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S1. Lagrangian particle tracker validation in 2D

Lagrangian particle tracking (LPT) approach is employed in the current study to model the dynamic evolution of the coupled

reaction-transport process in heterogeneous porous media, representative of chemical weathering. The solute transport in the5

medium is simulated by injecting a statistical ensemble of particles in the medium, their motion governed by the Langevin

stochastic differential equation. We discretize the Langevin equation using the simple Euler-Maruyama method to be used in

the context of a numerical simulation (Kloeden (1992)). To validate the LPT model against a known analytical solution, we

employ the well-known equivalence property between the statistical ensemble of particles governed by the Langevin equation

and the solution of the advection-diffusion equation (Risken (1996), Perez et al. (2019)).10

We consider the two-dimensional scenario of solute injection into a medium characterized by uniform transport properties,

governed by a steady state flow, for which the analytical advection-diffusion equation solution for the spatial distribution of

solute concentration is given by the bivariate Gaussian bell (Kreft and Zuber (1978)). In the instantaneous injection case, the

variance of the concentration distribution is σ =
√
2Dt in both dimensions, where D is the diffusion coefficient and t is the15

time since the injection, and the expectation µ= vt in the direction of the flow equals to the extent by which the flow of speed

v has advanced in the length of time t, while the expectation in the transverse direction is zero (Kreft and Zuber (1978)). This

reflects the obvious notion that the solute transport in the direction of the flow is governed by both advection and diffusion,

while in the transverse direction only diffusion is responsible.

20

For model verification, a total of 1e5 particles were injected into the field characterized by a homogeneous hydraulic con-

ductivity k0 = 0.39 [cm/min] and porosity θ0 = 0.43, and a steady state flow along the X direction, obtained by applying

a hydraulic head gradient ∆h= 100 [cm] between the inlet and outlet of the field. A diffusion coefficient of D = 1.0e−5
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Figure S1. Verification of the Lagrangian particle tracker model against the 2D advection-diffusion solution for the case of injection into

a medium, characterized by uniform transport properties and governed by a steady-state flow: (a) Spatial distribution in the X direction at

t= 2.98, 3.63[min] as a function of X −µ, (b) Spatial distribution in the Y direction at t= 2.98, 3.63[min] as a function of Y (c) Mean

error between the normalized spatial distributions in the X direction obtained from LPT and ADE in L1, L2 norms as a function of time and

(d) Mean error between the normalized spatial distributions in the Y direction, obtained from LPT and ADE, in L1, L2 norms as a function

of time. Dot markers show LPT data while solid lines represent the advection-diffusion equation solution.

[cm2/min] was employed. For verification, we compared the particles spatial distribution, obtained from LPT simulations, to

the analytical solution of the advection-diffusion equation. The spatial distributions of the injected particles along the flow and25
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transverse directions (X and Y, respectively) were converted into the probability density functions (PDF) by normalization,

which were then compared to the corresponding Gaussian distributions.

Figure S1 shows the results of the Lagrangian particle tracker validation using the two-dimensional ADE analytical solu-

tion for instantaneous injection into a homogeneous medium governed by a steady-state flow. Frames (a) and (b) present the30

normalized particle spatial distributions in the X and Y directions at times t= 2.98, 3.63[min] (dot markers show particle

tracking data while solid lines show the analytical ADE solution, notice also that the X-distribution is shown as a function of

X−µ to account for the advective motion). Frames (c) and (d) present the Mean error between the normalized spatial distribu-

tions in the X and Y directions, obtained from LPT and ADE, in L1, L2 norms as a function of time. Good agreement between

LPT and the advection-diffusion equation is clear, although some inevitable fluctuations in the LPT data are present.35

S2. Non-equilibrium thermodynamics in a nutshell

A non-equilibrium system is, as the name implies, a system that is not in thermodynamic equilibrium. In such a system gra-

dients of the thermodynamic state properties such as temperature, pressure and concentration of chemical species are present,

as opposed to a system in equilibrium where these properties are homogeneous throughout. The presence of gradients in

thermodynamic potentials such as pressure, temperature and chemical potential implies a net transfer of energy or matter, or40

thermodynamic flux, within the system or across its boundaries. Examples include heat transfer, where heat flux travels in the

medium due to applied temperature gradient, hydrodynamic flow where mass flux is driven by hydraulic head gradient, mixing

of chemical species and chemical reaction, both driven by the gradient of chemical potential (see left column in Figure S2).

