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Abstract. The future state of global evapotranspiration (ET)
estimation under climate change remains uncertain. Current
formulations primarily developed based on the high emission
CMIP5 scenario, have been widely used to represent con-
ditions under elevated greenhouse gas pathways. However,
these formulations may not adequately capture the enhanced
vegetation–climate interactions projected under the lower-
emission scenarios of CMIP6. Without updates to account for
evolving plant physiological responses to rising CO2, projec-
tions may overlook critical feedbacks between atmospheric
CO2 concentrations, vegetation behavior, and hydrological
processes.

To address this, developing CMIP6-specific formulations
is essential to leverage its improved datasets and reduce un-
certainties in future ET simulations. In this study, we update
the Penman-Monteith evapotranspiration (PM-ET) model by
incorporating the CO2-vegetation coupling effect. This is
achieved using outputs from four Coupled Model Intercom-
parison Project Phase 6 (CMIP6) global climate models
(GCMs) under four Shared Socioeconomic Pathways (SSP1-
2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5).

Results indicate a sustained historical increase in poten-
tial evapotranspiration (Ep). The inclusion of CO2 physio-
logical effects reduces the deviation in projected ET trends
by approximately 15 %–20 % compared to CMIP5-based
frameworks, accounting for the increase in stomatal resis-
tance driven by CO2 concentrations rising from ∼ 284 to
∼ 935 ppm. Furthermore, our model predicts an increasing

dependence of ET projections on emission scenario, high-
lighting the growing influence of pathway-specific feed-
backs.

Overall, our approach demonstrates greater compatibility
with CMIP6 simulations, allowing for more accurate repre-
sentation of ET responses to future CO2 increases. These
findings provide valuable insights for advancing the analysis
of nonlinear vegetation-atmosphere interactions and hydro-
logical uncertainty under climate and physiological forcings.

Highlights.

– CMIP6 integration enhances scenario-dependent ET trend sen-
sitivity.

– Nonlinear vegetation-atmosphere interactions amplify hydro-
logical uncertainty.

– Model updates improve Ep dynamics characterization under
climate forcing.

– High-emission scenarios show greater Ep acceleration and un-
certainty.

1 Introduction

Vegetation-climate interactions under rising atmospheric
CO2 concentrations drive complex biogeochemical feed-
backs that shape the global carbon-water cycle across di-
verse biomes. As a result, the relationship between vege-
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tation dynamics and climate change has gained increasing
prominence in Earth system science. The bidirectional feed-
backs are fundamental to understand changes in global hy-
drological and carbon cycles (Yang et al., 2019; Xu et al.,
2024).

On one hand, elevated CO2 levels trigger complex plant
physiological responses, which influence the ecosystem hy-
drology (Sun et al., 2023; Li, 2024). For example, stud-
ies have shown that photosynthetic rates can increase by
12 %–25 % for every 100 ppm rise in CO2, while stomatal
conductance decreases by 20 %–40 %. This reduction lim-
its evaporative cooling, exacerbating extreme temperatures
by 0.8–1.3 °C during drought periods (Zarakas et al., 2020;
Li et al., 2024; Wu et al., 2024). Moreover, biome-specific
responses create climatic asymmetries (Yang et al., 2023).
Temperate forests exhibit adaptive resilience through phe-
nological shifts, extending the growing season by 15.6±
3.2 d to mitigate respiratory carbon losses during heat ex-
tremes (Ainsworth and Rogers, 2007; Keenan and Williams,
2018). In contrast, tropical ecosystems experience acceler-
ated biomass loss due to compound warming and precipi-
tation anomalies (Betts et al., 2007; Gimeno-Sotelo et al.,
2024a, b). Soil carbon-climate interactions add further com-
plexity, with elevated CO2 increased mineralization rates
...(Kong et al., 2023). Critical thresholds in plant hydraulic
strategies also contribute to these differences (Medlyn et al.,
2011; Wu et al., 2019).

On the other hand, the strength of CO2-driven vegetation
feedbacks is constrained by water availability. Since 2000,
compound drought-heatwave events have reduced global ter-
restrial water storage by 12 %–18 % and vegetation produc-
tivity by 9 %–15 % (Piao et al., 2007; Jones et al., 2016; Zhou
et al., 2016; Lu et al., 2025). These phenomena are attributed
to sustained evapotranspiration pressure (Xu et al., 2024). Al-
though CO2 fertilization initially enhances vegetation growth
in water-limited regions, subsequent hydrological constraints
often offset these benefits (Jasechko et al., 2013; Young et al.,
2022). Therefore, accurately capturing the interplay between
biome-specific responses and hydrological limitations is es-
sential for understanding the cascading effects of climate and
physiological drivers on the carbon–water cycle.

