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Abstract. Accurate seasonal streamflow forecasts are essen-
tial for effective decision-making in water management. In a
decision-making context, it is important to understand the re-
lationship between forecast skill – the accuracy of forecasts
against observations – and forecast value, which is the fore-
cast’s economic impact assessed by weighing potential mit-
igation costs against potential future losses. This study ex-
plores how errors in these probabilistic forecasts can reduce
their economic “value,” especially during droughts, when
decision-making is most critical. This value varies by region
and is contextually dependent, often limiting retrospective
insights to specific operational water management systems.
Additionally, the value is shaped by the intrinsic qualities of
the forecasts themselves. To assess this gap, this study exam-
ines how forecast skill transforms into value for true forecasts
(using real-world models) in unmanaged snow-dominated
basins that supply flows to downstream managed systems.
We measure forecast skill using quantile loss and quantify
forecast value through the potential economic value frame-
work. The framework is well-suited for categorical decisions
and uses a cost-loss model, where the economic implications
of both correct and incorrect decisions are considered for a
set of hypothetical decision-makers. True forecasts are in-
cluded, made with commonly used models within an ensem-

ble streamflow prediction (ESP) framework using a process-
based hydrologic modeling system, WRF-Hydro, and a deep-
learning model, Long Short-term Memory Networks, as well
as operational forecasts from the NRCS. To better interpret
the relationship between skill and value, we compare true
forecasts with synthetic forecasts that are created by impos-
ing regular error structures on observed streamflow volumes.
We assess the sensitivity of skill and value from both syn-
thetic and true forecasts by modifying fundamental proper-
ties of the forecast-error in mean and change in variability.
Our findings indicate that errors in mean and change in vari-
ability consistently explain variations in forecast skill for true
forecasts. However, these errors do not fully explain the vari-
ations in forecast value across the basins, primarily due to
irregular error structures, which impact categorical measures
such as hit and false alarm rates, causing high forecast skill to
not necessarily result in high forecast value. We identify two
key insights: first, hit and false alarm rates effectively cap-
ture variability in forecast value rather than error in mean and
change in variability; second, the relationship between fore-
cast skill and value shifts monotonically with drought sever-
ity. These findings emphasize the need for a deeper under-
standing of how forecast performance metrics relate to both
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skill and value, highlighting the complexities in assessing the
effectiveness of forecasting systems.

1 Introduction

Probabilistic seasonal streamflow forecasts are essential for
informed decision-making in water resource management,
including flood risk mitigation, agriculture, energy produc-
tion, and in-stream ecosystem services. These forecasts en-
able stakeholders to plan for optimal water allocation, op-
timize reservoir operations, and prepare for extreme hydro-
logic events like droughts or floods (Wood et al., 2015).
However, in an increasingly complex economy with a grow-
ing and diverse user base, the relationship between forecast
skill – the accuracy of the forecast – and the forecast value
– the forecast’s impact on decision-making and economic
outcomes – is far from straightforward (Crochemore et al.,
2024). Forecast value is influenced by such factors as the cost
of taking preventive action (e.g., investing in crop insurance),
the potential losses from incorrect decisions (e.g., economic
losses due to over- or under-allocation of water resources),
and the context of decision-making (e.g., hiring labor for an
agricultural entity). This relationship is complex and varies
by region, often restricting the retrospective insights gained
to specific operational systems. As a result, there is limited
understanding of the link between skill and value – especially
concerning the quality of forecasting systems. The complex-
ity of forecast value can be framed within simple economic
models like the cost–loss ratio framework. In this model,
decision-makers face a potential loss if an adverse event (e.g.,
a drought) occurs but can take preventive action at a cost
to mitigate this loss. Understanding how forecast skill trans-
lates into forecast value is critical, as it highlights the impor-
tance of not only improving the accuracy of forecasts but also
understanding how skill impacts decision-making outcomes.
This study addresses the following research question: how
do errors in different forecasting systems affect forecast skill
and decision-making value in unmanaged basins, and how
can these insights guide improvements in forecast systems?

1.1 Forecast skill of probabilistic seasonal streamflow
forecasts has evolved

Probabilistic seasonal streamflow forecasts estimate the like-
lihood of different streamflow signatures over a given pe-
riod, using various approaches, such as process-based mod-
els, data-driven models, historical data, or climate forecasts,
or a combination of these approaches. Probabilistic seasonal
streamflow forecasts have become a crucial tool in water
resources management (Crochemore et al., 2016; Ficchì et
al., 2016; Kaune et al., 2020; Turner et al., 2017; Watts et
al., 2012), as they provide a range of possible outcomes
rather than a single deterministic prediction (Demargne et

al., 2014). This probabilistic approach helps decision-makers
quantify forecast uncertainty, enabling more informed and
flexible water management strategies (Pagano et al., 2014).
For example, the Natural Resources Conservation Services
(hereafter, “NRCS”) forecasts have been widely used for wa-
ter management and agricultural planning (Fleming et al.,
2021).

Ensemble streamflow prediction (ESP) is a hydrologic
forecasting method that generates multiple streamflow simu-
lations using historical meteorological data as inputs to a hy-
drologic model (Day, 1985). Over time, ESP methods have
significantly evolved in predicting water volumes through
advances in hydrologic modeling, the incorporation of out-
puts from dynamical meteorological and climate models,
and the adoption of more sophisticated forecasting meth-
ods (Clark et al., 2016; Li et al., 2017). Key developments
include better representation of watershed processes in hy-
drologic models and the use of data assimilation techniques
(Wood and Lettenmaier, 2006). Furthermore, the applica-
tion of machine learning algorithms, such as the popular
long short-term memory (LSTM) algorithm, has become in-
strumental in detecting complex patterns in data, leading to
even greater refinement in forecast accuracy when combined
with improved meteorological inputs (Modi et al., 2024;
Mosavi et al., 2018). Among the various methods, the US
National Water Model (NWM) stands out as a state-of-the-art
process-based forecasting framework, which provides high-
resolution operation streamflow forecasts across the conti-
nental US (CONUS) by incorporating improved hydrologic
representation and real-time meteorological data to enhance
forecast skill (Cosgrove et al., 2024). However, the model has
limitations in certain regions, such as parts of the Intermoun-
tain West, where forecast skill remains a challenge. This
study will test some of these methods, evaluating their effec-
tiveness and applicability across various scenarios to provide
comprehensive insights into their skill and value.

1.2 Seasonal streamflow forecasts provide economic
benefit

Seasonal streamflow forecasts provide crucial information
about water availability, enabling stakeholders such as water
managers, energy producers, and farmers to make informed
decisions about water allocation, crop planning, and reservoir
operations. These forecasts play a substantial role in regions
prone to hydrologic variability, where early forecasts allow
for better preparedness and can help mitigate the risk of ex-
treme events like droughts or floods. This study is focused on
streamflow volume during the April–July period (AMJJ), a
predominant time window for water supply decisions across
the snow-dominated basins in the western US (Livneh and
Badger, 2020; Modi et al., 2022). Studies have shown that us-
ing streamflow forecasts can lead to tangible economic gains,
though the percentage increase can vary widely, depending
on the context. While some studies report modest gains of

Hydrol. Earth Syst. Sci., 29, 5593–5623, 2025 https://doi.org/10.5194/hess-29-5593-2025



P. Modi et al.: Relationship between streamflow forecast skill and value across the western US 5595

1 %–2 % (Maurer and Lettenmaier, 2004; Rheinheimer et al.,
2016), others demonstrate much higher benefits. For exam-
ple, Hamlet et al. (2002) showed a significant increase in hy-
dropower revenue of 40 % or USD 153 million per year in
the Columbia River basin. Moreover, Portele et al. (2021)
showed that seasonal streamflow forecasts can yield up to
70 % of the potential economic gains in semi-arid regions
from taking early and optimal actions during droughts. Na-
tional assessments across the US indicate that improved wa-
ter supply forecasting provides economic benefits of approx-
imately USD 1–2 billion per year across the United States,
benefiting sectors such as agriculture and energy, as well as
providing benefits in flood prevention (National Weather Ser-
vice, 2002; Van Houtven, 2024). Given that economic bene-
fits from these vary by context, it remains uncertain whether
these benefits are primarily driven by the intrinsic quality
of the forecast itself or by specific operational factors (e.g.,
reservoir storage buffers).

1.3 Forecast value

Traditionally, streamflow forecast skill has been assessed
based on its accuracy and reliability in predicting water flow
volumes. However, an additional layer of assessment can
be introduced by incorporating economic evaluations. This
contrast highlights not only the technical skill of forecasts
but also their practical value in optimizing economic out-
comes for decision-making. Hydrologists continue to show
strong interest in assessing the value of forecasts to support
decision-making using the potential economic value (PEV;
Abaza et al., 2013; Portele et al., 2021; Thiboult et al., 2017;
Verkade et al., 2017). The potential economic value quanti-
fies the economic benefit of using a particular forecast sys-
tem compared with solely relying on climatology or no fore-
cast. It is a standard metric for assessing the economic util-
ity of forecasts, particularly in categorical decision-making
scenarios, typically modeled through a cost–loss framework
(Richardson, 2000; Wilks, 2001). In a cost–loss framework,
decision-makers face a choice between taking preventive ac-
tion at a cost (C) based on the forecast or bearing the poten-
tial loss (L) if an adverse event, such as a drought, occurs. A
major assumption is that the cost (C) is smaller than the loss
(L). The PEV is a non-dimensionalized measure that facili-
tates comparison across different decision-making contexts,
making it a practical tool for evaluating forecast effective-
ness (Wilks, 2001). Its straightforward application, ease of
comparison across different forecasting systems, and abil-
ity to estimate the upper bound of forecast value make it a
useful tool in evaluating seasonal streamflow forecasts. It re-
mains particularly valuable in contexts where binary deci-
sions are prevalent and the economic impact of forecasts is a
key concern. We apply this simple framework – the cost–loss
model – to examine how forecast skill translates into eco-
nomic value as a function of inherent quality of the different
forecasting systems. This will help assess the economic im-

plications of both correct and incorrect decisions for a set of
hypothetical decision-makers in unmanaged basins.

1.4 Study summary

The relationship between forecast skill and value in sea-
sonal streamflow forecasting is not only influenced by the
operational characteristics of the water management system
but also by the intrinsic qualities of the true forecasts them-
selves, particularly during extreme events like drought (Giu-
liani et al., 2020; Peñuela et al., 2020). Motivated by the nu-
anced and often inconsistent link between forecast skill and
value, as well as a limited understanding of how this rela-
tionship behaves across different forecast systems, this study
offers an assessment of how skill transforms into value, us-
ing PEV as a tool in unmanaged basins. To better interpret
the relationship between skill and value, we compare true
forecasts with synthetic forecasts that are generated by im-
posing regular error patterns on observed streamflow vol-
umes. This approach helps to address the impact of irregu-
lar error structures present in true forecasts, which are of-
ten non-normally distributed and exhibit varying variances.
We start by assessing the historical performance of true fore-
casts generated in this study by comparing them with obser-
vations. This involves comparing the calibrated WRF-Hydro
and fully trained LSTM models to assess their effectiveness
in simulating streamflow volumes. We then assess how the
performance of both synthetic and true forecasts are affected
by modifying forecast properties, such as mean and variabil-
ity. Lastly, we investigate the relationship between skill and
value across different drought severities, considering the in-
terplay of error structures from both synthetic and true fore-
casts and the factors influencing the PEV framework.