All of these processes may be seen as dissipative, meaning that the free, or useful energy in the system (energy available to

perform useful work, for example internal, kinetic or potential) is being expended, since energy must be constantly supplied45

to the system in order to maintain these fluxes. Obviously, free-energy of the system is not a conserved property. A system

that receives influx of energy from surroundings is said to be an open system, as it interacts with surroundings. Such a system

may be maintained in a non-equilibrium thermodynamic stationary state of constant thermodynamic flux. On the other hand, a

system without constant supply of energy from outside will soon deplete its available free-energy, reducing its capacity to do

thermodynamic work and leading to a decline in the thermodynamic potential gradient and, therefore, cessation of the resulting50

thermodynamic flux. Such a system is found in a state of equilibrium, characterized by homogeneity in thermodynamic state

properties (see right column in Figure S2). Thus, to maintain mass flux of a fluid through a pipe, a constant hydraulic head

gradient must be maintained between the pipe ends to overcome viscous frictional effects and gravitational head differences.

This can be done by operating a pump that maintains the head gradient and, thus, the mass flow in a pipe by consuming elec-

trical power. Should the supply of electrical power to the pump cease, the head gradient will no longer be maintained and, at55

some point, the mass flow through the pipe will stop, as the available free-energy in the system has been depleted by viscous

dissipation. Thus, such a process is clearly a dissipative one.
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Figure S2. Examples of non-equilibrium processes (left column) and systems in equilibrium (right column) in (a) heat transfer and hydro-

dynamic flow, (b) mixing of chemical species and (c) chemical reaction.

An important outcome of non-equilibrium thermodynamics is that dissipative irreversible processes produce entropy at a

rate that is directly related to the power dissipated during the process, the proportionality constant between them being the60

local temperature (see Section 3.1 in the manuscript). Here, an assumption of local equilibrium is required, implying that a

non-equilibrium system still experiences equilibrium, albeit on a local scale. Thus, instead of a homogeneous temperature that

characterizes system in equilibrium, in a non-equilibrium system we may assume that each small volume of the system is

locally in equilibrium, thus temperature (and other thermodynamic state variables) can be defined locally. This results implies

that, by studying entropy generation due to various dissipative processes pertinent to the non-equilibrium system under con-65

sideration, important observations can be made regarding the dynamics of its physical behavior. Thus, a decrease in entropy

production means that the process now occurs in a more efficient way, with less useful energy depleted per unit of transferred

thermodynamic flux.

When applying the non-equilibrium thermodynamic framework to the problem of reactive flow in porous media character-70

istic of geochemical weathering, where dissolution-precipitation of the porous matrix takes place, it is natural to concentrate

on the following interrelated processes: (a) percolation, or fluid transport through the porous matrix, which involves dissipation

of hydraulic power while overcoming the hydraulic resistance of the matrix due to viscous friction effects, affects concentration
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distribution of the chemical species and, therefore, directly influences chemical reaction, (b) mixing of chemical constituents

that involves dissipation of chemical energy and affects the reaction rate and (c) chemical reaction of dissolution-precipitation,75

also involving dissipation of chemical energy, which affects directly the transport through matrix. For further details regarding

non-equilibrium thermodynamics see, for instance, Kondepudi and Prigogine (1998).

S3. Calculation of entropy generation terms

Percolative entropy. The percolative entropy generation term, reprinted from (20), is given by

σperc =−∇p

T
·Σ
i
viJi (S1)80

Our computational model for reactive flow and transport in porous media (eqs. (1)–(2) in the manuscript) is built upon linear

fundamental laws. In general, not too far from equilibrium, the thermodynamic flux Ji can be written as a linear combination

of thermodynamic forces (Onsager, 1931)