Progress in evapotranspiration (ET) modelling is chal-
lenged by the need to account for CO2-climate coupling
and regional hydrological variability. Widely used ET es-
timation methods, such as the Penman-Monteith Reference
Crop (PM-RC) model, lack explicit consideration of CO2
effects (Stocker et al., 2018; Wu et al., 2021). As a result,
traditional PM-RC models tend to overestimate future ET
trends by 68 %–100 % due to inadequate representation of
CO2-induced stomatal closure (Yang et al., 2016). To ad-
dress this, Yang et al. (2019) developed a modified frame-
work incorporating CO2-dependent stomatal resistance, with
improved ET projections under high CO2 scenarios (Luo et
al., 2018a, b). While high-resolution ET datasets have en-
hanced monitoring of extreme events (Pereira et al., 2015;

Wu et al., 2021), alignment between climate model outputs
and regional hydrological dynamics remains a critical chal-
lenge (Gimeno-Sotelo et al., 2024a). Consequently, the de-
velopment of next-generation ET models that explicitly cou-
ple CO2-climate feedbacks with regional hydrological dy-
namics is urgently needed.

The Coupled Model Intercomparison Project Phase 6
(CMIP6) provides an improved framework for addressing
these challenges. Its long-term, multi-scenario structure and
inclusion of dynamic vegetation modules offer greater fi-
delity in representing vegetation–climate coupling (Eyring et
al., 2016; O’Neill et al., 2016). The Shared Socioeconomic
Pathways (SSPs) embedded within CMIP6 allow for system-
atic exploration of ET trajectories under divergent emission
scenarios (Zeng et al., 2016; Jones et al., 2016; Wu et al.,
2019). However, PM-RC-CO2 model proposed by Yang et
al. (2019) still relies on formulas derived from CMIP5-era
models, that the original coefficient (2.4× 10−4) may in-
troduce inconsistencies when applied to CMIP6 scenarios.
This can reduce confidence in cross-generational model com-
parisons and potentially exaggerate ET sensitivity to CO2
rise. To fully leverage CMIP6’s enhanced vegetation–climate
framework, it is crucial to develop updated, scenario-specific
formulations.

In this study, we advance ET modelling by integrating
the CMIP6 climate projection system with the PM-RC-CO2
model proposed by Yang et al. (2019). We use outputs from
four global climate model (GCMs) from CMIP6, across four
shared socio-economic pathways (from scenarioMIP, SSP1-
2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) for the period 2015–
2100. Meanwhile, we used monthly outputs of precipitation,
actual evapotranspiration, short and long wave radiation, and
near-surface air temperature, air pressure, wind speed and
specific humidity, to derive an updated PM-RC-CO2 Ep for-
mulation. This framework improves the representation of
interactions between stomatal resistance and aerodynamic
drivers based on the characteristics of CMIP6 data. To as-
sess performance, we compare the updated model against
earlier formulations, evaluating Ep trends, scenario depen-
dencies, and model outputs. The proposed framework pro-
vides a more robust characterization of Ep dynamics under
the CMIP6 multi-scenario structure, thereby improving the
simulation of future hydrological changes.

2 Data and methods

2.1 Data and model performance evaluation

To comprehensively assess the effects of CO2 concentra-
tion on ET changes, we used outputs from four selected
CMIP6 GCMs: IPSL-CM6A-LR, GFDL-ESM4, CNRM-
CM6-1, and MPI-ESM1-2-HR. These models were ob-
tained from the CMIP6 data portal (https://esgf-node.llnl.
gov/search/cmip6/, last access: 30 August 2024) and in-

Hydrol. Earth Syst. Sci., 29, 5645–5664, 2025 https://doi.org/10.5194/hess-29-5645-2025

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/


X. Yang et al.: Enhancing evapotranspiration estimates under climate change 5647

clude simulations for both the historical period (1850–2014)
and four future emission scenarios (2015–2100): SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5.

Each model provides essential variables required for ET
estimation, including monthly land surface data (runoff, pre-
cipitation, evapotranspiration, shortwave and longwave ra-
diation) and near-surface atmospheric parameters (tempera-
ture, pressure, wind speed, and specific humidity). To ensure
consistency across datasets, all outputs were resampled to a
uniform spatial resolution of 0.25°× 0.25° by bilinear inter-
polation.

To evaluate the performance and reliability of the
climate model simulations, we validated key variables
against observational data from the W5E5 v2.0 dataset
(https://data.isimip.org/search/simulation_round/ISIMIP3a/
product/SecondaryInputData/climate_forcing/w5e5v2.0/,
last access: 21 December 2024, 1979–2020). This compar-
ison enabled the assessment of model skill in replicating
observed climate and hydrological conditions, serving as
a benchmark for subsequent ET modeling and scenario
analyses.