2 Methods

We begin by defining drought, which serves as the basis for
the categorical criterion used to calculate the forecast value
(Sect. 2.1.1). Section 2.1.2 outlines the process for assessing
forecast skill using a quantile loss metric, while Sect. 2.1.3
describes the PEV framework for assessing forecast value.
Section 2.2 describes the study domain and basin screen-
ing procedure. Section 2.3 outlines the “synthetic” forecast
approach that imposes errors on April–July (now “AMJJ”)
streamflow volumes. Section 2.4 outlines the generation of
true forecasts that use a process-based model, WRF-Hydro
(now “WRFH”), and a deep-learning model, LSTM, and de-
scribes the operational NRCS forecasts. This section also de-
scribes the model inputs, architecture, training/calibration,
and implementation in an ESP framework. Section 2.5 pro-
vides an overview of key performance metrics.
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2.1 Drought event, forecast skill, and value

2.1.1 Defining a drought event using hydrologic
threshold categories

The US Drought Monitor (USDM) classifies drought into
five categories based on threshold percentiles in key hy-
droclimate quantities, e.g., precipitation, soil moisture, and
streamflow, over a standard 1–3 month period, based on a
historical period of record – D0 (abnormally dry), D1 (mod-
erate drought), D2 (severe drought), D3 (extreme drought),
and D4 (exceptional drought), with D0 being the least in-
tense and D4 the most intense (Svoboda et al., 2002). Each
category corresponds to specific percentile ranges of histori-
cal drought severity, with D0 indicating conditions in the 21st
to 30th percentile of dryness, D1 the 11th to 20th percentile,
D2 the 6th to 10th percentile, D3 the 3rd to 5th percentile,
and D4 representing the driest 2 % of conditions, based on
the historical distribution of hydrologic variables. For clar-
ity, the term “percentile of dryness” refers to the relative po-
sition of the observed value within this historical distribu-
tion. This study uses a categorical definition of hydrologic
drought, occurring when the AMJJ streamflow volume falls
below the 25th percentile (P25) of the historical record. To
assess the skill–value relationship across different drought
severities, we also consider two additional hydrologic thresh-
olds: one where AMJJ volume falls below the 35th percentile
and another where it falls below the 15th percentile, indicat-
ing severe drought conditions. This approach deviates from
the USDM methodology, which typically uses a range of hy-
droclimatic variables for its classification. We chose to focus
specifically on AMJJ streamflow volumes to capture hydro-
logic drought conditions more directly and to maintain con-
sistency with the study’s objectives.

2.1.2 Forecast skill metric: normalized mean quantile
loss

Quantile loss, also called pinball loss, evaluates the perfor-
mance of a probabilistic forecast by measuring the difference
between predicted quantiles (percentiles) and observed val-
ues:

Qlossz =
2
n
·

n∑
i=1

{
z ·
(
yobs− ŷz

)
if yobs ≥ ŷz

(1− z) ·
(
yobs− ŷz

)
if yobs < ŷz

, (1)

where yobs is the observed AMJJ streamflow volume, ŷ is the
predicted AMJJ streamflow volume, z is the quantile, and n
is the number of observations. In other words, it rewards sit-
uations in which the observed value is within quantiles of
the ensemble forecast members. It is adopted widely oper-
ationally and was recently used in the Bureau of Reclama-
tion’s water supply forecast challenge (DrivenData, 2024).
It provides an asymmetric error metric, i.e., it adjusts penal-
ties based on whether the forecast overestimates or under-
estimates the observed values. We use a scaled version of

quantile loss, multiplied by a factor of 2, so that the loss
at the 0.5 quantile (median) aligns with the mean absolute
error (MAE), ensuring consistency in error interpretation
across quantiles (DrivenData, 2024). To represent forecast
skill in this study, we calculate normalized mean quantile
loss (NMQloss), an average of quantile loss calculated for
each quantile z ∈ {0.1,0.5,0.9}, normalized by the mean of
the observations:

NMQloss=
Qloss0.1 +Qloss0.5 +Qloss0.9

3 · yobs
. (2)

These quantiles are based on the multiple ensemble members
in the probabilistic forecasts. This approach allows us to as-
sess error across different quantiles, comprehensively eval-
uating forecast skill. A lower mean quantile loss, closer to
zero, indicates better forecast skill.

2.1.3 Forecast value metric: area under PEVmax curve

The PEV metric is based on the cost–loss ratio (α = C/L),
where C represents the cost of taking preventive action (e.g.,
buying crop insurance) and L is the potential loss incurred
if no action is taken and an adverse event occurs. The ratio
helps decision-makers assess whether the benefit of prevent-
ing a loss outweighs the cost of taking preventive action. For
instance, when α is low, the cost of action is small relative
to the potential loss, making it more likely that preventive
action will be taken. Conversely, a high α suggests that the
cost of action outweighs the potential benefit, making action
less justifiable. In practical terms, α reflects an aspect of the
decision-maker’s risk tolerance and serves as a threshold for
action.

We use probabilistic forecasts of AMJJ volume as an in-
put to PEV; these are based on ensemble predictions from
multiple forecasting systems. These forecasts, discussed in
detail in Sects. 2.3 and 2.4, provide a range of possible out-
comes for the AMJJ volume, helping to capture uncertainty
and variability. Figure 1 shows the PEV workflow, where we
first calculate the forecast probability of these forecasts for a
future event, i.e., in our case, a P25 drought event when the
AMJJ streamflow volume falls below the 25th percentile of
the historical record (Step 1). For demonstration purposes,
this calculation is shown by assuming five ensemble mem-
bers representing AMJJ volume, while the future event is as-
sumed to have volumes less than 2.5. These forecast proba-
bilities are transformed into categorical forecasts by apply-
ing a critical probability threshold (τ ). This threshold rep-
resents another aspect of the user’s risk tolerance, i.e., the
minimum probability at which a future event is considered
likely enough to warrant action by a user. It should be noted
that both α and τ represent different aspects of a user’s risk
tolerance, quantifying the user’s willingness to act under un-
certainty. As shown in step 2 of Fig. 1, a more conserva-
tive threshold of 0.5 would trigger an action in 2007 (only
one of the years shown), while a looser threshold of 0.7
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would not trigger action in 2007. In contrast, both thresh-
olds would trigger no action in 2006, despite some of the en-
semble members predicting flows below 2.5 for both years.
This categorical forecast is used to create a 2× 2 contin-
gency table (Step 3; Fig. 1), which calculates the hit rate
(H , the proportion of correctly predicted events), false alarm
rate (F , the proportion of non-events incorrectly classified
as events), miss rate (M , the proportion of events incorrectly
classified as non-events), and correct rejection rate (Q, the
proportion of correctly predicted non-events) based on the
years available retrospectively in the forecast system we are
assessing. Finally, the PEV metric is calculated by compar-
ing the relative difference in the total long-run net expenses
(i.e., for taking preventive action over the set of retrospec-
tive years in the forecast system) incurred using an actual
forecast (Eforecast: uses real-world data and models to gen-
erate forecasts, Eq. I), climatology (Eclimate: historical av-
erage of volumes in the record, Eq. II), or a perfect fore-
cast (Eperfect: complete knowledge of future volumes, Eq. III)
over a prescribed range of cost-to-loss ratios (0< α < 1), us-
ing Eq. (IV) (Step 4; Fig. 1):

Eforecast = F (1− s)C−H · s · (L−C)+ sL, (I)
Eclimate =min(C,sL), (II)
Eperfect = sC, (III)

PEV=
Eclimate−Eforecast

Eclimate−Eperfect
, (IV)

where−∞< PEV< 1 and each expense term is the summa-
tion of the contingency table elements, each weighted by the
rate of occurrences. Equation (V) is used to calculate PEV
based on Jolliffe and Stephenson (2003):

PEV=
min(α,s)−F (1− s)α+H · s · (1−α)− s

min(α,s)− sα
, (V)

where α = C/L is the cost–loss ratio, s is the climatological
frequency, i.e., the observed base rate of an event, andH and
F are the hit and false alarm rates. A PEV of 1 indicates that
the forecast system is perfect, providing maximum economic
value, whereas a PEV of<0 indicates that the forecast offers
no advantage over climatology (Murphy, 1993).

Steps 1, 2, 3, and 4 are repeated for multiple critical prob-
ability thresholds (τ ) over the prescribed range of 0< τ < 1
to generate a set of possible PEV values for each cost-to-loss
ratio α (0< α < 1). Unlike s, which represents a quantita-
tive measure of the long-term probability of an event based
on historical data, α and τ represent different aspects of the
user’s risk tolerance. Multiple thresholds are adopted to ac-
count for varying risk tolerances among users and provide
a more realistic evaluation of value. Using this set of PEV
estimates, we construct a PEVmax curve by taking the maxi-
mum value from this set for each α, where the value of α is
equal to the critical probability threshold (τ ). This approach
assumes that users will adjust on their own, based on their

specific α values (Laugesen et al., 2023; Richardson, 2000).
The equations in the calculation workflow are adapted from
Richardson (2000) and Jolliffe and Stephenson (2003).

Figure 2 illustrates an economic value diagram that depicts
a PEVmax curve. This diagram visually represents the cost–
loss ratio (α), on the x axis, whereas PEV is on the y axis. At
low values of α, where the cost of preventive action is small
relative to the potential loss, forecast systems tend to show
higher economic value, as decision-makers can take advan-
tage of accurate predictions to reduce potential losses with
minimal expenditure. However, as α increases and the cost
of preventive action becomes comparable to or exceeds the
potential loss, the economic value of the forecast may de-
crease. In such cases, acting on the forecast becomes less ad-
vantageous because the cost of the preventive measure out-
weighs the potential benefit. The optimal economic value oc-
curs when α is balanced in a way that maximizes the benefit
of acting on the forecast while minimizing unnecessary costs.
This usually happens when α is equal to the observed prob-
ability of the event (climatological frequency, s; Jolliffe and
Stephenson, 2003). A value diagram, as shown in Fig. 2, will
help decision-makers visualize and select appropriate actions
based on their specific α (x axis) and the performance of the
forecast system, compared with using climatology to deter-
mine the PEV (y axis). In Fig. 2, on the x axis, α = 0 indi-
cates that the cost of mitigation (C) is zero i.e., always bene-
ficial, whereas α = 1 indicates that the cost of mitigation (C)
equals the potential loss (e.g., a farmer paying USD 10 000
as insurance money to prevent a loss of USD 10 000 due to a
future event). PEV= 1 means that forecast-based decisions
perform as well as those made using perfect information,
while PEV= 0 indicates that the forecast offers no advan-
tage over the baseline. A value of PEV= 0.7 at a given α
suggests a 70 % improvement in decision-making, compared
with using the climatology. Negative PEV values (gray boxes
in Fig. 2) indicate decisions that would be worse than using
the climatology (Laugesen et al., 2023; Richardson, 2000;
Wilks, 2001).

