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Abstract. Effectively remediating groundwater contamina-
tion relies on the precise determination of its sources. In
recent years, a growing research focus has been placed on
concurrently estimating hydrogeological characteristics and
locating pollutant origins. However, the precise synergis-
tic identification of point and areal contamination sources
of groundwater and combined hydrogeological parameters
has not been effectively solved. This study developed an
inversion framework that integrates machine learning sur-
rogates with the artificial hummingbird algorithm (AHA).
The surrogate models approximating the simulation system
were constructed using both backpropagation neural net-
works (BPNNs) and Kriging techniques. The AHA was then
employed to solve the optimized model, and its performance
was benchmarked against particle swarm optimization (PSO)
and the sparrow search algorithm (SSA). The applicability
of this inversion framework was assessed by application to
point sources of contamination (PSC) and areal source con-
tamination (ASC). The robustness of the framework was ver-
ified through application to scenarios with different noise
levels. The results showed that the surrogate model con-
structed by the BPNN method provided estimates that were
closer to those of the simulation model in comparison to
the Kriging method. The coefficient of determination (R?)
is 0.9994 and mean relative error (MARE) is 3.70 % in PSC,
and the R? is 0.9989 and MARE is 4.48 % in ASC. The per-
formance of the AHA exceeded that of the PSO and the SSA.

In PSC, the MARE of the identification result is 1.58 %.
In ASC, the MARE of the identification result is 2.03 %,
with the AHA able to rapidly and accurately identify the
global optimum and improve the inversion efficiency. The
proposed inversion framework was demonstrated to apply to
both groundwater PSC and ASC problems with strong ro-
bustness, providing a reliable basis for groundwater pollution
remediation and management.

Highlights.

— A highly adaptable inversion framework is adapted to different
groundwater pollution scenarios.

— Synergetic identification of source information, hydraulic con-
ductivity, and boundary condition in PSC.

— The artificial hummingbird algorithm is applied to solve the
optimized model.

1 Introduction

Groundwater pollution adversely affects human production
and life (Wang et al., 2022; Liu et al., 2024). The remedi-
ation of groundwater contamination is important for ensur-
ing human health and socioeconomic development. How-
ever, groundwater contamination is difficult to detect and
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treat due to its hidden nature, thereby complicating the as-
sessment of groundwater pollution risk and contamination
liability (Li et al., 2021). Remediation requires the identi-
fication of sources of groundwater contamination (location,
number, release history, etc.) and hydrogeological conditions
(Maliva et al., 2015; Daranond et al., 2020; Pan et al., 2022b;
Medici et al., 2024). However, directly obtaining this infor-
mation can pose a challenge, with a proven method being the
identification of groundwater contamination by inversion of
limited observational data.

The inversion of groundwater aquifer hydrogeologic pa-
rameters and pollution source information is a widely studied
topic. In past studies on groundwater contamination identi-
fication (GCI), many researchers have focused on the sepa-
rate identification of hydrogeological parameters or pollution
source information. For example, Singh and Datta (2007) uti-
lized backpropagation-based artificial neural network tech-
niques specifically for the identification of groundwater pol-
lution sources. Similarly, Mahar and Datta (2000) employed
a non-linear optimization model to identify the location, du-
ration, and magnitude of the contamination source. Liu et
al. (2022) inverted hydrogeological parameters through a
simulation—optimization approach, while Wang et al. (2024a)
combined three different inversion algorithms and a Krig-
ing surrogate model to invert hydraulic conductivity. While
simplifying the problem, these methods allow researchers to
focus on specific aspects. However, although the individual
identification method can be effective in some cases, it of-
ten overlooks the inter-connectivity between hydrogeologi-
cal parameters and pollution sources.

Currently, the simultaneous identification of hydrogeolog-
ical parameters and pollution source information is gain-
ing increasing attention in research. Researchers have em-
ployed various advanced technologies to achieve this goal.
Wang et al. (2021) utilized a parallelized heuristic algo-
rithm to concurrently determine aquifer characteristics and
the groundwater pollution sources. Pan et al. (2021) inte-
grated a Bayesian-regularized deep neural network surrogate
to jointly infer pollution source details and hydraulic con-
ductivity. Hou et al. (2021) integrated homotopy-based in-
verse optimization theory with a multi-kernel extreme learn-
ing machine to finish the co-identification of contamination
sources and aquifer parameters. Luo et al. (2023) leveraged
machine learning techniques to establish an inverse relation-
ship between model outputs and inputs, enabling the fast and
simultaneous retrieval of pollution source attributes and hy-
drogeological properties. Although these methods have ad-
vanced the field, improving recognition accuracy remains a
major challenge in the simultaneous identification process.

The simulation—optimization method has been widely ap-
plied in GCI research because of its robust mathemati-
cal foundation (Mirghani et al., 2009) and its ability to
identify multiple variables simultaneously. To enhance both
identification accuracy and efficiency using simulation—
optimization, two key approaches are employed: one is to op-
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timize the model solution method for better performance, and
the other is to construct a surrogate model with high approx-
imation accuracy. Optimizing the model solution method is
essential. Since heuristic optimization algorithms are more
capable of identifying global optima, many have been ap-
plied to GCI. Mirghani et al. (2012) implemented a genetic
algorithm in optimization to identify sources of contami-
nation. Jiang et al. (2013) combined a harmony search al-
gorithm with a contamination transport simulation model
to characterize contamination sources. Additional methods,
such as simulated annealing (Rao, 2006; Yeh et al., 2007;
Jha and Datta, 2013) and the sparrow search algorithm (SSA;
Pan et al., 2022b), have also been applied to GCI. However,
increasing dimensionality and complexity in GCI problems
make it difficult for many optimization algorithms to effi-
ciently search for global optima. Constructing high-accuracy
surrogate models is another crucial strategy. Surrogate mod-
els can significantly reduce computation time and improve
inversion efficiency. Among these models, the widely used
Kriging (Chugh et al., 2018; Zhang et al., 2019; Jiang et
al., 2020) and backpropagation neural network (BPNN; Sar-
golzaei et al., 2012; Zhang et al., 2021; Wang et al., 2024b)
methods offer high flexibility and strong non-linear fitting
capabilities. Despite these advances, previous studies have
overly focused on point source contamination (PSC) or areal
source contamination (ASC) scenarios in isolation. However,
the precise synergistic identification of PSC and ASC of
groundwater and combined hydrogeological parameters has
not been effectively solved.