The land use type data we used in this paper are
from GLASS-GLC (http://www.glass.umd.edu/Overview.
html, last access: 16 November 2024, period 1982–2015)
(Liang et al., 2013, 2025).Compared with other land cover
data sets, GLASS data has significant advantages in long-
term time series and cross-year change monitoring, and can
be widely used in ecological environment assessment, sur-
face process simulation and global change research.

2.2 Determining rs over non-water-limited regions and
months

To quantify the sensitivity of stomatal resistance (rs) under
rising CO2 concentrations, we applied the widely used non-
water limited screening method (Milly and Dunne, 2016;
Yang et al., 2019). This method systematically integrates hy-
drological constraints and eliminates the influence of frozen
water through temperature constraints, so as to effectively
screen out the water limited areas and periods.

The procedure is outlined as follows:

1. The period of analysis (1861–2100) was divided into
eight 30-year climatological periods.

2. For each period, monthly ET and P outputs were fit-
ted to a parabolic function. Grid cells with a maximum
slope of the ET–P curve less than or equal to 0.05 were
retained, indicating minimal hydrological limitation.

3. Based on existing research, we further filtered the data
by selecting only those grid–month combinations where
the ET/P ratio was less than 2.0, excluding regions un-
der strong evaporative demand relative to precipitation.

4. The intersection of non-water-limited domains across
all eight 30-year periods was retained to ensure consis-
tent spatiotemporal coverage.

5. To eliminate the influence of frozen water, we exclude
grid cells and months with average temperatures below
10 °C.

This filtering process isolates vegetated regions and time
periods with minimal hydrological constraints, thereby en-
abling a more accurate assessment of stomatal resistance re-
sponses to elevated CO2 concentrations.

2.3 Adjustment of the PM-RC-CO2 model

2.3.1 The Penman–Monteith model

The Penman-Monteith (PM) equation provides a ro-
bust framework for estimating reference evapotranspiration
(ET0), synthesizing surface energy balance and aerodynamic
transfer principles (Monteith, 1977; Monteith and Unsworth,
2013; Milly and Dunne, 2016). The models calculate evapo-
transpiration (E) as:

λE =
sR∗n + ρaCpD/ra

s+ γ (1+ rs/ra)
(1)

where s represents the slope of the saturation vapor pressure-
temperature relationship (Pa K−1), γ denotes the psychro-
metric constant (Pa K−1), and ρa corresponds to air den-
sity (kg m−3). The specific heat at constant pressure (Cp,
J kg−1 K−1) quantifies energy storage capacity. The vapor
pressure deficit (D, Pa), drives evaporative demand, modu-
lated by the temperature-dependent latent heat of vaporiza-
tion (λ, J kg−1). Aerodynamic resistance (ra, s m−1) is de-
rived from logarithmic wind profile theory.

2.3.2 PM-RC Ep model

The standardized PM-RC model adopts fixed biophysical
parameters representing typical C3 crop physiology under
non-drought conditions, including surface stomatal resis-
tance (rs = 70 s m−1), canopy height (0.12 m), and shortwave
albedo (α = 0.23), among others (Allen et al., 1998). Ep
(mm d−1) is computed as:

Ep=
0.408sR∗n + γ

900
T+273uD

s+ γ (1+ 0.34u)
(2)

2.3.3 PM-RC Ep model modified to account for
atmospheric [CO2](PM-RC-CO2)

Yang et al. (2019) introduced a CO2 responsive modifica-
tion to the PM model by parameterizing stomatal resistance.
This modification is based on empirically derived signif-
icant regression coefficients from controlled experiments,
enabling quantification of vegetation-atmosphere feedbacks
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under high CO2 conditions. This approach not only retains
the biophysical basis of the original framework but also re-
lates with the relationship between CO2 concentration and
stomatal dynamics. The equation is:

Ep=
0.408sR∗n + γ

900
T+273uD

s+ γ
{
1+ u

[
0.34+ 2.4× 10−4 ([CO2]− 300)

]} (3)

Here, the term 2.4× 10−4 ([CO2]− 300) reflects the empiri-
cal modulation of stomatal resistance by CO2 concentration,
where 300 ppm represents the preindustrial baseline (1860–
1960). This coefficient was obtained from nonlinear regres-
sion analysis of plant physiological responses in controlled
environments, and encapsulates vegetation feedbacks aligned
with CMIP6 scenario-driven CO2 sensitivities.