To represent the forecast value in this study, we calculated
the area under the PEVmax curve (now “APEVmax”) using
the trapezoidal rule (Amlung et al., 2015). This method ap-
proximates the area by dividing the curve into trapezoids
and integrating their areas. While negative PEVmax values
are possible, they are excluded from the area calculation.
Note that the PEV framework is applied iteratively across
a range of critical probability thresholds (0< τ < 1) to iden-
tify PEVmax and to compute APEVmax by integrating over
the corresponding curve. The resulting metric can be used
as the “forecast value of a given forecast system” for the
maximum economic benefits across all α (shown by the red
shading in Fig. 2). A larger APEVmax curve indicates that
the forecast system delivers higher economic value over a
broad range of decision-making scenarios, regardless of α.
This value ranges from 0, representing the theoretical mini-
mum economic value, to 0.9, representing the highest overall
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Figure 1. Flowchart showing the workflow to quantify the PEV using the probabilistic forecasts. For the calculation of PEV, forecast
probabilities (for a given event) are calculated from the forecasts (Step 1), a critical probability threshold (τ ) is applied (Step 2), a contingency
table is created (Step 3), and, lastly, the PEV is calculated across the prescribed range of α (Step 4). The PEV relies on contingency table
parameters (H and F ), climatological frequency (s), and cost–loss ratio (α). The equations were adapted from Richardson (2000) and Jolliffe
and Stephenson (2003).

economic value in this study, as negative PEVmax values are
excluded from the area calculation.

2.2 Study domain and basin screening procedure

Water availability in basins that are both unmanaged and
snow-dominated is of interest here. These are often head-
water catchments, with flows heavily driven by snowmelt
timing and volume, making accurate forecasts essential for
managing water resources and mitigating drought risks. As-
sessing forecast value in such basins is crucial since they of-
ten supply flows to downstream managed systems. We se-
lected a diverse sample of drainage basins across the west-
ern US, representing a broad spectrum of hydroclimatic con-
ditions. These basins were identified using geospatial at-
tributes from three key sources: the USGS Geospatial At-
tributes of Gages for Evaluating Streamflow (GAGES-II)
dataset, the Hydro-Climatic Data Network (HCDN; Slack

and Landwehr, 1992), and the Catchment Attributes and Me-
teorology for Large-sample Studies (CAMELS) dataset (Ad-
dor et al., 2017; Newman et al., 2015). The basin screening
procedure employed here was based on a similar approach
to the CAMELS methodology (Addor et al., 2017; Newman
et al., 2015) but with a slightly broader inclusion of basins
from the GAGES-II dataset. Both the CAMELS basins and
the additional basins included in our analysis are subsets of
the GAGES-II dataset. As a result, most of the basins are un-
managed basins with drainage areas smaller than 2500 km2,
with minimal anthropogenic influence and at least 30 years
of streamflow observations to ensure records for model train-
ing/calibration and validation.

Additional screening criteria were applied to the addi-
tional basins sourced from GAGES-II. These included lim-
iting basins to those with not more than one major dam
(defined as storage >5000 acre-feet (>6 167 400 m3)), en-
suring that the ratio of reservoir storage to average stream-
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Figure 2. Economic value diagram showing cost–loss ratio (α) on
the x axis and potential economic value on the y axis. The red shad-
ing shows the area under PEVmax (APEVmax). It highlights the pos-
itive PEV values across α, indicating that the forecast is preferred
over climatology, whereas the gray regions highlight negative PEV
values, indicating that climatology should be preferred. The left ver-
tical gray boxes indicate that the user is always benefited when the
preventive cost (C) is less than zero. In contrast, on the right, when
the preventive cost (C) exceeds the potential loss (L), the user will
always incur the loss L.

flow (1971–2000) was below 10 %, and selecting basins with
a GAGES-II hydrodisturbance index of less than 10 (Fal-
cone et al., 2010). To further verify the accuracy of basin
boundaries and drainage areas, we enforced additional crite-
ria, based on GAGES-II boundary attributes. These included
a boundary confidence score (on a scale of 2–10, with 10 in-
dicating high confidence) of at least 8, a percentage area dif-
ference of not more than 10 %, compared with the USGS’s
National Water Information System (NWIS) values, and a
qualitative check to ensure that the HUC10 boundaries were
deemed at least “reasonable” or “good” (further described in
Falcone et al., 2010; Falcone, 2011). It should be noted that
only 76 basins (out of 664 basins used for model training as
described in Sect. 2.3.3) had NRCS forecasts available for
the purpose of comparison. A majority of these basins lie
within the US Environmental Protection Agency’s level III
snow ecoregions, labeled in Fig. 3. These basins are col-
ored by the ratio of 1 April snow water equivalent (SWE) to
water-year-to-date cumulative precipitation, which refers to
the accumulated precipitation from the beginning of the cur-
rent water year, 1 October, to 1 April, derived from gridded
snow and meteorological forcings (as described in Table A2).

2.3 Synthetic forecasts

Synthetic forecasts are used to understand the impact of
forecast-errors on economic value (Rougé et al., 2023) more
clearly. We recognize that true forecasts have irregular er-

ror structures, which are difficult to interpret. To help inter-
pret the relationship between forecast-errors and PEV in true
forecast systems, we introduce systematic modifications to
both the mean (error in mean) and standard deviation (change
in variability) of observed AMJJ volumes (Gneiting et al.,
2007). It should be noted that the change in standard devi-
ation here is assumed to be with respect to the interannual
variability seen in the observations, based on the retrospec-
tive years available in the forecast system. We generate the
forecasts for the years WY2006–2022, where “WY” repre-
sents the water year, 1 October–30 September (Fig. 4). The
choice to set the mean of synthetic forecasts equal to obser-
vations and the standard deviation to interannual variability
ensures that the synthetic forecasts reflect key characteristics
of the observed system. Aligning the mean with observations
maintains comparability, while using interannual variability
captures the system’s inherent uncertainty. This design is cru-
cial for studying irregular error structures, as it realistically
represents the scale and variability of true forecasts. By mir-
roring these properties, the synthetic experiments provide a
controlled yet representative framework for analyzing how
irregular error structures impact forecast value.

The observations are modified by applying a percentage
change to the mean, followed by a percentage change to
the standard deviation (Fig. 4a). An ensemble of 39 forecast
members (explained further in Sect. 2.4) is then generated,
normally distributed around the modified mean and standard
deviation. The varying spread of ensemble members reflects
different potential hydrologic futures, allowing us to assess
the performance of the forecast systems, not only in terms
of a single prediction but across a wide range of possible
outcomes. Additionally, if the errors result in negative val-
ues, we truncate the range of the forecast to be greater than
or equal to 0, to avoid negative forecasts. In Fig. 4b, two
synthetic forecasts are presented: one with a 50 % increase
in both the mean and standard deviation, represented by the
blue line and ribbon, and another with a 50 % decrease, rep-
resented by the red line and ribbon. These lines illustrate the
ensemble spread of possible synthetic forecasts, based on the
modified statistics. For comparison, the black dotted line and
ribbon show the ensemble spread derived from the original
observations and their standard deviation (i.e., interannual
variability), serving as a reference point for evaluating devi-
ations in the forecasts. Additionally, the white circle and tri-
angle denote the original mean and standard deviation of the
observations, respectively, offering a baseline to assess how
the synthetic adjustments impact the overall distribution.

2.4 True forecasts

A schematic of model workflows of three true forecast sys-
tems is provided in Fig. 5 – two designed for this study
and one used operationally. The two designed true fore-
cast systems use the ensemble streamflow prediction (ESP)
framework. The first is a process-based hydrologic model

https://doi.org/10.5194/hess-29-5593-2025 Hydrol. Earth Syst. Sci., 29, 5593–5623, 2025



5600 P. Modi et al.: Relationship between streamflow forecast skill and value across the western US

Figure 3. Study domain, comprising 76 USGS drainage basins across the western US, colored by the ratio of 1 April SWE to water-year-
to-date precipitation. Purple boundaries indicate North American level III snow ecoregions generated by the US Environmental Protection
Agency (US EPA, 2015). These ecoregions include the Cascades, Idaho Batholith, Intermountain West, Rockies, Sierra Nevada, and Wasatch
and Uinta Mountains.

(WRF-Hydro – WRFH; Gochis et al., 2020), which simu-
lates streamflow evolution based on physical processes like
snowmelt, soil moisture, and runoff (Fig. 5a). The second is
a deep-learning model (LSTM; Hochreiter and Schmidhu-
ber, 1997), which leverages historical patterns from the data
(Fig. 5b). In these systems, the primary input data consist of
historical meteorology, geospatial basin attributes, snowpack
information in the form of SWE (only for the LSTM model),
and streamflow observations, which are also used for training
and validation (Table A2). It is important to note that WRFH
is run on an hourly timescale and its outputs are aggregated
into AMJJ volumes. Similarly, the LSTM model follows the
WRFH approach but runs on a daily timescale, with its out-
puts aggregated into AMJJ volumes. A detailed description
of the ESP methodology is provided in Sect. 2.4.1, and the
implementation of the models, including input data, model
architecture, calibration/training, and forecast generation, is
discussed in Sects. 2.4.2 and 2.4.3.

In addition, we used NRCS operational forecasts over the
study watersheds to benchmark true forecasts. These fore-

casts were chosen since they are methodologically consis-
tent across all study regions and easily accessible for a larger
number of basins and years. The NRCS employs a principal
component regression model. This model is usually modi-
fied to retain the principal components (Garen, 1992; Lehner
et al., 2017) and uses predictors like SWE, accumulated pre-
cipitation from SNOTEL, and antecedent streamflow from
USGS to predict AMJJ volumes (Fig. 5c).

All true forecasts have the same number of ensemble
members; five forecast exceedance probabilities, computed
at 90 %, 70 %, 50 %, 30 %, and 10 %, are extracted. To clar-
ify, 90 % means that there is a 90 % chance that the observed
AMJJ volumes will exceed this forecast value and a 10 %
chance that it will be less than this forecast value. These
probabilities are based on the multiple ensemble members in
all true forecasts. In order to make all forecasts comparable,
the same five probabilities of exceedance were obtained from
both true and synthetic forecasts. True forecast systems often
deviate from idealized assumptions, exhibiting non-normal
error distributions and varying variances, due to the influence
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Figure 4. (a) The model workflow used to generate synthetic forecasts. (b) Two synthetic forecasts with ensemble spread in AMJJ volumes:
one with a 50 % increase in both the mean and standard deviation, represented by the blue line and ribbon, and another with a 50 % decrease,
represented by the red line and ribbon. The black dotted line and ribbon show the ensemble spread derived from the original observations and
their standard deviation (i.e., interannual variability), whereas the white circle and triangle show the original mean and standard deviation of
the observations, respectively. These forecasts correspond to different error structures, as shown in the inset grid.

of dynamic unpredictable factors and system-specific behav-
iors. This phenomenon is demonstrated in Fig. A3, where
an exposition of these irregular error structures is presented
through time-series analyses of AMJJ volumes. These time
series illustrate how interannual fluctuations in volumes re-
veal underlying heteroscedasticity, skewness, and other devi-
ations from standard statistical norms.

