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Abstract. While global hydrological models (GHMs) are
affected by large uncertainties regarding model structure,
forcing and calibration data, and parameters, observations
of model output variables are rarely used to calibrate the
model. Pareto-dominance-based multi-objective calibration,
often referred to as Pareto-optimal calibration (POC), may
serve to estimate model parameter sets and analyse trade-
offs among different objectives during calibration. Within a
POC framework, we determined optimal parameter sets for
the WaterGAP global hydrological model (WGHM) in the
two largest basins of the Indian subcontinent – the Ganges
and the Brahmaputra, collectively supporting nearly 580 mil-
lion inhabitants. The selected model parameters, determined
through a multi-variable, multi-signature sensitivity analysis,
were estimated using up to four types of observations: in situ
streamflow (Q), GRACE and GRACE Follow-On terrestrial
water storage anomaly (TWSA), LandFlux evapotranspira-
tion (ET), and surface water storage anomaly (SWSA) de-
rived from multi-satellite observations. While our sensitivity
analysis ensured that the model parameters that are most in-
fluential for the four variables were identified in a transparent
and comprehensive way, the rather large number of calibra-
tion parameters, 10 for the Ganges and 16 for the Brahma-
putra, had a negative impact on parameter identifiability dur-
ing the calibration process. Calibration against observed Q
was crucial for reasonable streamflow simulations, while ad-

ditional calibration against TWSA was crucial for the Ganges
basin and helpful for the Brahmaputra basin to obtain a rea-
sonable simulation of both Q and TWSA. Additionally cal-
ibrating against ET and SWSA enhanced the overall model
performance slightly. We identified several trade-offs among
the calibration objectives, with the nature of these trade-offs
closely tied to the physiographic and hydrologic characteris-
tics of the study basins. The trade-offs were particularly pro-
nounced in the Ganges basin, in particular between Q and
SWSA, as well as between Q and ET. When considering the
observational uncertainty of the calibration data, model per-
formance decreases in most cases. This indicates an overfit-
ting to the singular observation time series by the calibration
algorithm. We therefore propose a transparent algorithm to
identify high-performing Pareto solutions under considera-
tion of observational uncertainties of the calibration data.

1 Introduction

Global hydrological models (GHMs), which quantify water
fluxes and storage changes on the continents, are essential
tools for understanding large-scale water dynamics (Grogan
et al., 2022; Gudmundsson et al., 2012), for analysing the im-
pact of humans on freshwater systems (Huang et al., 2015;
Döll and Zhang, 2010), for developing scenarios of the fu-
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ture (Gu et al., 2022; Zheng et al., 2018; Giuntoli et al.,
2015), and for supporting a sustainable water management
(Ai and Hanasaki, 2023; Banda et al., 2022) in a globalized
world. Even more than local to regional hydrological mod-
els, GHMs suffer from high predictive uncertainties that stem
from input data and climate forcing uncertainties, incomplete
knowledge about hydrological processes and their impre-
cise mathematical description, unknown initial and boundary
conditions, and uncertain parameters (Moges et al., 2021). It
is state-of-the-art to decrease predictive uncertainties of local
to regional hydrological models by estimating model param-
eters through model calibration, i.e. by comparing the model
output to observations and then identifying model parame-
ters that lead to an optimal fit to observations. This is not yet
general practice for global hydrological models (Yoshida et
al., 2022).

There are many practical challenges of parameter calibra-
tion for GHMs. First, a GHM contains thousands of spatially
distributed parameters. For example, the WaterGAP global
hydrological model (WGHM; Müller Schmied et al., 2021)
has more than 30 parameters for each of its 68 420 grid cells.
Second, commensurable observations of most hydrological
variables are scarce. While streamflow observations aggre-
gate over the upstream drainage areas, streamflow records
are lacking in many regions of the Earth. Other observations,
such as groundwater recharge, are mostly point estimates
that are difficult to relate to the behaviour in 0.5° grid cells
that cover about 2000 km2 (depending on the geographic lat-
itude). In addition, observations may suffer from substantial
uncertainties that are challenging to quantify (Di Baldassarre
and Montanari, 2009). Third, despite the increase in compu-
tational power over the last few decades and the availabil-
ity of high-capacity supercomputing facilities, the high run-
times of current GHMs do not allow most optimization algo-
rithms to explore the high-dimensional decision space (i.e.
parameter space) in sufficient detail, which results in prema-
ture termination in most cases before true convergence can be
reached (Cheng et al., 2005). Due to these difficulties, GHMs
are rarely calibrated at all or are calibrated against stream-
flow only. In its standard version, the WGHM is calibrated in
a simple manner against mean annual streamflow observed
at more than 1300 gauging stations, by adjusting one to
three parameters (Müller Schmied et al., 2021). For most
GHMs, the estimation of distributed parameters is accom-
plished by transferring knowledge from gauged to ungauged
basins through parameter regionalization (Beck et al., 2016;
Hrachowitz et al., 2013). For example, Arheimer et al. (2020)
used daily and monthly streamflow observations at more than
5000 gauging stations in a stepwise calibration approach for
the GHM World-wide HYPE (WWH; HYPE – Hydrologi-
cal Predictions for the Environment), where process-specific
parameters for representative catchments of different physio-
graphic categories were calibrated in each step, and the pa-
rameters were transferred to similar catchments worldwide.
Similarly, Beck et al. (2020) performed global-scale param-

eter regionalization for the hydrological model HVB using
streamflow observations of over 4000 catchments.

The equifinality thesis proposed by Beven (1993) chal-
lenges the notion of a singular optimal model – whether in
terms of structure, input, or parameters – particularly in the
presence of multifaceted uncertainties. Instead, it suggests
that there can be alternative models that exhibit comparable
predictive capabilities while differing in their specific config-
urations. The fundamental causes of equifinality of model pa-
rameter sets are the uncertain model structure and inputs (e.g.
climate or soil data) as well as the observations (and their
errors) that are used to estimate model parameters or evalu-
ate model outputs (Beven, 2006). It is common knowledge
that different “optimal” parameter sets would be obtained
from calibrations against observations of different periods
or if a different model evaluation criterion were used, even
though the calibration technique remains unchanged (Beven
and Binley, 1992; Kirchner, 2006). Given all these uncertain-
ties, a large number of model parameter sets can be optimal;
it is expected that the number of optimal parameter sets in-
creases with the number of parameters that are adjusted. In
addition, individual parameters can vary strongly among the
optimal parameter sets due to balancing effects among the
parameters. For example, in a humid basin, a high soil water
storage capacity may decrease streamflow, while a low value
for a parameter in the equation for potential evapotranspira-
tion may increase it in a similar way; then, the values of each
parameter in two equally optimal parameter sets can differ
strongly, and an optimal parameter value cannot be identi-
fied. Nevertheless, non-identifiability can also arise when in-
put parameters have little or no impact on the output variable
of a model when compared to observations (Herrera et al.,
2022). It is assumed that the identifiability of model param-
eters is enhanced by (1) adjusting only a small number of
parameters, those to which model output is most sensitive,
and (2) increasing the information content of observations,
either by taking into account multiple characteristics (signa-
tures) of the same observation time series or by using obser-
vations of more than one model output variable (Bai et al.,
2018; Hosseini-Moghari et al., 2020). Jakeman and Horn-
berger (1993) demonstrated that conventional rainfall-runoff
data provide sufficient information to constrain a simple hy-
drological model with a maximum of four free parameters.
Gupta et al. (1998) recognized that parameter estimation for
any hydrological model is inherently a multi-objective prob-
lem. Observations in addition to streamflow provide informa-
tion on the behaviour of specific fluxes or storages and con-
strain parameters better than just streamflow observations.

The basis of any hydrological model is the water bal-
ance equation P = ET+R+1TWS. That is, the only sys-
tem input precipitation (P ) has to be partitioned into evap-
otranspiration (ET), runoff (R), and terrestrial water storage
change (1TWS) during a specific period. Clearly, the predic-
tion accuracy of such a model may be significantly improved
if the model could be constrained using observations of all
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three response variables of the water balance equation. His-
torically, the streamflow observations alone, i.e. aggregated
and routed R from the upstream catchment area, have been
used in most model calibration experiments. In the context
of multi-objective calibration, Efstratiadis and Koutsoyian-
nis (2010) recommended a 1 : 5 or 1 : 6 ratio between the
number of objectives and the number of calibration parame-
ters to optimize parameter identifiability and to facilitate the
search algorithm to find a robust solution of the given op-
timization problem. Developing criteria based on different
features of the same observations could potentially increase
the ratio of objectives to the number of parameters. How-
ever, this approach is not favoured, as the overall informa-
tion content within any observation dataset is inherently lim-
ited. Thus, observations of multiple model output variables
become essential to successful calibration (e.g. Denager et
al., 2023). Advances in remote sensing technologies and the
related generation of data products provide more large-scale
information that often is the only source of observation for
many data-scarce regions of the world. The Gravity Recovery
and Climate Experiment (GRACE) mission and its succes-
sor GRACE Follow-On, for example, provide global obser-
vations of terrestrial water storage anomaly (TWSA) starting
from April 2002 onwards. Following these ideas of multi-
variable parameter estimation, a more detailed calibration of
six to eight parameters of the WGHM was done by Werth
and Güntner (2010) for 28 large basins worldwide using
monthly time series of streamflow (Q) and TWSA obser-
vations following the multi-objective calibration methodol-
ogy proposed by Werth et al. (2009). Hosseini-Moghari et
al. (2020) performed a multi-objective calibration of WGHM
parameters for the Lake Urmia basin using three observation
variables, streamflow, TWSA, and groundwater storage, af-
ter adjusting the model input of human water use using ob-
servational data in the first step. More than three observation
types have rarely been used for hydrological model calibra-
tions (Meyer Oliveira et al., 2021).

Since TWSA from the GRACE mission has become avail-
able, TWSA observations have been added to in situ stream-
flow observations as the measure of storage change (1S) in
GHM calibration studies (Dembélé et al., 2020; Hosseini-
Moghari et al., 2020; Demirel et al., 2019; Bai et al., 2018;
Schumacher et al., 2018; Nijzink et al., 2018; Kittel et al.,
2018; Rakovec et al., 2016; Milzow et al., 2011; Lo et al.,
2010; Werth and Güntner, 2010; Werth et al., 2009). Döll
et al. (2024) also used observations of Q and TWSA to
calibrate the WGHM alternatively for determining Pareto-
optimal parameter sets for the Mississippi basin as a whole
or individually for each of five sub-basins. The whole-basin
approach improved the fit to sub-basin observations in all
sub-basins as compared to the uncalibrated model (with the
exception of one sub-basin for Q). It did not degrade the fit
to TWSA for three sub-basins compared to the computation-
ally more demanding sub-basin approach, but this was only
the case in one sub-basin regarding Q. In contrast, only a

few studies have attempted to incorporate global-scale ET
products into hydrological model calibration, primarily be-
cause of their low reliability and high errors (Liu et al., 2022;
Meyer Oliveira et al., 2021; Huang et al., 2020; Nijzink et
al., 2018; López López et al., 2017). Demirel et al. (2018)
demonstrated successful enhancement of spatial pattern per-
formance in a distributed hydrological model through multi-
objective calibration using discharge and remote-sensing-
based ET observations. Additionally, Demirel et al. (2024)
provide a discussion on the trade-offs between temporal
and spatial pattern calibration of the same distributed model
using discharge and ET observations. To the best of our
knowledge, only a few studies have attempted to simultane-
ously use all three variables on the right-hand side of the
water balance equation to condition a hydrological model
(Yang et al., 2022; Dembélé et al., 2020; Livneh and Let-
tenmaier, 2012). While the study by Huang et al. (2020) em-
ployed streamflow data for bias correction of the ET dataset,
they utilized the bias-corrected ET and TWSA for param-
eterization of a hydrological model, aiming to establish a
streamflow-independent calibration scheme. Similarly, in a
study by Nijzink et al. (2018), in situ streamflow observa-
tions were utilized to benchmark the performance of five
hydrological models across 27 very small European catch-
ments (area< 1600 km2). In that study, 10 remote sensing
data products, including TWSA and ET, were employed for
model calibration, with the exclusion of streamflow observa-
tions. In their study, Meyer Oliveira et al. (2021) calibrated
a hydrological model using several remote sensing products,
including terrestrial water storage anomaly and evapotran-
spiration, while employing streamflow observations solely
for benchmarking. Hulsman et al. (2021) utilized in situ dis-
charge, satellite-based evapotranspiration (ET), and GRACE
TWSA data to calibrate a process-based distributed hydro-
logical model in a large semi-arid basin in Africa, aiming
to incrementally improve the process representation of the
model. Also, Liu et al. (2022) calibrated 59 large basins
worldwide using ET and TWSA observations, with stream-
flow observations exclusively utilized for validating the cal-
ibration results. Trautmann et al. (2018, 2022) calibrated a
global model at the scale of selected grid cells with TWSA,
ET, and a gridded runoff product, instead of using stream-
flow at the basin scale. For a slightly different purpose, Pel-
let et al. (2020) utilized observations of all the variables in
the water balance equation to derive terrestrial water stor-
age changes by reconstructing the water cycle in five south-
ern Asian basins, including the Ganges and the Brahmaputra
river basins.

