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S1 Dataset

Table S1: List of the 87 catchments used in the study.

River name Station

Birse Soyhières, Bois du Treuil

Albula Tiefencastel

Thur Jonschwil, Mühlau

Kander Hondrich

Kleine Emme Emmen

Emme Emmenmatt

Glatt Rheinsfelden

Broye Payerne, Caserne d’aviation

Areuse Boudry

Wigger Zofingen

Sense Thörishaus, Sensematt

Simme Oberwil

Töss Neftenbach

Kleine Emme Werthenstein, Chappelboden

Plessur Chur

Lorze Frauenthal

Ergolz Liestal

Sitter St. Gallen, Bruggen / Au

Dünnern Olten, Hammermühle

Venoge Ecublens, Les Bois

Murg Frauenfeld

Allaine Boncourt, Frontière

Reuss Andermatt

Ilfis Langnau

Birse Moutier, La Charrue
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River name Station

Verzasca Lavertezzo, Campiöi

Landwasser Davos, Frauenkirch

Murg Murgenthal, Walliswil

Werdenberger Binnenkanal Salez

Rheintaler Binnenkanal St. Margrethen

Inn St. Moritzbad

Grande Eau Aigle

Rom Müstair

Suze Sonceboz

Emme Eggiwil, Heidbüel

Calancasca Buseno

Promenthouse Gland, Route Suisse

Gürbe Belp, Mülimatt

Liechtensteiner Binnenkanal Ruggell

Seyon Valangin

Schächen Bürglen, Galgenwäldli

Seez Mels

Aubonne Allaman, Le Coulet

Mentue Yvonand, La Mauguettaz

Luthern Nebikon

Areuse St-Sulpice

Lorze Zug, Letzi

Necker Mogelsberg, Aachsäge

Murg Wängi

Saltina Brig

Cassarate Pregassona

Suhre Oberkirch

Sitter Appenzell

Chamuerabach La Punt-Chamues-ch

Aabach Hitzkirch, Richensee

Scheulte Vicques

Worble Ittigen

Veveyse Vevey, Copet

Langeten Huttwil, Häberenbad
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River name Station

Minster Euthal, Rüti

Ova dal Fuorn Zernez, Punt la Drossa

Goldach Goldach, Bleiche

Aach Salmsach, Hungerbühl

Breggia Chiasso, Ponte di Polenta

Alp Einsiedeln

Orbe Le Chenit, Frontière

Riale di Pincascia Lavertezzo

Grosstalbach Isenthal

Sionge Vuippens, Château

Dischmabach Davos, Kriegsmatte

Goneri Oberwald

Magliasina Magliaso, Ponte

Biber Biberbrugg

Allenbach Adelboden

Ova da Cluozza Zernez

Rein da Sumvitg Somvitg, Encardens

Chli Schliere Alpnach, Chilch-Erli

Krummbach Klusmatten

Glatt Herisau, Zellersmühle

Poschiavino La Rösa

Sellenbodenbach Neuenkirch

Grossbach Einsiedeln, Gross

Riale di Roggiasca Roveredo, Bacino di compenso

Parimbot Ecublens, Eschiens

Rietholzbach Mosnang, Rietholz

Sissle Eiken

Reppisch Dietikon
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Figure S1. Ability of three bias adjustment methods and the unadjusted ensemble (raw) in reproducing snow water equivalent (control run)

statistics for the 87 catchments. The fraction of control runs within the 75 % range was calculated for two percentiles (90th and 99th). The

optimum value of the performance criterion is 0.75. QM is the univariate non-change-preserving method. CDF-t is the univariate change-

preserving method. R2D2 is the multivariate change-preserving method. All methods were run using the ensemble adjustment approach.

Calibration and evaluation combine both climatic sub-periods.

