they appear less effective in reduc-
ing streamflow uncertainty. Not only do the results prove
that integrating multiple data sources within the Bayesian
framework influences both streamflow simulation uncertain-
ties and the computation of CRC components, but they also
show varying effects depending on the type of dataset and
runoff component considered, as discussed below.

4.1 Reducing streamflow model uncertainty using a
Bayesian framework

The results of this study differ in another perspective from
those of Di Marco et al. (2021), who observed a consis-
tent relationship in snow-dominated basins between an in-
creased likelihood of streamflow and SCA, alongside a re-
duction in streamflow uncertainty. In contrast, our findings
do not show a comparable narrowing of streamflow uncer-
tainty bands when applying the Bayesian filtering approach
with snow and glacier parameters (Fig. 5). This discrepancy
suggests that the coupling between snow and glacier dynam-
ics and streamflow performance is not straightforward, par-
ticularly in larger or more heterogeneous catchments.

As noted by Ruelland (2024), the potential for snow data
to enhance streamflow simulation consistency and robustness

depends on various factors, including hydro-climatic condi-
tions, spatial variability, the modeling framework, and the ac-
curacy of snow cover data (Hao et al., 2022) and input forcing
(Raleigh et al., 2015). Factors such as catchment complex-
ity, spatial heterogeneity, and structural uncertainties in the
model, stemming from unresolved hydrological processes or
oversimplified dynamics, probably contribute to the persis-
tence of wide uncertainty ranges. In contrast, isotopic likeli-
hoods effectively constrain the parameter space, resulting in
improved simulation performance and reduced uncertainty
bands, particularly during low-flow conditions. This finding
confirms the ability of isotopic data to capture key hydrologi-
cal processes, such as groundwater–surface water mixing and
subsurface flow dynamics, which are especially influential
during low-flow periods (Jasechko and Taylor, 2015), where
seasonality plays a critical role (Birkel et al., 2009).

The influence of hydrological processes seasonality on the
effectiveness of likelihoods is demonstrated by the sharp-
ness polar plot (Fig. 8). This figure illustrates the SH ranges
for posterior likelihoods conditioned on SCA, GMB, and I
datasets throughout the year. A maximum SH value of 0.34
was observed for isotopes on 16 March 2008, while the max-
imum SH values for SCA and GMB were 0.19 on 30 April
2009, and 0.16 on 10 June 2009, respectively. These re-
sults highlight the effectiveness of isotopic likelihoods dur-
ing winter and early spring, with SH values remaining con-
sistently narrow and never dropping below zero, a period
when the model indicates a predominance of contributions
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Figure 7. Sensitivity of model performance metrics to runoff component contributions: streamflow NSEQ, SCA NSESCA, GMB VEGMB,
and isotopes NSEI, plotted against subsurface runoff (Css), rainfall surface runoff (Csr), snowmelt surface runoff (Csm), and glacier melt
surface runoff (Csgm). Each point represents a behavioral solution from the multi-objective calibration.

from the subsurface flow component. In contrast, SCA and
GMB likelihoods achieve their SH peaks during spring and
early summer, coinciding with periods of rapid snowmelt and
glacier runoff. This pattern underscores the importance of
integrating SCA and GMB likelihoods for capturing high-
flow dynamics and highlights the need to further develop
these datasets to enhance their effectiveness in constraining
streamflow uncertainty during these critical periods.

At this point, it is important to recall that SH refers to the
degree of concentration of the ensemble simulations where
a sharper ensemble has a narrower spread, indicating higher
predictive confidence (Gneiting et al., 2007). However, in-
creased SH does not necessarily translate into improved re-
liability. In our case, the inclusion of isotopic data led to a
more constrained ensemble, resulting in a sharper posterior
distribution of streamflow simulations. While this outcome
reflects the stronger constraining power of isotopic infor-
mation, it also increased the likelihood that observed values
fall outside the model’s predictive bounds, thereby reducing
the CR. Compared to calibrations using SCA or GMB, the
sharper ensemble derived from isotope-informed calibration

was less able to fully capture observed variability. This illus-
trates the classic trade-off between predictive confidence and
reliability – in other words, between SH and CR in proba-
bilistic modeling (Beven and Binley, 1992), and emphasizes
the need to balance these aspects when evaluating ensemble-
based hydrological simulations.