Based on the above problems, this paper proposes an
inversion framework integrating a machine learning surro-
gate model with the artificial hummingbird algorithm (AHA)
using the simulation—optimization method (Fig. 1). Both
BPNN and Kriging were utilized to develop surrogate mod-
els for the simulation model. The AHA was introduced to
solve the optimization model, with its solution results com-
pared against those of PSO and SSA. The applicability of this
inversion framework was evaluated through its application to
both PSC and ASC scenarios. The objectives of this study
were to (1) develop a flexible groundwater pollution inver-
sion scheme that can reliably invert parameters under vari-
ous groundwater pollution scenarios, (2) adopt an integrated
parameter identification strategy to achieve the simultaneous
identification of multiple variables (including pollutant re-
lease characteristics and hydrogeological parameters) (3) de-
sign an optimization-based surrogate modeling method com-
bining meta-heuristic search algorithms with neural network
surrogate models to efficiently explore the solution space and
reduce the risk of getting stuck in local optima during in-
version calculations, and (4) evaluate the performance of the
proposed scheme under various noise intensities and pollu-
tion patterns to validate its robustness and application poten-
tial in groundwater pollution inversion problems.

The main innovations are as follows. (1) This study con-
structed an adaptive inversion framework that maintains high
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Figure 1. The general process used in the present study to construct the machine learning surrogate model—artificial hummingbird algorithm

framework.

robustness in both PSC and ASC. (2) In the PSC case, the
synergistic identification of source information, hydraulic
conductivity, and boundary conditions is achieved. (3) Apply
the AHA optimization model to solve the inverse problem
of groundwater pollution to obtain the global optimal solu-
tion of the inverse problem and further improve the inversion
accuracy. The good compatibility between the AHA and the
BPNN surrogate model ensures the robustness and stability
of the inversion process.

2 Methodology
2.1 Simulation model

In this study, the numerical groundwater simulation frame-
work comprised both a flow component and a solute trans-
port module. The fundamental 2D partial differential equa-
tion governing groundwater flow is formulated as follows:

0

H aH .
o (Ki(H =25 = )+ W=p- .y eSijela=0. (1)
1

]
ax;j
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where K;; is hydraulic conductivity, W is the volumetric flux
per unit volume, p is the specific yield, H is the water-level
elevation, z is the elevation of the aquifer floor, and S is the
boundary of the spatial domain.

ac 9 3C 3 R

——_—_D:i— )= — )+ — 2
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where C denotes the contaminant concentration in ground-
water, ¢ is the temporal variable, u; indicates the average
flow velocity, R accounts for source and sink contributions,
D;; refers to the hydrodynamic dispersion tensor, and ne rep-
resents the effective porosity of the medium. We used the
MODFLOW-2005 (Harbaugh., 2005) and MT3DMS (Zheng
et al., 2012) numerical models to obtain numerical solutions
for groundwater flow and solute transport equations (Asher
etal., 2015).
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2.2 Kriging method

Kriging was employed to develop the underlying frame-
work of the approach by capturing both the correlation and
stochastic variability of variables within a confined spatial
domain, thereby enabling the estimation of optimal regional
values. The association between input and output variables is
described through a regression-based expression, as shown
below (Zhao et al., 2022a):

k
) =Y B fi(x) +z(x), )
i=1

where y(x) is the estimated value of pollutant concentration
y(x), fi(x)(i =1,...,k) is the basis function of the known
regression model, and z(x) is the random part.

The following equations were satisfied:

E(z(x))=0
D (z(x)) =02 )
cov[z(xi), 2(x))] = o> R(x;, x;),

where R(x;x;) is the correlation function between the sam-
pledpointx; andx; (i =1,2,...,m; j=1,2,...,m).
The Gaussian model is commonly used:

R(xi.xj) = exp (—Zekmi —xkj}z) , ®)
k=1

where 0y, is a coefficient to be determined, which can be ob-
tained by calculation.

2.3 The BPNN method

A typical backpropagation neural network (BPNN) is com-
posed of three fundamental components (Fig. 2): (1) an input
layer, (2) hidden layers, and (3) an output layer. The compu-
tation process proceeds in two main phases: forward propa-
gation and backward propagation (Chen et al., 2010; Zhang
et al., 2018).

1. During forward propagation, data are introduced into
the network via the input layer and subsequently pro-
cessed through successive layers to yield the final out-
put. BPNNs frequently employ a non-linear sigmoid ac-
tivation function:

fx) = ©)

I+e*"
The calculation of the forward transmission output layer
is

1
1 +eli’

I./:Zwijoi—kb OjZf(Ij) (8)

i=1

where O; represents the output of neuron i, O; is the
output of neuron j, b is the bias term, and W; j 18 the
weight of the connection between neuron i and neuron

Jj-

Hydrol. Earth Syst. Sci., 29, 5719-5736, 2025

Input layer

Hidden layer  Output layer

Figure 2. Structure of a backpropagation neural network (BPNN).