The terms “multi-objective” and “multi-variable” are not
always interchangeable, as multiple objectives can stem from
the same variable and multiple variables can contribute to a
single composite objective. We use these terms contextually
based on their literal meanings. Our multi-objective calibra-
tion analyses involve multiple objectives and multiple vari-
ables, with one objective corresponding to each variable. A
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“signature” of a data series consists of quantitative metrics
or indices that describe its statistical or dynamic properties
(McMillan, 2021). In this context, the term “multi-signature”
refers to a scenario where multiple quantitative properties of
a data series are considered simultaneously.

In this study, we present a comprehensive multi-objective
calibration framework for estimating optimal basin-specific
parameter values for a global hydrological model by tak-
ing into account observations of multiple model output vari-
ables. The framework consists of (1) an approach for se-
lecting model parameters that is based on a global sensitiv-
ity analysis and considers multiple signatures of each vari-
able and (2) a multi-objective parameter optimization that
includes multiple variables. We apply the framework to the
WGHM and estimate, for the Ganges and the Brahmaputra
basins of the Indian subcontinent, the most important model
parameters using multi-variable, multi-signature sensitivity
analysis and multi-variable parameter optimization. We then
analysed the calibration outcome to answer the following sci-
entific questions.

– How does a multi-variable, multi-signature sensitivity
analysis enhance the identification of important model
parameters?

– Does the inclusion of observations of multiple variables
in model calibration increase parameter identifiability
and thus reduce model equifinality?

– To what degree does the inclusion of TWSA, ET, and
surface water storage anomaly (SWSA) observations, in
addition to Q observations, improve the simulation of
important hydrologic variables by a GHM such as the
WGHM, and what is the value of streamflow observa-
tions?

– What is the impact of uncertainties on the calibration
outcome? Can we integrate knowledge about observa-
tion uncertainties when selecting the so-called compro-
mise solution?

2 Study area

The transboundary basins of the Ganges and Brahmapu-
tra (Fig. 1) exert significant socio-economic, geo-political,
and ecological influence in the region. These two basins are
home to approximately 580 million human inhabitants and
cover an aggregated area of 1.63× 106 km2 shared among
India, China, Bangladesh, Nepal, and Bhutan (India-WRIS,
2014a, b; FAO, 2011). With a population density of 355 in-
habitants per square kilometre and the necessity to irrigate
crops outside the monsoon period, the basins and their in-
habitants experience significant water stress. As a result of
climate change and the rapid pace of economic growth aimed
at lifting a large population out of poverty, the region’s wa-
ter scarcity is expected to intensify rapidly in the coming

decades (Gain and Wada, 2014). The Ganges and Brahma-
putra rivers collectively account for over 40 % of the total
freshwater discharge into the Bay of Bengal, which consti-
tutes approximately 25 % of the total freshwater inflow re-
ceived by the Bay of Bengal (Papa et al., 2010). Streamflow
in both rivers significantly influences delta formation, sedi-
ment deposition, and salinity dynamics in the coastal region
(Becker et al., 2020; Akhil et al., 2014).

In the current study, the Ganges and Brahmaputra basins
were treated as two distinct calibration units, with calibration
parameters adjusted uniformly within each unit. Drainage
basins were defined as the upstream areas from the gaug-
ing stations at Hardinge Bridge and Bahadurabad, respec-
tively, for the Ganges and Brahmaputra units (Fig. 1). This
delineation was based on the drainage direction map DDM30
of Döll and Lehner (2002). A detailed description of the
basin’s physiographic properties is provided in Sect. S1 in
the Supplement. Table 1 presents key characteristics of the
two basins.

3 Data and methods

3.1 WaterGAP global hydrological model (WGHM)
and forcing data

The WaterGAP global hydrological model (WGHM;
Müller Schmied et al., 2021, 2014) simulates the continental
water cycle to estimate water storage dynamics in 10 differ-
ent storage compartments and water fluxes (ET and stream-
flow) for all continents (except Antarctica) at 0.5° spatial and
daily temporal resolution. In this study, we consider the sum
of water storage in lakes, wetlands, human-made reservoirs,
and rivers as surface water storage (SWS) and the sum of
SWS, canopy, snow, soil, and groundwater storage as ter-
restrial water storage (TWS). Glacier dynamics could not
be taken into account in the WGHM version that was avail-
able for this study. For some storage compartments such as
lakes and groundwater, the WGHM does not simulate abso-
lute values of storage but only storage anomalies such that
SWSA and TWSA with respect to a temporal mean over
a reference period are analysed, consistent with observa-
tions of TWSA and SWSA. The conceptual framework of
the model is based on solving the vertical water balance of
precipitation, snow accumulation and melt, interception by
the vegetation canopy, evapotranspiration, soil water storage
and groundwater recharge, and the lateral water movement
of generated surface runoff and groundwater outflow through
the surface water bodies until it reaches the ocean or inland
sinks. The vertical water balance and the horizontal water
movement depend on various geomorphological and physio-
graphic characteristics including soil storage capacity, land-
cover-specific interception capacity and root depth, area of
surface water bodies, and drainage directions. The WGHM
accounts for the impact of human-made reservoirs and hu-
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Figure 1. Spatial extent of the two calibration units: the Ganges and the Brahmaputra river basins, delineated as the upstream of the two
streamflow gauging stations Hardinge Bridge (Ganges) and Bahadurabad (Brahmaputra).

Table 1. Key characteristics of the study basins Granges and Brahmaputra.

Ganges Brahmaputra

Area [km2
] 1.09× 106

[b] 5.434× 105
[e]

Population [millions] 448 [b, c] 130 [b, d]
Annual precipitation [mm yr−1

] 760–2290 1347 [a]; 2371 [d], 2143 [f]
Mean summer1 temperature [°C] 28.72

[c] 33.852
[d]

Mean winter1 temperature [°C] 19.62
[c] 25.52

[d]
Mean annual streamflow [m3 s−1

] 11 300 [e] 20 000 [a, e, h]

1 April–October considered summer months and November–March considered winter months. 2 Calculated
with data from 1969 to 2004. Sources: (a) Immerzeel (2008), (b) FAO (2011), (c) India-WRIS (2014b),
(d) India-WRIS (2014a), (e) Masood et al. (2015), (f) Khan et al. (2015), (g) Ray et al. (2015), and (h) Wang et
al. (2023).

man water use on water flows and storages. It is driven by po-
tential net abstractions from groundwater and surface water
bodies that are computed by other modules of WaterGAP. For
a detailed description of the WGHM, see Müller Schmied et
al. (2021).

The WGHM in its standard version is calibrated for one
parameter (the runoff coefficient, SL-RC) against river dis-
charge observations of 1319 gauging stations worldwide
such that the simulated long-term mean annual river dis-
charge of the corresponding river basin is within a 10 % error
range of the observed mean. Upon failure of the above cali-

bration target, two additional correction factors (i.e. the areal
correction factor – CFA, and the station correction factor –
CFS) are introduced in the standard model version for syn-
thetic runoff adjustment (Müller Schmied et al., 2021). To
suppress these corrections for the calibration experiments in
this study, we set both correction factors to 1.0 in all cells. A
total of 24 model parameters, including the runoff coefficient
SL-RC, were considered in this study (Table 2). The spatial
distribution of parameter values is according to one of the
following schemes:

https://doi.org/10.5194/hess-29-567-2025 Hydrol. Earth Syst. Sci., 29, 567–596, 2025



572 H. M. M. Hasan et al.: The benefits and trade-offs of multi-variable calibration of the WGHM

– U . This is the uniform parameter value in all 0.5° cells
of a river basin.

– S. Parameter values are specific to sub-areas of the river
basin; e.g. in the case of the Priestley–Taylor coeffi-
cients, all cells in the arid or humid part of the river
basin have the same parameter value, respectively.

– M . Multiplier parameters are uniform throughout the
river basin but multiply the spatially distributed cell-
specific values of their base parameter.

For example, a value of 1.5 of the river roughness coefficient
multiplier (SW-RRM) parameter increases the cell-specific
roughness coefficient values by 50 % in all cells in a basin.
Out of the 24 parameters, two multipliers – the net radiation
multiplier (EP-NM) and the precipitation multiplier (P-PM)
– alter the climate input variables radiation and precipitation,
respectively. They were excluded from the sensitivity anal-
ysis because of their predominating influence on the target
model variables which masks the relative importance of the
rest of the parameters. Nevertheless, P-PM was selected as an
additional calibration parameter because precipitation forc-
ing data, in contrast to radiation data, contain high uncertain-
ties and biases which need to be corrected during model cal-
ibration, if possible. Recently, Goteti and Famiglietti (2024)
pointed out the underestimation of precipitation in datasets
of India that need to be corrected (here by P-PM) to avoid
non-physical or process-based compensation by calibration
of other parameters.

The WGHM is driven by a climate forcing dataset which
is a homogenized combination of WFD (WATCH Forcing
Data based on ERA40; Weedon et al., 2011) for 1901–1978
and WFDE5 (WATCH Forcing Data methodology applied to
ERA5 reanalysis data; Cucchi et al., 2020) for 1979–2019,
with precipitation data being bias-corrected using monthly
precipitation from GPCC (Global Precipitation Climatology
Centre) according to Schneider et al. (2015). The climate
forcing dataset includes precipitation, air temperature, down-
ward shortwave radiation, and downward longwave radia-
tion.

3.2 Observations

3.2.1 Surface water storage anomaly (SWSA)

Based on multi-satellite observations of surface water ex-
tent and water level, Salameh et al. (2017) produced a 15-
year dataset of SWSA for the Ganges and the Brahmapu-
tra basins by analysing pixel-wise hypsographic curves that
represent area–volume relationships. A detailed description
of the method can be found in Papa et al. (2013) and Papa
and Frappart (2021). Two different global digital elevation
models (GDEMs) were used: (i) ASTER (Advance Space-
borne Thermal Emission and Reflection Radiometer) and
(ii) HyMAP (Hydrological Modelling and Analysis Plat-

form) based on SRTM30 (Shuttle Radar Topography Mis-
sion). Thus, two SWSA observation products were produced
for the period 1993–2007 on an equal area (773 km2) grid
of 0.25° resolution at the Equator. We used the basin-scale
monthly mean values of the two products in our analysis. As
we considered the river basin area upstream of the last gaug-
ing station only, our SWSA basin-scale values for Ganges
and Brahmaputra are substantially smaller than those pre-
sented in Salameh et al. (2017).

The uncertainties in data products like the one of Salameh
et al. (2017) are difficult to assess. Nevertheless, we provide
a maximum error estimate from other similar SWS products
combining GIEMS and radar altimetry. Frappart et al. (2012)
estimated SWS uncertainty of 23 % over the Amazon, and
Papa et al. (2015) estimated the uncertainty to be 24 % over
the Ganges–Brahmaputra. Based on these two similar es-
timates, we used an error estimate of 25 % for the basin-
average monthly SWS data in our study.