2.3.4 Updated PM-RC-CO2 model

The original PM-RC-CO2 formulation was based on CMIP5-
driven parameterization. Applying it directly to CMIP6 sce-
narios may introduce uncertainty due to differences in CO2–
climate feedback representation. Therefore, we recalibrated
the stomatal resistance–CO2 relationship using the CMIP6
multi-model ensemble, integrating vegetation physiological
response and CO2-forcing within a physically consistent pa-
rameter space. The updated formulation is:

Ep=
0.408sR∗n + γ

900
T+273uD

s+ γ
{
1+ u

[
0.34+ 1.9× 10−4 ([CO2]− 300)

]} (4)

This version introduces a revised CMIP6-constrained empir-
ical coefficient 1.9×10−4 [CO2]− 300). Derived from a col-
lection of four global climate models (GCMs), this parameter
better captures the CO2-induced stomatal resistance (rs) ef-
fect and enhances model performance under the CMIP6 cli-
mate scenario.

2.4 Statistical Methods

To study changes in potential evapotranspiration (Ep) trends,
we use the Bayesian Estimator of Abrupt Change, Seasonal-
ity, and Trend (BEAST) method (Zhao et al., 2019), which
decomposes time-series into trend, seasonality, and residu-
als components and effectively handles nonlinear shifts (Li
et al., 2022).

M-K trend test is a non parametric statistical test method
(Mann, 1945). It can clearly detect the rise, fall or no trend
in the time series data, and can more accurately capture the
long-term trend without being disturbed by short-term fluctu-
ations. It has been widely used in the field of climate change
(Hamed, 2008; Machiwal et al., 2022). This study uses this
method to analyze the global Ep results calculated by the
original formula and the updated formula from 1850 to 2100.

We used Wilcoxon rank test to compare and analyze the
results of different GCMS in different models at different pe-
riods. Wilcoxon signed rank test is a nonparametric statistical

test used to compare the differences between two dependent
variable samples (Cuzick, 1985). Like other nonparametric
tests, this test does not assume a specific distribution of the
analyzed data. The parameter test equivalent to Wilcoxon
signed rank test is the dependent variable sample t test (or
paired t test). If p < 0.05, there is a significant difference
between the two groups.

3 Results

3.1 Model performance evaluation and CO2 Driven
Surface Resistance Sensitivity

To assess the availability and reliability of climate model
data, we compared four key climate variables (relative hu-
midity, downward longwave radiation, downward shortwave
radiation, and temperature) from the four global GCMs with
observational data (Kling et al., 2012; Dahri et al., 2021;
Zhang et al., 2024). Results indicate a strong agreement
between model outputs and observations. For relative hu-
midity (hurs), all models show high correlation coefficients
(> 0.85) and standard deviations within 10 % of observed
values, indicating accurate humidity simulation (Fig. 1a).
For the downward longwave radiation (rlds), model vari-
ability fits well with observations, with correlation coeffi-
cients above 0.75 and standard deviations mostly within 15 %
(Fig. 1b). The downward shortwave radiation (rsds) shows
slightly larger discrepancies, but still acceptable model per-
formance (Fig. 1c), with correlation coefficients above 0.65
and standard deviations within 20 %. The simulation of tem-
perature (tas) is particularly robust, with correlation coef-
ficients exceeding 0.9 and standard deviations within 5 %
(Fig. 1d). These results confirm that the selected GCMs are
capable of accurately reproducing historical climatic condi-
tions at the global scale.

Using these validated models under multiple SSP scenar-
ios, we evaluated the sensitivity of surface resistance (1rs)
to changes in atmospheric CO2 concentration (1[CO2]). A
robust linear dependence was found between the two vari-
ables (Fig. 2), consistent across models. The inter model vari-
ability of the slope coefficient within ±15 % of the mean,
demonstrating robustness. In historical simulations (1850–
2014), the baseline CO2 concentration is ∼ 284 ppm, with
surface resistance around ∼ 52 s m−1. Under the high emis-
sion SSP5-8.5 scenario (2071–2100), rs rises to ∼ 78 s m−1,
while CO2 increases to ∼ 935 ppm. This implies a ∼ 50 %
increase in rs for a ∼ 229 % increase in CO2, revealing a
stronger ET model sensitivity compared to earlier CMIP5-
based projections.

Additionally, the relative sensitivity parameter Sr[CO2]

remains spatially and temporally stable, ranging from
0.08 % ppm−1 to 0.11 % ppm−1 (Fig. 3). This confirms that
CMIP6 models retain the CO2 rs coupling dynamics previ-
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Figure 1. Taylor diagrams of simulated climate variables compared to observations across the globe for the period 1979–2019. Panels show
performance of four GCMs in simulating: (a) relative humidity (hurs), (b) downward longwave radiation (rlds), (c) downward shortwave
radiation (rsds), and (d) near-surface air temperature (tas). The dashed green lines represent root mean square deviation (RMSD).

ously observed in CMIP5, but with increased sensitivity to
CO2.