2. Backward propagation involves the random assignment
of the weight of the first positive feedback process
within the output layer. The adjustment of the param-
eters of the entire network is required. Network adjust-
ment is performed by minimizing the discrepancy be-
tween the predicted output and the target category in
the output layer. Specifically, for the output layer:

Ej=0;(1-0))(T; - 0,), ©)

where E; represents the error value at the jth node and
T; denotes the corresponding output. The hidden layers’
output is determined by summing the weighted contri-
butions from the errors of the lower nodes:

Ej=0;(1-0))) ExWj, (10)

where Ey is the error gradient for the subsequent node
k and Wj is the weight connecting node j to node k.
Following error calculation, the weight is adjusted ac-
cording to the error gradient:

AW;j =nE;O; a1
Wi/j = W;; + AW,

where 7 is the learning rate. In case 1, the BPNN ar-
chitecture was configured as 19-30-45 and in case 2 as
15-20-50. The number of neurons in each layer was em-
pirically optimized using a grid search combined with
cross-validation to minimize the root mean square er-
ror (RMSE) and effectively prevent overfitting. The sig-
moid function was employed as the activation function,
and the network was trained using the Bayesian regu-
larization algorithm. The maximum number of training
iterations was set to 1000, and the learning rate was set
to 0.01.
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2.4 Artificial hummingbird algorithm (AHA)

The AHA consists of three main elements: food sources,
hummingbirds, and the visit table. Hummingbirds typically
assess food sources based on factors such as nectar qual-
ity, individual flower nectar content, and replenishment rates.
For simplicity, it can be assumed that all food sources share
the same flower type and number. Hummingbirds in a pop-
ulation can exchange information, be assigned to specific
food sources, track nectar replenishment rates, and record
the duration that each food source remains unvisited. The
visit table records the time since a hummingbird last visited
a food source and is used to assign visit levels; humming-
birds can harvest more nectar by first accessing food sources
with higher access levels, following which food sources with
the highest nectar replenishment rate are chosen (Zhao et al.,
2022b). The AHA is algorithmically described below.

2.4.1 Initialization

First, n hummingbirds are randomly placed on n food
sources:

xi=Low+r-(Up—Low) i=1,...,n. (12)

The access table for the food source is then initialized:

0 if i#j . _,

null Q= .anyj=1,...,n, (13)

VTI" j= {
where Low and Up are the lower and upper boundaries for a
d-dimensional problem, respectively; r represents a random
vector of [0,1]; and x; is the position of the ith food source.
For i = j, VT; j = null indicates the sourcing of food from
a specific source. For i # j, VT; ; =0 indicates that the ith
hummingbird has just visited the jth food source in the cur-
rent iteration.

2.4.2 Guided foraging

Hummingbirds identify food sources in two steps: (1) identi-
fying the food source with the highest access level and (2) se-
lecting the food source with the highest nectar replenishment
rate. After identifying the target food source, the humming-
bird can fly to the target source to feed. During foraging, di-
rection switching vectors used to control the availability of
one or more directions in the d-dimensional space are intro-
duced to model three flight skills: omnidirectional, diagonal,
and axial flight. These flight models can be extended to the
d-D space, and the mathematical model of axial flight is

1 if i =randi([1,d]) i—

@) _
b= 0 else

1,....d. (14)

Diagonal flight is defined as

1 if i=P(),jell, k]
P =randperm(k), .
kel2lr...d—2]+1] i=Lewd (19
0 else

D) —
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Omnidirectional flight is defined as

DY =1 i=1,...d, (16)

where randi([1, d]) is a randomly generated integer from 1
to d, randperm(k) creates a random permutation of integers
from 1 to k, and r; is a random number in the range of 0 to 1.

Hummingbirds can access and obtain target food sources
through these flight abilities. New food sources identified
during the search are recorded along with previously iden-
tified food sources. The guided foraging behavior and candi-
date food sources can be represented as

vi(t +1) = Xj @ (t) +a- D (xi(t) = Xi,1ar (1)) A7)
a~N(Q,1), (18)

where x; o (¢) is the location of the food source that the ith
hummingbird plans to visit, x;(¢) represents the location of
the ith food source at time ¢, and a is a leading factor obeying
a normal distribution.

The location of the ith food source is updated as

x; (1) f&xi@) < fit+1))
vi(t+1)  fxi(0) > fuit+ 1)),
where f () represents the function fitness value. The formula

for updating the location can contribute to the preferential
selection of food sources with a high nectar supply rate.

xi(r+1) ={ 19)

2.4.3 Territorial foraging

Since the quality of food sources in a foraging area may vary,
hummingbirds actively search in that area. The regional for-
aging strategies and candidate food sources of hummingbirds
can be represented as

vit+1D) =x;t)+b-D-x;(t) (20)
b~ N, 1), Q1)

where b is a territorial factor obeying a normal distribution.
Equation (20) allows different hummingbirds to use their
specific flight skills to identify new food sources near the tar-
get source.

2.4.4 Migration foraging

Migration coefficients are defined in the AHA to prevent the
generation of local optimums. The exceedance of the num-
ber of iterations of the set migration coefficient results in the
hummingbird located in the worst food source repeating a
search for a new food source across the entire search range
and the subsequent updating of the visit table:

Xwor(f +1) =Low +r - (Up — Low), 22)

where xyor is the food source with the worst nectar supply
rate. The migration coefficient relative to population size can
be defined as

M =2n. (23)
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Figure 3. Schematic diagram of case study 1.

3 Case studies

The present study designed a groundwater PSC case study
and an ASC case study to verify the applicability of the pro-
posed GCI framework. Since the present study established
two hypothetical examples, a set of variables to be identi-
fied and background variables for input into the groundwater
contamination simulation model were established for each
example for forward computation. The pollutant concentra-
tions monitored at wells were used as observed data. The ro-
bustness of the inversion framework was verified by adding
random noise to the observed data, expressed as

a1 =a(l +1-rand),! = 0.5%, 1% and 2 %, (24)

where o represents the observation data, o1 indicates obser-
vation data with added noise, / is the maximum disturbance
range, and rand is a random number between —1 and 1.