2.4.1 Ensemble streamflow predictions (ESPs)

In general, ESP forecasts generated on 1 April (i.e., 1 April
is the forecast date) hold significant operational importance.
This is because 1 April historically serves as a surrogate
for the timing of peak SWE conditions and provides near-
maximum predictive information (Livneh and Badger, 2020;
Pagano et al., 2004). In this study, 1 April, as a forecast date,
is closely tied to forecast skill and serves as an optimal point
for calculating forecast value. However, depending on the re-
gion and the context of decision-making, users may choose a
different forecast date that better aligns with their needs and
associated forecast skill. The ESP simulation begins at the
start of the water year (1 October), utilizing true meteoro-
logical forcings to initialize the model’s initial conditions on
1 April. Using these initial conditions on 1 April and me-
teorological forcings from previous years, an ensemble of

streamflow traces is produced in the forecast period (April–
July) as a function of the current hydroclimatic state and his-
torical weather conditions (Day, 1985; Troin et al., 2021).

The result is a daily probabilistic hydrologic forecast,
ranging from 30 d up to 180 d from the forecast date, that
uses the spread in historical data from the previous ≈20 to
30 years (shown in Fig. 6 – for illustration purposes, we only
show 23 years here) as an analogue for the uncertainty in me-
teorological conditions after the forecast date. For example,
a forecast generated on 1 April (illustrated in Fig. 6) uses ob-
served meteorology up to that date, with the model’s initial
conditions preserved, and then generates streamflow traces
based on meteorological forcings from previous years for the
remainder of the forecast period.

2.4.2 Implementation of WRF-Hydro in an ESP
framework

WRFH model architecture

WRFH is a distributed hydrologic model architecture de-
signed to facilitate the coupling of hydrologic models with
atmospheric models through improved representations of ter-
restrial hydrologic processes associated with spatial redis-
tribution of surface, sub-surface, and channel waters across
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Figure 5. Model workflows used to generate true forecasts, including inputs, model type, and outputs: (a) process-based hydrologic model,
WRF-Hydro; (b) deep-learning model, LSTM; (c) NRCS statistical forecasts.

Figure 6. An ESP forecast issued on 1 April. The thick red line on the left depicts the model run before the forecast date using “true”
meteorological forcings, starting from 1 October. Using the model’s initial conditions on 1 April (shown in blue) and historical meteorological
forcings from the past 23 years, ensemble streamflow forecasts are generated (shown with faint red lines). Data are from Johnson Creek, ID,
USGS basin 13313000, for the forecast year 2011. The broken x axis shown here is not uniform and represents the ESP conceptually (Modi
et al., 2024).

the land surface (Gochis et al., 2020). As its modeling core,
WRFH uses the Noah-MP land surface model, an improved
version of the baseline Noah land surface model (Ek et al.,
2003; Niu et al., 2011), which offers multi-parameterization
through several vegetation, snow, radiation transfer, runoff,
and groundwater schemes. We use the National Water Model
(NWM) scheme configuration developed and managed by
NOAA to generate short-to-medium-range streamflow fore-
casts over the 2.7 million stream locations nationwide (Cos-
grove et al., 2024). We only match the physics permutations
used in the NWM configuration and not the routing config-

uration used in the operational NWM. We rely on a channel
network that uses a default channel structure and is gener-
ated using Hydrosheds Digital Elevation Model data (Lehner
et al., 2008). WRFH is set up on a 1 km horizontal grid spac-
ing, simulating lateral water redistribution on the surface and
shallow sub-surface on a 100 m grid spacing. The model is
run hourly, with model outputs aggregated daily for analy-
sis purposes. A description of WRFH model parameters and
calibration is provided in Sect. A1.
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WRFH model inputs

Meteorological forcings used to run the WRF-Hydro
(WRFH) include precipitation, average wind speed, 2 m aver-
age air temperature, incoming longwave and shortwave radi-
ation, near-surface air pressure, and vapor pressure, obtained
from the Analysis of Records for Calibration (AORC, Fall
et al., 2023, as detailed in Table A2). The Noah-MP land
surface model is parameterized using surface albedo, leaf
area index, and green fraction from the Moderate Resolution
Imaging Spectrometer (Myneni et al., 2015). Land-use/land-
cover is obtained from the United States Department of Agri-
culture National Agricultural Statistics Service (George Ma-
son University, 2019), soil type from State Soil Geographic
(STATSGO), and maximum snow albedo and soil tempera-
ture from the WRF Preprocessing System data page managed
by UCAR (WRF, 2019). Daily streamflow estimates from the
USGS’s National Water Information System (USGS NWIS)
are obtained for the USGS stream gauges corresponding to
the basin outlets, which are used to calibrate the model and
are described in the following.

WRFH forecast generation

We generate WRFH ESP forecasts on 1 April for WY2006–
2022 before (now WRFHDEF) and after (now WRFHCAL)
calibration. These forecasts leverage historical meteorologi-
cal data from all available years WY1983–WY2022 except
the forecast year by using them as inputs to WRFH. For an
ESP forecast on 1 April, the WRFH simulation begins at the
start of the water year, i.e., 1 October, using true meteoro-
logical forcings to obtain WRFH’s initial states (e.g., snow-
pack, soil moisture) on the forecast date. An ensemble of
streamflow traces is produced in the forecast period using
these memory states on the forecast date and historical mete-
orological forcings. The forecast daily streamflow is further
cumulated to AMJJ volume and used for analysis.

2.4.3 Implementation of LSTM in an ESP framework

LSTM model architecture

This study adopts a model architecture similar to Kratzert et
al. (2019), as followed by Modi et al. (2024) (now “M24”),
which has been shown to simulate and forecast streamflow
well for basins with minimal anthropogenic influence. This
M24 setup only includes hyperparameters – externally set
values that govern the training process – not model parame-
ters or inputs. This list of hyperparameters is briefly outlined
and explained in Table A3 (Sect. A2). Using the M24 setup,
the LSTM includes a single hidden layer comprising 256
units, where units act as computational units through which
data flow and the hidden layer is responsible for learning the
intricate structures in the data. Additionally, the hidden layer
is configured to randomly drop neurons during training, with
a dropout rate of 0.4, to mitigate overfitting. The input se-

quence length used is 270 d, which specifies the number of
preceding time steps fed into the LSTM to produce stream-
flow on a given day. A description of LSTM training is pro-
vided in Sect. A2.

LSTM model inputs

The training inputs for the LSTM model (as detailed in Ta-
ble A2) include meteorological forcings from the AORC
(Fall et al., 2023), which are aggregated daily and spatially
averaged across each basin using 1 km grid cells and are
identical to the WRFH inputs. These forcings consist of pre-
cipitation, average wind speed, 2 m average air temperature,
incoming longwave and shortwave radiation, near-surface air
pressure, and vapor pressure. In addition to these meteoro-
logical forcings, static predictors are included, consisting of
basin attributes from the GAGES-II dataset, which remain
constant over time and are selected to mirror those utilized
in the CAMELS dataset, following the work of Arsenault et
al. (2023) and Kratzert et al. (2019). We obtain daily snow
information from the gridded snow dataset developed at the
University of Arizona (now UA) (Broxton et al., 2019; Zeng
et al., 2018), spatially averaged for each basin from 1/16°
grids. Lastly, daily streamflow estimates from the USGS’s
National Water Information System (USGS NWIS) are ob-
tained for the USGS stream gauges corresponding to the
basin outlets.

LSTM forecast generation

We generate LSTM ESP forecasts on 1 April for WY2006–
2022, excluding years used in training, using model parame-
ters from fully trained settings. These forecasts leverage his-
torical meteorological data and snow information from all
available years WY1983–WY2022 except the forecast year.
For ESP forecasts on 1 April, the LSTM simulation begins at
the start of the water year, i.e., 1 October, using true meteoro-
logical forcings and snowpack information to obtain LSTM’s
memory states on the forecast date. During the forecast pe-
riod, the historical meteorological data are used similarly to
process-based models. However, special treatment is applied
to snowpack information, integrating known snowpack in-
formation for the forecast date and assumptions about snow
evolution after the forecast date as a way to boost the repre-
sentation of hydrologic memory that is commensurate with
the physical hydrologic system. We adopt the “ESPRetroSWE”
forecast experiment from Modi et al. (2024), which inte-
grates the known SWE information for the forecast date
(from the forecast year) with explicit accumulation and ab-
lation rates after the forecast data from individual historical
years. More information on the design and performance of
“ESPRetroSWE” is provided by Modi et al. (2024). The fore-
cast daily streamflow is further cumulated to AMJJ seasonal
volumes and used for analysis.
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2.5 Performance metrics

We employed four key performance metrics to compare the
historical performance of our designed true forecast sys-
tems, drawing from those widely adopted to quantify stream-
flow accuracy. The Nash–Sutcliffe efficiency (NSE) was used
to quantify streamflow prediction accuracy of the different
models. The NSE ranges from −∞ to 1, with 1 indicating
perfect agreement between the simulated and observed val-
ues and values closer to 0 indicating poorer performance. The
normalized root mean square error (NRMSE, as a percent-
age) was used to analyze the skill of simulated AMJJ stream-
flow volume against the corresponding observed streamflow
volumes. The RMSE was normalized by the median of ob-
served streamflow volumes; values closer to 0 indicate better
performance. The correlation assesses the agreement in pat-
terns between the simulations and observations, with values
ranging from −1 (perfect negative correlation) to 1 (perfect
positive correlation). The ratio of standard deviation com-
pares the spread between the simulations and observations
to assess whether the simulations capture the correct level of
variability in the observations. A ratio of standard deviation
of 1 indicates that the simulations have captured the correct
level of variability.

We use the relative median absolute deviation (RMAD) to
compare the variability between synthetic and true forecasts.
The RMAD measures the median of the relative absolute er-
rors between the true and synthetic forecasts. Since both the
true and synthetic forecasts are ensemble forecasts, the errors
are calculated by first determining the absolute differences
between corresponding ensemble members. These absolute
errors are then normalized by the true forecast values to com-
pute relative errors. The median of these relative errors across
the ensemble members is then used to quantify the RMAD,
with values closer to 0 indicating smaller deviations and bet-
ter alignment between the true and synthetic forecasts. The
metrics used to calibrate/train the true forecast systems are
described in Sects. A1 and A2.

3 Results

We first compare the historical model performance from
the WRFH and LSTM models with respect to the observa-
tions (Sect. 3.1). In Sect. 3.2, we analyze how error in mean
and change in variability impact the forecast skill and value
for synthetic (i.e., imposed errors on observations) and true
forecasts (i.e., estimated with respect to the observations).
In Sect. 3.3, we examine the relationship between forecast
skill and value from different forecast systems, with different
severities of drought and the impact of categorical variables,
particularly on forecast value.