3.2 Annual Changes in Ep from the Updated
PM-RC-CO2 Model

The updated PM-RC-CO2 model, calibrated using CMIP6
data, shows a persistent upward trend in potential evapo-
transpiration (Ep) during historical simulations (1860–2014).
By more accurately capturing nonlinear vegetation–climate
interactions, the updated formulation improves the repre-
sentation of CO2-induced physiological feedbacks. This im-

provement is particularly evident under high-emission sce-
narios. From 2015 to 2100, the rates of Ep intensification
differ across scenarios: under SSP5-8.5, the average decadal
growth rate is approximately 2.1 %, whereas under SSP1-2.6,
it stands at 1.2 %. Under SSP5-8.5, standardized Ep uncer-
tainty (±1σ ) rises from±0.05 (2020–2040) to±0.12 (2081–
2100), indicating growing climate variability with increased
CO2 concentrations.

In order to further explore the characteristics of scenario
related trend changes, we decompose the standardized an-
nual Ep trend from 1850 to 2100. The low-emission SSP1-
2.6 scenario shows gradual Ep increase of 58.3±14 mm yr−1.
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Figure 2.
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Figure 2. Ensemble mean relationship between changes in stomatal resistance (rs) and atmospheric CO2 concentration ([CO2]) across four
ESMs, relative to the 1851–1950 baseline, under different SSP scenarios. Panels (a)–(d) show IPSL-CM6A-LR results for SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5; (e–h) GFDL-ESM4 results for the same scenarios; (i–l) CNRM-CM6-1 projections under equivalent SSPs; and
(m–p) MPI-ESM1-2-HR simulations following the SSP scenario hierarchy. All analyses use a consistent baseline climatology (1851–1950)
and apply the same radiative scaling conventions.
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Figure 3. Sensitivity of climate models to atmospheric CO2 concentrations under different SSP scenarios. The horizontal axis shows the
sensitivity metric Srs−[co2] (% ppm−1), while the vertical axis lists the climate models. Colored bars represent different SSP scenarios. The
dashed red line indicates the multi-model mean value of 0.1086.

Figure 4. Normalized annual mean Ep values across historical and future SSP scenarios. The black line represents the historical mean
(1860–2014), while colored lines correspond to SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The shaded gray area denotes ±1 standard
deviation.

The high-emission scenario (SSP5-8.5) exhibits a steeper
Ep increase of 167.9±36 mm yr−1. Seasonal decomposition
shows ongoing cyclical patterns, but under SSP5-8.5, the
amplitude of seasonal signals weakens after 2050, reflect-
ing rising climate instability. Despite uncertainties, BEAST’s
probabilistic framework confirms robust stratification under
SSPs, with SSP5-8.5 trends exceeding SSP1-2.6 by 187 % by
2100.

3.3 Global Trends in Ep Calculated from Original and
Updated PM-RC-CO2 Models

The original ET-RC-CO2 model Ep trend under different sce-
narios is shown in Fig. 6. Under the SSP1-2.6 scenario, the
Ep trends show a relatively modest increase. This indicates
that in this scenario, the changes in Ep are relatively stable
although significant. However, when it comes to the SSP5-
8.5 scenario, there are more pronounced increases in Ep, es-
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Figure 5. Time series decomposition of climate variables from 1850 to 2100 under different SSP scenarios: (a) SSP1-2.6, (b) SSP2-4.5,
(c) SSP3-7.0, (d) SSP5-8.5. Each panel illustrates long-term trends, seasonal patterns, and residual variations within the scenario.

pecially in tropical and mid-latitude regions. These areas ex-
perience a more substantial upward trend in Ep compared to
other regions. The histograms in Fig. 6 further demonstrate
that as scenarios become more extreme, there are higher fre-
quencies of strong positive trends in Ep. This suggests that
under the influence of different socioeconomic and climate
scenarios, Ep exhibits diverse trends, with more extreme
scenarios leading to more intense and frequent positive Ep
trends.

Compared with the original model, the updated model us-
ing CMIP6 data (Fig. 7) has a similar spatial pattern, but there
are significant differences in the trend amplitude. In SSP2-
4.5 and SSP3-7.0, the trend magnitudes are consistently
larger, indicating a more pronounced increase in Ep. This
suggests that the updated model has an enhanced sensitiv-
ity to climatic shifts, as it captures more significant changes
in Ep under these scenarios. The histograms also reflect this,
showing a shift towards higher frequencies of strong positive
trends in the more extreme scenarios.

Figure 8 compares the original and updated models. The
spatial distribution of trend differences shows that the up-

dated model predicts higher Ep trends by 2–3 mm yr−1 in
many regions under SSP3-7.0 and SSP5-8.5. This indicates
an enhanced sensitivity of the updated model to climatic
shifts, particularly in these more extreme scenarios. The dif-
ferences are more pronounced in certain areas, suggesting
that the updated model may better capture the regional vari-
ations in Ep trends.