3.1 Case study 1: groundwater PSC

The study area is 2500 and 1400 m from east to west and
north to south, respectively, with topography decreasing
from west to east and groundwater flow from northwest to
southeast. The study area contains a heterogeneous isotropic
aquifer, and the present study focused on a layer of div-
ing aquifer with a thickness of 10 m (Table 1). The aquifer

Hydrol. Earth Syst. Sci., 29, 5719-5736, 2025

% Pollution source

Observation well

Hydraulic conductivity partition boundary

comprises unconsolidated sediments, primarily well-sorted
coarse sand and gravel. Groundwater flow was represented
as a 2D steady flow, and the study area was divided into three
areas according to differences in hydraulic conductivities.
Since the northern and southern parts of the study area are
very weakly permeable formations, they were generalized in
the present study as no-flow boundaries. Rivers formed the
boundaries of the western and eastern parts and were gener-
alized as specific head boundaries (Fig. 3).

In this case study, the variables to be identified fell into
three main categories: (1) head values at the specific head
boundaries, including H; and H>; (2) hydraulic conductiv-
ities for each part of the study area, including K, K>, and
K3; and (3) the intensities of the release of pollutants from
the two sources during the release periods: S = S, Tp;a =1,
2;and b =1, 2, 3, 4, 5 (Table S1 in the Supplement). S,7p
represents the intensity of pollution source a during the bth
stress period. This case study had a study period of 10 years
(Table 1, Fig. 4), with both sources only releasing pollutants
in the first 5 years (Table S2). Five wells were established
to monitor the concentrations of groundwater contaminants
once a year. The study area was spatially discretized into
50m x 50m grids (Table 1).

https://doi.org/10.5194/hess-29-5719-2025
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Figure 4. Distributions of concentrations of groundwater pollutants over different periods: (a)—(j) represent 1-10 years.
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Table 1. Fundamental values and ranges of aquifer parameters.

Parameter

Value or range

Hydraulic conductivity of zone 1, Kj (m d—h
Hydraulic conductivity of zone 2, K (m )
Hydraulic conductivity of zone 3, K3 (m d—1
Specific yield of zone 1, j1

Specific yield of zone 2, 1o

Specific yield of zone 3, 3

Longitudinal dispersity of zone 1 (m)
Longitudinal dispersity of zone 2 (m)
Longitudinal dispersity of zone 3 (m)

Grid spacing in x and y direction (m)

(50, 70)
(35, 55)
(40, 60)
0.27
0.22
0.25

40

30

35

50

Recharge rate (m dfl)

Initial concentration (mg L™ l)
Length of the stress period (year)
Aquifer thickness (m)

Groundwater level at the western boundary, H; (m)
Groundwater level at the eastern boundary, H, (m)

0.00042
50
10
10
(18, 20)
(15, 17)

3.2 Case study 2: groundwater ASC

The present study selected the hypothetical case study used
by Pan et al. (2022a) as a case study. The site has an area of
5km?, with a length of 2.5 km and a width of 2 km from east
to west and south to north, respectively. Groundwater flows
from northwest to southeast. The study area was conceptu-
alized as a heterogeneous isotropic aquifer, and the current
study focused on a diving aquifer, in which flow was repre-
sented as a 2D steady flow. The study area’s aquifers were
categorized into four zones based on hydraulic conductivity,
labeled K to K4. The western and eastern river boundaries
were modeled as specified head boundaries, while the north-
ern and southern regions, characterized by low permeability
granite, were treated as no-flow boundaries (Fig. 5, Table 2).
The aquifer comprises unconsolidated sediments, primarily
well-sorted coarse sand and gravel.

In this case study, the variables to be identified fell into
two categories: (1) hydraulic conductivities of each part of
the study area, includingK; to K4, and (2) the intensities of
pollutants released by three areal sources of contamination:
S=8S:Tp;a=1,2,3;and b =1, 2, 3,4, 5 (Table S3). S, Tj
indicates the intensity of pollution source a during the bth
stress period. A total of nine monitoring wells were estab-
lished to monitor the concentrations of groundwater contam-
inants once a year (Fig. 6). The study area was spatially dis-
cretized as 20 m x 20 m grids (Table 2).

4 Model construction
4.1 Establishment of surrogate models

The present study established two case studies: the PSC and
the ASC. The variables to be identified for the PSC case

Hydrol. Earth Syst. Sci., 29, 5719-5736, 2025
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Figure 5. Schematic diagram of case study 2.
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Figure 6. Distributions of concentrations of groundwater pollutants over different periods: (a) 1 year, (b) 2 years, (c) 3 years, (d) 4 years,
and (e) 5 years.
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Table 2. Fundamental values and ranges of aquifer parameters and pollution sources.

Parameter Value or range
Specific yield 0.24
Transverse dispersity (m) 9.8
Longitudinal dispersity (m) 40
Aquifer thickness (m) 40
Grid spacing in x direction (m) 20
Grid spacing in y direction (m) 20
Number of stress periods 5
Hydraulic conductivity (m dfl) (30,50)
Fluxes of contamination source during stress period (g d_l) (0,52)

study included three categories with 15 dimensions, whereas
those to be identified for the ASC case study included two
categories with 19 dimensions. The present study used the
Latin hypercube method to sample within the feasible do-
main of the variables to be identified. This sampling process
was implemented in MATLAB. Sample groups for the PSC
and ASC case studies totaled 390 and 490, respectively, and
the input sample dataset was generated by random combina-
tion.

The parameters obtained from the above sampling were
input into the groundwater simulation model. The simulation
model was then run to obtain the pollutant concentrations at
the 390 and 490 monitoring groups in the PSC and ASC case
studies, respectively. These simulated pollutant concentra-
tions were used as the output sample dataset, and the output
sample dataset was combined with the input sample dataset
to form the input—output sample dataset. The Kriging and
BPNN methods were used to establish the surrogate mod-
els of the simulation model. The first 350 and 440 groups of
the PSC and ASC case input—output sample datasets, respec-
tively, were used as training samples in each case study to
construct surrogate models, while the remaining 40 and 50
groups were used as test samples to evaluate the accuracy of
the surrogate models.

