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Abstract. Hydrological climate change impact studies typ-
ically rely on hydrological projections generated by hydro-
logical models driven with bias-adjusted climate simulations.
Such hydrological projections are influenced by internal cli-
mate variability, which can mask the emergence of robust
climate trends. To account for internal variability in climate
projections, single-model initial-condition large ensembles
(SMILES) can be employed. SMILEs are generated by run-
ning a single global/regional climate model many times with
slightly perturbed initial conditions. However, it remains
challenging to select an appropriate bias adjustment strat-
egy for SMILEs used in hydrological impact studies because
of the relative importance of inter-variable dependence and
the preservation of both climate variability and the change
signal. To facilitate such selection, we here compare differ-
ent bias adjustment strategies applied to SMILEs and their
effect on hydrological impact assessments. Specifically, we
investigate how climate and hydrological extremes change
for 87 catchments in the Swiss Alps when using (a) univari-
ate vs. bivariate, (b) ensemble vs. individual-member, and
(c) change-preserving vs. non-change-preserving bias adjust-
ment methods. To do so, we adjust the biases of a 50-member
SMILE with the different adjustment methods and drive a
hydrological model to simulate and project high and low
flows. Our comparison shows (1) no clear benefits from us-

ing bivariate instead of univariate bias adjustment methods
when the SMILE already efficiently simulates the depen-
dence between temperature and precipitation and (2) that the
choice of using ensemble vs. individual-member and change-
preserving vs. non-change-preserving bias adjustments leads
to large differences in the values of signal robustness indi-
cators, including temperature, precipitation and streamflow
signal-to-noise ratios and streamflow and precipitation time-
of-emergence. These influences need to be considered when
selecting an appropriate bias adjustment strategy for a given
application. Based on our comparison, we generally recom-
mend to apply change-preserving and ensemble bias adjust-
ment methods in future hydrological impact studies using
SMILEs. Further research is needed to improve bias adjust-
ment methods that preserve both the signal and the variability
of ensemble climate projections.

1 Introduction

Hydrological extremes such as floods and droughts can have
severe impacts on human livelihood, ecology and economy
(e.g. Rolls et al., 2012; Hallegatte, 2012; Van Loon, 2015).
These extremes are changing in magnitude, frequency and
spatial extent in Europe and other parts of the world (Dai,
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2012; Berghuijs et al., 2019; Bertola et al., 2020; Kemter
et al., 2020; Brunner et al., 2021a; Fang et al., 2024) and are
expected to continue to change with climate change (Madsen
etal., 2014; Brunner et al., 2021b; Willkofer et al., 2024). Fu-
ture changes in such extremes can be assessed through hydro-
logical climate change impact studies that rely on hydrolog-
ical projections generated by driving a hydrological model
with climate model simulations. However, there remain large
uncertainties about the sign, frequency and magnitude of pro-
jected future changes in both floods and droughts because of
uncertainties within the modelling chain (e.g. Clark et al.,
2016), among which internal climate variability is an irre-
ducible uncertainty source that affects both observations and
future projections (Deser et al., 2020; Lehner et al., 2020;
Lehner and Deser, 2023).

Internal climate variability causes large streamflow fluctu-
ations on annual to decadal timescales that may mask change
signals (Aalbers et al., 2017; Wood and Ludwig, 2020) and
influence the estimation of extremes and their return periods
(Bloschl et al., 2015; Schulz and Bernhardt, 2016). There-
fore, a proper quantification of internal variability is required
to disentangle the changes in extremes that can be attributed
to climate change from those related to internal variability
(e.g. Wood and Ludwig, 2020; Bevacqua et al., 2023). In
recent years, single-model initial-condition large ensembles
(SMILESs) have emerged in climate impact research as a valu-
able and robust tool to quantify internal variability and ac-
count for its influence on climate change projections (e.g.
Maher et al., 2021; Deser et al., 2020). SMILEs are generated
by carrying out multiple simulations with one global/regional
climate model (GCM/RCM), each with a slightly perturbed
initial condition. Due to the chaotic nature of the climate sys-
tem, this results in many different equally plausible weather
and climate trajectories. Analysing SMILE ensembles there-
fore enables quantifying internal variability and identifying
robust climate change signals (e.g. Milinski et al., 2020; Ma-
her et al., 2021), including changes in extreme events (e.g.
van der Wiel et al., 2019; Willkofer et al., 2024). Such en-
sembles differ from multi-model ensembles, which are gen-
erated by running multiple GCMs/RCMs under one or more
emission scenarios and represent uncertainties from models
and emission scenario choices (e.g. Jacob et al., 2020; Lehner
et al., 2020).

Climate simulations in general (i.e. SMILEs and multi-
model ensembles) can exhibit systematic biases, i.e. the sta-
tistical characteristics of the simulations, such as the mean,
variance or extremes, can differ from those calculated for ob-
servations or reanalyses. These biases affect hydrologically
relevant variables (Maraun, 2016; Hakala et al., 2018; Ma-
her et al., 2018; Jacob et al., 2020), such as temperature and
precipitation at the catchment scale — the scale relevant for
hydrological impact assessments — and can lead to a misrep-
resentation of hydrological processes, therefore undermining
the reliability of hydrological projections using plain simula-
tions as inputs. To overcome this issue, climate simulations
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need to be bias adjusted before using them in hydrological
models (e.g. Teutschbein et al., 2011; Teutschbein and Seib-
ert, 2012; Muerth et al., 2013; Pastén-Zapata et al., 2020).

Several statistical methods have been developed to remove
systematic biases from climate model outputs, among which
quantile mapping is an effective and widely used method
(e.g. Déqué, 2007; Jakob ThemeBl et al., 2011; Rajczak et al.,
2015; Cannon et al., 2015). Univariate quantile mapping fo-
cuses on adjusting the biases in the statistical distribution
of individual variables and corrects for systematic errors by
translating the quantiles of the simulated distribution to the
quantiles of the observed distribution. While bias adjustment
realigns the characteristics of the simulated distribution with
those of the observed distribution, the use of quantile map-
ping and other bias adjustment techniques can also have
some undesired side-effects on climate projections (e.g. Ma-
raun, 2013; Maraun et al., 2017).

For example, univariate quantile mapping does neither ex-
plicitly account for inter-variable dependencies (when uni-
variate; Gudmundsson et al., 2012; Teutschbein and Seibert,
2012) nor spatial or temporal dependencies (e.g. Francgois
et al., 2020) and can alter the climate change signal of the
raw model simulations (e.g. Hagemann et al., 2011). Sev-
eral studies have focused on developing more reliable meth-
ods to overcome these deficiencies. Namely, bias adjustment
methods have been proposed that (1) adjust variable depen-
dencies, such as the dependence between precipitation and
temperature (e.g. Li et al., 2014; Cannon, 2017; Vrac, 2018;
Robin et al., 2019); (2) adjust the spatial co-variations of
climate variables (Frangois et al., 2021) and their temporal
dependence (Vrac and Thao, 2020; Robin and Vrac, 2021);
and (3) preserve the change signal of the climate model (e.g.
Michelangeli et al., 2009; Hempel et al., 2013; Cannon et al.,
2015; Robin et al., 2019). However, the use of these more
complex adjustment methods, i.e. methods that do not only
correct univariate distribution features of simulated variables
individually but also adjust their dependence relationships,
can lead to a deterioration of other statistical features (e.g.
spatial dependence; Frangois et al., 2020). Overall, the poten-
tial trade-offs between different types of adjustment methods
need to be investigated.

When selecting a bias adjustment strategy for a given ap-
plication, some methodological choices have to be made,
which include (1) whether to correct variables individually
or to correct all variables of interest jointly (univariate vs.
bi-/multivariate); (2) whether to choose a method that pre-
serves the change signal of the original climate simulations
or not (change-preserving vs. non-change-preserving); and,
in the case of SMILEs, (3) whether to correct each ensem-
ble member individually or to adjust all of them jointly using
the distribution of the pooled ensemble members (individual-
member vs. ensemble adjustments). We elaborate on these
choices in the next few paragraphs.