These results confirm that isotopic data are highly effec-
tive in reducing model uncertainty by providing indepen-
dent constraints on flow partitioning and subsurface pro-
cesses. However, to translate this enhanced internal con-
sistency into improved predictive coverage, future research
should explore model structural refinements that better align
SH with CR. Furthermore, these findings illustrate both the
potential and the limitations of Bayesian inference in simul-
taneously capturing fast surface runoff and slower subsur-
face dynamics. Although SH values demonstrate its capac-
ity to constrain parameter uncertainty across diverse hydro-
logical processes, alternative calibration strategies, such as
multi-objective weighted optimization, may offer additional
improvements in streamflow simulation accuracy (He et al.,
2019). Still, the sensitivity of model outputs to weight selec-
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Figure 8. Polar plots showing the daily SH band computed from the
maximum and minimum SH values across the years 2010–2015.
The shaded regions represent the range of SH variability for each
day of the year, while the solid black line indicates the reference
level at zero SH. The subplots illustrate the SH calculated under dif-
ferent conditioning: cLH(pi |Q,SCA) (a), cLH(pi |Q,GMB) (b),
and cLH(pi |Q, I) (c).

tion necessitates careful application (Tong et al., 2021, 2022).
Finally, the interplay between likelihood functions under-
scores the metric-dependent nature of parameter uncertainty
reduction and the value of integrating multiple complemen-
tary evaluation criteria during calibration (e.g., Fenicia et al.,
2018; Majone et al., 2022).

These results also point to the need for improved coupling
and integration of individual model components. Such inte-
gration would allow for better exploitation of the strengths
of each dataset and enhance the Bayesian framework’s capa-
bility to constrain parameter ranges across diverse hydrolog-
ical conditions. By addressing these structural connections
and leveraging synergies between complementary metrics,
the Bayesian framework’s potential to optimize parameter
calibration and improve predictive accuracy can be fully re-
alized.

In this context, the posterior mean streamflow, especially
in the isotope-conditioned simulations, fails to consistently
outperform the prior mean streamflow in reproducing the
observed discharge, despite exhibiting narrower uncertainty
bands in some streamflow regimes (see Sect. 3). This dete-
rioration in deterministic skill is not unexpected. Previous
studies (e.g., Vrugt and Sadegh, 2013; Botto et al., 2018)
have shown that reducing ensemble spread does not automat-
ically lead to improved agreement with observations. Struc-
tural model deficiencies and varying accuracy of input data
sources (i.e., SCA, GMB, and I) may introduce systematic
posterior bias, since the conditioning step attempts to com-
pensate for processes that are poorly captured by the model
or affected by different levels of uncertainty (Beven and
Freer, 2001; Chowdhury and Sharma, 2007).

It is important to emphasize that the ensemble mean does
not correspond to the best-performing simulation in terms
of NSE, and may smooth out dynamic features that are bet-
ter reproduced by individual ensemble members. Moreover,
the goal of the data-conditioning approach is not to maxi-
mize deterministic skill, but rather to reduce predictive un-
certainty by constraining the prior ensemble: the shift from
prior to posterior aims at narrowing the uncertainty bands of
the streamflow simulations, even at the cost of some loss in
individual accuracy (Beven, 2006).