The present study applied the coefficient of determination
(RZ), the mean absolute relative error (MARE), and the root
mean square error (RMSE) to assess the accuracy of the fit of
the estimations of the surrogate models to the output of the
simulation model.

1. RZ: the closer R? to 1, the more accurate the surrogate
model is.

” A2
2()&’ —3i)
=

R*=1- (25)

2. MARE: the average deviation between the outputs of
the surrogate model and the outputs of the simulation
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model.

Yi—Ji ‘

Vi

n
i=1

MARE = (26)

3. RMSE: the value of the RMSE is inversely proportional
to the fitting accuracy of the surrogate model.

, @7

where y; is the average true value, n is the number of
samples, y; is the output of the surrogate model, and y;
is the true value of the variable to be identified.

4.2 Establishment of the optimization models

This study employed the GCI through the simulation—
optimization method, which consists of two main com-
ponents: a groundwater contaminant transport simulation
model and an optimization model aimed at minimizing the
least-squares error between the simulated and true values. To
reduce the computational burden caused by repeated simula-
tion calls, a surrogate model was used in place of the simu-
lation model. While the same objective function was applied
in both case studies, there were minor variations in the deci-
sion variables and constraints. The decision variables chosen
for case study 1 included the boundary head values, the hy-
draulic conductivities of the site, and the release history of
the contaminant source; those for case study 2 included the
hydraulic conductivities of the site and the release history
of the contaminant source. The constraint conditions were
influenced by the decision variables. The optimization was
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Table 3. A comparison of the accuracies of the assessed surrogate
models.

Case Surrogate model R? MARE RMSE
Case 1 Kriging 0.9942  1343% 11.8262
¢ BPNN 09994  3.70%  3.6526
Casen  Kriging 0.9837  9.98% 37.7547
BPNN 0.9989 4.48 % 9.8488
expressed as
n A N2
z=min Y (Cm _ Cm)
m=1
C=f(H,K,s)
: < <
Casel:{ CL<C<C(Cy (28)
SI <S5 =<sy
C=f(K,s)
Case2:{ CL<C<Cy
sl S N S sl,h

where 7 is the objective function, Cy, is the monitored pollu-
tant concentration in the mth monitoring well, C 'n 18 the sim-
ulated pollutant concentration in the mth monitoring well,
C is the pollutant concentration, H is the head value at the
boundary, s is the pollution source intensity, k represents the
hydraulic conductivities of the site, Cp, and Cy are the upper
and lower bound values of pollutant concentration (respec-
tively), and s; and s, are the upper and lower bound values of
pollution source intensity (respectively).

The AHA was used to identify the optimal combination of
parameters according to the objective function through mul-
tiple iterative calculations, with this parameter set adopted as
the result of inversion. The numbers of hummingbird popu-
lations and iterations were set to 500 and 1000, respectively.

S Results
5.1 Surrogate models

The surrogate model for case study 1 using the Kriging
method achieved an R? of 0.9942, a MARE of 13.43 %, and
an RMSE of 11.8262 (Table 3), while the BPNN method
produced values of 0.9994, 3.70 %, and 3.6526, respectively
(Table 3). Similarly, for case study 2, the Kriging method
yielded an R? of 0.9837, a MARE of 9.98 %, and an RMSE
of 37.7547, whereas the BPNN method provided correspond-
ing values of 0.9989, 3.70 %, and 3.6526 (Table 3). The
BPNN method demonstrated superior goodness-of-fit statis-
tics compared to the Kriging method in both case studies.
While the simulation model required 50 h for 1000 iterations,
the BPNN surrogate model completed the same number of it-
erations in 67 s, significantly reducing the computation time.
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5.2 Optimization algorithms

The BPNN surrogate model was embedded into the opti-
mization model to optimize the parameter combination ac-
cording to the objective function. This study employed AHA
within the optimization process and compared its perfor-
mance against SSA and PSO under the same population size
and number of iterations. In the optimization of case study 1,
PSO failed to converge after reaching the maximum num-
ber of iterations, while AHA and SSA converged after 120
and 350 iterations, respectively (Fig. 7a). For case study 2,
both PSO and SSA failed to converge within the maximum
number of iterations, whereas AHA converged after 150 iter-
ations (Fig. 7b).

Given the results from case study 1, where both AHA
and SSA converged, the subsequent analysis focused on
these two algorithms. AHA achieved an optimal search value
closer to the true value and reached the global optimum,
while SSA settled at a local optimum (Fig. 8). These results
demonstrate that AHA not only converged faster than SSA
but also identified the global optimum, thereby improving the
accuracy and efficiency of GCIL.

5.3 Inversion results and robustness assessment

The BPNN-AHA inversion framework developed in this
study was applied to identify groundwater PSC and ASC and
to obtain inversion values. To verify the framework’s robust-
ness and reliability, random noise levels of 0.5 %, 1 %, and
2 % were added to the observed data. The average relative
errors under each noise level were recorded (Tables 4 and 5).
The highest inversion accuracy was achieved in the noise-
free case for both case study 1 and case study 2, with av-
erage relative errors of 1.58 % and 2.03 %, respectively (Ta-
ble S4). At a 0.5 % noise level, the average relative errors for
case study 1 and case study 2 were 1.71 % and 2.3 %, respec-
tively. At 1 % noise, they were 2.03 % and 2.33 %, while at
2 % noise, they increased to 2.55 % and 3.52 %, respectively.
Although noise impacted the inversion accuracy, the frame-
work maintained high performance, with the average relative
errors for both case studies remaining below 5 % (Fig. 9).
These results confirm the strong robustness and stability of
the proposed inversion framework.