The added value of multivariate adjustments for climate
impact studies has been shown to depend on the study re-
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gion and the purpose of the study (e.g. Kirchmeier-Young
et al., 2017; Allard et al., 2025). For hydrology, adjusting the
variable dependence between precipitation and temperature
can be advantageous when simulating snow processes and
streamflow in snow-dominated catchments (e.g. Chen et al.,
2018; Meyer et al., 2019; Guo et al., 2020; Tootoonchi et al.,
2023). However, bivariate adjustments do not necessarily
add value in rainfall-dominated catchments (e.g. Tootoonchi
et al., 2023) and are not always robust (i.e. may lead to differ-
ent simulation performances between calibration and evalu-
ation periods; Chen et al., 2018; Tootoonchi et al., 2023).
While existing studies have mostly focused on the added
value of bivariate compared to univariate bias adjustment on
mean flow (e.g. by looking at the water balance components;
Meyer et al., 2019), it remains to be assessed what value bi-
variate bias adjustment can add to simulations of extreme
events (e.g. Tootoonchi et al., 2022, 2023). Furthermore, the
added value of bivariate bias adjustment for SMILEs remains
to be assessed.

In most cases, bias adjustment is applied to each ensem-
ble member separately, as multi-model ensembles mainly
consist of a single member per model (e.g. Pastén-Zapata
et al., 2020; Matiu et al., 2024). However, in the case of
SMILEs, individual-member adjustment can modify the en-
semble spread (e.g. Gelfan et al., 2015; Kirchmeier-Young
et al., 2017; Chen et al., 2019; Vaittinada Ayar et al., 2021;
Cannon et al., 2021), a crucial property that needs to be pre-
served in order to account for internal variability. Adjusting
each member individually against observations can lead to
a reduction of the ensemble spread in the reference period
but to an overestimation in future periods (Vaittinada Ayar
et al., 2021). To overcome this problem, the individual mem-
bers of a SMILE are often adjusted using adjustment fac-
tors derived from the difference between the distribution of
the ensemble (all members pooled together) and the observa-
tions rather than factors derived from the difference between
the distribution of an individual member and the observations
(Chen et al., 2019; Vaittinada Ayar et al., 2021; Faghih and
Brissette, 2023). Another approach is to adjust each member
using adjustment factors derived from the difference between
the distribution of a randomly selected member and the ob-
servations (Kirchmeier-Young et al., 2017; Cannon et al.,
2021). Vaittinada Ayar et al. (2021) have shown that the en-
semble adjustment method (i.e. all members pooled together)
preserves the variability of precipitation and temperature en-
sembles, both for the historical period and for future projec-
tions. Similarly, Chen et al. (2019) assessed the impact of
using individual vs. ensemble bias adjustment on streamflow
projections for a catchment in China and demonstrated that
the differences between ensemble and individual adjustments
can be masked in the evaluation period due to uncertainties
in hydrological modelling. Their study is limited to histori-
cal simulations and one catchment, and it is unclear whether
these findings generalize to other contexts. Therefore, similar
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analyses need to be performed for other locations and with a
focus on hydrological extremes.

Bias adjustment can be performed either in ways that pre-
serve the changes between the historical and projected distri-
butions of a climate variable from the raw (i.e. unadjusted)
simulations (change preserving methods) or in ways that
do not explicitly aim to preserve the raw climate change
signal in the adjustments (non-change-preserving methods).
Change-preserving adjustments can be performed by de-
trending the time series prior to bias adjustment and then
reapplying the removed trend to the adjusted time series (e.g.
QDM; Cannon et al., 2015) or by preserving the changes in
the cumulative distribution function when deriving the ad-
justment factors (e.g. CDF-t; Michelangeli et al., 2009; Vrac
etal., 2012). Many studies use change-preserving methods to
preserve the climate sensitivity of the model, which is con-
sidered to be an important property for studying changes in
climate extremes (Cannon et al., 2015). Furthermore, not pre-
serving the simulated climate signal during bias adjustment
can significantly alter the future projections of climate and
hydrological extremes and can lead to statistical and non-
physical artefacts in the adjusted model output (e.g. Hage-
mann et al., 2011; Cannon et al., 2015; Johnson and Sharma,
2015; Ivanov et al., 2018; Chadwick et al., 2023). While the
added value of using change-preserving over non-change-
preserving methods has been demonstrated for multi-model
ensembles (e.g. Vrac et al., 2012; Cannon et al., 2015), it
is yet unclear how the choice of one or the other approach
would interact with the choice of adjusting SMILE ensemble
members individually or jointly. Consequently, these inter-
actions need to be investigated. Furthermore, it remains to
be assessed how the choice of change-preserving vs. non-
change-preserving methods and individual-member vs. en-
semble methods affects important change indicators that are
often used in climate impact studies on extremes, including
the signal-to-noise ratio (mean signal of the ensemble di-
vided by the spread of the signal between members) and the
time-of-emergence (time at which the signal is larger than
the noise; e.g. Wood and Ludwig, 2020; Deser et al., 2020).

In summary, while it is generally accepted that some cli-
mate model bias adjustment is necessary for hydrological
climate impact studies, it remains challenging to select an
appropriate bias adjustment strategy for studying changes in
hydrological extremes using SMILEs. The objective of the
present study is thus to determine which bias adjustment
strategies are suited for studying future changes in hydrologi-
cal extremes using a SMILE. Specifically, we investigate how
climate and hydrological extremes change when using (1)
univariate vs. bivariate, (2) ensemble vs. individual-member,
and (3) change-preserving vs. non-change-preserving bias
adjustment methods. To address these research questions, we
adjust the biases of a 50-member RCM-SMILE (CRCMS5-
LE; Leduc et al., 2019) over Switzerland using five bias ad-
justment strategies. We use all of these adjusted climate en-
sembles to simulate streamflow for current and future climate
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conditions with an HBV-type hydrological model (Parajka
et al., 2007) for 87 catchments in Switzerland. Using these
hydrological simulations, we first analyse the performance
of the different strategies in the historical period using an en-
semble analysis framework to account for internal variability.
Second, we analyse their ability to preserve projected climate
change. Last, we determine the influence of the bias adjust-
ment strategy choice on signal-to-noise ratios and the time-
of-emergence and how it translates to changes in streamflow
extremes.

2 Data and methods

Figure 1 illustrates our workflow, consisting of precipitation
and temperature simulated by a SMILE, five bias adjustment
strategies, 87 catchments, one hydrological model, and an
evaluation framework for historical simulations and future
projections. We describe each step of this workflow in the
following sections. Note that we use the term “strategy” to
refer generally to the combination of a statistical method with
the choice of change-preserving and ensemble adjustments.

2.1 Datasets

We perform analyses at the catchment scale, using 87 catch-
ments in Switzerland (Fig. 1, Table S1 in the Supplement)
that we classify into three elevation groups (Fig. 1). The
catchment selection originates from the 98 “near-natural”
catchments (i.e. no reservoirs are located upstream from the
gauging stations) that Kraft et al. (2025) selected from the
CAMELS-CH dataset (Hoge et al., 2023). We do not in-
clude catchments with a predominant influence of glaciers
on streamflow (11 catchments), which we do not take into
account in the hydrological modelling process. This catch-
ment selection covers a wide range of hydrological regimes
over Switzerland.

We use two datasets for our experiments: (1) climate sim-
ulations from a SMILE and (2) observations, which we use
to calibrate the hydrological model and to adjust the biases
of the climate simulations. As observations, we use gridded
daily 2km data for precipitation and temperature between
1961 and 2020 that originate from a spatial analysis of data
measured at rain gauges and temperature stations (RhiresD
and TabsD; Frei and Schir, 1998; Frei, 2013; MeteoSwiss,
2019a, b). As climate simulations, we use precipitation and
temperature data from the 50-member CRCMS5-LE from
the ClimEx experiment (Canadian Regional Climate Model
version 5 (CRCMYS) large ensemble; Leduc et al., 2019).
This large ensemble was generated by dynamically down-
scaling the 50-member CanESM2-LE (Canadian Earth Sys-
tem Model version 2 large ensemble; Fyfe et al., 2017;
Kirchmeier-Young et al., 2017) with the regional climate
model CRCMS (v.3.3.1; Martynov et al., 2013; geparovié
et al., 2013) to the EURO-CORDEX 0.11° grid (= 12 km).
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The simulations were driven with observed anthropogenic
(greenhouse gas emissions, aerosols and land cover) and nat-
ural (solar and volcanic influences) forcings over the histori-
cal period (1950-2005) and with the RCP8.5 scenario (Mein-
shausen et al., 2011) from 2006 to 2099. We aggregate the
original 1-hourly simulations to the daily time step (24 h sum
for precipitation and 24 h average for temperature) for each
grid cell and extract 389 grid cells over Switzerland.