Regardless of the original or updated models, among the
land use types such as Forest, Grassland and Tundra, the
proportion of the area with MK trend greater than 0 (Slope
> 0) is generally very high (more than 95 %). These ecosys-
tems are driven by climate change, and the Ep has a signif-
icant upward trend. The trend differentiation between Crop-
land and Shrubland is relatively obvious. For example, in the
high emission scenario (SSP5-8.5), the proportion of farm-
land slope < 0 in the updated model (1.8 %) is lower than
that in the original model (5.3 %), and the proportion of shrub
slope < 0 in the updated model (3.9 %–9.5 %) is also differ-
ent from that in the original model (8.3 %–18.6 %).

At the same time, updating the model effectively reduced
the bias in trend estimation. The updated model also en-
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Figure 6. Global Ep trend patterns derived from the Mann-Kendall (MK) method using the original ET-RC-CO2 model under (a) SSP1-2.6,
(b) SSP2-4.5, (c) SSP3-7.0, and (d) SSP5-8.5. Associated histograms display the frequency distribution of Ep trend magnitudes across spatial
domains.

hances the ability to capture CO2 physiological feedbacks
and scenario-specific responses, thereby reducing biases in
trend estimation. Under different scenarios, the proportion of
Ep rising trend of various land uses under high emission sce-
narios (such as SSP5-8.5) is more prominent than that under
medium and low emission scenarios (such as SSP1-2.6). This
indicates that emission intensity exerts an amplifying effect
on the differentiation of evapotranspiration trends across dif-
ferent land use types.

3.4 Comparison Between Scenarios and Time Periods

We quantified Ep differences between original and updated
models across scenarios (Fig. 11). Results show that the orig-
inal model consistently underestimates Ep. Under SSP1-2.6,
the updated formula’s average Ep is 1.4 % higher than the
original in the base period and 2.9 % higher in the late pe-
riod. In SSP2-4.5, the difference widens from 1.3 % in the
base period to 3.7 % in the late period. For SSP3-7.0, the late
period difference reaches 5.0 %. In the high-emission SSP5-
8.5, the late period difference is the largest at 6.3 %.

Moreover, we conducted a comparative analysis of the dis-
tributional results produced by the original and updated for-
mulations across multiple models and time periods. Projec-

tions based on the original formulation (Fig. 12) indicate a
marked increase in Ep severity from the historical baseline
(1850–2014) to the late 21st century (2071–2100), with the
biggest increases occurring after 2050. This upward trend
persists under the updated formulation (Fig. 13), but the re-
vised method exacerbates the projected Ep severity by an
additional 12 %–18 %, particularly during the mid-century
(2051–2070) and end-of-century under high-emission sce-
narios.

The comparative analysis (Figs. 12, 13) underscores the
substantial sensitivity of Ep projections to the choice of
model parameterization. Statistically significant differences
(p < 0.05) between the two methods were identified in 78 %
of the late-century simulations. Notably, the divergence be-
tween original and updated formulations becomes increas-
ingly pronounced with rising CO2 concentrations, particu-
larly under high-forcing scenarios.

In the late 21st century under SSP3-7.0, the updated for-
mulation systematically yields higher Ep means compared
to the original: 5.1 % increase (599.9 vs. 578.7 mm yr−1) for
IPSL-CM6A-LR, and 4.0 % (569.4 vs. 547.5 mm yr−1) for
GFDL-ESM4. Under SSP5-8.5, MPI-ESM1-2-HR exhibits
a 6.8 % increase (919.8 vs. 861.4 mm yr−1) by the end of a
century, with its late-period Ep difference being 3.2 times
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Figure 7. Same as Fig. 6, but for the updated ET-RC-CO2 model.

larger than in the base period. Similarly, in CNRM-CM6-1,
the Ep difference at the end of the century under SSP5-8.5
(758.2 vs. 715.4 mm yr−1) doubles that of SSP1-2.6 (773.8
vs. 751.9 mm yr−1) in the same period.

Overall, the updated formulation consistently produces
higher Ep projections across all emission scenarios, with dif-
ferences becoming more pronounced over time and with in-
creasing emission intensity.

4 Discussion

The observed increase in Ep severity is consistent across
multiple analytical methods, supporting earlier findings by
Yang et al. (2023). Nevertheless, our results reveal that nu-
merical estimates remain highly sensitive to model struc-
ture and parameterization schemes. Notably, evapotranspira-
tion projections display heightened sensitivity during the lat-
ter half of the 21st century, especially under high-emission
scenarios. This emphasizes the added value of incorporating
CMIP6 data, which improves model responsiveness to evolv-
ing climatic drivers (Ma et al., 2018; Liu et al., 2022; Bai et
al., 2025). These findings underscore the need for compre-
hensive, well-calibrated models in future climate risk assess-
ments. A key insight from this study is the significant role
of CO2-induced plant physiological responses in modulating

evapotranspiration. To improve the robustness and predictive
capability of future hydrological models, better integration
of dynamic vegetation processes is essential.