There are significant differences in sensitivity to noise
among different parameter categories. Hydraulic conductiv-
ity: these parameters showed low sensitivity to noise, with
relative errors remaining below 3% in all scenarios for
both PSC and ASC cases. Their errors increased gradually
with noise but remained stable, indicating strong robustness.
Boundary head values (PSC case only): these parameters also
exhibited excellent noise resistance, with relative errors con-
sistently below 1 % even at a 2 % noise level. Source release
intensities: this group showed the highest sensitivity to noise.
At a 2 % noise level, some source parameters (e.g., S177 in
PSC and S| T3, S174, S3T3, S3T3, S375 in ASC) had relative
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Table 4. A comparison of inversion values under different noise levels for case study 1.

Unknown True Inversion values under different noise levels
variables value
0 05% 1 % 2% Relative error

K, 60.37 5891 5946 61.16 61.15 242% 150% 131% 129%
K, 42.84 42.12 41.73 4172 4218 1.67% 258% 261% 1.54%
K3 50.17 49.28 48.52 4858 50.01 1.78% 329% 3.17% 031%
H 19.09 19.10 19.04 19.06 1927 006% 024% 0.18% 0.96%
Hy 16.11 16.05 1597 16.01 1627 040% 087% 064% 097 %
S1Tq 3425 3465 3482 3537 3650 1.16% 166% 326% 6.57%
NYL 57.07 5720 5735 57.66 5879 024% 049% 1.04% 3.01%
NVE 5.80 5.48 5.59 5.64 556 549% 3.63% 278% 4.19%
STy 3176 31.80 31.84 3199 3271 015% 025% 0.74% 3.00%
S1Ts 18.14 1821 1824 1831 18.63 039% 055% 096% 2.73%
ST 82.07 8145 81.67 8248 8462 0.76% 050% 049% 3.10%
N YD 22.18 21.02 2099 21.10 2186 522% 537% 487% 144%
S T3 7435 75,69 7595 7644 77.69 180% 215% 281% 449%
STy 4.92 4.86 4.85 4.74 484 137T% 148% 376% 1.78%
S$HTs 1584 1595 16.00 16.12 1629 0.73% 1.06% 181% 2.806%

Table 5. A comparison of inversion values under different noise levels for case study 2.

Unknown True Inversion values under different noise levels
variables value
0 05% 1% 2% Relative error

Ky 4593 4494 4544 4507 4601 215% 1.07% 187% 0.17%
K> 46.54 46.68 4728 4683 4792 029% 159% 0.62% 297%
K3 32,11 3208 3191 3205 31.73 008% 062% 020% 1.19%
Ky 4423 4456 4379 4435 4295 075% 098% 026% 2.89%
NS 38.05 3748 3759 37.85 3814 148% 122% 051% 023%
NYL 3224 3284 3255 3310 3242 184% 095% 2.65% 0.55%
NVE 2496 26.775 2646 2689 2648 7.18% 6.01% 1.74% 6.09%
STy 5.17 4.89 4.85 493 477 544% 633% 479% 7.82%
S1Ts 2542 2648 2629 26.69 2642 418% 343% 503% 3.94%
ST 31.15 31.17 31.21 3138 3148 0.08% 0.19% 074% 1.07%
ST 3994  40.17 40.12 40.65 4058 057% 043% 176% 1.59%
S T3 51.5 5177 5174 5200 5200 053% 047% 097% 097%
STy 4947 4891 4881 4951 4936 1.13% 133% 0.09% 021%
S$HTs 31.53 3354 3330 3341 33.03 638% 561% 597% 475%
S3T 2749 2761 28.03 28.01 2875 043% 196% 190% 4.59%
S37T» 2693 2733 2788 2768 2880 147% 352% 276% 6.95%
S3T3 5.95 5.97 6.14 6.11 638 027% 3.15% 266% 7.13%
S3Ty 30.5 3097 31.18 31.16 3170 154% 221% 216% 3.92%
S$3T5 237 23.05 2432 2406 2606 277% 259% 149% 9.95%

errors exceeding 6 %—10 %, reflecting their higher inversion
uncertainty under noisy conditions.
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6 Discussion
6.1 Analysis of surrogate models

The results of this study show that the proposed BPNN-AHA
framework achieves high accuracy, strong robustness, and
efficient convergence in GCI tasks, performing consistently
well in both the PSC and ASC scenarios, even under vary-
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Figure 7. Convergence curves of the sparrow search algorithm
(SSA), particle swarm optimization (PSO), and artificial humming-
bird algorithm (AHA) applied to the case studies: (a) case study 1
and (b) case study 2.

ing noise levels. In the PSC and ASC cases analyzed here,
the R? values reached 0.9994 and 0.9989, and the MARE
values were 3.70 % and 4.48 %, respectively, demonstrating
the model’s excellent capability to approximate the input—
output relationships of the simulation model. The BPNN sur-
rogate model, with its simple structure, high flexibility, and
broad adaptability, effectively balances accuracy and gen-
eralizability — characteristics that are essential for practical
inversion applications. Compared to other surrogate model-
ing approaches reported in recent GCI research — such as
long short-term memory neural networks (Li et al., 2021),
light gradient boosting machines (Pan et al., 2023), and deep
residual networks (Xu et al., 2024b) — the proposed frame-
work leverages the adaptability of BPNN together with the
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Figure 8. Comparison between the true values and optimal values
for the sparrow search algorithm (SSA) and artificial hummingbird
algorithm (AHA).
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Figure 9. Comparison of relative errors for case studies 1 and 2
under different noise levels.