Ji =Σ
j
LjiFj (S2)

where Fj are the forces and Lji are the phenomenological constants. The expression (S2) implies, in general, that a thermo-85

dynamic force can not only drive the corresponding flux (such as the temperature gradient that drives the heat flux), but also

affect other fluxes. Consider, as an example, the thermoelectric effect, where the thermal gradient drives not only the heat flux

but also an electrical current and vice versa (Kondepudi and Prigogine, 1998). This type of coupling between various thermo-

dynamic forces is called a cross effect. The ensuing Onsager reciprocal relations (Onsager, 1931) form the basis for the linear

regime of non-equilibrium thermodynamics. In the specific case of percolative entropy, the thermodynamic force represented90

by the pressure gradient drives the mass flux in the field. We neglect the cross effects, as the reactive process cannot affect the

convective flow because of the symmetry principle stating that a scalar thermodynamic force with high degree of isotropy, such

as the partial molar Gibbs energy, cannot affect the vectorial convective flux that has lower isotropy due to its directionality;

the diffusive effects can be easily neglected as well by the same reasoning (Kondepudi and Prigogine, 1998). We employ the

Darcy’s law (2) to obtain the relation between the convective flux q and the pressure gradient (here the relation is brought in95

the pressure form, as opposed to the hydraulic head form used previously)

q=−K ′∇p (S3)

where K ′ =K/ρg is the hydraulic conductivity of the porous medium that corresponds to the pressure form of Darcy’s law

(S3). Notice that the sum of molar fluxes given in the laboratory frame of reference, multiplied by the specific molar volumes,

is exactly the total Darcy flux in a volume element q=Σ
i
viJi. Substituting the latter relation into (S3) and (S1) and multiplying100

by the volume of a computational cell per unit depth ∆x∆y, which we consider to be the elementary volume in our numerical

implementation, we obtain the percolative entropy generation rate in a single computational cell

Tσperc =K ′(∇p)2∆x∆y (S4)
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Notice that the resulting formula is identical to the hydraulic work dissipated as the fluid moves through the cell, overcoming

the hydraulic resistance of the porous medium. This result can be seen as a private case of the Gouy-Stodola theorem Gouy,105

1889 that links the rate of destruction of the available energy in a system to the rate of entropy generation. Since entropy is an

extensive property, the total percolative entropy generation in the field Ṡgen,perc can be obtained by integrating (S4) over the

volume of the computational field V , which amounts to summing the contributions of all computational cells

T Ṡgen,perc =

∫
V

T σperc = Σ
i,j
(T σperc)i,j (S5)

Here i, j are the cell indices in the x- and y directions, respectively. Since the statistical realizations of the heterogeneous110

computational field, generated using the SGSIM code, exhibit significant deviations in the mean hydraulic conductivity value

for different heterogeneity values, this will inevitably lead to deviations in the total flow rate in the field when solving for the

flow field for different realizations (recall the applied boundary conditions of constant hydraulic head drop over the field). To

account for these deviations, we normalize the expression for the total percolative entropy generation rate T Ṡgen,perc by the

quantity Tref RṄtot, where Tref is the reference temperature taken to be 293.15K, R is the universal gas constant and Ṅtot is115

the total molar flow rate into the field. The obtained dimensionless quantity Ṡgen,perc/(RṄtot) represents the total percolative

entropy generation rate in the field per unit flow rate of the incoming flow.

Reactive entropy. The reactive entropy generation term, reprinted from (20), is given by

σreact =−Σ
j

∆gj
T

dξj
dt

(S6)120

For simplicity, we assume that reaction in a computational cell occurs under conditions of perfect mixing in a cell; thus

diffusive cross-effects in a cell are not important. The total amount of reaction in a cell during the computational time step ∆t

is calculated based on the distance from chemical equilibrium, defined by the current disposition of chemical species in the

cell, as represented by the number of H+, H2CO3 particles there (see Section 2.3). In our model, a single global reaction of

calcite dissolution/precipitation (7) is present. We denote its partial molar Gibbs energy as ∆g. Since we neglect heat transfer125

effects in the current study, we consider the reactive entropy generation as an indicator of the intensity of the chemical reaction.