3.2.2 Actual evapotranspiration (ET)

We used the benchmark ET product LandFlux-EVAL of
Mueller et al. (2013), which is a merged synthesis of avail-
able global ET products covering observation-based estima-
tions, estimations from several land surface models (LSMs),
and estimations from atmospheric reanalyses. Many studies
have used or compared this product in recent years (Lienert
and Joos, 2018; Nanteza et al., 2016; Orth and Seneviratne,
2015; Tsarouchi et al., 2014; Liu et al., 2014). Here, we
used the LandFlux-EVAL product that was merged from
14 datasets for the period 9 to 2005. We used the ensem-
ble mean as monthly ET observation. The standard deviation
(σ with N = 14) of the mean is also provided in the dataset
as an estimate of the monthly observation error; we used 2σ
range as the uncertainty of the ET observations in our anal-
ysis. The errors are provided in absolute terms with the unit
of millimetres of water equivalent for each month, which in
equivalent relative terms corresponds to 25 % in the Ganges
basin and 24 % in the Brahmaputra basin.

3.2.3 Terrestrial water storage anomaly (TWSA)

The TWSA dataset is based on Level-2 data (spherical har-
monic coefficient, SHC) of the GRACE and GRACE Follow-
On of TU Graz monthly solutions (Mayer-Gürr et al., 2018)
up to degree and order 96 and by applying the anisotropic
DDK3 filter (Kusche et al., 2009) to correct the degree-
related correlated noise. Further corrections were neces-
sary to eliminate errors related to low-degree effects such
as glacial isostatic adjustment (Gerdener et al., 2020). The
residual geoid changes due to two large earthquake signals
with magnitude over 9.0 (west coast of northern Sumatra,
Indonesia on 24 December 2004 and near the east coast of
Honshu, off Tohoku, Japan, on 11 March 2011) were re-
moved according to the estimated values following Einars-
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Table 2. WGHM parameters with a priori parameter ranges; spatial scheme U (uniform), M (multiplier), S (sub-area specific) (see text
for details). The parameters are categorized according to the storage compartments or processes that they directly affect. P : precipitation.
EP: potential evapotranspiration. CA: canopy. SN: snow. SL: soil. SW: surface water. GW: groundwater. NA: net abstraction of water by
humans.

Compartment Parameter name Acronym Spatial Range Standard
[units if not unitless] scheme WGHM

value

P Precipitation multiplier P -PM M 0.5–2 1

EP Net radiation multiplier EP-NM M 0.5–2 1
Priestley–Taylor coefficient (humid) EP-PTh S 0.885–1.65 1.26
Priestley–Taylor coefficient (semi-arid/arid) EP-PTa S 1.365–2.115 1.74

CA Max. canopy water height [mm] CA-MC U 0.1–1.4 0.3
LAI multiplier CA-LAIM M 0.2–2.5 1

SN Snow freeze temperature [°C] SN-FT U −1 to 3 0
Snowmelt temperature [°C] SN-MT U −3.75 to 3.75 0
Degree-day factor multiplier SN-DM M 0.5–2 1
Temperature gradient [°C m−1

] SN-TG U 0.001–0.01 0.006

SL Runoff coefficient SL-RC U 0.3–3 Variable1

S2
max multiplier SL-MSM M 0.5–3 1

Maximum EP (mm d−1) SL-MEP U 6–22 15

SW River roughness coefficient multiplier SW-RRM M 1–5 3
Active lake depth [m] SW-LD U 1–20 5
Active wetland depth [m] SW-WD U 1–20 2
SW discharge coefficient [d−1

] SW-DC U 0.001–0.1 0.01
ET reduction factor multiplier SW-ERM M 0.33–1.5 1

GW GW recharge factor multiplier GW-RFM M 0.3–3 1
Max. GW recharge multiplier GW-MM M 0.3–3 1
Critical precipitation for GW recharge (arid/semi-arid) [mm d−1

] GW-CP S 2.5–20 12.5
GW discharge coefficient [d−1

] GW-DC U 0.001–0.02 0.01

NA Net SW abstraction multiplier NA-SM M −2 to 2 1
Net GW abstraction multiplier NA-GM M −2 to 2 1

1 Spatially variable among grid cells. 2 Maximum soil water storage in the effective root zone.

son et al. (2010). The TWSA data were aggregated to area-
average monthly time series from 2003–2019 for the two
study basins. The anomalies were computed by using the
mean of the period 2003–2009 as the reference mean.

2σ errors based on the full variance–covariance matrix of
the TU Graz data, which accounts for orbital effects and the
meridional behaviour of errors, were propagated to estimate
the uncertainty of the TWSA data. The resultant time series
of propagated errors is used to bracket the monthly uncer-
tainty of TWSA observations.

3.2.4 Streamflow (Q)

We use monthly river discharge from 1980–2012 at the
Hardinge Bridge and the Bahadurabad gauging stations
(Fig. 1) derived by Masood et al. (2015), using daily water
level observations acquired from the Hydrology Department
of the Bangladesh Water Development Board (BWDB) and

rating curves developed by the Institute of Water Modelling,
Bangladesh (IWM). We assume an error of monthly dis-
charge values of 20 % following McMillan et al. (2012), who
compared reported streamflow uncertainties and concluded
that the uncertainty varies between 10 %–20 % for medium to
high in-bank flows, 50 %–100 % for low flows, and over 40 %
for out-of-bank flows. Considering the large average stream-
flow in the two study basins (11 300 m3 s−1 in the Ganges
and 20 000 m3 s−1 in the Brahmaputra basin), we took a pes-
simistic range of error of 20 %, which aligns with the esti-
mate of Sir William Halocrow and Partners Ltd. (1991, cited
in Mirza, 2003), who reported that uncertainty of streamflow
could reach 20 % in those stations due to the method of ve-
locity measurement from non-anchored boats and inaccurate
measurement of depths of current meters.
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3.2.5 Water balance closure of observations

To avoid an ill-posed calibration problem in particular when
using all major terms of the water balance equation as forc-
ing (P ) or calibration variables (Q, ET, 1TWS), it is impor-
tant to check to what extent the water balance is closed in the
observations. For this purpose, we calculated the water bal-
ance (P −ET−Q−1TWS) of the observation data using
annual mean values over the available data period. 1S from
the GRACE TWSA was computed as the difference between
the December values of consecutive years. Observation gaps
were filled for all variables through linear regressions for in-
dividual months, accounting for seasonality and trends. It is
worth noting that the water balance of the WGHM is closed
at all time intervals.

The mean values of annual precipitation, streamflow, ET,
and 1S for the Ganges basin used in this study as observa-
tion data are 1119, 402, 621, and−14 mm, respectively. This
results in an annual mean non-closure of the water balance of
+109 mm. While reconciling the water budget for the whole
of India, Narasimhan (2008) argued that ET estimation in
India is significantly underestimated. However, in a recent
study, Kushwaha et al. (2021) estimated ET for the Ganges
basin to be in the range of 511–622 mm yr−1, which closely
aligns with our observed mean. In the Brahmaputra basin,
the discrepancy is even more pronounced (−436.6 mm). The
mean values of P , Q, ET, and 1S from GRACE for the
Brahmaputra basin are 1490, 1361, 564, and −11 mm, re-
spectively. In the case of the Brahmaputra basin, input pre-
cipitation is significantly underestimated (Schneider et al.,
2017; Michailovsky et al., 2013), a phenomenon attributed to
convective rainfall (Bookhagen and Burbank, 2006), result-
ing from pronounced differences in basin topology. In their
study, Schneider et al. (2017) used a scaling factor of 1.4 to
correct the input precipitation and achieve a reasonable wa-
ter balance closure, while Michailovsky et al. (2013) applied
a factor of 1.25 to scale the TRMM 3B42 precipitation data
for the Brahmaputra basin in their work. This also under-
scores the importance of using the WGHM parameter P-PM,
a multiplicative factor to adjust the precipitation amount of
the forcing data, in the calibration experiments.

It is important to note that mismatches in water balance
can also occur in data-rich regions. For example, Rakovec
et al. (2016) reported water balance closure errors (P −
Q−ET in some European basins, ranging from −200 to
100 mm yr−1 for most of the 179 considered basins.

3.3 Sensitivity analysis

We used the multi-start perturbation sensitivity analysis (SA)
method of Morris (1991), also known as the elementary ef-
fect test (EET). The elementary effect (EE) is expressed as
the derivative of a response variable with respect to change
in a parameter. The EET method measures the sensitivity to
a parameter as the average of EEs at many locations of the

parameter space. The sensitivity index (SI) of ith parameter
(i ∈ {1, 2, . . .m}, where m denotes total number of parame-
ters) is calculated as

SIi =
1
r

r∑
j=1

f
(
θper,j

)
− f

(
θref,j

)
1
j
i

×Ci =
1
r

r∑
j=1

f
(
θ1j , θ2j , . . . θij +1

j
i , . . . θmj

)
− f

(
θ1j , θ2j, . . . θij , . . . θmj

)
1
j
i

×Ci , (1)

where r is the total number of EEs at random locations of
the parameter space; θref and θper (θref ∈ Rm; θper ∈ Rm)
are, respectively, a reference parameter set and a perturbed
parameter set where only the ith parameter is perturbed
from the reference parameter set; 1ji (j ∈ {1, 2, . . . r}) is the
amount of change in the ith parameter at the j th location
(j ∈ {1, 2, . . . r}); f (θ) is the model response of parameter
set θ (θ ∈ Rm); and Ci is the scaling factor of the ith pa-
rameter. The scaling factors (Ci) correspond to the range of
the respective parameter values (Table 2) and facilitate inter-
parameter comparisons in parameter ranking, for instance,
as the parameters mostly have differing units and ranges.
While the Morris method does not explicitly show interac-
tion terms, it produces a variance term for the elementary
effect that accounts for parameter interactions and the func-
tional non-linearity of the model response. We computed the
standard error of the sensitivity index from this variance term
and used it for parameter selection (Algorithm 4 in Sect. S2).

As a measure of change in the model response (i.e.
f (θper)− f (θref)), we used the root mean squared devia-
tion (RMSD) between simulated values of a response vari-
able using a reference parameter set (θref) and simulated val-
ues of that variable using the perturbed parameter set (θper).
The sensitivity index of the EET method averages out the
local influences by taking samples from many locations in
the parameter space, making it a global sensitivity analysis
method (Pianosi et al., 2016). The method is computation-
ally inexpensive and recommended for ranking and screening
purposes by Pianosi et al. (2016). A total of 1000 random
reference samples were taken using Latin hypercube sam-
pling (LHS) which were then perturbed one at a time based
on radial design (Campolongo et al., 2011). We used the
SAFE MATLAB Toolbox developed by Pianosi et al. (2015)
for sampling and later computing the sensitivity index. We
included 22 WGHM parameters during the SA from Table 2
(excluding EP-NM and P-PM as stated earlier). During the
SA, a total of 23 000 samples were analysed for each of the
river basins. Model simulations were conducted for the pe-
riod 1990–2019, with the spin-up period from 1985 to 1989.
The initial year of the spin-up was run five times to allow
water storages to reach an equilibrium state.

Parameter sensitivity differs among the response variables
and their statistics, i.e. hydrological signatures. To identify
parameters that are important for characterizing different
features of the target response variables, i.e. those against
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Figure 2. Cumulative effect in percent of the total effect (sum of all effects of all parameters) of top-ranked parameters up to different cut-off
ranks. The function of the cumulative effect and the cut-off level differ among the four response variables Q, TWSA, ET, and SWSA in the
two basins – Ganges (a) and Brahmaputra (b). Sensitivity to parameters in this example was for the monthly time series (MTS) of the four
target response variables. The grey line indicates the cut-off threshold at 50 % of the total effect that must be surpassed by the top-ranked
parameters for each variable and for each signature. For example, the cumulative effect of the three highest-ranked parameters on the TWSA
in the Ganges basin accounts for 58 % of the total combined effects of all parameters on this variable, while the cumulative effect of the
top-three parameters on Q is only 38 % of the total combined effects of all parameters in the basin.

which the model will be calibrated, we performed a multi-
variable, multi-signature sensitivity analysis on the four vari-
ables with available observations (Q, ET, TWSA, SWSA),
considering four signatures, (1) the continuous monthly
time series (MTS); (2) the “climatology” or seasonality, i.e.
the 12 mean monthly values, averaged over the study pe-
riod (MM); (3) the time series of annual means (ATS); and
(4) the time series of the seasonal amplitudes computed as
the difference between the largest and the smallest monthly
values of a year (SNA). The sensitivity indices for each sig-
nature were computed separately. We observed that the sen-
sitivities of the four response variables to the individual pa-
rameters as well as the share of cumulative effect of top-
ranking parameters to the “total effect” (sum of sensitivity
indices for all parameters) vary considerably among the re-
sponse variables (Fig. 2). Thus, we decided to select, for each
response variable, those top-ranking parameters that together
contribute at least 50 % of the combined total effect. Applica-
tion of this threshold ensures that (i) only the most influential
parameters for a given signature of a given variable are se-
lected, and (ii) the total number of selected parameters does
not become very large.