2.2 Bias adjustment

We adjust the systematic biases of the RCM-SMILE using
a selection of three bias adjustment methods with differ-
ent types of properties, covering univariate and bivariate as
well as change-preserving and non-change-preserving meth-
ods (see Table 1):

— A univariate quantile mapping (QM) method developed
by Rajczak et al. (2015) and Feigenwinter et al. (2018),
which is non-change-preserving. We use the version of
this method implemented in the qmCH2018 R pack-
age (Kotlarski and Rajczak, 2019), which was used to
develop the Swiss climate projections for the CH2018
project (Sgrland et al., 2020).

— The “Cumulative Distribution Function — Transform”
(CDF-t) method developed by Michelangeli et al.
(2009) and Vrac et al. (2012). CDF-t is a univariate
quantile mapping method that takes into account poten-
tial changes in the distribution of the adjusted variable
(i.e. precipitation or temperature) between the histori-
cal and the projected period (change-preserving). We
use the version implemented in the SBCK R package
(Robin, 2023).

— The “Rank Resampling for Distributions and Depen-
dences” (R2D2) method developed by Vrac (2018).
R2D2 is a multivariate bias adjustment method that pre-
serves the simulated change in the univariate distribu-
tion but not the dependence. In our study, we use the
term “bivariate” to refer to the grid-cell-by-grid-cell ad-
justment of the dependence between precipitation and
temperature. R2D2 first adjusts the marginal values of
each variable’s distribution using the CDF-t method and
then performs a reordering of the rank structure to ad-
just the dependence between precipitation and temper-
ature based on the observed dependence. We use the
version implemented in the SBCK R package (Robin,
2023). Both precipitation and temperature are used as
“multidimensional conditioning dimensions” to main-
tain some rank chronology (see Sect. 3.2 of Vrac and
Thao, 2020).

A comparison between CDF-t and QM will allow us to
quantify the difference between change- vs. non-change-
preserving methods, and a comparison between R2D2 and
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Figure 1. Flowchart describing the modelling and evaluation steps. See text for details.

Table 1. List of the three bias adjustment methods tested: QM, CDF-t and R2D2. The last two columns encompass five bias adjustment

strategies.
Abbreviation Name Main characteristics Ensemble Individual-member
adjustments  adjustments

QM Quantile mapping Univariate; Yes Yes
non-change-preserving

CDF-t Cumulative Distribution Function — Transform Univariate; Yes Yes
change-preserving

R2D2 Rank Resampling for Distributions and Dependences  Bivariate; Yes No

change-preserving
(marginals only)

CDF-t will allow us to quantify the difference between uni-
variate and bivariate bias adjustments.

We adjust the precipitation and temperature biases of the
RCM-SMILE at its native resolution (12 km) to avoid intro-
ducing artefacts resulting from additional downscaling (e.g.
overestimation of extremes and overcorrection of the driz-
zle effect for area means; Maraun, 2013). Applying the bias
adjustment at the catchment scale would result in mixing
the bias adjustment with upscaling for large catchments and
downscaling for small catchments. To do so, we first up-
scale the precipitation and temperature observations to the
RCM-SMILE resolution using conservative remapping with
the Climate Data Operators (CDO) software (Schulzweida,
2023). We then run the adjustments grid cell by grid cell.
Last, we calculate catchment averages of precipitation and
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temperature to generate inputs for the lumped hydrological
model (see Sect. 2.3). However, we perform all analyses at
the catchment scale (except for the correlation analysis; see
Sect. 3.1) in order to look at the impact of the choice of
bias adjustment strategies on hydrologically meaningful vari-
ables.

We first apply all of the above-mentioned methods by
adjusting the entire ensemble together (“ensemble adjust-
ment”). To perform the ensemble adjustment, we use the
“Bias Correction ensemble” method (BCens) described in
Vaittinada Ayar et al. (2021), which adjusts each member
based on adjustment factors derived from the difference be-
tween the ensemble distribution (all members pooled to-
gether) and the observations. Then, we test a second method
to adjust the ensemble that consists of adjusting each mem-
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ber individually (“individual-member adjustment”). Here,
we adjust each member based on adjustment factors de-
rived from the difference between the respective individual-
member distribution and the observations. To reduce the
complexity of the analyses, we apply individual-member ad-
justment only to QM and CDF-t (see Table 1).

To assess the advantages and disadvantages of each ad-
justment strategy, we conduct two experiments. First, we per-
form a calibration/evaluation test over the historical period to
assess the performance of the bias adjustment strategies. For
this, we calibrate the bias adjustment strategies for two sub-
periods: 1961-1990 (P1) and 1991-2020 (P2). We use the
adjustment factors derived from P1 to adjust the climate sim-
ulations of P2 and the adjustment factors derived from P2 to
adjust the climate simulations of P1 (cross-evaluation test).
Note that P2 includes both historical and scenario data, but
this should not affect the results of our study. Second, we cal-
ibrate the bias adjustment strategies for 1991-2020 and apply
them to future projections of precipitation and temperature
between 2021 and 2099 to evaluate change preservation.

To account for the seasonal cycle, we perform bias ad-
justment for each month individually, based on a 3-month
distribution centred on the month of interest (Cannon et al.,
2015). To correct for dry days in the precipitation time se-
ries, we apply a threshold of 0.05 mm d~! for the QM method
(reference setup for quantile mapping) and the “Singularity
Stochastic Removal” method of Vrac et al. (2016) for CDF-
t and R2D2 (reference setup for these methods), which cor-
rects precipitation occurrences by replacing precipitation val-
ues below a specific threshold with randomly selected and
extremely small values.

Then, for the second experiment focusing on future pro-
jections, we adjust the biases over a 30-year sliding window,
moving forward every 10 years, as done in Hempel et al.
(2013), Vrac et al. (2016), Cannon (2017) and Meyer et al.
(2019). For each time window, the central 10 years of ad-
justed data are saved. For example, this method adjusts the
biases for 2040-2049 based on the adjustment factors calcu-
lated for 2030-2059.

2.3 Hydrological modelling

We run the TUW model (Parajka et al., 2007) to simu-
late and project streamflow at the outlet of 87 catchments
with the precipitation and temperature time series from the
different bias adjustment strategies. The TUW model is a
lumped rainfall-runoff model based on the HBV model
structure (Bergstrom and Forsman, 1973) and takes time
series of precipitation, temperature and potential evapo-
transpiration as inputs. We use the model version imple-
mented in the TUWmodel R package (Viglione and Para-
jka, 2020) and estimate potential evapotranspiration using
the air-temperature-based formula provided by Oudin et al.
(2005). The TUW model has 15 free parameters, which we
calibrate for each catchment using time series of meteorolog-
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ical and streamflow observations (Federal office for the Envi-
ronment, 2024). We calibrate the parameters over the period
1993-2011 using the Kling—Gupta efficiency (KGE) index
(Gupta et al., 2009) as the objective function, and we apply
a warm-up period of 2 years before the calibration period.
The model shows reasonable performance for high flows in
extrapolation between 2011 and 2019 over the catchment set,
with a median KGE value of 0.81 (0.75 for the lower quar-
tile and 0.84 for the upper quartile; Fig. S10). The model
shows lower performance for low than for median and high
flows (Fig. S10), which is a common limitation of hydrolog-
ical models (Bruno et al., 2024). For this reason, we check
the robustness of our results with respect to the choice of the
hydrological model by using a second model with a differ-
ent structure (Cemaneige-GRS5J; Fig. S3; Le Moine, 2008;
Valéry et al., 2014; Coron et al., 2020).