We assume linear relation between ∆g and dξ
dt in the vicinity of chemical equilibrium

dξ

dt
=−rf,eq

RT
∆g (S7)

where rf,eq is the forward reaction rate in equilibrium (see Chapter 9 in Kondepudi and Prigogine, 1998), and define the extent

of reaction as dξ
dt =

dcH+

dt =
MH+

∆x∆y

dNH+

dt , where MH+ is the molar parcel assigned to a single H+ particle, cH+ is the molar130

concentration of H+ in the cell, ∆x∆y denotes the cell volume per unit depth and dNH+

dt is the rate of conversion of H+

particles into H2CO3 during the computational time step ∆t. Notice that dcH+ is the increment in the H+ concentration in the

computational cell due to reaction, necessary to achieve chemical equilibrium there. To obtain the expression for the reactive

entropy generation rate in a computational cell, we employ (S7) in (S6) and multiply by the cell volume ∆x∆y

σreact =
R

rf,eq

(
dcH+

dt

)2

∆x∆y (S8)135
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To obtain the total reactive entropy generation in the field, we integrate (S8) over the volume of the computational field V ,

which amounts to summing the contributions of each computational cell.

Ṡgen,react =

∫
V

σreact = Σ
i,j
(σreact)i,j (S9)

Here i, j are the cell indices in the x- and y directions, respectively. Notice that the reactive entropy generation is directly re-

lated to the number of reactive events that have occurred in the field during the time interval ∆t to reach chemical equilibrium140

cell-wise. Here, as well, we normalize the reactive entropy generation by the quantity Tref RṄtot. The obtained dimensionless

quantity Ṡgen,react/(RṄtot) represents the total reactive entropy generation rate in the field per unit flow rate of the incoming

flow.

Mixing entropy. The mixing entropy generation term, reprinted from (20), is given by145

σmix =−Σ
i

(∇µi)T,p

T
·Ji (S10)

To assess the evolution of the mixing entropy generation in the field subject to reaction-transport interaction, without taking

into account chemical reaction, we consider the physical scenario of mixing of two non-reactive species, such as water and

a non-reactive tracer. This scenario corresponds to a numerical setting of a non-reactive tracer test (NRPT), as described in

Shavelzon and Edery, 2024, where the injected particles traverse the field subject to the laws described in Section 2 without150

chemical reaction. For mixing entropy calculation we employ the cumulative concentration distribution of the non-reactive

tracer across the field, calculated by counting the total number of particles that visited each computational cell (see Shavelzon

and Edery, 2024 for details). Mixing entropy, obtained from NRPT simulations, can be considered an auxiliary parameter that

quantifies dispersivity in the field, therefore representing the thermodynamic counterpart to the Shannon entropy of transport

self-organization that was also calculated from the concentration distribution of reactants.155

We consider the mixing entropy generation in a single computational cell. For this scenario, we write the Gibbs-Duhem rela-

tion, assuming negligible deviations in pressure ans temperature across the cell

cw (∇µw)T,p + ctr (∇µtr)T,p = 0 (S11)

where the indices w, tr represent water and tracer, respectively. Another useful relation, that describes zero change in the160

volume of a fluid element due to diffusion, is given by

Jw

ρw
+

Jtr

ρtr
= 0 (S12)

where ρw, ρtr are the densities of water and tracer, respectively. These relations show that the thermodynamic forces, as well

as the fluxes, are not independent in our scenario. Using (S11)–(S12), we are able to write the mixing entropy generation rate

as165

σmix =− 1

T

(
1+

ctr ρw
cw ρtr

)
Jtr · (∇µtr)T,p (S13)
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Recalling that in the linear regime the thermodynamic fluxes can be written as a linear combination of the forces, as stated in

(S2), we have

Jtr =−L11

T

(
1+

ctr ρw
cw ρtr

)
(∇µtr)T,p (S14)

where L11 is the phenomenological coefficient. By comparing (S14) with the Fick’s law Jtr =−D∇ctr, where D is the170

diffusion coefficient of tracer in water, we may write

D =
L11

T

(
1+

ctr ρw
cw ρtr

)
∂µtr

∂ctr
(S15)

Assuming that the mixed species behave as an ideal solution, where each component independently obeys the Raoult’s law, the

chemical potential of the tracer at temperature T and pressure p is given by Atkins and De Paula, 2006

µtr = µ0
tr +RT lnχtr (S16)175

where µ0
tr is the standard chemical potential at T,p (standard state being pure liquid), R is the universal gas constant and

χtr = ctr/ctot is the tracer molar fraction. For a dilute solution where ctr ≪ cw, we have χtr = ctr/cw and