3.4 Calibration

We used the Borg Multiobjective Evolutionary Algo-
rithm (Borg-MOEA; Hadka and Reed, 2013) to identify
non-dominated Pareto-optimal parameter sets of the WGHM
against one to a maximum of four objectives. A parameter
set is considered non-dominated if it outperforms all other
competing sets in at least one objective.

The Borg-MOEA has been successfully used for hy-
drological model calibration in many studies (Fernandez-
Palomino et al., 2020; Chilkoti et al., 2018) because of
its superior performance over many state-of-the-art multi-
objective algorithms (Reed et al., 2013; Hadka and Reed,
2013). The critical features of the Borg-MOEA include

amalgamation of multiple (six) search operators and strate-
gies from benchmark optimization algorithms (e.g. NSGA-
II of Deb et al. (2002), ε-MOEA of Deb et al. (2005), ε-
NSGA-II of Kollat and Reed (2006), and GDE3 of Kukko-
nen and Lampinen (2005)), an auto-adaptive recombination
mechanism for search operators based on operators’ suc-
cess rates of producing non-dominated solutions over time, a
restart mechanism upon detection of a search stagnation, and
straightforward adaptation of the algorithm in a parallel com-
putation framework (Reed and Hadka, 2014). Except for the
initial population size, all algorithmic parameters were kept
to their recommended values of Hadka and Reed (2013). The
ε-precision level for all objectives was set to 0.005 to obtain
a detailed Pareto front consisting of a high number of solu-
tions. We deployed a master–worker parallel implementation
of the Borg-MOEA and ran the algorithm on 401 processors
of a cluster machine operating in a Scientific Linux 7 envi-
ronment. Related to this configuration, the initial population
size 400 was used, which was equal to the number of worker
processes.

The objectives are to maximize values of the Nash–
Sutcliffe efficiency (NSE; Eq. 2; Nash and Sutcliffe,
1970) of streamflow (NSEQ), terrestrial water storage
anomaly (NSETWSA), evapotranspiration (NSEET), and sur-
face water storage anomaly (NSESWSA).

NSE= 1−

T∑
t=1

(
sim(t)− obs(t)

)2
T∑
t=1

(
obs(t)−µobs

)2 = 1−
MSE
σ 2

obs
, (2)

where sim(t) and obs(t) are the simulated and observed
monthly values at time step t , respectively; µobs is the mean
of the observations; σobs is the standard deviation of obser-
vations; and MSE is the mean squared error. NSE serves as
a good indicator for inter-basin comparison since it normal-
izes the MSE by the observed variance (Livneh and Letten-
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Figure 3. Convergence of single- and multi-objective calibrations of the Brahmaputra basin. (a) Pareto fronts of a two-objective calibration
experiment (Experiment-QT with objectives NSEQ and NSETWSA) after 1000, 5000, 10 000, and 20 000 model evaluations. (b) The mean
objective value (NSE) of the compromise solution of all calibration experiments as a function of no. of model evaluations. The Pareto fronts
and the compromise solutions have been determined after merging all solutions in all replications.

maier, 2012). While four signatures (MTS, ATS, MM, and
SATS) were analysed by the SA, we restricted the parame-
ter estimation to using the monthly time series data (MTS)
as observations, which has the least aggregation of temporal
information among the four.

A total of 15 calibration experiments were carried out
for each of the two basins, covering all possible combina-
tions of objectives. Each experiment was repeated eight times
with different initial populations generated by varying ran-
dom seeds. The experiments and their objective(s) are listed
in Table 4. The maximum number of model runs was lim-
ited to 20 000, which proved sufficient for approximating the
Pareto front (PF), representing the frontier formed by the
set of non-dominated parameter sets. This adequacy is ev-
ident from the relatively small difference in PFs between
10 000 and 20 000 model runs (as shown in Fig. 3a for a
two-objective case) and the stabilization of the mean objec-
tive value of the compromise solution occurring well before
reaching 20 000 runs in most experiments (Fig. 3b).

The “compromise” solution or parameter set is said to have
the “best” overall performance among the non-dominated so-
lutions, and it is determined by finding the solution with the
lowest Euclidian distance (ED; Eq. 3) in the objective space
from the point of theoretical best values of the objectives,
known as the “utopia” point. Separate compromise solutions
were determined for each replication of an experiment, and
an “overall compromise solution”, after merging all solutions
from the eight replications, was also determined.

ED=

√√√√ n∑
i=1

(Ui −Oi)
2, (3)

where n is the number of objectives, and Ui and Oi repre-
sent, respectively, the best value of the ith objective and the
ith objective of a solution parameter set.

The observation datasets available for this study cover dif-
ferent periods (Table 3). The only overlapping period of all
four observables is the 3 years of 2003 to 2005. We con-
sidered this period insufficiently short for calibration. Thus,
we used observations in partly non-overlapping periods for
model calibration while still trying to include overlapping
datasets as far as possible. The calibration period was set to
1980–2009. Like in the sensitivity analysis, the model run
started 5 years before the start of the calibration period; ad-
ditionally, the first year was repeated five times. The initial
5 years (1975–1979) was considered the spin-up period.

3.5 Validation

The validation period was set to 2010–2012, while using the
same start time (year 1975) of model runs as for calibration.
Validation covered Q and TWSA only as no observations
for validating ET and SWSA were available for this period.
For validation, we also used several performance metrics in-
cluding root mean squared error (RMSE), mean absolute de-
viation (MAD), Pearson correlation coefficient (r), and the
Nash and Sutcliffe efficiency (NSE) for the four signatures
MTS, MM, ATS, and SNA. Furthermore, a thorough visual
inspection of the simulation results was also performed.

3.6 Uncertainty estimation

To account for the uncertainty of the observation data in the
calibration results in its entirety, we would need to repeat
the calibration multiple times with alternative realizations

Hydrol. Earth Syst. Sci., 29, 567–596, 2025 https://doi.org/10.5194/hess-29-567-2025



H. M. M. Hasan et al.: The benefits and trade-offs of multi-variable calibration of the WGHM 577

Table 3. Availability of observation variables and their error estimates.

Observation variables Unit Period Estimated error Source

Streamflow (Q) at the [m3 s−1
] 1980–2012 20 % of monthly value Masood et

outlet of the basin al. (2015)

Basin average of total [mm] 2003–2012 Propagated Personal
water storage anomaly 2σ GRACE communication∗

(TWSA) errors for each month

Basin average of [mm] 1989–2005 2σ monthly error Mueller et
evapotranspiration (ET) al. (2013)

Basin average of surface [km3
] 1993–2007 25 % of monthly value Salameh et

water storage anomaly al. (2017)
(SWSA)

∗ Personal communication with the Astronomical, Physical and Mathematical Geodesy Group, Institute of Geodesy and
Geoinformation, University of Bonn, Germany (2022).

of the observation time series. This is not feasible given its
high computational demand. Alternatively, Werth and Günt-
ner (2010) defined an error ellipse around the compromise
solution after the regular calibration against the original ob-
servation time series. For defining the length of one axis of
the ellipse, they generated 5000 perturbed observation time
series of the observable according to its assumed error char-
acteristics and calculated the performance indices of the sim-
ulated time series for each of them. The axis length was then
determined by the standard deviation of the performance in-
dices. We recognized that the method of Werth and Günt-
ner (2010) does not consider the uncertainty of the compro-
mise solution itself given the fact that a different solution
will probably result as the compromise solution if the pa-
rameter search by the algorithm starts from a different start-
ing location, a different initial population is used, or simply
a different realization of the observational time series is used
in the calibration. With the change of the compromise solu-
tion, the axis lengths of the error ellipse are also expected to
change. In our analysis, we employed a Monte Carlo pro-
cess to generate 1000 realizations of observation time se-
ries for each variable, taking into account the given uncer-
tainty range. Subsequently, we computed the objective val-
ues (NSE) for all variables using the 1000 observation time
series for each variable, separately for each of the eight com-
promise solutions (with one compromise solution per repli-
cation). We established thresholds for each objective to ex-
tract high-performing solutions from the combined set of so-
lutions across all replications and referred to them as “ac-
ceptable” Pareto solutions, accounting for observation un-
certainty. These solutions can be viewed as “equivalent” to
the compromise solution in the context of uncertain obser-
vations. By applying thresholds to subset solutions, we ef-
fectively delineate a hyperrectangle in the objective space,
which is conceptually similar to the error ellipsoid used by
Werth and Güntner (2010).

4 Results and discussion

4.1 Parameter importance

The sensitivity to parameters varies among the response vari-
ables in the two river basins, and in many cases, it also
varies among the different signatures of a response vari-
able (Fig. 4). The response variables, especially stream-
flow (Q) and TWSA, represent an aggregate response of
many complex processes over various temporal and spatial
scales. Thus, they are often sensitive to parameters associated
with many storage compartments or processes (Table 2) such
as ET, soil (SL), surface water (SW), groundwater (GW),
snow (SN) (predominantly in the Brahmaputra basin), and
net abstraction (NA) by human water use (mainly in the
Ganges basin). In addition to the SW parameters, the SWSA
is highly sensitive to one soil parameter (SL-MSM); a few
groundwater-related parameters (GW-RFM, GW-MM, and
GW-DC), with varying importance depending on the consid-
ered signature; two snow parameters (SN-MT, SN-TG); and
the ET parameter EP-PTh, only in the Brahmaputra basin.
ET is computed as the sum of evaporation and transpiration
from canopy, snow, soil, and surface water bodies. However,
the soil component dominates total ET, and ET is highly sen-
sitive to the parameter SL-MSM, which governs the soil wa-
ter storage capacity. ET is also sensitive to the snowmelt (SN-
SM) in the Brahmaputra basin as apparently sublimation in
the basin contributes substantially to total ET. Apart from
these storage parameters, the EP-PTh, which scales poten-
tial ET in the humid zone, highly influences the simulated
actual ET.

Several parameters influence most or all response vari-
ables across various signatures. However, certain parame-
ters affect only one or two signatures of the response vari-
ables. For instance, the runoff coefficient (SL-RC) – which
is one of the parameters considered in the standard WGHM
calibration – significantly influences monthly means (MM)
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Figure 4. Most influential parameters for the Ganges (a) and the Brahmaputra (b) river basin based on the sensitivity of four signatures S1
to S4 – monthly time series (MTS; blue), monthly means (MM; gold), annual time series (ATS; orange), and seasonal amplitude (SNA; dark
green) of simulated Q, TWSA, ET, and SWSA. The size of each box represents the effect of a parameter relative to the total effect, i.e. the
sum of the effects of all parameters. The final set of calibration parameters with a significant impact on any signature of the four variables is
shown on the right of each plot (cyan boxes). For parameter abbreviations, see Table 2.

of ET in the Ganges basin and MTS of streamflow. Simi-
larly, the snowmelt temperature (SN-MT) is important for
some cases in snow-dominated catchments in the Brahma-
putra basin. These parameters may also affect other response
variables and signatures to some extent but do not meet the
defined threshold for parameter selection (Fig. 4). The rela-
tive contributions of all parameters to all response variables
and signatures are presented in Tables S2 and S3.

Based solely on sensitivity to streamflow and TWSA, we
identified 7 influential parameters in the Ganges basin and
12 influential parameters in the Brahmaputra basin (Fig. 4).
Additionally, 3 SW parameters in the Brahmaputra basin and
1 in the Ganges basin were selected due to their significant
impact on SWSA. Furthermore, 1 additional parameter in the
Ganges basin was found to be sufficiently influential on ET
and was included as a calibration parameter. After including
the P-PM parameter for both basins, we selected 10 WGHM
parameters for calibration in the Ganges basin and 16 param-
eters in the Brahmaputra basin.