3.1 Historical model performance of our designed true
forecast systems

We assess the performance of our designed true forecast sys-
tems using historical data to ensure their effectiveness in ac-
curately simulating streamflow. We first compared the per-
formance of the calibrated WRFH and fully trained LSTM
models against observations for 76 basins during the testing
period, WY2001–2010, using four key metrics: daily NSE,
normalized root mean square error (NRMSE) of total AMJJ
volume, daily correlation, and the ratio of the standard devi-
ation (Fig. 7). The LSTM model consistently outperformed
the WRFH model across all metrics, with statistically sig-
nificant improvements. For example, LSTM showed a me-
dian NSE and NRMSE of 0.80 and 20 %, whereas WRFH
showed 0.42 and 45 %, respectively. The median correlation
was greater than 0.7 for both models, with LSTM showing
the highest correlation, of 0.85, demonstrating a capability
to capture temporal dynamics in daily streamflow prediction.
LSTM also showed a reasonable ratio of standard deviation,
of 0.95, whereas WRFH showed 1.25. These results suggest
that the LSTM model performs much better in simulating
streamflow than the WRFH model. The WRFH and LSTM
showed satisfactory utility in simulating daily and seasonal
streamflow and were chosen for further comparison to an-
alyze the skill–value relationship for different model archi-
tectures. To underscore the importance of model calibration
and training, we compare the performance of the models be-
fore and after calibration/training. In general, we observe im-
provements across all metrics for both models (additional de-
tails can be found in Sect. A3).

3.2 Forecast skill and value are affected by error in
mean and change in variability

In Sect. 3.2.1, we first analyze synthetic forecasts to gain
insights into their skill and value with respect to the error
in mean and change in variability. In Sect. 3.2.2, we exam-
ine true forecasts, quantifying the error in mean and change
in variability, and assess their skill and value (Sect. 3.2.2).
Finally, we overlap skill and value from true forecasts with
those from synthetic forecasts to diagnose and interpret how
error in mean and change in variability impact forecast skill
and value. We estimate skill and value only for the drought
years (i.e., years below the 25th percentile based on observed
AMJJ volumes between WY2006–2022).

3.2.1 Synthetic forecasts

Figure 8a and b illustrate the sensitivity of forecast skill
and value to error in mean and change in variability across
drought years. In Fig. 8a, a lower number indicates better
forecast skill, meaning darker shades (close to purple) rep-
resent worse skill, whereas lighter shades (close to yellow)
indicate good skill. The optimal forecast skill (close to zero)
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Figure 7. Historical model performance of true forecast systems: (a) daily NSE, (b) NRMSE of total April–July streamflow volumes,
(c) daily correlation, (d) ratio of the standard deviation against observations for calibrated WRFH and fully trained LSTM models. Shaded
areas represent the distributions of model performance metrics over the 76 basins, while vertical lines indicate the performance of individual
basins during the testing period, WY2001–2010.

occurs particularly around errors in the mean between−20 %
and 20 % and changes in variability of −100 % and −50 %.
It is important to note that a standard deviation of 0 in-
dicates that the forecast variability aligns closely with the
historical interannual variability. As the error in the mean
increases beyond these ranges, the forecast skill worsens.
However, an increase in standard deviation reflects the vari-
ability of the probabilistic forecast, which is a characteristic
of the forecast rather than a direct performance metric. In
Fig. 8b, a higher number indicates a greater value, meaning
that darker shades (close to purple) represent a low value,
whereas lighter shades (close to yellow) indicate a greater
value. The optimal forecast value (closer to 0.9) is observed
with an error in the mean between −20 % and 20 % and a
change in variability between −100 % and 0 %. A key ob-
servation is that a greater forecast value extends further into
positive errors in the mean, compared with negative errors,
resulting in a symmetric forecast skill around mean errors
but an asymmetric forecast value.

We present four synthetic forecasts (Fig. 8c–f) to demon-
strate how forecast skill and value are impacted by system-
atic error in mean and change in variability in the case of
a categorical decision. In each plot, the black line and rib-
bon represent a synthetic forecast, with the mean equal to
the observation and the standard deviation representing the
interannual variability of the observations. The red dots indi-
cate drought events, defined as AMJJ volumes below P25. In
Fig. 8c, with a −50 % change in variability, we can observe
the highest skill (0.05) and value (0.62), as most events are
correctly forecast (H = 0.73), though a few ensemble mem-
bers cause false alarms (F = 0.06). In Fig. 8d, with a +50 %
change in variability, all events are still hit (H = 0.63) but
the higher number of false alarms (F = 0.20) reduces the
forecast value from 0.62 to 0.42. Figure 8e, featuring a neg-
ative error in the mean, hits all events (H = 0.87) but suffers
from a high number of false alarms (F = 0.70), resulting in
a value of 0.03, while Fig. 8f, with a positive error in the
mean, has almost no false alarms (F = 0.01) but a lower hit

https://doi.org/10.5194/hess-29-5593-2025 Hydrol. Earth Syst. Sci., 29, 5593–5623, 2025



5606 P. Modi et al.: Relationship between streamflow forecast skill and value across the western US

rate (H = 0.28), resulting in a value of 0.20. It should be
noted that some ensemble members cause misses (M = 0.13)
and false alarm rates (F = 0.01), as shown in Fig. 8e and f,
respectively. This comparison reveals why forecast skill re-
mains symmetric around the error in the mean, while forecast
value is distinctly asymmetric. This asymmetry is largely due
to the interplay of categorical measures, such as hit and false
alarm rates, as well as our focus on events below the P25
drought threshold. These factors lead to different sensitivities
of skill and value to error in mean and change in variability.

3.2.2 True forecasts

Error in mean and change in variability

Figure 9 illustrates the error in mean and change in vari-
ability for all true forecast systems across 76 basins. Across
all models, there is a consistent trend of overprediction in
mean during drought years (Fig. 9a), with a standard devia-
tion in forecasts lower than interannual variability from his-
torical records (Fig. 9b). The degree of overprediction is gen-
erally higher in the Wasatch and Uinta Mountains and Rock-
ies, while it is smaller in Sierra Nevada and the Cascades,
Idaho Batholith, and Intermountain West. This is probably
because the limited precipitation and snow observations in
high-elevation regions introduce uncertainty in interpolated
precipitation values (Vuille et al., 2018), which are assimi-
lated into the model inputs (i.e., AORC). An intercomparison
of the error in the mean across the models reveals significant
differences. The median error in the mean is 55 % for WRFH,
30 % for the LSTM, model, and 14 % for the NRCS model.
The LSTM model shows lower mean errors than WRFHCAL,
aligning with historical performance trends, while the NRCS
model performs best, exhibiting the smallest errors in the
mean, as observed in Fig. 7. In contrast to overprediction of
the mean, these models mostly show a standard deviation that
is lower than interannual variability during WY2006–2022,
as indicated by the decrease in standard deviation (Fig. 9b).
These results are consistent with the trends observed in the
synthetic forecasts (Fig. 8), where higher forecast skill and
value were associated with a decrease in standard devia-
tion. This understanding of the error in the mean and the
change in variability underscores the importance of captur-
ing both mean state and variability to improve forecast per-
formance and value, particularly in complex mountainous re-
gions like the Rockies, where observational limitations pose
challenges.

Forecast skill

Figure 10 illustrates the normalized mean quantile loss
(NMQloss) of the three true forecast systems over the
heatmaps developed for synthetic forecasts, based on Fig. 8a.
The background heatmaps represent the median skill from
synthetic forecasts across basins, while the scatter points

represent true forecast systems, based on the estimated er-
rors with respect to the observation during drought years.
Each dot in Fig. 10 represents a basin, with colors show-
ing the median skill during drought years. We overlap true
forecasts over synthetic forecasts to systematically analyze
and understand the impact of irregular error structures in
true forecast systems on the forecast skill. WRFH and the
LSTM model show good correspondence, when compared
with the synthetic forecasts (i.e., colors match well between
the points and heatmap), based on the estimated RMADs
of 30 % and 23 %, respectively. Notably, the NRCS model
shows the highest consistency and robustness, with a RMAD
of 20 %, closely aligning with the synthetic forecasts. The
scatter points’ distribution across each heatmap highlights
the sensitivities of the forecast skill to error in mean and
change in variability for the different forecast systems. Over-
all, this approach highlights the importance of considering
error in mean and change in variability when diagnosing true
forecast skill. It offers valuable insights into the reliability
and robustness of forecasts in real-world scenarios, empha-
sizing how different systems perform under varying condi-
tions of uncertainty.

Forecast value

Figure 11 is similar to Fig. 10; however, it focuses on
APEVmax rather than NMQloss. Despite the good corre-
spondence observed in forecast skill (Fig. 10), all true fore-
cast systems demonstrate poor correspondence in value when
compared with synthetic forecasts. This can be seen by the
significant difference in the colors of points and heatmaps.
This results in estimated RMADs for WRFH, LSTM, and
NRCS of 100 %, 81 %, and 91 %, respectively, dramatically
different from the deviations in skill. These large deviations
show that the error in mean and change in variability do not
effectively explain the variations in the forecast value be-
tween true and synthetic forecasts. None of the true forecast
systems was able to consistently capture forecast value, as
can be seen from our comparison with synthetic forecasts.
The distribution of scatter points across each heatmap further
emphasizes that APEVmax, unlike NMQloss, is not a simple
function of the error in mean and change in variability or, in
broad terms, forecast skill.

3.3 Relationship between skill and value

3.3.1 Comparison between synthetic and true forecasts

We use the overlap between synthetic and true forecast sys-
tems from Figs. 10 and 11 to explore their skill–value re-
lationship. Figure 12a compares the skill (NMQloss) and
value (APEVmax) of the synthetic forecasts (i.e., grids in
the heatmap) that overlapped with the true forecast systems
(i.e., scatter points), based on error in mean and change in
variability. Similarly, Fig. 12b shows the skill and value of

Hydrol. Earth Syst. Sci., 29, 5593–5623, 2025 https://doi.org/10.5194/hess-29-5593-2025



P. Modi et al.: Relationship between streamflow forecast skill and value across the western US 5607

Figure 8. Sensitivity of quantile loss (forecast skill) and APEVmax (forecast value) to error in mean and change in variability for synthetic
forecasts. (a, b) Background heatmaps represent synthetic forecasts, with (a) lower values showing better forecast skill (closer to yellow) and
(b) higher values showing better forecast value (closer to yellow). (c–f) Four synthetic forecasts (shown in blue) corresponding to different
errors in the mean and changes in variability. The black line and ribbon represent a synthetic forecast, with the mean equal to the observation
and the standard deviation representing the interannual variability of the observations. The red dots indicate drought events, defined as AMJJ
volumes below P25, whereas the histograms represent the hit (H ), false alarm (F ), and miss (M) rates. Note that the color scale for forecast
value is capped at 0.5, although the actual values reach up to 0.9.

the true forecast systems. Both scatter plots show the re-
lationship between NMQloss (forecast skill) and APEVmax
(forecast value) for the three true forecast systems (WRFH,
LSTM, and NRCS), with each point corresponding to a dif-
ferent basin. The dashed lines in the plots represent fitted
exponential curves, highlighting the general trend that, as
skill increases (i.e., as NMQloss decreases), the value also
improves (i.e., APEVmax increases). The optimal skill and
value are obtained at the coordinates (0,1), where skill de-

clines along the x axis and value increases along the y axis.
For synthetic forecasts, this trend is more pronounced, with
high correlation values (≥ 0.65) across all models, indicat-
ing a strong negative relationship between NMQloss and
APEVmax across the entire range of NMQloss. In contrast,
for the true forecasts, the relationship between NMQloss and
APEVmax weakens (r ≤ 0.38) and becomes more variable,
suggesting that good forecast skill does not always trans-
late to good forecast value (Turner et al., 2017). These plots
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Figure 9. (a) Error in mean and (b) change in variability (with respect to interannual variability during WY2006–2022) of three true forecast
systems (NRCS, WRFH, and LSTM). Each point represents a basin and the errors/changes are reported for drought years (below the P25)
between WY2006 and 2022. A total of 76 basins are divided across six ranges, with figures in square brackets representing the number of
basins within each range.