4.1 Uncertainties Across Emission Scenarios

Substantial uncertainty persists in the current understanding
and modelling of the ET process (Pan et al., 2020). As shown
in Fig. 11, low-emission scenarios (such as SSP1-2.6) ex-
hibit a more dispersed distribution across models than high-
emission scenarios, leading to slightly elevated average Ep
values under low-emission conditions.

To explore these uncertainties, we performed compara-
tive analysis using ET models driven by the same forcing
data. Distributions from both the original and updated for-
mulations were evaluated across models and time periods
(Figs. 10 and 11), helping to pinpoint sources of model un-
certainty and guiding future improvements in ET estimates
(Warszawski et al., 2014; Miralles et al., 2016).

Our results indicate that low- and medium-emission sce-
narios show greater inter-model variability. Moreover, the
original model consistently underestimates long-term cli-
mate responses under medium- to high-emission scenarios.
This underestimation may be attributed to a parameterization
process that heavily relied on historical high-emission condi-
tions, limiting it’s ability to capture future feedback mecha-

https://doi.org/10.5194/hess-29-5645-2025 Hydrol. Earth Syst. Sci., 29, 5645–5664, 2025



5656 X. Yang et al.: Enhancing evapotranspiration estimates under climate change

Figure 8. Differences in global Ep trends between the updated and original ET-RC-CO2 models using CMIP6 data for (a) SSP1-2.6,
(b) SSP2-4.5, (c) SSP3-7.0, and (d) SSP5-8.5. Associated histograms display the frequency distribution of Ep trend differences across
spatial domains.

nisms under intensifying radiative forcings (Knowling et al.,
2019; Cui et al., 2021).

Although the updated formulation demonstrates improved
sensitivity to CO2 variations, there is still room for improve-
ment – particularly under low-emission scenarios. These
trends are shaped by varying driving factors, model architec-
tures, and differences in parameterization approaches across
existing ET datasets (Badgley et al., 2015; Michel et al.,
2016). Future work should focus on reducing systemic bias
in projections under low-emission scenarios.

4.2 Impacts, Limitations, and Prospects

This study relied on unadjusted CMIP6 outputs, which may
introduce systematic errors when applied to the improved
ET formulation. Future work could benefit from using bias-
corrected CMIP6 datasets and accounting for systematic dis-
crepancies in atmospheric forcing variables. Previous stud-
ies have shown that calibrated CMIP6 products can signifi-
cantly enhance the representation of precipitation seasonality
and CO2 trajectories (Raziei and Pereira, 2013a, b). Such im-
provements are especially critical in semi-arid regions, where
more refined modeling can incorporate nonlinear feedbacks
between stomatal conductance and atmospheric CO2, as well

as biochemical parameterization for C3/C4 species (Ding et
al., 2013; Potkay et al., 2025; Wu et al., 2025).

The current model assumes fixed vegetation responses to
CO2, which is appropriate for large-scale analyses but less
suitable for regional applications (Bao et al., 2021; Cui et
al., 2023). Given the high specificity of vegetation types
at regional scales, fixed-response models struggle to cap-
ture physiological variations among species. For finer-scale
assessments, model accuracy can be enhanced by integrat-
ing detailed representations of vegetation physiological re-
sponses, such as dynamic correlation data between photosyn-
thetic rate and CO2 concentration (Luo et al., 2018a, b). For
example, dynamic stomatal conductivity models that respond
to rapid CO2 and light fluctuations can increase transpiration
estimates by 22 %–30 % under extreme conditions (Lawson
and Vialet-Chabrand, 2019; Poyatos et al., 2016; Poyatos et
al., 2021). The use of canopy conductance algorithms that
account for photosynthetic pathway differences is also crit-
ical for accurately simulating ET in C4-dominated dryland
ecosystems (Croft et al., 2017; Wei et al., 2019).

Advanced parameterization, such as linking foliar nitrogen
and phosphorus content to photosynthetic efficiency, enables
more ecosystem-specific transpiration estimates (Cernusak et
al., 2010). When combined with vegetation indices like Nor-
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Figure 9. Ep trend persentage across different land uses derived from the Mann-Kendall (MK) method using the original ET-RC-CO2 model
under (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0, and (d) SSP5-8.5. The pink part represents MK trend greater than 0, the blue and purple
part represents less than zero, and the light green part represents equal to zero.