2.4 Evaluation

We evaluate the hydrological simulations driven by the
SMILE both for the historical period based on the cali-
bration/evaluation sub-periods (1961-1990 and 1991-2020)
and for three future periods (2021-2050, 2051-2080, 2081—
2099) compared to the reference period (1991-2020) using
different percentiles representing low-flow (Ist), high-flow
(99th) and normal flow (median) conditions. We use the same
percentiles to evaluate temperature but the 90th (moderate
precipitation) and the 99th (extremes) percentiles for precip-
itation, as it follows a right-skewed distribution.

We first evaluate the performance of the different bias ad-
justment strategies (QM, CDF-t and R2D2; ensemble vs.
individual adjustments) over the historical period (calibra-
tion/evaluation experiment). When adjusting a SMILE, we
do not want the adjusted statistical properties of each mem-
ber to be close to those of the observations, as this would
imply a reduced ensemble spread (i.e. internal variability).
Instead, we want to remove systematic biases so that the sta-
tistical properties for the different members of the ensem-
ble contain those of the observations over the climatic sub-
periods (i.e. P1 and P2). In other words, we want to obtain
an unbiased ensemble (systematic biases) instead of unbi-
ased members, which would imply removing the fluctuations
due to internal climate variability. To test this, we use the en-
semble evaluation framework developed in Suarez-Gutierrez
et al. (2021) and Wood et al. (2021). The aim of this frame-
work is to evaluate the biases and the variability of ensemble
climate simulations by comparing statistical features of ob-
servations to those of the ensemble runs. To apply this frame-
work, we first calculate a yearly percentile for a given vari-
able (e.g. 99th temperature percentile) for each sub-period,
catchment, bias adjustment strategy and member. We calcu-
late the same statistic for the observations, shown as black
markers in the top-right panel of Fig. 1. Then, we calculate
the central 75 % confidence interval of the yearly percentile
across the members for each year (blue interval in the top-
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right panel of Fig. 1). The 75 % criterion calculates the pro-
portion of observed statistics that fall within the 75 % con-
fidence interval. The ideal value for this criterion is 0.75, as
we expect 75 % of the observed statistics to fall within the
simulated 75 % confidence interval. For the example shown
in the top-right panel of Fig. 1, the value of this criterion
is 0.83, as 5 out of 30 years of observations fall outside the
75 % range of the ensemble. This criterion evaluates both the
bias and the variability of the ensemble (for more details, see
Suarez-Gutierrez et al., 2021; Wood et al., 2021). To evalu-
ate the inter-member variability of the ensemble, we calcu-
late the spread between members for a given percentile and
a given variable (standard deviation for temperature and co-
efficient of variation for precipitation). To evaluate the per-
formance of bias adjustment for streamflow simulations, we
use the streamflow time series simulated by the hydrologi-
cal model with observed precipitation and temperature inputs
as our control run to calculate the 75 % range criterion. We
use simulated instead of observed streamflow to reduce the
dependence of our results on uncertainties in hydrological
modelling. This means that the performance of the hydrolog-
ical model in simulating streamflows should not significantly
impact the results. To assess whether the performance dis-
tributions are significantly different across bias adjustment
strategies, we perform the Wilcoxon rank test (Wilcoxon,
1945) at a significance level of 0.05 (non-paired; two-sided).
Finally, for conciseness purposes, we combine both climate
sub-periods (P1 and P2) in the presentation of the results,
which means that “calibration” and “evaluation” include both
P1 and P2.

In order to assess the impact of change-preserving and en-
semble adjustments on future climate and streamflow projec-
tions, we calculate several indicators. First, we calculate the
discrepancy between the signal projected by the unadjusted
ensemble and the signal projected by the ensemble adjusted
by the non-change-preserving bias adjustment method (QM)
or the change-preserving bias adjustment method (CDF-t) for
precipitation and temperature (ensemble adjustment method
only). To do this, we calculate the signal (difference) between
the future period (e.g. 2081-2099) and the reference period
(1991-2020) for a given percentile (e.g. 1st percentile of tem-
perature) and a given member. We then calculate the average
signal across members. To ensure consistency with the anal-
yses performed on the historical period, we calculate annual
percentiles averaged over the climate period of interest. We
calculate an absolute signal for temperature and a relative
signal for precipitation. Second, we calculate the difference
between the signal from the adjusted ensemble and the sig-
nal from the raw (i.e. unadjusted) ensemble. This allows us
to assess whether the two adjustment methods preserve the
signal of the climate model.

Second, to further assess the impacts of change-preserving
vs. non-change-preserving and individual-member vs. en-
semble adjustments on climate and streamflow projections,
we calculate indicators that are often used in studies on
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climate change impacts on extremes, namely the signal-
to-noise ratio and the time-of-emergence (e.g. Muelchi
et al., 2021a, b). The signal-to-noise ratio indicates how the
changes (signal) compare to the noise of the ensemble (stan-
dard deviation of the signal projected by the different mem-
bers). We calculate the signal-to-noise ratio for precipitation,
temperature and streamflow percentiles and compare the re-
sults between bias adjustment strategies and between catch-
ments. The time-of-emergence is defined as the year when
the signal-to-noise ratio exceeds 1 or falls below —1 (and
remains so) and indicates when changes emerge from the
noise. To calculate the signal-to-noise ratio values used to
estimate the time-of-emergence, we apply a centred 20-year
moving window (moving every year from the historical pe-
riod to the end of the century). We analyse only the results
for the precipitation and streamflow time-of-emergence, as
the time-of-emergence for temperature is reached very early
for most catchments in our dataset. In order to compare
the time-of-emergence values between the bias adjustment
strategies, we classify the catchments into three elevation
groups (< 1000 m, [1000, 2000] m and > 2000 m; Fig. 1).

We summarize all the indicators used for the evaluation in
Table 2.

3 Results

3.1 Performance of the bias adjustment methods in the
historical period

3.1.1 Streamflow

We first examine the performance of the three bias adjust-
ment methods (QM, CDF-t and R2D2), using the ensemble
adjustment method, for streamflow simulations in the histor-
ical period (Fig. 2).

As expected, the streamflow simulations driven by the un-
adjusted (raw) ensemble have large biases in the historical
period (cf. position of the dark blue boxplots compared to
the optimum value of the performance criterion, i.e. 0.75).
All bias adjustment methods significantly reduce the stream-
flow biases compared to the raw ensemble across catchments,
seasons and streamflow percentiles, although we find a drop
in performance when moving from the calibration to the
evaluation periods. The performance of all bias adjustment
methods varies by season, with higher performance in winter
(DJF) and summer (JJA) and lower performance in spring
(MAM) and autumn (SON). There are no significant dif-
ferences between the performance distributions of univariate
(CDF-t) and bivariate (R2D2) adjustments for all seasons and
streamflow percentiles (except for high flow in summer for
the calibration periods, where univariate adjustments lead to
higher performance). Additionally, we find similar results for
snow water equivalent simulations (see Fig. S1 in the Sup-
plement). In contrast, the univariate non-change-preserving
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Table 2. List of the indicators used to evaluate the bias adjustment strategies.