global search and adaptive convergence mechanisms of the
artificial hummingbird algorithm to deliver consistently ac-
curate and stable inversion results. In this paper, the ASC is
drawn from Pan et al. (2022a), which had been widely vali-
dated in other studies. For example, Li et al. (2023) used the
same case to validate an inversion method, applying a multi-
layer perceptron model to the simulation, achieving an R? of
0.9999 and a MARE of 2.85 %. Similarly, Xu et al. (2024a)
employed automatic machine learning methods for surrogate
model construction, achieving an R? 0f 0.9754 and a MARE
of 4.154 %. Compared to the surrogate models developed by
these researchers, the BPNN model constructed in this study
also demonstrates excellent approximation accuracy, further
validating the advantages of the proposed method. In sum-
mary, the proposed BPNN surrogate model has practical ad-
vantages in tasks related to GCI, thereby enhancing its ap-
plicability. Due to its relatively simple architecture and low
computational requirements, the BPNN model can be trained
and updated efficiently even under limited computational re-
sources. Additionally, the model demonstrates strong gener-
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alization capabilities in both PSC and ASC scenarios, indi-
cating that it is not specific to a particular case. This adapt-
ability is crucial for practical groundwater inversion prob-
lems, as data availability and system complexity often vary
significantly across different locations. These characteristics
highlight the comprehensive advantages of the BPNN model
in terms of accuracy, efficiency, and flexibility, making it a re-
liable and practical choice for surrogate modeling in ground-
water simulation.

6.2 Analysis of optimization algorithms

This paper compares the AHA with PSO and SSA under the
same preconditions and finds that the AHA offers clear ad-
vantages in both convergence speed and global optimization
capability. Based on these results, the AHA was chosen to
solve the optimization model, and its adaptability was further
verified in two different cases. In the field of optimization al-
gorithms, the “no free lunch” principle (Zhao et al., 2022b)
emphasizes that no single algorithm performs well across
all optimization problems. When addressing real-world prob-
lems, it is essential to understand the nature of the problem
thoroughly before selecting the appropriate optimization al-
gorithm. This principle encourages researchers to develop
new and more effective algorithms from different perspec-
tives, providing more options for optimization problem re-
searchers. This insight also applies to groundwater pollution
traceability. Given the diverse nature of pollution traceabil-
ity problems, it is challenging for any single optimization
algorithm to be universally applicable. As research deep-
ens, these problems tend to become higher dimensional and
non-linear, necessitating the exploration of algorithms with
stronger global optimization capabilities and higher search
efficiency. Additionally, it is important to consider alterna-
tive uses of optimization methods. One promising approach
involves using optimization techniques to improve machine
learning models by identifying optimal parameters (hyper-
parameters) during training, which can significantly enhance
model accuracy (Jia et al., 2024).

6.3 Inversion analysis

Previous studies related to GCI employed a variety of meth-
ods to conduct either the single or simultaneous inversion
characterization of pollution sources and to identify hydroge-
ological parameters of the model. Li et al. (2022) identified
the number, location, and release history of pollution sources,
while Li et al. (2008) focused on determining the hydraulic
conductivities of a study site. Bai et al. (2022) utilized in-
version techniques to simultaneously characterize pollution
sources and identify the hydraulic conductivities in their sim-
ulation models. While some studies have applied inversion to
the boundary conditions of the simulation model (Jiao et al.,
2019), fewer studies have simultaneously characterized pol-
lution sources and identified both hydrogeological parame-
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ters and boundary conditions of the model. Source informa-
tion, model hydrogeological parameters, and boundary con-
ditions are all critical components of groundwater contami-
nation simulation models. Inaccuracies in any of these com-
ponents can affect the overall results of inversion, making it
essential to identify all components simultaneously. There-
fore, in the PSC case of this study, the release history of
the pollutant source, the hydraulic conductivity of the model,
and the specific head boundary values were simultaneously
identified. This simultaneous identification of multiple key
parameters enhances the reliability and effectiveness of deci-
sion support systems.

In addition to the methods applied in this study, data
assimilation methods are also widely used in the field of
groundwater pollution inversion. They can combine obser-
vational data with numerical models to improve state esti-
mation and parameter inversion (Zafarmomen et al., 2024).
Many researchers have successfully applied data assimilation
methods to the iterative optimization of pollutant transport
states and related parameters, significantly improving inver-
sion accuracy and reducing prediction uncertainty. For exam-
ple, Pan et al. (2022a) proposed a refined particle filter with
a deep learning method surrogate as an inverse framework
for groundwater pollution source estimation. This framework
was evaluated under different levels of observational error
through estimation tasks for point source pollution cases and
non-point source pollution cases. Wang et al. (2023) utilized
an improved particle filter method for groundwater pollution
source identification. Zhang et al. (2024) used an iterative lo-
cal updating ensemble smoother method to simultaneously
identify pollution source information and hydraulic conduc-
tivity fields. However, both the method proposed in this study
and data assimilation methods have their own advantages and
disadvantages. The method proposed in this study possesses
strong fine-grained search capabilities, but its performance
is highly dependent on the selection of initial points. Data
assimilation methods can integrate multi-source data, signifi-
cantly improving the spatiotemporal consistency of inversion
results; however, their fine-grained search capabilities are
somewhat limited. Future research could explore combining
the real-time updating capabilities of data assimilation with
the adaptability and optimization efficiency of the framework
proposed in this study to further enhance the adaptability and
performance of groundwater pollution inversion.