Figure 10. Comparison of skill between synthetic and true forecast systems for error in mean and change in variability. Normalized mean
quantile loss (NMQloss) of three forecast systems (WRFH, LSTM, and NRCS) is represented as scatter points (each point represents a
basin), indicating the true skill during drought years between WY2006 and WY2022. The background heatmaps represent the sensitivity of
skill to error in mean and change in variability for synthetic forecasts. RMADs for true forecast systems from the optimal scenario are 30 %,
23 %, and 20 % for WRFH, LSTM, and NRCS, respectively.

collectively demonstrate that while NMQloss and APEVmax
are related, their relationship is complex, particularly in true
forecast systems. This skill–value comparison between syn-
thetic and true forecast systems indicates that factors beyond
forecast skill, as defined in this study, influence the value of
true forecast systems, which we analyze in the following sec-
tions to some extent.

3.3.2 Skill–value relationship monotonically changes
with the severity of drought

Figure 13 illustrates the relationship between NMQloss and
APEVmax for three drought scenarios related to different
severities. This includes three scenarios: AMJJ volume less
than the 35th percentile (P35), less than the 25th percentile
(P25 used consistently in earlier analyses), and less than the
15th percentile (P15), represented by blue, orange, and ma-
genta colors, respectively. Importantly, these scenarios are
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Figure 11. Comparison of value between synthetic and true forecast systems for error in mean and change in variability. Area under PEVmax
curve (APEVmax) of three forecast systems (WRFH, LSTM, and NRCS) is represented as scatter points (each point represents a basin), indi-
cating the true value during drought years between WY2006 and WY2022. The background heatmaps represent the sensitivity of APEVmax
to error in mean and change in variability for synthetic forecasts. RMADs for true forecast systems from the optimal scenario are 100 %,
81 %, and 91 % for WRFH, LSTM, and NRCS, respectively.

Figure 12. Scatter plots depicting the relationship between skill (NMQloss) and value (APEVmax) for synthetic and true forecast systems.
The points in (a) and (b) represent the synthetic forecast (the grid of the heatmap) that overlap with true forecast systems (scatter points) in
Figs. 10 and 11. Each point represents a basin, with the fitted exponential curves (dashed lines) indicating general trends and values in round
brackets indicating correlation. It should be noted that we use the overlap from Figs. 10 and 11 to plot synthetic forecasts (corresponding to
true forecasts) in Fig. 12a.

not independent of one another, as events identified below
P35 also encompass those below P15 and P25. The top den-
sity plot shows the distribution of NMQloss across all true
forecast systems and basins, showing generally wide distri-
butions with median values around 0.20. The right density
plot represents APEVmax, which shows a consistent increase
in median values from 0.12 to 0.20 as the drought severity de-
creases (i.e., from P15 to P35). This widening of distributions
suggests that the estimated skill and value for drought scenar-
ios that are not limited to extremely dry events (i.e., P35) tend

to improve, i.e., higher accuracy and better economic benefit.
Hence, the relationship changes monotonically with drought
severity. Therefore, the decrease in forecast value is likely
to be attributable to the increase in forecast-error, as predic-
tive models increasingly struggle in simulating progressively
more extreme drought events (Chaney et al., 2015).

3.3.3 Hit and false alarm rate and forecast value

In decision-making, a high hit rate ensures timely actions
for critical events like drought, while a low false alarm rate
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Figure 13. Relationship between NMQloss and APEVmax shown
for three drought scenarios related to different severities. These
drought severities are represented by AMJJ volume being less than
35th percentile (P35, blue), 25th percentile (P25, orange), and 15th
percentile (P15, magenta). The top density plot shows the distribu-
tion of NMQloss across all forecast systems and basins, whereas the
right-side density plot displays the distribution of APEVmax.

limits unnecessary responses and maintains trust in the fore-
cast system. Balancing these metrics is crucial for forecast
value, as this determines the forecast’s ability to support ef-
ficient and reliable decision-making. We analyze two critical
components of APEVmax: the hit rate and false alarm rate
(Fig. 14). This analysis focuses on two distinct basins, Din-
woody Creek, WY (Fig. 14a), and Lake Fork, CO (Fig. 14b),
across various critical probability thresholds (τ ) – the mini-
mum probability at which a drought event is deemed likely
enough to trigger an action. The left plots for each basin show
the hit rate, while the right plots depict the false alarm rate.
For this analysis, we compare the LSTM forecasts (shown in
green) and the corresponding synthetic forecasts (shown in
black), based on the overlap shown in Figs. 10 and 11.

In the case of Dinwoody Creek, both synthetic and true
forecasts demonstrate a similar pattern, where, as the criti-
cal probability threshold (τ ) decreases, the hit rate generally
increases, eventually reaching a maximum of 1 (left panel
of Fig. 14a). The value of 1 suggests that both forecasts
effectively identify all drought events (below P25 between
WY2006 and WY2022) when the threshold becomes less
strict. In terms of the false alarm rate, the synthetic fore-
cast initially shows a lower rate compared with true fore-
cast (LSTM), indicating fewer false alarms at higher thresh-
olds (right panel of Fig. 14a). However, as the threshold de-
creases, the false alarm rates for both forecasts diverge signif-

icantly before converging at maximum rates of 0.5 and 0.75
for the synthetic and true forecasts, respectively. This diver-
gence results in a notable difference in APEVmax values: 0.45
for the synthetic forecast and 0.08 for the true forecast.

In the case of Lake Fork, a similar trend is observed for
the hit rate. As the critical probability threshold decreases,
both the synthetic and true forecasts consistently detect more
drought events as the threshold becomes less strict (left panel
of Fig. 14b). However, the behavior of the false alarm rate
differs from that in Dinwoody Creek. Here, both forecasts ex-
hibit a gradual increase in the false alarm rate as the threshold
decreases, but they converge more closely at maximum rates
of 0.25 and 0.32 for the synthetic and true forecasts, respec-
tively. This convergence results in similar APEVmax values
for both forecasts, each approximately 0.42.

Overall, these analyses highlight how the balance be-
tween hit and false alarm rate impacts APEVmax in differ-
ent basins. While Dinwoody Creek shows a clear discrep-
ancy in economic value between synthetic and true forecasts
due to their divergent false alarm rates, Lake Fork displays a
more aligned relationship, with both forecasts yielding sim-
ilar APEVmax values. These differences exist because of ir-
regular error structures that are better captured in categorical
measures than skill.

Figure 15 illustrates the forecast value of three true fore-
cast systems with respect to hit and false alarm rates. Unlike
Figs. 10 and 11, which analyzed error in mean and change
in variability, this figure focuses on understanding the vari-
ability in the value with respect to hit and false alarm rates.
The background heatmaps represent the median value from
synthetic forecasts across basins, while the scatter points
represent the median value from each forecast system. This
comparison was performed across 76 basins during drought
years (below P25) between WY2006 and WY2022. Unlike
Fig. 11, WRFH and LSTM show better correspondence of
value when compared with the synthetic forecasts, based on
the estimated RMADs of 78 % and 70 %, respectively. The
estimated deviations are still higher, primarily resulting from
differences in smaller magnitude of forecast value. Notably,
NRCS shows the highest consistency and robustness, with a
RMAD of 61 %, closely aligning with the synthetic forecasts.

4 Discussion

We begin with a brief summary of our results, followed by
a transition into a discussion of their broader implications.
This study was motivated by recent literature showing that
the relationship between forecast skill and value in hydrology
is multi-faceted and context dependent (Giuliani et al., 2020;
Hamlet et al., 2002; Maurer and Lettenmaier, 2004; Portele et
al., 2021; Rheinheimer et al., 2016). While forecast skill gen-
erally reflects the accuracy of forecasts relative to observa-
tions, forecast value represents the economic benefits derived
from utilizing those forecasts in decision-making. In this
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Figure 14. Attribution of hit rate and false alarm rate across varying critical probability thresholds (τ ). Two basins are shown: Dinwoody
Creek, WY (top panels), and Lake Fork, CO (bottom panels). The left panels show the hit rate as a function of the critical probability
threshold (τ , minimum probability at which a drought event is deemed likely enough to trigger an action) for the LSTM forecast (green) and
its corresponding synthetic forecast (black). The right panels depict the false alarm rate. The values indicate the APEVmax corresponding to
each forecast system.

context, we emphasize that, while traditional accuracy met-
rics are fundamental for assessing forecasting systems, they
have limited ability to capture the full utility of forecasts. By
linking skill to value, we demonstrate how these metrics of-
fer a more complementary perspective on forecast utility. We
use the relatively simple PEV metric, based on a cost–loss
model, to assess how forecast skill in 76 unmanaged snow-
dominated basins translates into value, assuming a hypotheti-
cal group of decision-makers. Our analysis demonstrates that
skill and value are not always aligned in a straightforward
manner, attributed to the inherent quality of forecasting sys-
tems in unmanaged basins. To better understand the rela-
tionship between skill and value in the unmanaged basins

from true forecasts, we compare these true forecasts with
synthetic forecasts, created by imposing systematic errors on
observed streamflow volumes (Fig. 4). Conversely, the true
forecast systems include a process-based hydrologic model
(WRF-Hydro), a deep-learning model (LSTM), and oper-
ational forecasts from the Natural Resources Conservation
Service (NRCS).

We begin by assessing the historical model performance
of true forecasts against observations generated in this study,
comparing the WRFH and LSTM models across 76 basins
using key performance metrics. As expected, the LSTM
model consistently outperformed the WRFH model, proba-
bly due to the advanced capabilities of deep learning to bet-
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Figure 15. APEVmax of three forecast systems (WRFH, LSTM, and NRCS), represented as scatter points (each point represents a basin),
indicating the actual value during drought years between WY2006 and WY2022. The background heatmaps represent the sensitivity of
APEVmax to hit and false alarm rates for synthetic forecasts. RMADs for true forecast systems from the optimal scenario are 78 %, 70 %,
and 61 % for WRFH, LSTM, and NRCS, respectively.

ter capture input–output dynamics (Fig. 7). We then analyzed
the sensitivity of forecast skill and value to errors during
drought years, specifically focusing on error in mean and
change in variability. For synthetic forecasts, we expected
that forecast skill would be symmetric around mean errors,
while value would exhibit asymmetry due to the influence
of categorical measures, such as hit and false alarm rates
(Fig. 8). The use of a normally distributed ensemble to de-
velop synthetic forecasts is a simplification that allows us
to model forecast uncertainty in a controlled manner, while
real-world forecasts often exhibit more complex, irregular,
distributions and biases. For example, these may be overes-
timated in dry conditions and underestimated in wet condi-
tions (Modi et al., 2022). A normal distribution was chosen
to solely isolate the impact of mean and standard deviation.
We recognize that this assumption does not fully capture the
nuances of real-world forecast-errors, such as skewness or
non-normality in extreme conditions, which would require
detailed treatment outside the scope of this analysis. For the
true forecast systems, we examined actual error in mean and
variability against observations, observing a consistent pat-
tern of overprediction in mean and variability lower than in-
terannual variability from historical records (Fig. 9), as also
reported in Modi et al. (2022). Additionally, we expected
forecast skill for both synthetic and true forecasts to primar-
ily follow patterns driven by error in mean and change in
variability; indeed, the correspondence of forecast skill for
both synthetic and true forecasts showed small differences,
indicating that forecast skill was largely a function of error
in mean and variability (Fig. 10). We acknowledge that esti-
mating forecast skill and value for drought years necessitates
a smaller sample size (here, n≈ 5), which is not ideal, affect-
ing the statistical power of the analysis. This limitation arises
due to the limited availability of operational forecasts and the

need for sufficient ensemble members for ESP. Therefore, it
would be important to assess whether a broader selection cri-
terion or longer span of forecast availability would help en-
sure robust results.