The use of multiple signatures from various variables en-
sures that key parameters governing all critical hydrological
processes in the model are identified. For instance, if only
one signature were considered, 5–9 parameters in the Ganges
basin and 9–12 parameters in the Brahmaputra basin would

have been selected for calibration. Similarly, if parameter
sensitivity was assessed based on Q or TWSA only, influen-
tial parameters governing other important observables could
have been overlooked. However, the method of parameter se-
lection is not without challenges. Parameters with significant
impacts may be excluded if the cut-off threshold (e.g. 50 %
of the total effect, as used in this study) is surpassed by only a
few top-ranked parameters. For example, in the Brahmaputra
basin, despite contributing a substantial 12 % to the total im-
pact, the parameter SL-RC is deemed non-influential for ET
according to this threshold (Table S3). Raising the threshold
would result in the selection of a larger number of parame-
ters, potentially leading to an unnecessary expansion of the
decision space. This could increase computational demand
and exacerbate issues of equifinality (Sect. 4.2.3).

4.2 Model calibration

Calibration experiments with all 15 possible combinations
of the four objectives (NSEQ, NSETWSA, NSEET, and
NSESWSA) were carried out for the two study basins. Further-
more, each of the experiments was repeated eight times with
random seeds, resulting a total number of 240 calibrations.
Overall, the study involved the evaluation of 4.8 million
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Table 4. Configuration of the 15 calibration experiments, with the observed variable(s), number of objectives, number of replications, mini-
mum and maximum number of non-dominated (Pareto-optimal) solutions (i.e. estimated parameter sets) obtained among the 8 replications,
and the total number of non-dominated solutions over all eight replications.

Experiment name Observed No. of Replications No. of non-dominated solutions

variable(s) objs.∗ Ganges Brahmaputra

Min/max Total Min/max Total

(1) Q Q 1 8 1/1 8 1/1 8
(2) T TWSA 1 8 1/1 8 1/1 8
(3) E ET 1 8 1/1 8 1/1 8
(4) S SWSA 1 8 1/1 8 1/1 8
(5) QT Q, TWSA 2 8 3/5 34 2/3 20
(6) QE Q, ET 2 8 5/6 45 1/1 8
(7) QS Q, SWSA 2 8 10/13 94 1/2 15
(8) TE TWSA, ET 2 8 6/7 49 1/2 10
(9) TS TWSA, SWSA 2 8 14/17 123 1/4 18
(10) ES ET, SWSA 2 8 7/9 63 1/2 10
(11) QTE Q, TWSA, ET 3 8 106/146 1006 6/11 60
(12) QTS Q, TWSA, SWSA 3 8 402/472 3526 3/11 63
(13) QES Q, ET, SWSA 3 8 546/637 4712 2/16 30
(14) TES TWSA, ET, SWSA 3 8 65/84 616 3/12 63
(15) QTES Q, TWSA, ET, SWSA 4 8 1031/1155 8705 20/77 339

∗ NSE used as calibration objective.

samples, requiring approximately 3.21 million CPU hours of
model runtime.

4.2.1 Added value of multi-objective calibration and
trade-offs among objectives

A high cardinality, i.e. a high number of solutions in the non-
dominated Pareto solution set, was obtained in most multi-
objective calibrations (Table 4). The cardinality depends on
the shape of the Pareto frontier (PF) and the allowed crowd-
ing distance, which was constant (0.005) for all objectives in
all experiments. A wider PF resulting in high cardinality re-
flects a high trade-off between the objectives. The high cardi-
nality observed in the Ganges experiments indicates marked
trade-offs among objectives, especially between NSEQ and
NSESWSA, as well as between NSESWSA and NSETWSA. This
observation is further supported by the experiments involving
solely those objective pairs, which yielded a larger number
of solutions. The three-objective calibration TES has a lower
cardinality than the other three-objective cases, which indi-
cates the simulation of Q is in rather strong conflict with the
simulation of the three other variables. This is supported by
the poor fits to streamflow observations of the TES calibra-
tion variant for both basins (Tables 5 and 6). As expected,

1The execution time for a single run of the WGHM was approx-
imately 40 min but exhibited significant variations depending on the
specific CPU used and the concurrent I/O traffic on the cluster ma-
chine during the model run.

the four-objective calibration produced the highest number
of non-dominated solutions.

The single-objective calibration experiments obtained the
best NSE values for the specific objective under consider-
ation (Tables 5 and 6). The mean NSE of all four objec-
tives (µNSE,ALL) was used as a simple indicator of the over-
all performance of an experiment. In multi-objective calibra-
tions, although the objective values for each individual ob-
jective decrease slightly, the overall performance tends to in-
crease when more objectives are included. In the Brahma-
putra basin, the highest µNSE,ALL increases from 0.84 for
single-objective calibration to 0.90 for two-objective calibra-
tions, to 0.93 for three-objective calibration, and to 0.95 for
four-objective calibration. In the Ganges basin, the highest
µNSE,ALL is slightly smaller in three-objective calibrations
than in two-objective calibrations. Nevertheless, the four-
objective calibration experiments achieved the highest over-
all performances in the basin. In their study, Livneh and Let-
tenmaier (2012) demonstrated that the overall performance
of the calibrated model improved with the inclusion of ET
and TWSA observations in addition to streamflow observa-
tions. In contrast, Mei et al. (2023) observed a reduction
in the overall performance of a three-objective calibration,
including observations of Q, soil moisture, and ET, when
compared to single- and two-objective calibrations. This re-
duction was attributed to suspected model structural errors
and/or erroneous observations.

Different from the Brahmaputra, calibration against only
Q in the Ganges basin resulted in worse fits to all three other
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Table 5. Mean and standard deviation of model performance indicator NSE for the compromise solutions (N = 8) of the calibration exper-
iments in the Ganges river basin during the calibration period. The WGHM was rerun using parameters from the compromise solutions to
compute NSEs of all variables. The µNSE,ALL represents the mean NSE across all objectives over all eight compromise solutions per ex-
periment. The highest NSE for each objective is highlighted using bold face; the highlighted mean across objectives (µNSE,ALL) also shows
the highest value in each group (single-objective, two-objective, three-objective, and four-objective). The objective obtained in the standard
calibration and in the uncalibrated model is also shown.

Mean±SD

Experiment NSEQ NSETWSA NSEET NSESWSA µNSE,ALL

Q 0.97± 0.002 −4.07± 3.572 0.54± 0.135 0.56± 0.088 −0.5
T 0.70± 0.030 0.85± 0.001 0.89± 0.007 0.63± 0.021 0.77
E −14.83± 0.739 −2.56± 6.952 0.96± 0.000 −4.39± 2.476 −5.21
S −2.40± 1.453 0.57± 0.095 0.07± 0.064 0.92± 0.001 −0.21
QT 0.95± 0.003 0.84± 0.001 0.87± 0.001 0.64± 0.008 0.83
QE 0.96± 0.001 −5.93± 0.588 0.93± 0.001 −0.09± 0.092 −1.03
QS 0.94± 0.003 −23.73± 5.807 −0.35± 0.035 0.89± 0.002 −5.56
TE 0.52± 0.026 0.85± 0.000 0.93± 0.001 0.61± 0.016 0.73
TS −2.64± 0.775 0.81± 0.001 0.88± 0.025 0.88± 0.004 −0.02
ES −6.24± 0.206 0.66± 0.004 0.94± 0.003 0.89± 0.001 −0.94
QTE 0.94± 0.004 0.83± 0.002 0.92± 0.003 0.60± 0.028 0.82
QTS 0.93± 0.005 0.79± 0.008 0.63± 0.057 0.80± 0.008 0.79
QES 0.92± 0.013 −13.91± 6.842 0.87± 0.010 0.77± 0.007 −2.83
TES −3.42± 0.106 0.80± 0.002 0.93± 0.005 0.87± 0.002 −0.2
QTES 0.91± 0.015 0.81± 0.009 0.89± 0.015 0.76± 0.009 0.84
Std. calibrationa 0.96 0.80 −0.39 0.70 0.52
Uncalibratedb 0.84 0.80 0.55 0.76 0.74

a SL-RC and two correction factors are calibrated by adjusting mean annual streamflow, which was calibrated against observed values
(Müller Schmied et al., 2021). b SL-RC is set to the default 2.0, and correction factors were set to 1.

variables as compared to the uncalibrated model version.
Multi-variable calibration, however, works best if stream-
flow observations are included. Excluding NSEQ as an ob-
jective in any calibration resulted in significantly poorer per-
formance in streamflow simulation (Tables 5 and 6). The
importance of streamflow observations in model calibration
is well documented in the literature, with a particular fo-
cus on multi-variable calibration scenarios (Dembélé et al.,
2020; Livneh and Lettenmaier, 2012). Liu et al. (2022) re-
ported that calibrating a model with ET and TWSA observa-
tions can occasionally produce reasonable streamflow sim-
ulations in certain basin. In their study, Livneh and Letten-
maier (2012) concluded that calibrating the model with ei-
ther ET or TWSA alone was insufficient to achieve good
performance in streamflow simulation. We also discovered
that calibrating with these two variables only resulted in high
NSEQ (> 0.8) in a few replications in the Brahmaputra basin.

In comparison to the standard calibration, the four-
objective calibration resulted in better performance in the
Brahmaputra for all four response variables and in all vari-
ables except streamflow in the Ganges basin, where the stan-
dard calibration leads to a very high NSEQ of 0.96 (Table 6).
As the streamflow simulation for the single-objective calibra-
tion with Q only is better in the two basins than the standard
calibration, this suggests that the slight decrease in stream-
flow performance in four-objective calibration in the Ganges

basin is due to some trade-offs among the objectives. The im-
provement in ET by the four-objective calibration was much
higher than the improvement in other variables which under-
pins the need to include ET as a calibration variable. This
is corroborated by the observation that the standard calibra-
tion procedure of Müller Schmied et al. (2021) with Q only
degrades the ET simulation, even in comparison to the un-
calibrated WGHM. This, in fact, contradicts the conclusion
of the study by Nijzink et al. (2018), in which they anal-
ysed the potential of several remote sensing products to con-
strain hydrological models and calibrated five hydrological
models for 27 small catchments in Europe. They concluded
that remote-sensing-based ET observations were less effec-
tive at adequately constraining the posterior parameter distri-
bution compared to other observations such as soil moisture,
TWSA, and snow. One probable cause could be the fact that
the catchment size in that study was too small (< 1600 km2)
for the ET products to be effective; in our study, the catch-
ment size is significantly larger.

As mentioned above, multi-objective calibration enhances
the overall model performance at the expense of a slight de-
crease in the performance of individual variables, which is
common and often expected. Many studies have reported a
reduction in the performance of streamflow simulation when
the model is calibrated with streamflow and TWSA observa-
tions, as compared to models calibrated solely with stream-

Hydrol. Earth Syst. Sci., 29, 567–596, 2025 https://doi.org/10.5194/hess-29-567-2025



H. M. M. Hasan et al.: The benefits and trade-offs of multi-variable calibration of the WGHM 581

Table 6. Mean and standard deviation of model performance for the compromise solutions (N = 8) of the calibration experiments of the
Brahmaputra basin. µNSE,ALL represents the mean across the four objectives. The highest objective values in all experiments and in each
group are highlighted in bold. Objectives of the standard calibration and uncalibrated model is also shown.