S2 Snow water equivalent simulations

S3 Spatial differences in bias adjustment high-flow performance

We investigate whether there are spatial differences in high-flow performance between the different bias adjustment methods

(Fig. S2). In general, all bias adjustment methods improve the high-flow simulations compared to the raw ensemble for all5

seasons and most catchments. Specifically, we find a similar spatial pattern for the three bias adjustment methods: the highest

performance is achieved for low-elevation catchments (western and northern Switzerland) and the lowest performance for high-

elevation catchments (southern, south-eastern and eastern Switzerland). There is an opposite pattern in spring (MAM), i.e. the

highest performance is achieved for high-elevation catchments and the lowest performance for low-elevation catchments. On
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Figure S2. Maps of high-flow performance for the three bias adjustment methods and the unadjusted ensemble (raw) in reproducing high-

flow from the control runs for the 87 catchments. The fraction of control runs inside the simulated 75 % confidence interval was calculated for

four seasons (December/January/February, March/April/May, June/July/August, September/October/November) and for the 99th percentile.

The optimum value of the performance criterion is 0.75 (dark blue colour). QM is the univariate non-change-preserving method, CDF-t

the univariate change-preserving method, and R2D2 the bivariate change-preserving method. All methods were run using the ensemble

adjustment approach. The results are shown for one evaluation sub-period (1991–2020).

the one hand, we find only marginal spatial differences in high-flow performance between univariate (CDF-t) and bivariate10

(R2D2) adjustments for all seasons, thus indicating no particular a priori influence of inter-variable properties on high-flow

performance. On the other hand, the univariate non-change-preserving bias adjustment method (QM) performs better than the

other two methods for most catchments. These differences are consistent across all seasons.
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S4 Streamflow simulations with another hydrological model

Figure S3. Ability of three bias adjustment methods and the unadjusted ensemble (raw) in reproducing streamflow statistics of the control

runs for the 87 catchments. Streamflow was simulated with the Cemaneige-GR5J model (Le Moine, 2008; Valéry et al., 2014; Coron et al.,

2020). The fraction of control runs within the 75 % range was calculated for four seasons (December/January/February, March/April/May,

June/July/August, September/October/November) and three streamflow percentiles (1st, 50th and 99th). The optimum value of the perfor-

mance criterion is 0.75. QM is the univariate non-change-preserving method. CDF-t is the univariate change-preserving method. R2D2 is the

multivariate change-preserving method. All methods were run using the ensemble adjustment approach. Calibration and evaluation combine

both climatic sub-periods.
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S5 Relationship between temperature and precipitation performance and the raw signal between sub-periods15

Figure S4. Relationship between the raw signal between sub-periods and (A) temperature (1st percentile) performance; (B) precipitation

(99th percentile) performance, for 87 catchments. Performance is assessed with the fraction of observations falling inside the simulated 75 %

confidence interval. The signal is the difference (absolute for temperature and relative for precipitation) between the percentile value of the

sub-period P2 and the percentile value of the sub-period P1. The results are shown with a linear regression. QM is the non-change-preserving

bias adjustment method and CDF-t the change-preserving bias adjustment method. The results are shown for the ensemble adjustment option

and the second evaluation period only (see Fig. S5, S6, S7 and S8 for the monthly relationships and the two evaluation periods).

While the analysis of ensemble variability clearly shows that individual-member adjustments alter the variability of the

ensemble, it does not explain why ensemble adjustments combined with the change-preserving method lead to a drop in

performance for high precipitation and low temperatures (Fig. 4). To investigate this question, we now examine the relationship

between the performance of the adjustments and the raw signal between the two sub-periods used for the calibration/evaluation

experiment. Our hypothesis is that the change-preserving method will theoretically preserve the signal of the raw ensemble20

(compared to the non-change-preserving method) and will therefore be more efficient if there is a strong signal.

We find that the performance of the change-preserving method correlates with the raw signal for low temperatures (Fig.