4.2 Runoff component uncertainty

The GMB dataset effectively reduces uncertainty in glacier
melt surface runoff simulations (Fig. 6d), emphasizing its
value for improving model constraints in glacier-dominated
systems. This finding aligns with previous studies highlight-
ing the importance of incorporating GMB data to enhance
streamflow predictions in such catchments (Stahl et al., 2008;
O’Neel et al., 2014; Yang et al., 2024). However, this reduc-
tion in uncertainty does not always translate into improved
streamflow predictions at the basin scale. The effectiveness
of the Bayesian framework in reducing uncertainties depends
on the proportion of runoff attributed to glacier melt pro-
cesses. Consequently, even when glacier-related dynamics is
well constrained by GMB data, its contribution to reducing
overall streamflow prediction uncertainty may be limited in
basins where other processes dominate. This underscores the
importance of considering basin scale and dominant runoff
processes when selecting datasets for hydrological modeling.
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Similarly, SCA datasets provide valuable constraints on
snowmelt surface runoff (Fig. 6c) but have a more limited
impact on reducing streamflow uncertainty. This may be due
to the spatial and temporal resolution limitations of SCA
datasets (Di Marco et al., 2020), or because the snowmelt
contribution to total runoff is relatively minor in large basins
compared to other components, such as subsurface runoff
and rainfall surface runoff. Furthermore, uncertainties in the
timing and rate of snowmelt, which are critical for runoff
generation, may not be fully captured by remotely sensed
SCA data (Dietz et al., 2012). This limitation is particularly
relevant in basins with complex snow dynamics, where snow
cover depletion varies significantly across different elevation
bands and time periods (Molotch and Margulis, 2008).

In contrast, isotopic data stand out for their ability to re-
duce uncertainty across multiple runoff components, partic-
ularly during low-flow conditions. By tracing water sources
and pathways, isotopic tracers provide critical insights into
subsurface and groundwater contributions, which are dif-
ficult to capture with traditional datasets (Birkel et al.,
2015). Isotopic tracers, such as oxygen-18 (δ18O) and deu-
terium (D), are widely used to distinguish between recent
precipitation, snowmelt, and groundwater contributions to
streamflow, improving the calibration of hydrological models
(Jasechko, 2019). Our results show that the isotope data does
not reduce the uncertainty of glacier melt runoff, because
the model assumes that glacier melt generates runoff di-
rectly through surface pathway, not involved in the surface–
subsurface runoff partitioning, the aspect for which isotopic
data are most useful. The results suggest that incorporat-
ing isotopic data into hydrological models can help reduce
uncertainties related to water source contributions and flow
pathways, particularly in catchments with complex surface–
subsurface interactions. Such benefit comes from the sig-
nificant divergence in the isotope signatures of surface and
subsurface runoff, i.e., a much lower temporal variability of
groundwater isotope compared to surface runoff because of
the long travel time.

These differences in the influence of datasets underscore
the importance of selecting appropriate data sources based
on the specific hydrological processes and uncertainties that
need to be addressed in a given catchment. For example,
GMB data should be prioritized in glacier-fed basins to im-
prove predictions of glacier melt runoff (Huss and Hock,
2015), whereas isotope data can provide valuable constraints
on multiple runoff components, particularly in catchments
with diverse flow generation processes (Rodgers et al., 2005;
Birkel et al., 2011). The integration of multi-source datasets
can help reduce model uncertainties more effectively than re-
lying on a single dataset (Beven, 2006), resulting in more
robust predictions of water availability and streamflow vari-
ability under changing climatic conditions (Borriero et al.,
2023).