Indicator Variable Period
75 % criterion Streamflow, precipitation and temperature ~ Historical
Rank correlation Precipitation and temperature Historical
Inter-member ensemble spread  Precipitation and temperature Historical
Signal Streamflow, precipitation and temperature ~ Future
Signal-to-noise ratio Streamflow, precipitation and temperature ~ Future
Time-of-emergence Streamflow and precipitation Future
Streamflow
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Figure 2. Ability of the three bias adjustment methods and the unadjusted ensemble (raw) to reproduce streamflow statistics of the control
runs (streamflow time series simulated by the hydrological model with observed precipitation and temperature inputs) for the 87 catchments.
The fraction of control runs within the simulated 75 % confidence interval was calculated for four seasons (December/January/February,
March/April/May, June/July/August, September/October/November) and three streamflow percentiles (1st, 50th and 99th). The optimum
value of the performance criterion is 0.75. QM is the univariate non-change-preserving method, CDF-t is the univariate change-preserving
method and R2D2 is the bivariate change-preserving method. All methods were run using the ensemble adjustment method. Calibration and
evaluation combine both climatic sub-periods. Statistically different distributions are connected by black lines. These black lines are not
plotted for the raw ensemble because its distribution significantly differs from all bias-adjusted distributions.

method (QM) has higher performance for high flow than the
univariate change-preserving method (CDF-t) for both evalu-
ation periods and all seasons. The same differences are found
between bivariate change-preserving (R2D2) and univariate
non-change-preserving (QM) adjustments. Additionally, we
find no obvious spatial patterns between the bias adjustment
methods (Fig. S2). These findings are independent of the
choice of the hydrological model (see Fig. S3 in the Sup-
plement) and of the confidence interval chosen (Fig. S11).
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3.1.2 Dependence between precipitation and
temperature

These results highlight that there are no significant improve-
ments in streamflow simulations from applying bivariate over
univariate adjustments (i.e. between R2D2 and CDF-t). We
now investigate possible reasons for this finding, which are
(1) the ability of the unadjusted ensemble to reproduce the
observed dependence between precipitation and temperature
and (2) the ability of the bias adjustment methods to ad-
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just this dependence. By construction, unlike the univari-
ate method (CDF-t), the bivariate method (R2D2) is explic-
itly designed to adjust this dependence. To check how well
the bivariate method captures the observed precipitation—
temperature dependence compared to the univariate method
and the raw ensemble, we look at the Spearman rank corre-
lation between precipitation and temperature for the 389 ad-
justed cells (Fig. 3; here, the results of QM are not presented,
as they follow those of CDF-t). The correlations between pre-
cipitation and temperature simulated by the raw ensemble are
already close to the observed correlations for a large number
of cells (Fig. 3A and B). However, the spatial variability of
the correlation values is smoother than the one of the obser-
vations, and negative correlations are more pronounced over
high elevations, about 0.1 larger in absolute terms. The uni-
variate method (CDF-t) removes the spatial smoothing of the
raw ensemble and already brings the values closer to the ob-
servations (Fig. 3C). The bivariate adjustment (R2D2) fur-
ther improves these correlations (Fig. 3D) but does not lead
to any substantial improvements compared to CDF-t.

3.1.3 Ensemble adjustments and interannual vs.
inter-member variability

The results presented in Fig. 2 show that the univariate non-
change-preserving adjustments (QM) result in higher high-
flow performance than the univariate change-preserving ad-
justments (CDF-t). We now examine whether the choice of
the ensemble adjustment method (individual-member vs. en-
semble; Fig. 4A and B) is linked to this result by exam-
ining precipitation and temperature performance. We find
no difference in precipitation and temperature performance
between non-change-preserving bias adjustment (QM) and
change-preserving bias adjustment (CDF-t) and between
individual-member and ensemble adjustments for the 90th
precipitation percentile, and for the 50th and 99th tempera-
ture percentiles, for both the calibration and evaluation peri-
ods. We obtain a different pattern for the 99th precipitation
percentile and for the 1st temperature percentile. While there
are no significant differences between individual and ensem-
ble adjustments for the QM method for neither calibration
nor evaluation, the performance distributions of CDF-t are
significantly different in evaluation for both ensemble adjust-
ment methods compared. CDF-t in ensemble mode leads to
a degraded performance in the simulation of the tail of the
precipitation distribution and in the simulation of the left tail
of the temperature distribution. In fact, there is a reduction in
performance by 6 % for precipitation and by 10 % for temper-
ature compared to individual-member adjustments (Fig. 4),
i.e. fewer observations fall within the simulated 75 % confi-
dence interval (cf. top-right panel of Fig. 1).

While individual-member bias adjustments lead to un-
biased simulations when looking at interannual extremes
(Fig. 4), they could reduce the variability of the ensemble.
We investigate this aspect by calculating the inter-member
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variability of the ensemble (the standard deviation for tem-
perature and the coefficient of variation for precipitation) for
the temperature and precipitation percentiles used in Fig. 4
(Fig. 5).

Individual-member adjustments clearly reduce the vari-
ability of the ensemble for the calibration periods (median
values of the spread ratio are always lower than 0.25 for tem-
perature and 0.5 for precipitation) but increase the variabil-
ity of the ensemble for the evaluation periods (median val-
ues of the spread ratio are always higher than 1.3 for tem-
perature and 1.4 for precipitation) for both temperature and
precipitation percentiles and for both change-preserving and
non-change-preserving methods. In contrast to individual-
member adjustments, ensemble adjustments preserve the
variability of the ensemble during both calibration and evalu-
ation for most catchments and for both temperature and pre-
cipitation (median spread ratio is close to 1 in most cases).
Note that for ensemble adjustments, the variability of the
precipitation ensemble is, in most cases, larger than the raw
variability, but to a much smaller extent than for individual-
member adjustments.

3.2 Future climate and hydrological extremes

The analysis for the historical period shows that the choice
of individual-member vs. ensemble bias adjustment and
change-preserving vs. non-change-preserving bias adjust-
ment impacts streamflow, temperature and precipitation per-
formance, as well as precipitation and temperature variabil-
ity. These differences may lead to discrepancies in the projec-
tion of future climate and hydrological extremes. Therefore,
we investigate the differences in the projected climate signal
and the signal-to-noise ratio due to the choice of the bias ad-
justment strategy compared to the signal projected by the raw
(unadjusted) ensemble that we want to preserve. Further, we
assess the impact of this choice on the time-of-emergence of
both precipitation and streamflow.

3.2.1 Preservation of changes in temperature and
precipitation

Figure 6 illustrates the differences in the projected tem-
perature (A) and precipitation (B) signals for the change-
preserving and non-change-preserving bias adjustments
compared to the unadjusted projections (i.e. the raw en-
semble). We obtain up to 2.5°C differences in projected
low temperature changes (1st percentile) for the non-change-
preserving bias adjustment (QM), with an underestimation
of the raw warming at low elevations and an overestima-
tion at high elevations. In contrast, the change-preserving
adjustments (CDF-t) do not induce such differences in low
temperature changes, with only up to a 1 °C difference for
some catchments but no apparent elevation dependence. For
median and high temperatures (99th percentile), we find
smaller differences for both bias adjustment methods, except
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Figure 3. Spearman rank correlation between precipitation (pr) and temperature (tas) on wet days (pr > 1 mm d=1) and for days with
transition temperatures between —2 and 2 °C. CDF-t is the univariate change-preserving method, and R2D2 is the bivariate change-preserving
method. The raw ensemble is the unadjusted ensemble. All methods were run using the ensemble adjustment method. The results are shown
for both evaluation sub-periods combined (1961-2020) and without any seasonal distinction made.

for a few high-elevation catchments where the non-change-
preserving adjustments overestimate temperature changes by
up to 1°C. While the non-change-preserving adjustments
clearly lead to temperature change discrepancies (1st per-
centile) compared to the change-preserving method, the re-
sults are less clear for precipitation changes. Indeed, we find
differences in precipitation changes of up to 12 percent-
age points (absolute delta signal values) for both change-
preserving and non-change-preserving adjustments and for
both the 90th and 99th precipitation percentiles. Specifically,
moderate precipitation (90th percentile) is mostly underesti-
mated (delta signal values ranging from —3 %pt to —12 %pt),
and extreme precipitation is overestimated in low-elevation
catchments (up to 6 %pt) and both overestimated (up to
6 %pt) and underestimated (up to —12 %pt) in high-elevation
catchments.

We now investigate whether these differences in the
change signals together with the choice of individual-
member vs. ensemble bias adjustment lead to differences
in signal-to-noise ratio values (cf. differences in the signal-
to-noise ratio between adjusted and unadjusted projections;
Fig. 7).