Mean±SD

Experiment NSEQ NSETWSA NSEET NSESWSA µNSE,ALL

Q 0.95± 0.001 0.74± 0.052 0.79± 0.208 0.86± 0.043 0.84
T 0.23± 0.978 0.97± 0.004 0.72± 0.335 0.70± 0.166 0.66
E 0.01± 0.589 0.79± 0.108 0.96± 0.002 0.66± 0.169 0.61
S −0.19± 0.709 0.77± 0.065 0.74± 0.178 0.95± 0.002 0.57
QT 0.94± 0.003 0.96± 0.003 0.73± 0.221 0.79± 0.073 0.86
QE 0.95± 0.001 0.83± 0.027 0.96± 0.004 0.85± 0.037 0.9
QS 0.95± 0.002 0.73± 0.095 0.69± 0.209 0.94± 0.001 0.83
TE −0.19± 0.965 0.96± 0.003 0.96± 0.005 0.83± 0.024 0.64
TS −0.12± 0.698 0.96± 0.005 0.71± 0.339 0.94± 0.002 0.62
ES −0.32± 0.606 0.86± 0.044 0.96± 0.004 0.94± 0.001 0.61
QTE 0.94± 0.003 0.96± 0.003 0.96± 0.001 0.84± 0.065 0.93
QTS 0.94± 0.002 0.96± 0.003 0.71± 0.268 0.94± 0.002 0.89
QES 0.95± 0.002 0.87± 0.020 0.96± 0.003 0.94± 0.001 0.93
TES −0.14± 0.590 0.95± 0.003 0.96± 0.002 0.94± 0.003 0.68
QTES 0.94± 0.003 0.95± 0.005 0.96± 0.004 0.94± 0.001 0.95
Std. calibration 0.90 0.77 0.26 0.64 0.64
Uncalibrated 0.72 0.81 0.68 0.57 0.7

flow data (Li et al., 2018; Bai et al., 2018; Yassin et al., 2017;
Rakovec et al., 2016; Livneh and Lettenmaier, 2012). The
trade-offs among other variables are not well documented in
the literature. Mei et al. (2023) compiled a list of the pre-
vious studies that incorporated streamflow observations and
observations of some additional variables in model calibra-
tion. They documented changes in performance in four tar-
get variables – streamflow, ET, soil moisture, and TWS – as
a result of incorporating additional variables in those studies.
In addition to the trade-offs between streamflow and TWSA,
we also observed substantial trade-offs between NSEQ and
NSESWSA, between NSETWSA and NSESWSA, and NSESWSA
and NSEET (Fig. 5). The trade-offs among the objectives be-
have differently in the two basins as the shape of the Pareto
front (PF) of non-dominated solutions differs significantly
between the basins. In general, PFs of the Ganges experi-
ments have a smooth curvature with extended spread near
the theoretical optimum of the objectives, while the Pareto
fronts in the Brahmaputra basin are mostly very steep resem-
bling right angles (Fig. 5). Due to the conflicts among objec-
tives, the number of non-dominated solutions in the Ganges
basin became much larger than in the Brahmaputra where the
trade-offs are much smaller.

The substantial variations of the performance values of
the compromise solutions across the calibration repetitions,
which can be regarded as the “uncertainty” of the calibra-
tion method itself, further complicates the assessment of
trade-offs among objectives. Bai et al. (2018) observed in-
consistent conclusions in the literature regarding the impact
on streamflow simulations when incorporating GRACE data

for model calibration in addition to streamflow observations.
Some studies reported a “positive” impact, while others re-
ported a “negative” impact. We argue that the source of such
inconsistency could be attributed to (i) the failure to account
for the uncertainty in the calibration method; (ii) the lack of
convergence to the Pareto front; and (iii) an ill-posed prob-
lem formulation resulting from the choice of an inappropri-
ate model, non-identifiable parameters, or inadequate data.
Thus, the uncertainty of the calibration outcome should be
considered whenever possible when discussing trade-offs.
While we consider the impact of observational uncertainty
in the next chapter of this study, we found here that the un-
certainty stemming from the calibration method differed sig-
nificantly between the two basins. In the Ganges basin, the
highest uncertainties were observed in single-objective cali-
bration cases involving only NSEQ and only NSEET. Among
the three-objective calibrations, the highest level of uncer-
tainty was observed in calibrations without NSETWSA and
without NSEQ. High variations were observed in those ob-
jectives that were not used in the calibration. In the Brahma-
putra basin, among the single-objective calibration cases, cal-
ibrations with only NSETWSA and with only NSEET exhib-
ited the highest level of variation. When one object is omitted
from calibration, the calibrations without NSEQ and without
NSEET generated the highest degree of uncertainty in the ob-
jectives NSEQ and NSEET, respectively. Probably the most
important calibration cases for trade-off analysis are the bi-
variate cases with two objectives, which in our case exhibit
an insignificant level of uncertainty resulting from the cali-
bration method itself.
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Figure 5. The Pareto front of four-objective calibration experiments of the Ganges basin and for the Brahmaputra basin. The 3-D view of the
4-D PF of Ganges (a) and Brahmaputra (b) is shown, while the fourth dimension is colour-coded. Only solutions with NSEs greater than 0.5
are shown. The 2-D projection is shown with crosses. The bottom row shows the 2-D view of each pair of objectives for the Ganges (c) and
the Brahmaputra basin (d). All non-dominated solutions are shown in grey, the compromise solution of each replication in red, the overall
compromise solution in black, and the acceptable solutions considering observation uncertainties in orange.

In the Ganges, calibrating against ET leads to negative
NSE values for TWSA and SWSA. This conflict between ET
and TWSA results in the only positive NSEQ value that
was obtained in two-objective calibrations without Q. In a
single-objective calibration against ET, the calibration algo-
rithm aims at keeping storage as high as possible to en-
sure that there is enough water for evaporation and there
is no penalty for overestimating storage. However, includ-
ing TWSA forces the algorithm to release some of the stor-
age to achieve a good fit for TWSA, which leads to a better
simulation of Q compared to a single calibration against ET.
Calibration against ET and SWSA does not improveQ in the
Ganges, suggesting that the adjustment of TWSA is likely re-

lated to soil storage. In the Brahmaputra basin, the trade-off
between ET and TWSA is very small, and the two-objective
calibration against ET and TWSA does not improve Q.

4.2.2 Impact of observation uncertainty on the
calibration outcome

The uncertainties associated with individual data points in
the observation time series alter the values of the perfor-
mance criteria. We conducted an assessment of this effect by
perturbing all observations using their respective uncertain-
ties through a Monte Carlo simulation, resulting in 1000 per-
turbed time series for each variable. Subsequently, we cal-
culated the objective (NSE) values for the compromise so-
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Figure 6. Uncertainty in NSE of the compromise solutions (CSs) in the repeated experiments of four-objective calibration, obtained by
propagation of observational uncertainties into objectives. (a) Scatter plot of objective values (NSE) of (i) all Pareto solutions, (ii) the
compromise solutions (NSECS), and (iii) the compromise solutions computed for 1000 perturbed observation time series (NSEOU) for the
Ganges basin. Three thresholds (M2, M3, M4) are visualized as options to delineate the space of compromise solutions under consideration
of observational uncertainties (see text for details). Density functions (CDFs and PDFs) of NSEOU in the Ganges basin (b) and in the
Brahmaputra basin (c). PDFs represent the deviations NSEOU–NSECS. The dashed black vertical lines in the density plots delineate the
zones of NSE decrease and NSE increase. Densities of NSEOU for each compromise solution of a single repetition are plotted in grey, and
the density functions of NSEOU of all compromise solutions are in black. The black dots show the objective values of the compromise
solutions.

lutions across all eight replications of the four-objective cal-
ibration. The largest deviations of NSE from the reference
values, i.e. the values of the compromise solutions with the
original observation time series, were found in streamflow
for both the Ganges and the Brahmaputra basins (on av-
erage 0.26 and 0.12, respectively), followed by ET (0.12
and 0.10) (Fig. 6b and c). Low deviation in the range of
0.05–0.07 was observed for both storage variables (TWSA
and SWSA) for which the means are always zero in both the
simulation values and observation data. The changes of the
objective function values with the perturbed time series may
result in different Pareto solutions. For this reason, we pro-
pose a mechanism to objectively identify a group of solutions
that could be considered alternatives to the compromise so-
lution.

We tested several objective thresholding methods to delin-
eate the space of solutions that can be considered equivalent

to the compromise solution in view of the observation uncer-
tainties. In the following, we name them “acceptable Pareto
solutions considering observation uncertainties”. The mini-
mum NSE value of all compromise solutions (Min NSECS)
in the repeated experiments is discarded as a threshold (M1)
as it represents the uncertainty due to the random start of the
parameter search in the calibration algorithm only but not
the observation uncertainties themselves (Table 7). The sec-
ond threshold (M2) is computed by subtracting the standard
deviation of all the objective values obtained with perturbed
observation time series (SD NSEOU) from Min NSECS. The
third threshold (M3) is computed by subtracting the mean
absolute deviation of objective values with perturbed time
series from the reference values (MAD NSEOU,REF; the ob-
jectives of compromise solutions are used as reference val-
ues); the threshold is set at Min NSECS−MAD NSEOU,REF.
Threshold M4 is the fifth percentile of NSEOU, which en-
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Table 7. Metrics related to the spread of the objectives of the compromise solutions (CSs) for two sources of uncertainties – observation
uncertainty and uncertainty due to the calibration method, i.e. random starting population used during the parameter search. Observation
uncertainty is propagated by perturbation of the observation with a Monte Carlo process within the estimated uncertainty bound of an
observable and then computing objectives for those perturbed observation time series (NSEOU) (N = 1000).

Source of Metric Ganges Brahmaputra

uncertainty Q TWSA ET SWSA Q TWSA ET SWSA

Optimization Min NSECS 0.883 0.794 0.870 0.743 0.932 0.944 0.952 0.934
algorithm Range NSECS 0.050 0.029 0.037 0.023 0.011 0.016 0.009 0.006

Observations Min NSEOU 0.620 0.748 0.715 0.678 0.803 0.894 0.770 0.852
The fifth percentile of NSEOU 0.719 0.773 0.759 0.708 0.838 0.917 0.819 0.882
SD NSEOU 0.080 0.013 0.022 0.017 0.034 0.010 0.015 0.019
MAD of NSEOU,REF 0.063 0.015 0.092 0.016 0.036 0.019 0.113 0.019

sures 95 % of NSEOU remain above the threshold. For the
most unrestricted option (M5), the minimum value of NSEOU
is taken as the threshold.

In some instances, we found that the standard deviations
of NSEOU (SD NSEOU) and MAD NSEOU are smaller than
the range of objectives in the compromise solutions of the
repeated experiments. For this reason, we argue M2 and
M3 are incapable of distinguishing the objective uncertainty
attributed to the observational uncertainty from other sources
of uncertainty like the randomness in the calibration method
itself. Thus, we rejected them as appropriate thresholds for
identifying acceptable solutions considering observation un-
certainties, although they could find a reasonable number
of good solutions (Tables S5 and 7). It is worth noting that
Werth and Güntner (2010) used a similar strategy to M2 for
identifying the uncertainty in objectives. We also rejected the
least restrictive threshold M5 as a singular extreme low value
of an objective can extremely limit the efficacy of the thresh-
old. Conversely, the threshold M4 holds a balance between
restrictedness and efficacy. While it excludes the poor ex-
tremes, 95 % of good objective values are kept in the final
set. Using M4, we obtained over 1400 solutions (16 % of the
total number) in the Ganges basin and 221 solutions (65 %) in
the Brahmaputra basin having model performance above the
threshold. Overall, the performance of the acceptable Pareto
solutions considering observation uncertainties is seen gener-
ally higher with smaller dispersion in the Brahmaputra basin
than those of the Ganges basin.

Any perturbation of the ET observation time series within
its uncertainty ranges leads to a lower NSE than the reference
value in both basins (Fig. 6). In all cases, NSEOU is worse
than the objectives of the compromise solutions. A similar
performance decrease was observed in NSEOU for all vari-
ables, except for streamflow in the Ganges basin where only
about half of the uncertainty-perturbed time series leads to a
decrease in NSEOU, while the rest causes NSEOU to increase.
The aforementioned indicates that during calibration the pa-

rameters are so finely tuned to the (undisturbed) observation
time series that any modification of the time series leads to
a deterioration of the objective values. On the one hand, this
corroborates the strength of the optimization algorithm. On
the other hand, it clearly indicates overfitting of the param-
eters. This raises questions about their usability in scenar-
ios where variations in observations are anticipated such as
model predictions in a different time period or when extrapo-
lating parameters for uncalibrated basins (parameter region-
alization). The reason that streamflow in the Ganges behaves
differently in this regard is not very clear; one probable cause
could be that during the choice of the compromise solutions,
most high-performing solutions for the streamflow variable
were rejected due to low performance in other variables (the
maximum NSEQ in all solutions is 0.97, but max. NSEQ in
the compromise solutions is 0.93).

It is also noteworthy to observe that the shape of the den-
sity function for changes in objectives (Fig. 6b and c) is
closely associated with the error structure of observations.
An average percentage bias was considered the error of the
streamflow and SWSA observables, whereas for TWSA and
ET absolute errors were assumed. When converted to the per-
centage error, it was observed that the TWSA and ET obser-
vation error has a sinusoidal seasonal structure. In contrast,
the constant percent bias in streamflow and SWSA causes
high errors in the monsoon season in the perturbed observa-
tions and added only very small bias in the dry winter sea-
son. This ultimately causes a left skewness to the distribution
of deviations of NSEOU for streamflow and SWSA (Fig. 6b
and c).