4.3 Limitations

This study systematically evaluates the value of SCA, GMB,
and isotopes in reducing model uncertainties. Results high-
light the critical role of isotope data in improving low-flow
simulations and runoff component separation. However, sev-
eral limitations persist. First, while streamflow simulations
achieve NSE values up to 0.9, peak flows are consistently
underestimated, probably owing to inaccuracies in precipita-
tion forcing data (Jiang et al., 2022; Xu et al., 2017). Metrics
for SCA and isotope simulations remain around 0.5, indi-
cating potential for further optimization. Second, the model
structure is rather simplified when conceptualizing processes
such as groundwater and snow/ice melting. Specifically, only
two subsurface layers (u-zone and s-zone in the model) are
defined, and the subsurface outflows are simulated as a sum.
Only the shallow groundwater processes are considered, only
occurring within each REW, which is unable to adequately
describe subsurface processes in the TP, where deep inter-
basin groundwater pathways exist (Chen et al., 2025). Mean-
while, the simple degree-day factor method was used to sim-
ulate the melting processes, to make the model adequately
efficient for subsequent GLUE analysis. These modules can
be improved to strengthen the physical basis of the model.
Third, as this analysis is based on a single case study in a
specific region, its broader applicability is uncertain. Unlike
prior studies (Di Marco et al., 2021; Tong et al., 2021), snow
and glacier datasets did not significantly enhance model per-
formance here, suggesting the need to clarify the conditions
under which such data prove most beneficial.

Despite these challenges, the study underscores the impor-
tance of employing multiple datasets to constrain hydrolog-
ical models. Although snow and glacier datasets alone may
not substantially improve streamflow simulations, they are
essential for ensuring model reliability in capturing key pro-
cesses. Isotope data, in particular, effectively constrain sur-
face and subsurface runoff separation owing to the low vari-
ability in groundwater I (Nan et al., 2024; McGuire and Mc-
Donnell, 2006), reducing low flow uncertainties and enhanc-
ing model robustness.

5 Conclusions

This study provides new insights into reducing uncertainty
and equifinality in the hydrological modeling of large moun-
tainous catchments by integrating multiple auxiliary datasets
within a Bayesian framework. By systematically compar-
ing the contributions of SCA, GMB, and isotopic tracers,
we demonstrate how these datasets distinctly improve model
performance across various flow regimes.

A critical conclusion drawn from this research is the
unique advantage of isotopic data in reducing model un-
certainty during low-flow periods. The isotopic likelihood
has shown to be more effective in constraining subsurface
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flow contributions and groundwater–surface water interac-
tions, resulting in narrower uncertainty ranges for stream-
flow predictions under low-flow conditions. This finding un-
derscores the critical role of isotopic tracers in improving
the representation of slow-response hydrological processes,
which are essential for the mitigation of drought and sustain-
able management of water resources in mountainous regions.
In contrast, the SCA and GMB datasets were found to be
more effective in capturing rapid surface dynamics, such as
snowmelt and glacier melt processes. However, their contri-
butions to reducing streamflow uncertainty were limited, par-
ticularly during low-flow conditions. This discrepancy high-
lights the need for multi-objective calibration approaches that
balance the trade-offs between rapid surface responses and
slow subsurface processes.

Our results also reveal the differential impact of each
dataset on the CRC. The GMB likelihood significantly re-
duces uncertainty in glacier melt surface runoff, whereas
isotopic data provide broader constraints across multiple
runoff components, including subsurface runoff, rainfall sur-
face runoff, and snowmelt surface runoff. These differences
emphasize the importance of selecting appropriate datasets
based on the dominant hydrological processes in a given
catchment.

The study further highlights the limitations of current
Bayesian frameworks in fully leveraging the complementary
strengths of auxiliary datasets. While Bayesian approaches
are effective in reducing parameter uncertainty and improv-
ing model calibration, the persistent wide uncertainty ranges
for streamflow predictions indicate the need for improved
coupling and integration of individual model components.
Enhancing these structural connections within the model-
ing framework could allow for better exploitation of multi-
source datasets, ultimately improving predictive accuracy
across diverse hydrological conditions.

In conclusion, our findings stress the importance of in-
corporating multi-source datasets in hydrological modeling
to achieve robust performance across different flow regimes.
The integration of isotopic tracers, snow cover, and GMB
data within a Bayesian framework offers a promising path-
way to reduce uncertainty and enhance the understanding
of streamflow variability in large mountainous catchments.
Future research should focus on developing more advanced
coupling methods that account for the complex interplay be-
tween cryospheric and subsurface processes, as well as ex-
ploring the potential of multi-objective weighted calibration
approaches to further improve model reliability.
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