We obtain large catchment differences in signal-to-noise
ratio values (delta values up to 4 units) for high tempera-

Hydrol. Earth Syst. Sci., 29, 5695-5718, 2025

tures (99th percentile) between the non-change-preserving
bias adjustment (QM) in individual-member mode and the
unadjusted ensemble (raw projections). These differences in
the signal-to-noise ratio range from 1.5 to 4 units in 2081—
2099. In contrast, when the ensemble bias adjustment is
combined with the non-change-preserving bias adjustment,
the differences in the temperature signal-to-noise ratio are
smaller (delta values up to 0.5 unit). This indicates that
the individual-member adjustment significantly changes the
temperature signal-to-noise ratio compared to the ensemble
adjustments, when combined with non-change-preserving
bias adjustments. In contrast, the change-preserving method
(CDF-t) shows the same order of magnitude of temperature
signal-to-noise ratio differences between individual-member
and ensemble bias adjustments. For precipitation, we ob-
tain large delta values of precipitation signal-to-noise ratios
for some catchments (delta values up to 1.5 units), regard-
less of the strategy chosen (change-preserving, non-change-
preserving, individual-member and ensemble). Overall, these
results clearly show that there are interactions between the
choice of change-preserving vs. non-change-preserving bias
adjustment and individual-member vs. ensemble bias adjust-
ment in projecting future climate extremes.
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Figure 4. Distribution of temperature (a) and precipitation (b) performance for the 87 catchments, different bias adjustment strategies,
three temperature percentiles (i.e. the 1st, 50th and 99th percentiles), and two precipitation percentiles (i.e. the 90th and 99th percentiles).
Performance is assessed with the fraction of observations falling inside the simulated 75 % confidence interval. The optimum value of the per-
formance criterion is 0.75. QM is the univariate non-change-preserving method, and CDF-t is the univariate change-preserving method. Raw
is the unadjusted ensemble. Calibration and evaluation combine both climatic sub-periods. Statistically different distributions are connected
by black lines. These black lines are not plotted for the raw ensemble because its distribution significantly differs from all bias-adjusted

distributions.

These differences in climate signals and the signal-to-
noise ratio lead to differences in the time-of-emergence
compared to the unadjusted ensemble (raw projections). In
Fig. 8, we investigate whether these differences in time-of-
emergence in extreme precipitation (99th percentile) vary
with the choice of bias adjustment (change-preserving, non-
change-preserving, individual-member and ensemble) and
with catchment elevation. At high elevations (> 2000 m),
we find larger differences in the time-of-emergence (rel-
ative to the unadjusted ensemble) for individual-member
than for ensemble bias adjustment. This is the case for
both change-preserving and non-change-preserving bias ad-
justments (brown vs. dark-green and yellow vs. light-green
boxplots), with larger differences for non-change-preserving
bias adjustment. In addition, individual-member bias adjust-
ment leads to earlier precipitation time-of-emergence than
ensemble bias adjustment (median difference of —2 years
for non-change-preserving adjustments and —1 year for
change-preserving adjustments). At intermediate elevations
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(between 1000 and 2000 m), the differences in the time-
of-emergence are large for all bias adjustment strategies,
but individual-member bias adjustment leads to earlier
time-of-emergence than ensemble bias adjustment (median
difference of +8 years for non-change-preserving adjust-
ments and +4 years for change-preserving adjustments). At
low elevations (< 1000 m), the differences in the time-of-
emergence are larger for the change-preserving adjustments
than for the non-change-preserving adjustments. Again,
individual-member bias adjustment leads to earlier time-of-
emergence than ensemble bias adjustment (median differ-
ence of —3 years for non-change-preserving adjustments and
—2 years for change-preserving adjustments). However, the
differences between the time-of-emergence distributions are
not statistically different (as assessed by a Wilcoxon rank
test (Wilcoxon, 1945) at a significance level of 0.05; non-
paired; two-sided), except between individual non-change-
preserving adjustments (QM_Individual) and ensemble non-
change-preserving adjustments (QM_Ensemble) at low ele-
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Figure 5. Ratio between the variability of the ensemble after adjustments and the variability of the raw (unadjusted) ensemble per catchment
for (a) three annual temperature percentiles (i.e. the 1st, 50th and 99th percentiles) and (b) two annual precipitation percentiles (i.e. the
90th and 99th percentiles) for the 87 catchments. The optimum value of this ratio is 1. A value above 1 indicates an overestimation of
the variability, and a value below 1 indicates an underestimation of the variability. The temperature variability is calculated as the standard
deviation between members for a given percentile and the precipitation variability as the coefficient of variation between members for a given

percentile.

vation. Nevertheless, the results clearly show that bias adjust-
ment generally leads to changes in the time-of-emergence
compared to the unadjusted ensemble and that individual-
member bias adjustment leads to earlier precipitation time-
of-emergence than ensemble bias adjustment.

3.2.2 Impact on streamflow changes

The differences in future precipitation and temperature ex-
tremes between bias adjustment strategies may affect fu-
ture streamflow extremes. To assess to which degree this is
the case, we analyse the differences in streamflow time-of-
emergence projected by the hydrological model driven by cli-
mate simulations adjusted by the four bias adjustment strate-
gies (change-preserving, non-change-preserving, individual-
member and ensemble; Figs. 9 and 10). We first illustrate
these potential differences for high flow and three catchments
in our dataset (Fig. 9). As these differences in streamflow
time-of-emergence can originate from large variations in the
streamflow noise and signal, we show the decomposition
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of the signal-to-noise ratio (Fig. 9A) into signal and noise
(Fig. 9B and C). We choose these three examples because
they illustrate three different cases of time-of-emergence dif-
ferences originating from differences in signal and noise. For
the Grosstalbach River at Isenthal, located in central Switzer-
land, both the choice of change-preserving (CDF-t) vs. non-
change-preserving (QM) bias adjustment and individual-
member vs. ensemble bias adjustment affect the high-flow
signal-to-noise ratio and thus the time-of-emergence, which
varies from 2050 to no time-of-emergence before 2099. This
is due to a weaker signal when both change-preserving and
individual-member bias adjustments are applied and more
noise for change-preserving bias adjustment than for non-
change-preserving bias adjustment. For the Saltina River at
Brig, a tributary of the Rhone River in southern Switzer-
land, large differences in high-flow time-of-emergence are
observed for the change-preserving bias adjustment used in
combination with individual-member bias adjustment, result-
ing from more noise and a weaker signal. For the Seyon River
at Valangin, in northwestern Switzerland, the non-change-
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Figure 6. Climate signal differences between bias-adjusted projections and raw projections at the end of the century (2081-2099 vs. 1991—
2020) for (a) the temperature signal for three percentiles and (b) the precipitation signal for two percentiles. Results are shown for 87
catchments and the ensemble adjustment method. QM is the univariate non-change-preserving method, and CDF-t is the univariate change-

preserving method.

preserving bias adjustment leads to an earlier high-flow time-
of-emergence than the change-preserving bias adjustment,
due to a projected high-flow signal that is stronger than for
the change-preserving bias adjustment.

We now generalize these results for all catchments and
low, median and high flows (10). We find no catchment
differences in low-flow time-of-emergence between ensem-
ble and individual-member adjustments (for both change-
preserving (CDF-t) and non-change-preserving (QM) ad-
justments). However, ensemble adjustments lead to ear-
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lier time-of-emergence than individual-member adjustments
for median flow at low and intermediate elevations (me-
dian differences of —1 and —3 years, respectively) and
for change-preserving adjustments only (Fig. 10A). For
high flows at low elevations, individual-member adjustments
lead to earlier time-of-emergence than ensemble adjust-
ments (median difference of 1 year for CDF-t) and later
time-of-emergence at high elevations (median differences
of 5 years for CDF-t and 1 year for QM). In that case,
the differences are larger for change-preserving adjustments
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Figure 7. Catchment differences in temperature and precipitation
signal-to-noise ratio (SNR) between bias-adjusted projections and
raw projections for four adjustment strategies. Results are shown
for 87 catchments and the period (2081-2099) compared to (1991—
2020) and the 99th percentile. QM is the univariate non-change-
preserving method, and CDF-t is the univariate change-preserving
method.

than for non-change-preserving adjustments. The differences
in time-of-emergence between change-preserving and non-
change-preserving adjustments are larger than those between
individual-member and ensemble adjustments (Fig. 10B
compared to A). For low flows, non-change-preserving ad-
justments lead to earlier time-of-emergence at low elevations
(median of 1 year for ensemble adjustments and 2 years for
individual-member adjustments), later time-of-emergence
for 50 % of the intermediate elevation catchments, and no dif-
ferences at high elevations. We find larger time-of-emergence
differences for median flow than for low and high flows, es-
pecially at low elevations where non-change-preserving ad-
justments lead to earlier time-of-emergence (median differ-
ences of 11 years for ensemble adjustments and 13 years
for individual-member adjustments). These differences are
smaller at intermediate and high elevations. We do not see
any clear pattern for high-flow time-of-emergence between
change-preserving and non-change-preserving adjustments,
but the differences are large for some catchments (e.g. 75th
percentile of 11 years for individual adjustments at high el-
evations). Overall, we find large catchment differences in
streamflow time-of-emergence for high flow and median
flow, especially between change-preserving and non-change-
preserving adjustments, while we find smaller differences for
low flow.