When comparing the parameter values of the eight com-
promise solutions (group 1) to those of the acceptable Pareto
solutions considering observation uncertainties (group 2)
(Fig. 7), the parameter distributions of these two groups are
very similar in most cases, although the total number of solu-
tions in group 2 is very high. Mostly, we observed flattening
and widening of the density curves for the parameter values
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in the solutions of group 2. The peak of the density curves of
two groups matches most of the time, with a few exceptions
with slight horizontal shifts. The overall compromise solu-
tion, which is the compromise solution among all outcomes
of all replications, does however not always coincide with
the peak of the density distributions. The standard WGHM
parameter values significantly differ from the calibrated val-
ues for most parameters in the two basins.

The impact of observation uncertainty is often overlooked
in hydrological model calibrations, largely due to the lack
of strategies for incorporating this uncertainty into the cali-
bration framework. These uncertainties can severely limit the
applicability of calibrated models, as they are often overfit-
ted to mean or single observation values. Even small fluc-
tuations in the observations can degrade the performance of
the model, potentially disqualifying it as a non-dominated
solution. This, in turn, reduces the reliability of what is
considered a compromise solution. Conversely, identifying
solutions similar to the compromise solution that account
for observation uncertainty, while maintaining an acceptable
level of performance, could enhance the reliability of the
calibration outcomes. However, scrutinizing these “accept-
able solutions considering observation uncertainties” comes
with challenges. The influence of observational uncertainties
varies across variables and depends on the objective func-
tions used in calibration as well as the nature of the data un-
certainties.

4.2.3 Parameter identifiability and equifinality

Figure 8 illustrates that the four-objective calibration effec-
tively reduced the parameter space substantially in the two
basins for most parameters, particularly when comparing
the compromise solutions across repeated experiments. Even
when we consider the acceptable Pareto solutions consider-
ing observation uncertainties, a significant reduction in the a
priori parameter range was achieved for most cases, except
two parameters in the Ganges and five in the Brahmaputra
basin. This already indicates that a good level of identifiabil-
ity has been achieved. A parameter is considered identifiable
for a given set of observations if the true value of the pa-
rameter can be inferred with confidence (Wu et al., 2019).
The degree of identifiability is usually measured by the pos-
terior standard deviation for individual parameters and pos-
terior covariance matrix for multiple parameters (Wu et al.,
2019; Arendt et al., 2012a, b). Cibin et al. (2010) deter-
mined parameter identifiability in the Soil and Water As-
sessment Tool (SWAT) model through visual inspection of
scatter plots of model parameters against their correspond-
ing performance metric, considering a parameter identifiable
if a distinct performance metric maximum was observable in
the scatter plot. In the absence of a posterior distribution, we
measured the degree of identifiability as the ratio of the pa-
rameter range in the compromise solutions of the eight repli-

cations to the a priori parameter range (Tables S8 and S9,
Fig. 7).

Due to the fewer parameters involved in the Ganges cal-
ibration experiments, better parameter identifiability is ob-
served within the basin compared to experiments in the
Brahmaputra basin. We investigated how individual obser-
vations influence parameter identifiability during calibration
and explored the impact of sensitivity on parameter identi-
fiability. The least satisfactory result was obtained for the
calibration with Q only where the ranges of only two pa-
rameters (P-PM and SL-RC) in the compromise solutions are
less than 15 % of the a priori range. Five parameters (P-PM,
EP-PTh, SL-MSM, SL-RC, and SW-RRM) are better con-
strained by the calibration with TWSA alone. Two sets of
six parameters are best constrained by the ET and the SWSA
variables, respectively. For ET, they are P-PM, EP-PTh, SL-
MSM, SL-RC, GW-MM, and SW-DC, and for SWSA the
parameters are SL-MSM, SL-RC, SW-RRM, SW-WD, NA-
GM, and NA-SM. Compared to the sensitivity indices (mean
EET, Table S2, Fig. 7), the parameters that are better identi-
fied in the SWSA-only calibration are those with the highest
sensitivity for this variable. Wu et al. (2019) demonstrated
that identifiability is largely related to the sensitivity or sig-
nificance of the calibration parameters with respect to re-
sponse variables. For ET, however, SW-DC and GW-MM are
well constrained by the calibration but are not among the in-
fluential parameters for any signature of ET in the SA. For
TWSA and Q the relationships between parameter identifia-
bility based on the range ratio and the most sensitive signa-
tures from SA are more diverse. In their study, Soares and
Calijuri (2021) also observed a clear disparity between the
results of their identifiability analysis and sensitivity analy-
sis, although the majority of the results in the two analyses
were similar. One should keep in mind, though, that the ob-
jective function used in calibration is only one of the signa-
tures that was used to measure sensitivity in the SA. Never-
theless, we usually observe high correlations among the ob-
jectives and the parameters for at least one of the variables
(Table S4, Fig. 7).

In calibrations with two or more objectives in the Ganges
basin, the degree of parameter identifiability varies with
the participating variables. Interestingly, parameters are best
identifiable in the experiment ES in which the range of all
parameters after calibration is less than 2.2 % of the a pri-
ori range except one for which the range ratio is only 11 %.
In the case of the four-objective calibration, most parameter
range ratios are below or around 20 %; only two parameters
have a range ratio of more than 30 %. Arendt et al. (2012a)
demonstrated that employing multiple responses, which ex-
hibit mutual dependencies on a common set of parameters,
can enhance the identifiability of those parameters. However,
if the dependencies among themselves exhibit inverse rela-
tionships, parameter identifiability may worsen, as observed
in the case of the four-objective calibration.
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Figure 7. The distribution of parameters of the compromise solutions in the eight repeated four-objective calibration experiments (dark
orange), the acceptable Pareto solutions considering observation uncertainties (cyan), and all Pareto solutions in all replications (grey). The
overall compromise solution (dashed black vertical line) represents the compromise solution among all solutions in all replications. The
parameter value of the standard WGHM is shown with the dashed red vertical line.

In the Brahmaputra basin, four parameters (P-PM, SN-
MT, SN-TG, and SL-RC) are constrained well (i.e. they have
low coverage of their a priori range in the compromise so-
lution sets) with the variable Q, two parameters (SN-MT
and SL-MSM) by the ET variable, and two (SN-TG and
SW-RRM) by the SWSA observations. However, the TWSA
seems to have no discernible control on any of the param-
eters in the basin. Parameters with a strong inverse correla-
tion, such as GW-MM and GW-RFM (correlation of −0.90,
Table S7, Fig. 7), leading to reduced identifiability in both
the parameters in Brahmaputra basin (Fig. 8), may become
more easily identifiable if one parameter is omitted from the
calibration process.

Non-uniqueness, or equifinality, arises from the fact that a
singular set of parameters is incapable of generating a unique
set of model responses. This occurs because there are nu-
merous pathways to achieve the same target (Beven and Bin-
ley, 1992), or the capacity for uniqueness is compromised,
whether observation data are absent or present, often as a
consequence of summarizing the response variable (Wagener

et al., 2003). In the presence of input and data uncertain-
ties, the degree of equifinality increases, even if the structural
discrepancies within the model remain unchanged. As the
non-uniqueness problem intensifies, it is expected that non-
identifiability also rises. If, however, the equifinality arises
from an inverse correlation among parameters, a parameter
can still be identifiable if the opposing parameter is omit-
ted. For example, GW-MM exhibits a strong negative corre-
lation (−0.90, Table S7, Fig. 8) with the parameter GW-RFM
among the acceptable Pareto solutions considering observa-
tion uncertainties, which reduced identifiability in both the
parameters in Brahmaputra basin (Fig. 8). If one of them is
omitted from the calibration process, the other may become
identifiable.

The analysis of parameter identifiability does not provide
clear evidence that including additional observables in the
calibration process necessarily enhances identifiability, par-
ticularly in the presence of strong correlations among param-
eters. On the contrary, interactions among highly sensitive
parameters must be carefully considered when selecting pa-
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Figure 8. Parallel coordinate plot of all Pareto solutions (grey), the compromise parameter sets (N = 8, dark orange), the overall compromise
solution (solid cyan), and the set of “acceptable Pareto solutions considering observation uncertainty” (dark green) of the four-objective
calibration in the Ganges basin (a) and the Brahmaputra basin (b).

rameters for calibration, especially in multi-variable calibra-
tion scenarios. However, a strong relationship was observed
between parameter identifiability and the number of param-
eters being optimized. Specifically, in almost all single- and
multi-objective calibrations within the Ganges basin, the pa-
rameter ranges were significantly reduced compared to the
calibration experiments conducted in the Brahmaputra basin
(Tables S8 and S9).

4.2.4 Validation

We compare the simulations of the four variables of the over-
all compromise solution and the ensemble of the accept-
able Pareto solutions considering observation uncertainties
(Sect. 4.2.2) of the four-objective calibration experiment with
the observations. Except in 1 to 2 months during monsoon,
the simulation with the overall compromise solution overesti-
mates monthly streamflow in the Ganges basin (Fig. 9). This
led to an overestimation of monthly means for all months.
The annual streamflow amplitudes are also overestimated
in all years except one (2002). In comparison, the standard
WGHM calibration with only streamflow observation re-
sulted in a better fit in streamflow simulations, with a lower
magnitude of under- and overestimations of monthly means,
annual amplitudes, and annual means. Surprisingly, the un-
calibrated model simulates the streamflow in the basin better

than the compromise solutions in all signatures except in the
seasonal amplitude (Table 8). The uncalibrated model mostly
performed well to represent the low flows.

In the Brahmaputra basin, the simulation with the com-
promise solution underestimates streamflow for the monthly
time series and annual averages (Fig. 10a). However, ex-
cept for few high rainfall years, the seasonal amplitude was
mostly overestimated (Fig. 10b). In comparison to the model
that was calibrated with the standard approach, the compro-
mise solution in this basin performed better, with lower mean
absolute deviation in all aspects of streamflow simulation
(Table 8).

Negative trends of TWSA are clearly visible in obser-
vations of both the Ganges and the Brahmaputra basins
(Figs. 9c and 10c). Because we used only few years of TWSA
data in calibration (2003–2009) and within this period the
trend was not very obvious, all calibrations fail to repre-
sent the TWSA decrease in the two basins. Nevertheless,
beyond the calibration period, the seasonality and peaks are
correctly represented (with high correlation coefficients be-
tween observation and simulation in 2010–2019; Table 9) by
the simulations with the compromise solutions of the two
basins. Also, the mean deviation of the TWSA is 11.7 %
and only 7.3 % of mean annual amplitude in the Ganges and
the Brahmaputra basin, respectively. The model’s inability to
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Figure 9. Simulations of streamflow (a, b), TWSA (c, d), ET (e, f), and SWSA (g, h) in the Ganges basin with the overall compromise solution
of the four-objective calibration. The simulation results with the acceptable Pareto solutions considering observation uncertainties (dark
green), with uncalibrated WGHM (dotted red line) and with the calibrated model with standard approach (solid red), are also shown. Monthly
time series (a, c, e, g) and monthly mean values (b, d, f, h). The mean was computed over the entire period with available observations.

produce the negative TWSA trends causes an overestimation
of the TWSA in the later years of the simulation time series.
The performance of the calibrated model with standard cal-
ibration in simulating the TWSA is worse than that of the
compromise solution and even worse than the uncalibrated
model.

ET simulation with the compromise solution in the Ganges
basin mostly underestimates the observed values, except for
a few winter months. It should be noted that the interannual
variability of amplitude is very small in the ET observation
in the two basins (13.6 mm in the Ganges and 11 mm in the
Brahmaputra). The seasonal amplitude is underestimated by
the compromise solution in most years in the Ganges basin,
whereas it is slightly overestimated in the Brahmaputra basin
in most years. The monthly means in the Ganges are under-
estimated for all months except March. In the Brahmaputra
basin the monthly means match well with the observations
with only 3 % of mean absolute deviation; the annual mean
in the basin also has a very small deviation from the obser-
vations.

For SWSA, the simulation with the compromise solutions
is limited in accurately reproducing the mean seasonality
of the observed SWSA: the seasonal peak of the simulated

SWSA is on average 1 month delayed relative to the observa-
tions. The earlier increase in the SWSA by 1 month as com-
pared to the simulations could be explained by the detection
of rice paddies or wet soil signal by the satellite method (Papa
et al., 2006), which is not captured by the model.