However, we found three aspects particularly surprising.
First, the skill–value relationship was remarkably consistent
for synthetic forecasts, despite only controlling for mean and
variability across the observations. This suggested that regu-
lar error structures allowed for a more predictable translation
of skill to value (Fig. 12). Second, in contrast, the skill–value
relationship was completely inconsistent for true forecasts,
particularly in the context of droughts. This was unexpected;
we had expected some level of variability, but the degree of
inconsistency indicated that, in real-world conditions, fore-
cast value is influenced by additional complexities beyond
forecast skill (Fig. 12). Third, even though some true forecast
systems, such as NRCS and LSTM, demonstrated high skill,
the weaker skill–value relationship for true forecasts meant
that good forecast skill did not always translate to high fore-
cast value (Figs. 11 and 12).

Lastly, we found that categorical measures, such as the
hit and false alarm rates, better explained the discrepancies
in forecast value between synthetic and true forecast sys-
tems than the skill metric used in the study (Fig. 14). This
was confirmed by showing the correspondence of forecast
value between synthetic and true forecasts, which was largely
driven by categorical measures like hit and false alarm rates
(Fig. 15). Our findings highlight the risk of stakeholders
relying solely on traditional performance metrics when se-
lecting a forecasting system. While high forecast skill may
indicate good performance, the economic value can vary
significantly due to system complexities and interactions.
This underscores the need for more sophisticated assess-
ment approaches that consider forecast value, particularly in
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decision-making contexts, rather than focusing solely on skill
metrics. Our study advocates for a multi-faceted assessment
framework that integrates both skill and value while also rec-
ognizing the limitations of the PEV framework.

However, the PEV framework assumes risk-neutral
decision-makers and is limited to binary decision contexts,
which may oversimplify real-world decision-making chal-
lenges (Laugesen et al., 2023). In water management, deci-
sions often involve continuous or multi-categorical variables,
such as balancing water supply needs, hydropower genera-
tion, and flood control, which PEV does not fully capture
(Laugesen et al., 2023; Portele et al., 2021). We also rec-
ognize that, while the PEV framework assumes equal costs
for hits and false alarms, real-life decision-making may be
more sensitive to false alarms, due to their potential to dam-
age trust in forecasting systems and decision-making author-
ities. To better reflect decision-making contexts, it may be
beneficial to explore weighted quantile loss metrics, where
different quantiles receive different weights, depending on
their relative importance in decision-making. Such a weight-
ing scheme would better align with situations where high or
low values have disproportionate consequences, as is often
the case in hydrologic forecasting. While more advanced and
flexible metrics, like the relative utility value (RUV; Lauge-
sen et al., 2023), offer improved decision-making capabili-
ties by incorporating user-specific utility functions, we opted
for PEV due to its simplicity and broad operational appli-
cability. RUV provides granular insights into forecast value
across different decision thresholds but introduces additional
complexities that are unique to individual users, including
their decision-making preferences, risk tolerance, and opera-
tional priorities. RUV uses the same inputs as PEV. However,
RUV allows the economic model, damage function, and risk
aversion to be explicitly specified (Laugesen et al., 2023).
One of the important benefits of RUV is that it uses the
whole probabilistic forecast and does not need conversion
to a categorical forecast, like PEV (Laugesen et al., 2023).
PEV’s straightforward interpretation and widespread usage
in hydrologic and meteorological applications made it more
suitable for our evaluation without introducing unnecessary
complexities. The results from this study raise an important
question about whether the categorical nature of the events
and the experimental nature of PEV are indeed driving the
observed outcomes. This potential alignment may suggest
that categorical error measures are performing better, simply
because they match the structure of our experimental design.
To clarify this, further consideration is needed to understand
whether this relationship reflects a true advantage of categor-
ical measures or is an artifact of the setup, i.e., a compari-
son with the synthetic forecasts generated by imposing regu-
lar error structures. By testing alternative error measures like
RUV that are not categorical and adjusting the experimental
design, we can better assess whether the effectiveness of the
forecasts is truly a function of forecast skill or simply due
to the structure of the experiment. Such additional analysis

will help confirm or refute the notion that categorical mea-
sures work better only because they align more closely with
how events and costs are defined in this model. Future work
could explore ways to incorporate asymmetric cost structures
or impacts of reputation to better reflect these considerations
in operational settings.

There are several limitations to the probabilistic forecasts
used in this study. First, the datasets used for generating these
forecasts typically have their own limitations, such as the
absence of common standards for intercomparison, a lack
of uncertainty estimates for assessing data reliability, and
a lack of characterization of human intervention (Addor et
al., 2020). In the case of LSTM ESP forecasts, the use of
only a single deep-learning model (LSTM) is a limitation;
this model could be replaced by alternative neural networks
(Cho et al., 2014; Vaswani et al., 2017) or physics-guided
architectures (Feng et al., 2022, 2023; Hoedt et al., 2021)
to improve forecast performance. Additional limitations, as
discussed by Modi et al. (2024), include the need to test dif-
ferent hyperparameters, extend the training period, and ex-
plore the use of other snowpack treatments that may improve
the model’s performance. For WRFH ESP forecasts, biases
in initial hydrologic conditions, which arise due to lack of
knowledge, incomplete process representation (DeChant and
Moradkhani, 2011), and parameter uncertainty potentially
resulting from ill-constrained calibration (Arheimer et al.,
2020; Hirpa et al., 2015; Wood et al., 2016), contribute to
forecast biases.

We also recognize that a comparison with operational ESP
forecasts generated by the River Forecast Centers might be
more appropriate for this study. However, due to the limited
availability of operational ESP forecasts (starting in 2015)
for our study basins, as well as inconsistent methodologies
across regions, we chose to use the NRCS forecasts. Impor-
tantly, it should be noted that the differences in forecast vol-
umes between NRCS and operational ESP forecasts are mi-
nor in the context of the overall forecast uncertainty (Lukas
and Payton, 2020).

5 Conclusions

This study explored how the skill of seasonal streamflow
forecasts translates to economic value for decision-making
in unmanaged basins across the western US. We used syn-
thetic forecasts to systematically analyze the skill and value
of true forecasts produced by process-based (WRFH) and
deep-learning (LSTM) models, as well as operational fore-
casts from the NRCS. The WRFH and LSTM models showed
distinct responses to training and calibration in simulating
streamflow. The LSTM model was more sensitive to train-
ing, with more stable structures, lower NRMSE, and better
correlation. In contrast, the WRFH model showed minimal
improvements post-calibration, with larger and more irregu-
lar error structures, despite some improvement in variability.
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Our results showed that forecast skill – indicating how ac-
curately forecasts match observations – and forecast value –
representing the economic benefits derived from those fore-
casts in decision-making – exhibit complex relationships for
true forecasts, due to their irregular error structures. Our
comparisons between synthetic and true forecasts revealed
that forecast skill across the basins was more sensitive to er-
ror in mean and change in variability than the forecast value.
However, these errors do not adequately explain the varia-
tions in forecast value. This is primarily due to the irregular
model error structures, which impact categorical measures,
such as hit and false alarm rates, causing high forecast skill
to not necessarily result in high forecast value. This suggests
that overall model performance – how well a model handles
variability and uncertainty – can significantly influence the
gap between forecast skill and value. This gap is further com-
plicated by the complexities introduced by operational struc-
tures.

The analysis also reveals a clear relationship between
drought severity and skill–value relationship. Models consis-
tently struggle to predict severe drought events, and forecast
value worsens monotonically with drought severity. We con-
clude the study by demonstrating that categorical error mea-
sures, such as hit and false alarm rates, largely explained the
forecast value. Our findings emphasize that forecast value is
influenced by factors beyond forecast accuracy, such as the
error structures and user-specific decision-making. This sug-
gests that simple reliance on performance metrics can lead
to important variations in economic value being overlooked.
To address this, a more sophisticated evaluation approach is
needed – one that prioritizes forecast value under varying
conditions, rather than focusing exclusively on accuracy met-
rics. A comprehensive evaluation framework that integrates
both skill and value is essential for more informed, impactful
decision-making.

Appendix A

A1 WRFH model parameters and calibration

WRFH has several tunable parameters, associated with soil
properties, surface and sub-surface routing schemes, base-
flow and groundwater schemes, snow schemes, and the chan-
nel configuration (Cuntz et al., 2016; Lahmers et al., 2021).
We use a calibration approach associated with the NWM
scheme configuration, following Lahmers et al. (2021) and
Cosgrove et al. (2024), that selects calibration parameters
based on previous sensitivity studies (Cuntz et al., 2016;
Mendoza et al., 2015), model developer surveys, and a WRF-
Hydro parameter sensitivity study (further described in Lah-
mers et al., 2021). These parameters are distributed (distinct
to each grid), and the calibration is performed by either using
scalar multipliers (multiplying a scalar value from the cali-
bration range with the actual values, as shown in Table A1)

or simply replacing the actual values. The scalar multipliers
ensure that the original model parameters are spatially coher-
ent and physically consistent with a priori catchment proper-
ties (e.g., Gupta et al., 2008, 2009), whereas the replacement
ensures that parameters are constant throughout the entire do-
main. The model parameters tuned for this analysis are men-
tioned in Table A1, including the calibration range, initial
values, adjustment type, parameter description, and units.