4 Discussion
4.1 No added value of bivariate adjustments

To determine whether bivariate adjustments of precipitation
and temperature improve the simulation of hydrological ex-
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tremes, we analysed the simulations of high and low flow
(Fig. 2) from a hydrological model driven with temperature
and precipitation simulations adjusted by a univariate method
(CDF-t) and by a bivariate method (R2D2). We found no ben-
efit from bivariate adjustments, compared to univariate ad-
justments, in improving the simulation of high and low flow
for our study area. These results are in contrast to other find-
ings in the literature, which indicated that bivariate adjust-
ments of temperature and precipitation improve hydrologi-
cal simulations in snow-dominated catchments (Meyer et al.,
2019; Tootoonchi et al., 2023). We discuss possible reasons
for these results below.

First, there is no clear benefit from bivariate adjustments
because the SMILE used in our study already simulates the
correlation between precipitation and temperature well com-
pared to observations for most grid cells (Fig. 3A and B). Re-
gional climate models generally produce stronger biases with
increasing elevation over Europe (Matiu et al., 2024), which
can have a significant impact on the simulation of snow pro-
cesses. The SMILE used in our study does not show this be-
haviour and has stronger biases in simulating the dependence
between temperature and precipitation at high compared to
low elevations (Fig. 3A and B). Furthermore, the perfor-
mance of the different bias adjustment methods with respect
to high-flow does not decrease with elevation (Fig. S2). Con-
sequently, although bivariate adjustments improve these cor-
relations, they have no visible effect on the simulation of hy-
drological extremes at neither low nor high elevations.

Second, we found no benefit from bivariate adjustments in
simulating hydrological extremes because univariate adjust-
ments bring the precipitation—temperature correlations al-
ready closer to those of the observations compared to the
raw ensemble. This result differs from that of Francois et al.
(2020), who found that univariate quantile mapping adjust-
ments preserve the inter-variable correlations of the raw sim-
ulations and are not designed to adjust these correlations
based on observations. While the correlation values of the
unadjusted ensemble and those of the univariate adjustments
are similar for a large number of grid cells (Fig. 3), they vary
for a few grid cells for wet days and for precipitation that
occurs when the temperature is between —2 and 2 °C, i.e.
the critical temperatures determining the amount of solid vs.
liquid precipitation (snowfall) and snowmelt. This may be
due to the seasonal adjustments we applied (see Sect. 2.2), as
correcting for the marginal distributions of precipitation and
temperature in winter may improve the overall (i.e. for the
whole period) precipitation—temperature correlations for wet
days and critical temperatures for snow processes. In fact,
when we calculate the correlations between precipitation and
temperature at the monthly scale, we find that the univariate
adjustments preserve the dependence between precipitation
and temperature simulated by the raw ensemble (not shown
here). In addition, adjusting the frequency of wet days (see
Sect. 2.2) may have changed the precipitation—temperature
correlations for wet days. Consequently, the snow processes
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at the catchment scale are already correctly captured by the
hydrological model fed with precipitation and temperature
time series adjusted by the univariate method (see Fig. S1).

Third, the added value of bivariate over univariate ad-
justments likely depends on the spatial scale of the adjust-
ments. In contrast to Meyer et al. (2019) and Tootoonchi
et al. (2023), we adjusted the biases of the climate model
at its native resolution (/& 12 km) instead of adjusting biases
at the resolution of the hydrological model. In fact, we do
not assume that we can adjust systematic biases at a different
(sometimes higher) resolution than that of the climate model
(Maraun, 2013). However, at 12km, the topography is not
well represented by the climate model, which could lead to
a very coarse simulation of snow processes by the hydrolog-
ical model and mask potential differences between bivariate
and univariate adjustments. Nevertheless, given the resolu-
tion of the climate model, we found no significant benefit
from bivariate adjustments of precipitation and temperature
to simulate hydrological extremes in the Alps.

Last, the ability of the ensemble to accurately simulate
hydrological extremes differs from the ability of a single
member to do so. We evaluated the hydrological simula-
tions within a framework that accounts for the variability of
a SMILE (Suarez-Gutierrez et al., 2021), as we were inter-
ested in the differences between the bias adjustment strate-
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gies given internal climate variability. While adjusting for
the dependence between precipitation and temperature could
theoretically benefit one member, it did not significantly af-
fect the ensemble of members in simulating hydrological ex-
tremes. Overall, for the specific SMILE used in this study,
bivariate adjustments did not significantly affect the biases
of the climate ensemble to improve the simulation of hydro-
logical extremes in the Alps.

4.2 Interactions between bias adjustment strategies

In the second part of our study, we examined the differences
between change-preserving and non-change-preserving ad-
justments and between individual-member and ensemble ad-
justments. We found strong interactions between these bias
adjustment strategies, especially in simulating the tail of the
ensemble distribution in the historical period and in project-
ing both future climate and hydrological extremes (Figs. 4 to
9).

We found that individual-member adjustments do neither
reduce the interannual variability of the ensemble nor in-
crease the bias in the calibration and evaluation periods (see
Fig. 4). However, they do significantly alter the inter-member
(i.e. internal) variability (see Fig. 5). This result is aligned
with previous studies (Chen et al., 2019; Vaittinada Ayar

Hydrol. Earth Syst. Sci., 29, 5695-5718, 2025
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et al., 2021) that found that individual-member adjustments
reduce the variability of the ensemble in calibration and in-
crease it in evaluation. However, we did not expect to pre-
serve the interannual variability of extremes with individual-
member adjustments (see Fig. 4) because the inter-member
variability of a SMILE has been found to be equivalent to
interannual variability (von Trentini et al., 2020). This result
means that by correcting each member individually, we re-
duce the spread of the ensemble for a given percentile over
a 30-year period (inter-member variability), which is unde-
sired and motivates the use of the ensemble method, but not
the interannual variability of this percentile.

Hydrol. Earth Syst. Sci., 29, 5695-5718, 2025

Individual-member adjustments also significantly alter the
emergence of projected temperature changes when combined
with non-change-preserving adjustments (Fig. 7). This is
highlighted by the large differences in the values of the tem-
perature signal-to-noise ratio between individual-member
adjustments and ensemble adjustments for the non-change-
preserving method (Fig. 7). Given that we consider a climate-
model-projected change to emerge from the noise when the
signal-to-noise ratio reaches 1 (or —1), differences in signal-
to-noise ratios of up to 2-3 units are significant and there-
fore introduce high uncertainty into the projection of ex-
treme temperatures after bias adjustment. However, we find
such differences only for the non-change-preserving method,
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highlighting that there are large interactions between the bias
adjustment strategies.

Ensemble adjustments are less efficient in removing bi-
ases for the tail of the ensemble distribution in evaluation
when combined with the change-preserving method used in
this study (compared to individual-member adjustments and
non-change-preserving adjustments; see Fig. 4). However,
this effect might be due to the weak signals simulated by
the raw ensemble in the historical period (see Fig. S4). More
specifically, we found that when the signal of the unadjusted
ensemble is weak, the change-preserving method combined
with ensemble adjustments tends to have lower performance
compared to when this signal is stronger. For weak signals,
the change-preserving method might try to preserve a signal
that is not significant compared to internal variability. This
effect is enhanced when the observations show a strong sig-
nal compared to the raw signal (Fig. S9). Therefore, the drop
in performance for the tail of the distribution might be an
apparent problem in the historical period but not for future
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projections, where the signals become stronger than the in-
ternal variability. However, the relationship between the raw
signal and the performance of the bias adjustment method
is not strong for precipitation. This might be related to the
precipitation signal being weaker than the temperature sig-
nal compared to internal variability (Fig. S4). An additional
explanation could be that the ensemble adjustment strategies
have a lower efficiency in preserving the variability of the
distribution tail, as found by Vaittinada Ayar et al. (2021).
This suggests that there may be room for improvement in
adjusting the tail of an ensemble distribution while preserv-
ing the change signal. Vaittinada Ayar et al. (2021) tested
the ensemble adjustments only for CDF-t, which is why their
results should be confirmed using other change-preserving
methods.