The seasonal amplitude is slightly underestimated by
the simulations, especially in the later observational years
(2002–2007) (Fig. 9h). In contrast, in the Brahmaputra basin,
the compromise solution simulates the SWSA dynamics very
well (Fig. 10g and h).

The simulation results with the ensemble of compromise
solutions obtained by consideration of observation uncertain-
ties (group 2) usually show similar dynamics to the compro-
mise solution itself. The uncertainty of the group 2 simula-
tion results, i.e. the bandwidth around the compromise solu-
tion, is smaller than the observation uncertainty bandwidth
(Table S13, Fig. 10) except for streamflow and SWSA sim-
ulations in the Ganges basin. The bandwidth of ET in the
group 2 solutions is the lowest (32.2 % and 23.8 % of the
observed mean in the Ganges and Brahmaputra basins, re-
spectively, in comparison to observation average uncertainty
band width of 53.4 % and 50.5 % in the two basins). In
the Brahmaputra basin, the monthly streamflow simulations
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Table 8. Comparing the overall compromise solution of the four-objective calibration, standard calibration, and uncalibrated model across
four signatures: monthly time series (MTS), monthly means (MM), annual time series (ATS), and seasonal amplitude (SNA). The mean
absolute deviation (MAD) was computed by comparing observations and simulations across the entire observation period, expressed as a
percentage of the observation mean. Observation gaps were filled using linear regressions (γ = β0+β1χ ) for individual months, accounting
for seasonality and trends.

Sig. Mean absolute deviation (MAD) as fractions of observation mean

Ganges Brahmaputra

Obs. Comp. Std. Uncalibrated Obs. Comp. Std. Uncalibrated
meana,b sol. calibration mean sol. calibration

Q MTS
11 855.8

30.6 % 16.7 % 28.2 %
22 140.2

14.3 % 19.4 % 34.7 %
MM 26.8 % 7.5 % 24.7 % 7.5 % 13.6 % 34.6 %
ATS 26.8 % 8.1 % 24.7 % 7.0 % 7.0 % 34.6 %
SNA 43 274.4 20.4 % 11.0 % 34.0 % 48 345.7 13.9 % 17.1 % 16.9 %

TWSA SNA 323.4 11.7 % 19.4 % 13.4 % 270.0 7.3 % 28.9 % 25.0 %

ET MTS
51.7

11.3 % 41.9 % 26.5 %
46.7

6.1 % 33.3 % 17.9 %
MM 10.2 % 39.5 % 25.2 % 3.2 % 33.3 % 17.0 %
ATS 9.7 % 5.1 % 13.0 % 1.9 % 33.3 % 9.6 %
SNA 65.0 6.9 % 105.3 % 48.6 % 52.7 8.0 % 7.6 % 45.1 %

SWSA SNA 187.8 15.4 % 31.2 % 19.0 % 245.6 5.8 % 55.8 % 61.2 %

a The unit for Q is m3 s−1 and for all other variables millimetres (mm). b Means of seasonal amplitude are in mm yr−1.

Figure 10. Simulations of streamflow (a, b), TWSA (c, d), ET (e, f), and SWSA (g, h) in the Brahmaputra basin with different solutions.
See description of Fig. 9.

https://doi.org/10.5194/hess-29-567-2025 Hydrol. Earth Syst. Sci., 29, 567–596, 2025



590 H. M. M. Hasan et al.: The benefits and trade-offs of multi-variable calibration of the WGHM

Table
9.Perform

ance
m

etrics
of

the
overallcom

prom
ise

solution
of

the
four-objective

calibration
of

the
G

anges
and

B
rahm

aputra
basin

for
allobservables

and
for

four
signatures:

m
onthly

tim
e

series
(M

T
S),annual

average
tim

e
series

(A
T

S),m
onthly

m
ean

(M
M

),and
seasonal

am
plitude

(SN
A

).C
alibration

period
is

until
2009

from
the

start
of

observation
availability,and

validation
period

starts
from

2010
tillthe

lastobservation
year.N

SE
/correlation a

(r)/R
M

SE
b

C
alibration

(variable
year–

2009)
V

alidation
(2010

–
variable

year)

M
T

S
A

T
S

M
M

SN
A

M
T

S
A

T
S

M
M

SN
A

G
anges

Q
0.91/0.98/4978.1

0.72/0.98/3378.6
0.95/1.00/3407.6

−
0
.01/0.86/8930.3

0.55/0.96/9560.1
−

4
.68/0.99/5826.1

0.66/0.97/7704.2
−

17
.99/0.38/21

303.2
T

W
SA

0.81/0.92/47.0
0.15/0.61/42.1

0.95/0.99/21.1
0.54/0.90/38.2

0.20/0.88/114.4
−

1
.13/0.82/114.8

0.18/0.97/98.6
0.22/0.87/56.6

E
T

0.88/0.96/8.0
−

8
.34/0.83/5.2

0.90/0.97/7.2
−

1
.32/0.49/5.3

SW
SA

0.77/0.88/31.5
−

6
.83/0.15/10.2

0.84/0.92/25.6
−

2
.72/0.24/35.3

B
rahm

aputra

Q
0.94/0.98/4038.8

0.56/0.82/1828.5
0.98/1.00/2042.4

0.56/0.80/7411.8
0.85/0.97/7323.5

−
0
.28/0.92/4942.3

0.87/0.99/6109.9
−

1
.95/0.79/13

054.9
T

W
SA

0.96/0.98/20.7
0.94/0.99/10.2

0.99/1.00/9.3
0.78/0.92/22.4

0.72/0.96/54.5
−

0
.58/0.92/54.3

0.78/1.00/45.6
0.55/0.85/26.0

E
T

0.96/0.98/3.7
−

0
.98/0.18/1.1

0.99/1.00/1.7
−

3
.63/−

0
.09/5.5

SW
SA

0.94/0.97/22.3
0.43/0.66/8.8

0.98/0.99/11.0
0.50/0.74/18.3

a
Pearson

correlation
coefficient. b

T
he

unitofR
M

SE
for

Q
is

m
3

s
−

1
and

forthe
restofthe

variables
m

illim
etres

(m
m

).

with the group 2 solutions fall mostly within the observa-
tion, while in the Ganges basin the monthly streamflow peaks
are mostly overestimated and pass beyond the upper limit
of observation uncertainty. Although the group 2 simulation
bandwidth was smaller for TWSA for the two basins than
the observation uncertainty bands, the simulation bandwidth
follows the observation uncertainty band only in the Brahma-
putra basin. In the Ganges basin, with the exception of a few
years, the group 2 simulation uncertainty band misses the ob-
servation uncertainty band even in the calibration period. The
group 2 uncertainty of ET simulations falls within the obser-
vation uncertainty band in both basins. For SWSA, due to
the better representation of its seasonality in Brahmaputra,
the uncertainty of SWSA simulations is also better covered
by the observation uncertainty than in the Ganges basin.

As discussed before, due to the unavailability of observa-
tion data in ET and SWSA in the validation period, model
validation was only possible for the Q and TWSA simula-
tions of the compromise solution (Table 9). The simulation
error (RMSE) in the validation period increased by factors
of 2 to 5 relative to the calibration in most cases, indicat-
ing strong degradation of model performance in the valida-
tion period. The performance in monthly values (MTS) and
mean monthly values (MM) is slightly better than the annual
means (ATS) and seasonal amplitudes (SNA) in both basins
because the calibration objectives were monthly time series.
The performance with respect to these last two signatures is
also worse in the calibration period. However, all the sig-
natures stay with high correlations in the validation period,
which implies the timing and the seasonal dynamics were
well captured by the simulations with the compromise solu-
tions. The validation metrics should be carefully interpreted
as the number of validation data is small.

5 Conclusions

In this study, we introduced a multi-objective calibration
framework for estimating basin-specific optimal parameter
sets for large-scale hydrological models. The framework can
make use of observations for multiple model output vari-
ables as well as for multiple signatures of each variable. Ap-
plying this approach to the Ganges and Brahmaputra basins
with the global hydrological model WGHM, we analysed
the impacts, benefits, and challenges of multi-variable, multi-
signature sensitivity analysis and multi-variable calibration.

The multi-variable, multi-signature sensitivity analysis fa-
cilitates the identification of important parameters that would
remain unidentified if not all variables or signatures were
considered. Due to the different hydrological characteristics
of the modelling units to be calibrated, the sensitivity analy-
sis has to be carried out individually for each unit, resulting
in identification of different influential parameters and in dif-
ferent numbers of parameters to be calibrated. The proposed
parameter selection method is based on the relative impact
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of individual parameters compared to all parameters. The
method can be adjusted with respect to the impact thresh-
olds and by weighting variables and signatures depending on
the modelling purpose and is thus an approach that can be
used in a flexible way in other studies.

The results of this study show that parameter identifiabil-
ity is inversely related to the number of parameters that were
selected for calibration. Although a reasonably good level
of parameter identifiability in the multi-variable calibrations
was achieved, the results do not provide evidence that us-
ing multiple observational variables generally enhances pa-
rameter identifiability. Certain combinations of observations
used for calibration resulted in a high parameter identifiabil-
ity, e.g. calibration with ET and SWSA or with TWSA, ET,
and SWSA in the Ganges basin, but this is not the case of
the Brahmaputra basin. While in the Ganges basin, all two-
variable calibrations lead to a better identifiability than all
one-variable calibrations, calibration against Q only results
in a better identifiability than all the two-variable calibration
except calibration with Q and SWSA. Thus it depends on
the basin as well as on the selected calibration parameters to
what degree the inclusion of observations of multiple vari-
able in the model calibration increases parameter identifia-
bility.

Including additional observations in the calibration con-
sistently improved the overall model performance. The high-
est overall performance is achieved by the calibration that
takes into account all four output variables. The value of
calibrating with Q and TWSA observations for the overall
model performance was higher than that of ET and SWSA
observations. The degree of improvements depends on basin
characteristics as well as on the trade-offs and interactions
among the objectives. This, in turn, depends on the capabil-
ity of the model to represent the relevant hydrological pro-
cesses in the basin. In line with Döll et al. (2024), we found
that using streamflow observations in the calibration is es-
sential for achieving good streamflow simulations, which are
the primary target for most hydrological model applications.
In contrast, good simulation results for TWSA could also be
achieved in the Brahmaputra basin even when the TWSA was
not used for calibration but Q and ET.

In this study, we considered two sources of uncertainty in
the calibration process: (i) those arising from the search al-
gorithm used to identify the non-dominated Pareto-optimal
parameter sets and (ii) those stemming from observational
errors. As the random seeds used in the BORG algorithm
lead to non-negligible variations in the calibration results and
model performances, in particular for the variables that were
not used for calibration, a sufficient number of replications
of the calibration runs with different initial parameter sets is
vital. The results show that a large part of the variations of
optimal parameter sets can be attributed to observational un-
certainties, a factor often overlooked in calibration exercises.
We demonstrated that in the presence of observational uncer-
tainty, relying solely on a “best solution” or a compromise

solution can become unreliable, leading to decreased overall
efficiency. To address this challenge, we propose a method
to select an ensemble of acceptable solutions from the Pareto
solutions derived by the search algorithm, taking into account
uncertainties in the observation data used for calibration.

The multi-variable, multi-signature parameter selection
and calibration methodology presented in this study is sug-
gested for other calibration studies with GHMs or other
large-scale hydrological models for all large river basins
of the globe where diverse observations of model output
variables are available. While the methodology also allows
for considering the effect of observational uncertainties on
the multi-criteria calibration results, it is imperative to fur-
ther explore how accounting for observation uncertainties
can enhance the robustness of calibration outcomes. Devel-
oping uncertainty-based performance metrics would repre-
sent a significant advancement in this direction. In regions
with limited data availability, leveraging remote-sensing-
based streamflow observations such as HydroSAT (http://
hydrosat.gis.uni-stuttgart.de, last access: 20 January 2025)
or SWOT can provide new insights, complementing TWSA
data from GRACE, GRACE-FO, and GRACE-C (GRACE-
Continuity). Given the availability of numerous contempo-
rary ET products, future calibration efforts should explore
the benefits of considering these ET data sources.
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