Figure 10. Same as Fig. 9, but for the updated ET-RC-CO2 model.
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Figure 11. Total annual Ep severity using both the original and updated ET-RC-CO2 formulas across different SSP scenarios and time
periods: base (1850–2014), early (2015–2050), middle (2051–2070), and late (2071–2100). Panels: (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-
7.0, (d) SSP5-8.5. Significance levels: *** for p ≤ 0.001, ** for p ≤ 0.01, and * for p ≤ 0.05.

Figure 12. Total annual Ep severity using the original ET-RC-CO2 formula across SSP scenarios and time periods: base (1850–2014), early
(2015–2050), middle (2051–2070), and late (2071–2100). Panels: (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0, (d) SSP5-8.5. Significance
levels: *** for p ≤ 0.001, ** for p ≤ 0.01, and * for p ≤ 0.05. The upper green sign indicates p values between two GCMs; the lower sign
indicates p value between all GCM pairs, except the lower green one.
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Figure 13. Same as Fig. 12 but for the updated ET-RC-CO2 formula.

malized Differences Vegetation Index (NDVI) (Suarez et al.,
2008; Sayago et al., 2017; Ballester et al., 2018), these re-
finements can reduce simulation error by up to 0.38 mm d−1

compared to FAO-56 methods (Allen et al., 2007; Pereira et
al., 2021).

Integrating structural vegetation indices such as Leaf Area
Index (LAI) and canopy height gradient, further improves the
soil vegetation water coupling. Recent advances, such as the
use of GEDI-derived canopy height products, have shown
strong potential in separating soil evaporation from canopy
transpiration via aerodynamic resistance calibration – par-
ticularly valuable in arid regions (Bao et al., 2022; Chen et
al., 2022; Wu et al., 2024). Additionally, using the functional
trait diversity threshold for grid selection has reduced uncer-
tainty in carbon water coupling prediction in forest ecosys-
tems by 12 %–15 % (Li et al., 2013; Xu et al., 2015; Zhang
et al., 2018; Joswig et al., 2022; Wang et al., 2022).

These developments align with the improved Budyko
framework, which integrates vegetation-mediated runoff
elasticity and helps mitigate scale-dependent biases in re-
gional ET partitioning (Roderick et al., 2014; Zeng et al.,
2016; Mianabadi et al., 2019; Yang and Roderick, 2019;
Scheff et al., 2022). Finally, improved spatial screening
through moisture-limited grid selection criteria has been
shown to reduce spatial heterogeneity in ET projections
(Talsma et al., 2018; Lian et al., 2018; Lian et al., 2021).

5 Conclusion

This study integrates CMIP6 multi-scenario projections and
CO2-vegetation coupling effects into the Penman-Monteith

evapotranspiration (PM-ET) model, enhancing the represen-
tation of climate-vegetation interactions for improved hydro-
logical projections. Methodological advances include the dy-
namic parameterization of stomatal resistance and scenario-
dependent sensitivity analysis. The main findings are as fol-
lows:

1. The updated PM-ET model reduces CO2-induced evap-
otranspiration (ET) bias by 15 %–20 % compared to
earlier approaches, showing improved consistency with
CMIP6 simulations.

2. Evapotranspiration potential (Ep) exhibits a consistent
upward trend – particularly under high-emission sce-
narios such as SSP5-8.5, where increases reach up to
635.1 mm yr−1 – driven by CO2-climate synergies.

3. Model parameterization plays a critical role in cap-
turing CO2-physiological feedbacks; however, regional
uncertainties remain due to heterogeneity in vegeta-
tion responses and methodological sensitivities – for
instance, the distinct differences in responses between
croplands and shrublands. Additionally, regional un-
certainties persist due to heterogeneous vegetation re-
sponses and methodological sensitivities..

These findings highlight the need to further refine hydrolog-
ical models by incorporating CMIP6-specific mechanisms,
such as dynamic vegetation modules and biome-specific
feedbacks. By improving the accuracy of scenario-based pro-
jections, this work contributes to more robust assessment of
water resource risks under climate change and provides valu-
able insights for adaptation planning in both ecological and
agricultural systems.
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Appendix A: Variable declaration

λ temperature-dependent latent heat of vaporization
(J kg−1)

s gradient of the saturation vapour pressure with re-
spect to temperature(Pa K−1)

R∗n available energy (MJ m−2 d−1)
ρa air density (kg m−3)
Cp specific heat at constant pressure(J kg−1 K−1)
rs surface stomatal resistance (s m−1)
ra Aerodynamic resistance (s m−1)
D vapor pressure deficit (Pa)
γ psychrometric constant (Pa K−1)
u wind speed (m s−1)
T air temperature (°C)
α shortwave albedo
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