S4A) but not for high precipitation (Fig. S4B). The lower the signal of the raw ensemble for low temperatures, the lower the

performance of the change-preserving adjustments. The performance of the non-change-preserving method also correlates with

the raw signal but we observe the largest differences in performance between the two bias adjustment methods for the lowest25

temperature signals (around +0.75 °C). For the largest temperature signals (around +1.5 °C), the two bias adjustment methods

are comparable in terms of performance.
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Figure S5. Relationship between temperature (1st percentile) performance (evaluation sub-period P1) and the raw signal between sub-periods,

for 87 catchments.. Performance is assessed with the fraction of observations falling inside the simulated 75 % confidence interval. The signal

is the difference (absolute) between the percentile value of the sub-period P2 and the percentile value of the sub-period P1. The results are

shown with a linear regression (line) with the 95% confidence interval (bandwidth). QM is the non change-preserving bias adjustment method

and CDF-t is the change-preserving bias adjustment method. The results are shown for the ensemble adjustment option.
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Figure S6. Relationship between temperature (1st percentile) performance (evaluation sub-period P2) and the raw signal between sub-periods,

for 87 catchments.. Performance is assessed with the fraction of observations falling inside the simulated 75 % confidence interval. The signal

is the difference (absolute) between the percentile value of the sub-period P2 and the percentile value of the sub-period P1. The results are

shown with a linear regression (line) with the 95% confidence interval (bandwidth). QM is the non change-preserving bias adjustment method

and CDF-t is the change-preserving bias adjustment method. The results are shown for the ensemble adjustment option.

9



Figure S7. Relationship between precipitation (99th percentile) performance (evaluation sub-period P1) and the raw signal between sub-

periods, for 87 catchments.. Performance is assessed with the fraction of observations falling inside the simulated 75 % confidence interval.

The signal is the difference (relative) between the percentile value of the sub-period P2 and the percentile value of the sub-period P1.

The results are shown with a linear regression (line) with the 95% confidence interval (bandwidth). QM is the non change-preserving bias

adjustment method and CDF-t is the change-preserving bias adjustment method. The results are shown for the ensemble adjustment option.
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Figure S8. Relationship between precipitation (99th percentile) performance (evaluation sub-period P2) and the raw signal between sub-

periods, for 87 catchments. Performance is assessed with the fraction of observations falling inside the simulated 75 % confidence interval.

The signal is the difference (relative) between the percentile value of the sub-period P2 and the percentile value of the sub-period P1.

The results are shown with a linear regression (line) with the 95% confidence interval (bandwidth). QM is the non change-preserving bias

adjustment method and CDF-t is the change-preserving bias adjustment method. The results are shown for the ensemble adjustment option.
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S6 Relationship between temperature performance and the raw and observed signals between sub-periods

Figure S9. Comparison between observed and raw temperature signals (1st percentile) with regards to performance (evaluation sub-period

P1) for 87 catchments. Performance is assessed with the fraction of observations falling inside the simulated 75 % confidence interval. The

signal is the difference (absolute) between the percentile value of the sub-period P2 and the percentile value of the sub-period P1. QM is the

non change-preserving bias adjustment method and CDF-t is the change-preserving bias adjustment method. The results are shown for the

ensemble adjustment option.
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S7 Hydrological model streamflow performance

Figure S10. Hydrological model streamflow performance for the 87 catchments (extrapolation: 2011-2019). 1%* refers to the relative bias

calculated on the 1st streamflow percentile normalized by the streamflow mean.
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S8 Choice of confidence interval30

Figure S11. Ability of the three bias adjustment methods and the unadjusted ensemble (raw) to reproduce streamflow statistics of the control

runs (streamflow time series simulated by the hydrological model with observed precipitation and temperature inputs) for the 87 catchments.

The fraction of control runs outside the simulated min-max confidence interval was calculated for four seasons (December/January/February,

March/April/May, June/July/August, September/October/November) and three streamflow percentiles (1st, 50th and 99th). The optimum

value of the performance criterion is 0.
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