D =
L11R

ctr
(S17)

By rewriting the chemical potential definition (S16) in terms of tracer concentration ctr, substituting (S14), (S16) and (S17)

into (S13) and multiplying by the volume of a computational cell ∆x∆y, we obtain the entropy generation due to mixing of180

non-reactive tracer with water in a single computational cell

σmix =
L11

T 2

(
1+

ctr ρw
cw ρtr

)2

(∇µtr)
2
T,p∆x∆y =

DR

ctr
(∇ctr)

2∆x∆y (S18)

The total mixing entropy generation in the field can be obtained by integrating (S18) over the volume of the computational

field V , which amounts to summing the contributions of each computational cell

Ṡgen,mix =

∫
V

σmix = Σ
i,j
(σmix)i,j (S19)185

Here i, j are the cell indices in the x- and y directions, respectively.

S4. Statistical analysis of the transport properties of the porous medium

We examine the evolution of the hydraulic conductivity field K, influenced by the coupled reactive-transport process. Figure

S3a presents the evolution of the Relative mean value of hydraulic conductivity K̃ − K̃0 over the computational field, where

K̃0 is the initial mean conductivity value, as a function of dimensionless time t̃ for varying σ2
0 values (for each σ2

0 , an ensemble190

average of 20 realizations). Here, the first 10 columns of computational cells near the inlet were excluded from the calculation

due to the existence of a dissolution area there, which suppresses the reaction dynamic. Clearly, the constant influx of the
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Figure S3. Evolution of the hydraulic conductivity distribution in the field over time: (a) Relative mean K̃−K0 as a function of dimensionless

time t̃ (inset shows the tail of the probability density function for a single realization of the hydraulic conductivity distribution for σ2
0 = 1 at

times t̃= 0, 2, skewness values indicated with arrows) and (b) Relative variance σ2 −σ2
0 as a function of dimensionless time t̃ (ensemble

average of 20 realizations).

H+ particles at the inlet of the field causes considerable dissolution, a significant part of which occurs in the preferential

flow paths, as K̃ − K̃0 grows monotonously with t̃. The mean hydraulic conductivity curves for all σ2
0 values assume a power

law shape after enough particles have invaded the field to create a considerable statistical ensemble. The shape of the curves195

for different σ2
0 values hints at the possibility of scalability with the variance of the conductivity field σ2

0 , similar to Peclet

number scaling achieved in Shavelzon and Edery, 2024. We observe that the mean conductivity value grows faster for more

heterogeneous fields, as represented by higher values of σ2
0 . This can be explained by the fact that for higher σ2

0 the phenomenon

of preferential flow paths becomes more dominant, thus leading to higher concentrations of the injected H+ particles moving

along these paths. This causes more dissolution inside these paths, thus contributing to faster growth of the mean conductivity200

value. The inset in Figure S3a shows the tail of the probability density function for a single realization of the hydraulic

conductivity distribution for σ2
0 = 1 at times t̃= 0, 2.0. The corresponding skewness values are indicated with arrows. Note

that the hydraulic conductivity distribution is initially non-Gaussian and positively skewed, since the distributions obtained

from SGSIM are considered as the natural logarithm of the hydraulic conductivity distribution in the field (see Section 2.1). The

skewness of the conductivity distribution increases with time, which is exhibited by some "fattening" of the probability density205

function, as well as the longer and heavier tail on the right. This can be interpreted as an appearance of high conductivity

regions due to intense dissolution reaction that occurs within the preferential flow paths. Similar tendencies are presented

in Figure S3b, that shows the Relative hydraulic conductivity variance σ2 −σ2
0 as a function of dimensionless time t̃. We
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observe that σ2−σ2
0 exhibits a constant increase with dimensionless time t̃, as the particles advance and react in the field. The

Relative variance of conductivity grows faster for higher values of σ2
0 . This can again be explained by the fact that for higher210

σ2 the phenomenon of preferential flow paths intensifies, thus leading to higher concentrations of the injected H+ particles

moving along these paths. This causes more dissolution inside these paths, thus contributing to faster growth of the hydraulic

conductivity variance. Here again, the curves for all σ2
0 values assume a power law shape after a significant enough number of

particles have entered the field.
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