A total of 14 model parameters were calibrated with an
iterative dynamically dimensioned search approach (Tolson
and Shoemaker, 2007). This algorithm was developed for
computationally expensive optimization problems, such as
distributed watershed model calibration, and automatically
scales the search strategy in model parameter space based on
user-specified maximum iterations (Tolson and Shoemaker,
2007). In the initial iterations, the algorithm searches glob-
ally; as the procedure approaches the maximum number of it-
erations, the search transitions from a global to a local search,
making it computationally efficient, and finds equally good
solutions, compared with the dominant Shuffled Complex
Evolution algorithm (Tolson and Shoemaker, 2007). In this
study, the model is cycled over the calibration period 250
times to minimize an objective cost function, based on the
works of Cosgrove et al. (2024) and Lahmers et al. (2021).
It is important to note that we restrict the iterations to 250
due to limited computing resources. However, in an ideal
scenario, such as an operational context, this number could
scale up to thousands of iterations, depending on the com-
plexity of the physical processes in the region. A 5-year cali-
bration period for each basin was selected based on the max-
imum standard deviation of streamflow between WY1986
and WY2005. This ensures that calibration periods are se-
lected based on, first, the basin’s hydrologic conditions that
are responsible for its water balance simulations and, sec-
ond, the distinct climate years that allow for consideration
of the broad effects of non-stationarity (Myers et al., 2021).
A 5-year calibration period is short but has been adopted in
earlier model implementations, owing to the limitations of
computational resources (Cosgrove et al., 2024; Lahmers et
al., 2021). The objective cost function is a weighted Nash–
Sutcliffe efficiency (NSEwt),

NSEwt=
1
2

(
2−

∑T
t=1
(
Qobs,t −Qsim,t

)2∑T
t=1
(
Qobs,t −Qsim,t

)2
−

∑T
t=1(log(Qobs,t )− log(Qsim,t ))

2∑T
t=1(log(Qobs,t )− log(Qsim,t ))2

)
, (A1)

consisting, in equal parts, of NSE (Nash and Sutcliffe, 1970)
and NSE calculated for the log of the discharge (NSElog)
using daily streamflow observations (Cosgrove et al., 2024;
Lahmers et al., 2021).
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Table A1. WRFH calibration parameters, including their calibration range, initial values, adjustment type, parameter description, and units.

Parameter Minimum Maximum Initial Type Description Unit

Soil parameter

BEXP 0.4 1.9 1 Multiplier Pore size distribution index Dimensionless

SMCMAX 0.8 1.2 1 Multiplier Saturation soil moisture content (i.e.,
porosity)

Volumetric fraction

DKSAT 0.2 10 1 Multiplier Saturated hydraulic conductivity m s−1

RSURFEXP 1 6 5 Replace Soil evaporation resistance exponent Dimensionless

Runoff parameter

REFKDT 0.1 4 1 Replace Surface runoff parameter; REFKDT is
a tuneable parameter that significantly
impacts surface infiltration and hence
the partitioning of total runoff into
surface and sub-surface runoff;
increasing REFKDT decreases surface
runoff

Unitless

SLOPE 0 1 0.3 Replace Linear scaling of “openness” of bottom
drainage boundary

0–1

RETDEPRTFAC 0.1 20 000 1 Replace Multiplier on retention depth limit Unitless

LKSATFAC 10 10 000 1000 Replace Multiplier on lateral hydraulic
conductivity (controls anisotropy
between vertical and lateral
conductivity)

Unitless

Groundwater parameter

ZMAX 10 250 50 Replace Maximum groundwater bucket depth mm

EXPON 1 8 3 Replace Exponent controlling rate of bucket
drainage as a function of depth

Dimensionless

Vegetation parameter

CWPVT 0.5 2 1 Multiplier Canopy wind parameter for canopy
wind profile formulation

m−1

VCMX25 0.6 1.4 1 Multiplier Maximum carboxylation at 25 °C µmolm−2 s−1

MP 0.6 1.4 1 Multiplier Slope of Ball–Berry conductance
relationship

Unitless

Snow parameter

MFSNO 0.25 2 1 Multiplier Melt factor for snow depletion curve;
larger value yields a smaller snow
cover fraction for the same snow height

Dimensionless

A2 LSTM model training

The LSTM training process, as illustrated in Fig. A1, was
adapted from Modi et al. (2024), who provide a more com-
prehensive exposition. It begins by initializing weights and
biases using the Xavier uniform distribution (Glorot and
Bengio, 2010). During each iteration, a random batch of 2000
samples is drawn from the training data to make predictions.

The model is trained regionally, using training data from
664 basins across the CONUS from WY1983 to WY2000.
Each sample consists of a streamflow observation on a given
day (the dependent variable) and the input sequence of the
preceding 270 d, creating a “sequence-to-value” prediction.
Since streamflow on any given day is dependent on the pre-
ceding 270 d, batches are randomly selected across basins
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Figure A1. LSTM model training for each iteration within an epoch. In each iteration, 2000 independent random samples are drawn from
18 years of daily data from 664 basins totaling 4.36 million basin-days. Each sample consists of 270 d, i.e., input sequence length, of
preceding predictors (X) and one target observation (yobs). The loss is computed between observed discharge (yobs) and the network’s
prediction (ysim). Model parameters, including weights (w1. . .wm) and biases (b1. . .bm), are updated after every iteration. The term “epoch”
refers to the complete passing of the entire training dataset through the model algorithm once. The weights and biases are model parameters,
whereas the batch size, input sequence length, and number of epochs are the hyperparameters (Modi et al., 2024).

without requiring chronological order (Kratzert et al., 2018).
Static basin attributes alongside meteorological forcings are
included as inputs to inform the model of basin characteris-
tics. During each iteration, the predictors (X) pass through
the model’s weights (w) and biases (b) to produce stream-
flow predictions (ysim), and the error (or loss) is computed
relative to the observations (yobs). The model parameters are
then updated through back-propagation.

To account for varying hydroclimatic conditions across
basins, the training loss function is a basin average Nash–
Sutcliffe efficiency (NSE), which normalizes the mean
squared error for each basin using streamflow variance
(Kratzert et al., 2019). This prevents large humid basins
from dominating the loss function. Unlike process-based
models, where parameters are updated after each complete
model run, LSTM parameters are updated after each epoch
– where an epoch represents one full pass of the training
data. For example, if there are 100 000 training samples and
a batch size of 2000, one epoch would consist of 50 itera-
tions (100 000/2000). In this study, 40 epochs were used for
training with a single seed and the Adam optimizer, which of-

fers better efficiency than stochastic gradient descent (Ruder,
2016). Multiple seeds were not tested, as the performance
impact was minimal (Kratzert et al., 2019).

A3 Historical performance evaluation of our designed
true forecast systems before and after
calibration/training

As shown in Fig. A2, for WRFH, the improvements were
minimal across most metrics before (WRFHDEF) and af-
ter (WRFHCAL) calibration, except for the variability (ratio
of standard deviation), which improved from 1.65 to 1.25.
With LSTM, major improvements were seen with the median
daily NSE, improving from 0.58 to 0.77. In general, the im-
provements across all metrics for both models underscore the
importance of model calibration and training, as seen with
LSTMFINAL and WRFHCAL (Fig. A2).

Hydrol. Earth Syst. Sci., 29, 5593–5623, 2025 https://doi.org/10.5194/hess-29-5593-2025



P. Modi et al.: Relationship between streamflow forecast skill and value across the western US 5617

Table A2. Training predictors for LSTM models, consisting of meteorological forcings (source: AORC), static basin attributes (source:
GAGES-II), and snow data (source: UA), with streamflow data (source: USGS) as the predictands. The asterisk indicates that the predictor
was only included in one of the two trained LSTM models.

Category Name Description

Static PPTAVG_BASIN Mean annual precipitation (mm)

PET Mean annual potential evapotranspiration (mm)

T_AVG_BASIN Average annual air temperature (°C)

SNOW_PCT_PRECIP Snow percentage of total precipitation estimate

WDMAX_BASIN Watershed average of monthly max. number of days of measurable precipitation

WDMIN_BASIN Watershed average of monthly min. number of days of measurable precipitation

PRECIP_SEAS_IND Precipitation seasonality index (Markham, 1970; Dingman, 2002); index of how much
annual precipitation falls, seasonally (high values) or spread out over the year (low
values).

RUNAVE7100 Mean annual total runoff (mm)

RE Runoff efficiency=PPTAVG_BASIN/RUNAVE7100

ELEV_MAX_BASIN Maximum watershed elevation (m)

ELEV_MIN_BASIN Minimum watershed elevation (m)

DRAIN_SQKM Watershed drainage area (km2)

SLOPE_PCT Mean watershed slope (%)

FORESTNLCD06 Watershed percentage forest (%)

PLANTNLCD06 Watershed percentage planted/cultivated

PNV_BAS_PCT Percentage of watershed covered by dominant potential natural vegetation

ROCKDEPAVE Average value of total soil thickness examined (in.)

AWCAVE Average value for the range of available water capacity for the soil layer

CLAYAVE Average value of clay content (%)

SILTAVE Average value of silt content (%)

SANDAVE Average value of sand content (%)

PERMAVE Average permeability (in./hr)

KFACT_UP Average K-factor for the uppermost soil horizon in each soil component: the K-factor
is an erodibility factor that quantifies the susceptibility of soil particles to detachment
and movement by water

Meteorological PRCP Average daily precipitation (mm d−1)

WIND Average wind speed (m s−1)

TAS 2 m daily average air temperature (°C)

SRAD Incoming shortwave solar radiation (W m−2)

LRAD Incoming longwave solar radiation (W m−2)

PRES Near-surface air pressure (Pa)

VP Near-surface vapor pressure (Pa)

*Snow SWE Average snow water equivalent (mm)

Streamflow SF Average daily streamflow (mm d−1)
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Table A3. LSTM hyperparameters used in this study (adapted from Kratzert et al., 2019; Modi et al., 2024).

Parameter Description Selected value

Number of hidden layers Number of stacked LSTM layers in the model 1

Number of units Number of memory cells in each LSTM layer that determine
the capacity to learn from the data

256

Input sequence length Length of preceding time steps fed into the LSTM 270

Batch size Number of training samples used in one iteration 2000

Dropout rate Fraction of the units to drop during training to prevent
overfitting

0.4

Number of epochs Number of times the entire training dataset is passed through
the model

40

Optimizer Algorithm used to minimize the loss function Adam

Learning rate Step size used by the optimization algorithm to update the
model weights

0.001

Figure A2. Historical model performance of true forecast systems for WRFH (default and calibrated) and LSTM (initial and final) models:
(a) daily NSE, (b) NRMSE of the total April–July streamflow volumes, (c) daily correlation, (d) ratio of the standard deviation against
observations. Comparison shown for the 76 basins during the testing period, WY2001–WY2010.
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A4 Exposition of irregular error structures in true
forecasts

Figure A3. April–July streamflow volume from two true forecast
systems (WRFH and LSTM) in WY2006–WY2022 at Dinwoody
Creek (USGS 06221400) and Lake Fork (USGS 09124500).

Code and data availability. All data products used in the analysis
are publicly available. A total of 664 GAGES-II basins were se-
lected following screening criteria to ensure minimal upstream reg-
ulation and continuous data availability for at least 30 years. The
meteorological forcings, basin attributes, and snow and stream-
flow data were obtained from AORC (Fall et al., 2023), GAGES-
II (https://doi.org/10.5066/P96CPHOT; US Geological Survey,
2023), UA (https://doi.org/10.5067/0GGPB220EX6A; Broxton et
al., 2019), and the US Geological Survey streamflow gauges
(https://doi.org/10.5066/F7P55KJN; United States Geological Sur-
vey, 2024), respectively. NRCS forecast data and SNOTEL snow-
pack observations were downloaded from the National Water and
Climate Center portal (NWCC, 2024). The dataset of Modi and
Livneh (2024) (https://doi.org/10.5281/zenodo.14213155) provides
the source code, training data, and model runs for the LSTM model
used in this research. The code for the WRF-Hydro model (V5.2) is
available at https://doi.org/10.5281/zenodo.4479912 (McCreight et
al., 2021).
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