One of the main methodological motivations of this study
is the integration of the BPNN surrogate model with the
AHA for GCI. This choice is grounded in both the in-
herent characteristics of GCI problems and the comple-
mentary mechanisms of the two methods. GCI is a typi-
cal high-dimensional, non-linear, and ill-posed inverse prob-
lem. The mapping from observed contaminant concentra-
tions to source characteristics and hydrogeological parame-
ters is often multi-modal and non-convex. In such cases, sur-
rogate models such as BPNN can provide a fast and flexible
approximation to computationally demanding groundwater
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simulations, but their use inevitably introduces approxima-
tion errors into the inversion objective function. These er-
rors may create local irregularities in the objective function
landscape, which can mislead optimizers and cause prema-
ture convergence — particularly when the optimization al-
gorithm lacks a mechanism to balance exploration and ex-
ploitation adaptively. The AHA offers notable advantages
in addressing these issues. Its bio-inspired mode-switching
strategy alternates dynamically between diversified search
and focused search. In the early stages of optimization, the
broad and varied exploration capability helps to survey the
global search space and reduces the risk of becoming trapped
in spurious local optima caused by surrogate-induced noise.
As the search proceeds, the algorithm adaptively shifts to-
ward more intensive exploitation, concentrating computa-
tional effort on promising regions and thereby accelerating
convergence. This dynamic adjustment is particularly impor-
tant in GCI problems, where the optimal parameter region
is often narrow and embedded within a complex and noisy
search space. In addition, the AHA’s adaptive update mech-
anism adjusts search trajectories in response to population
feedback, effectively mitigating the influence of local fluc-
tuations in the surrogate-predicted objective function on the
optimization process. This robustness to noisy or irregular
fitness landscapes complements the BPNN’s ability to gener-
alize across diverse contamination scenarios. It is worth em-
phasizing that this integration is not a simple “algorithm re-
placement” but a targeted design choice based on the struc-
tural characteristics of the problem: BPNN provides broad
adaptability to varying hydrogeological conditions, while the
AHA contributes resilience and fine-tuning capability when
the optimization landscape is distorted by surrogate approx-
imation errors. This synergy allows the proposed framework
to maintain both high accuracy and strong robustness un-
der different contamination scenarios and noise levels. More
importantly, the underlying design principle — matching the
characteristics of the surrogate model with the search dynam-
ics of the optimization algorithm — has broader applicability
to other environmental inversion problems.

6.4 Limitations

The overall inversion framework in this paper combines
BPNN and AHA and is validated under different noise sce-
narios to account for the effect of noise in the observed data.
The results indicate that the inversion framework demon-
strates high robustness. However, a limitation of this paper
is that noise is not addressed, and its presence can contam-
inate the observed data, further impacting the accuracy of
GCI. Noise elimination methods could be applied to the ob-
served data in future studies. Another major limitation is the
generalization of the actual aquifer system. Groundwater sys-
tems are often complex, necessitating model simplifications
through assumptions (e.g., homogeneity, isotropy) that may
not reflect the actual geological conditions, thereby affecting
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model accuracy. To address actual problems, the hydrogeo-
logical conditions of the study area should be thoroughly in-
vestigated, ensuring the model closely represents the actual
situation — reducing errors, improving model accuracy, and
ultimately enhancing inversion accuracy. In terms of compu-
tational time and efficiency, by integrating the agent model,
we can avoid repeatedly calling the numerical simulation
model during the optimization process, thereby significantly
improving computational efficiency. In our current imple-
mentation, thousands of optimization iterations can be com-
pleted in just a few minutes. However, as the complexity of
the inversion problem increases, the number of required sam-
ples and the training time for the surrogate model will also
increase significantly. Additionally, the current BPNN surro-
gate model is relatively lightweight, while deeper networks
or ensemble-based surrogate models may require more com-
putational resources. To address these issues, potential fu-
ture solutions include parallel computing, adaptive sampling,
and hybrid surrogate strategies that balance accuracy and ef-
ficiency.

7 Conclusions

In this study, a BPNN-AHA inversion framework was devel-
oped to accurately and synergistically identify groundwater
point and areal sources of contamination and combined hy-
drogeologic parameters. Among them, the BPNN surrogate
model can well replace the simulation model, and the AHA
had good global optimization capability and excellent solu-
tion accuracy. The robustness of the proposed methodology
was verified by applying the inversion framework to scenar-
ios with different noise levels. The conclusions of the present
study are listed below:

1. The construction of a surrogate model to the simulation
model satisfied the fitting accuracy requirement while
also significantly reducing the computational time. The
current study established BPNN and Kriging surrogate
models, with a comparison of the outputs of the models
illustrating that the former obtained a higher fitting ac-
curacy, with R? values of 0.9994 and 0.9989 for case 1
and case 2, respectively. Therefore, it can be applied to
the inversion framework.

2. The present study applied the AHA in the model op-
timization, with the results compared to those of PSO
and SSA optimization. Compared to PSO and SSA, the
AHA rapidly reached convergence and identified the
global optimum, and the MARE values for the inversion
results of case 1 and case 2 were 1.58 % and 2.03 %, re-
spectively.

3. The proposed inversion framework can realize the
synergistic identification of PSC and ASC combined
with hydrogeological parameters, which can ensure
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high identification accuracy, and the inversion frame-
work has strong robustness under different noise levels.
While individual identification simplifies the problem
but may ignore correlations between parameters, syn-
ergistic identification improves the accuracy and con-
sistency of identification by synchronizing the estima-
tion of pollution sources and hydrogeological param-
eters. However, noise and parameter estimation uncer-
tainties may still affect the reliability of the inversion re-
sults. Therefore, uncertainty analysis needs to be further
considered in subsequent studies. Overall, the BPNN—
AHA inversion framework has excellent inversion per-
formance and strong practicability, which can provide
a reliable basis for groundwater pollution remediation
and management. For researchers working in ground-
water contamination source identification, this study un-
derscores the fact that the method selection should not
be guided solely by algorithmic novelty but should be
informed by the inherent complexity of the problem and
the compatibility between the research question and the
chosen approach. In groundwater contamination inver-
sion, selecting a highly compatible method can substan-
tially improve efficiency, while leveraging and organi-
cally integrating the strengths of different methods can
greatly enhance robustness. This concept is equally ap-
plicable to a broader range of complex environmental
inversion problems, offering valuable insights and prac-
tical potential.
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