Non-change-preserving adjustments modify the signal of
low temperature extremes, even when combined with en-
semble adjustments (Fig. 6A). These differences in projected
low temperature changes are likely to affect the simula-
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tion of solid vs. liquid precipitation in high-elevation catch-
ments, particularly when the lowest temperatures lie around
0°C. These differences will also affect the seasonality of
snowmelt, e.g. earlier snowmelt when projected low tem-
perature extremes are higher, which may explain some of
the differences between change-preserving and non-change-
preserving bias adjustments for high-flow projections (see
Figs. 9 and 10). Conversely, we found no differences be-
tween change-preserving and non-change-preserving adjust-
ments for conserving the precipitation signal (Fig. 6B). How-
ever, non-change-preserving adjustments combined with
individual-member adjustments lead to an earlier precipi-
tation time-of-emergence than ensemble change-preserving
adjustments (Fig. 8). In addition, there are large differences
in precipitation changes compared to the raw projected sig-
nal for both change-preserving and non-change-preserving
adjustments for some catchments. These results emphasize
that bias adjustment of large climate ensembles introduces
uncertainty in the projection of streamflow extremes.

Overall, our results highlight that adjusting a SMILE while
preserving the changes in precipitation extremes is chal-
lenging because of the interactions between preserving the
projected changes and preserving the variability of the en-
semble. However, not taking these interactions into account
can seriously modify the projected changes in climate ex-
tremes, leading to large differences in the projection of
changes in hydrological extremes, as highlighted by the dif-
ferences in streamflow time-of-emergence across elevations
and streamflow percentiles (Figs. 9 and 10). Nonetheless,
using a SMILE compared to using multi-model ensembles
and bias-adjusting it improves the representation of extremes
(Schulz and Bernhardt, 2016; van der Wiel et al., 2019;
Willkofer et al., 2024) and enables studying changes in rare
events even though bias adjustment introduces some uncer-
tainties.

4.3 Recommendations for hydrological climate change
impact studies

Our bias adjustment strategy comparison has shown that, in
the present application with a specific SMILE, bivariate ad-
justments of precipitation and temperature do not improve
the simulation of hydrological extremes and that the interac-
tions between bias adjustment strategies lead to large differ-
ences in the projection of these extremes. We now reflect on
the most appropriate bias adjustment strategies for a SMILE
to study changes in hydrological extremes in mountain re-
gions.

First, we recommend assessing whether the correlation be-
tween precipitation and temperature simulated by the raw en-
semble is close to the observed correlation for conditions
relevant for the study purpose, e.g. snow processes (e.g.
wet days and temperatures between —2 and 2 °C) such as
snowmelt and the distinction between solid and liquid pre-
cipitation. If the correlation values simulated by the raw en-
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semble are close enough to the observations, there is no
clear added value in applying bivariate adjustments (com-
pared to univariate adjustments), which are computationally
more expensive and can lead to a degradation of statistical
features other than variable dependence (e.g. spatial depen-
dence; Francois et al., 2020).

Second, we recommend the use of ensemble adjustments
(rather than individual-member adjustments), as individual
adjustments significantly alter the variability of the ensem-
ble in the historical period and the emergence of the climate
signal and hence the projection of hydrological extremes for
some catchments. Although this procedure appears to have a
lower efficiency in removing the biases for the tail of the dis-
tribution in the historical period, it will very likely be more
efficient for future projections than non-change preserving
adjustments. Nonetheless, future research is still needed to
improve bias adjustment strategies for ensemble projections
of climate extremes.

Third, we recommend the use of change-preserving adjust-
ments, as non-change-preserving adjustments lead to large
changes in the projected low temperature extremes, which
may affect the projection of snow processes in mountain
catchments. Although the change-preserving method has the
same effectiveness as the non-change-preserving method in
preserving the precipitation changes, it might be more in
line with the target of climate impact studies to use change-
preserving methods rather than non-change-preserving meth-
ods for projecting changes in hydrological extremes.

These recommendations are based on a specific region,
dataset and selection of bias adjustment strategies. There-
fore, their generalizability should be evaluated in different
contexts. In general, we recommend that impact modellers
determine the most important aspects of their specific appli-
cation and choose a bias adjustment strategy accordingly.

4.4 Limitations and perspectives

Our focus was on key decisions concerning the adjustment of
climate simulation bias in the study of ensemble projections
of hydrological extremes. Extending the analyses to other
methods and datasets and employing other metrics to assess
performance and change signal preservation would make our
conclusions more generalizable. The next paragraphs outline
potential avenues for future research.

Our analyses could be extended to another SMILE to in-
vestigate the impact of the type of climate model bias on
the conclusions of our study. In addition, other bias adjust-
ment methods could be tested, such as methods adjusting the
spatial and temporal dependencies of the climate variables,
which could be relevant to hydrological processes associated
with convective storm events. Other regions and catchments
also need to be included in future analyses to improve the
generalizability of our results, such as glacierized catchments
that are subject to large hydrological shifts due to climate
change.
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We evaluated the performance of the bias adjustment
strategies in the historical period by looking at the 75 % en-
semble confidence interval introduced by Suarez-Gutierrez
etal. (2021). One could investigate other confidence intervals
and perform a rank analysis to explore more aspects of bias
adjustment performance. The impact of the raw signal on
the performance of the ensemble change-preserving method
should also be further analysed by investigating whether a
deviation between the observed and raw signal in the histor-
ical period could explain these differences.

Finally, the differences in streamflow projections between
bias adjustment strategies should be considered in the light
of other sources of uncertainties in the climate—hydrological
modelling chain, such as scenario and climate model uncer-
tainties (Clark et al., 2016).

In this study, we have provided recommendations to help
in the selection of an appropriate bias adjustment method
when using a SMILE for hydrological climate change impact
studies. However, we believe that further research is needed
to improve bias adjustment strategies for ensemble projec-
tions of climate extremes.

5 Conclusions

The aim of our study was to identify the most appropri-
ate strategy for adjusting the biases of temperature and pre-
cipitation simulated by a SMILE to study changes in hy-
drological extremes. We found no clear advantage of us-
ing bivariate instead of univariate adjustments for simulating
streamflow extremes because (1) the SMILE already sim-
ulates the dependence between precipitation and tempera-
ture well for most grid cells and, (2) after univariate adjust-
ments, the correlation values are already close to those of
the observations for wet days and for temperatures critical
for snow processes. Furthermore, our comparison shows that
the choices of change-preserving vs. non-change-preserving
and individual-member and ensemble adjustments interact.
On the one hand, individual-member adjustments combined
with the non-change-preserving method are more effective in
removing the biases and in preserving the interannual vari-
ability of extremes in the historical period. However, they do
modify the inter-member variability in the historical period,
the projected temperature signal-to-noise ratio and the pre-
cipitation time-of-emergence. On the other hand, ensemble
adjustments combined with the change-preserving method
are less effective for the tails of the precipitation and tem-
perature distributions in the historical period, probably be-
cause the raw change signals are small compared to the in-
ternal variability for many catchments. However, they do pre-
serve the temperature signal and the precipitation time-of-
emergence better than individual-member and non-change-
preserving adjustments. These interactions between bias ad-
justment strategies can result in large differences in the pro-
jection of streamflow extremes. We conclude that ensemble
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projections of future hydrological extremes in mountain re-
gions are sensitive to these bias adjustment strategies and
recommend applying ensemble and change-preserving ad-
justments for reliable hydrological climate change impact as-
sessments.
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