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S1 Methods 

S1.1 Verification of hydrological drought trends 

There are no available long-term observations of runoff or streamflow data which cover the whole Australian continent. As 

such we have used AWRA-L modelled runoff to quantify hydrological droughts. To ensure that hydrological drought trends 15 

based on AWRA-L runoff are reliable, we evaluated them against observed hydrological drought trends based on in-situ 

streamflow data from CAMELS-AUS v2 (Table 1). The CAMELS-AUS streamflow data was first filtered to remove stations 

with large data gaps. Catchments with missing data at over 5% of the timesteps were omitted. For the remaining catchments, 

gap-filling of missing data provided with the CAMELS-AUS dataset has been adopted (Fowler et al., 2024).  Hydrological 

drought trends, based on observed streamflow and modelled runoff, were compared over two time periods: 1981-2020 and 20 

1951-2020. 460 catchments have data spanning 1981 to 2020, which provides a large sample of catchments to compare with 

the modelled drought trends. Additionally, 34 of these catchments provided streamflow data back to 1951 and were used to 

evaluate how well AWRA-L captures drought trends over a longer time period. 

 

Trends in time under drought were compared at the streamflow catchments for hydrological droughts calculated from AWRA-25 

L runoff and the CAMELS-AUS streamflow. The observed streamflow time under drought trends were calculated at each 

catchment using the same method as described in Section 2.3. To allow for direct comparison, the AWRA-L runoff was 

averaged over each catchment region and the drought metric and trend were calculated at each of these. 

S1.2 S/N ratio and KS test 

The signal-to-noise (S/N) ratio and Kolmogorov-Smirnov (KS) test were used to determine if time and area under drought has 30 

emerged from their variability. Both methods are non-parametric and require no assumptions about the underlying data. For 
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both methods the first 50 years (1911-1961) was used as a baseline to compare emergence to. Due to data availability and the 

importance of using a long enough baseline period to capture the variability, this is the earliest baseline period we can use. 

However, it should be noted that this baseline already likely includes anthropogenic forcings within it, therefore it is possible 

that the results from these tests underestimate or misrepresent the trend emergence from the natural variability. Due to this, we 35 

refer to the trend emergence as emergence from the observed or historic variability so that it is clear we are not implying 

emergence from natural variability. The S/N ratio is one of the most widely used methods to test for emergence (Hawkins et 

al., 2020; Hawkins and Sutton, 2012). To calculate this, the relevant drought metric was annually averaged for area under 

drought and annually summed for time under drought. The mean of the baseline was subtracted from the time series to give 

the anomalies. To calculate the signal, a Locally Weighted Scatterplot Smoothing (LOWESS) model was fitted to these 40 

anomalies, labelled Ltrend. This was calculated using the lowess function from the statsmodel python package. LOWESS 

is commonly used to calculate climate signal due to its ability to fit to data of any shape (Hawkins et al., 2020). The timeseries 

of anomalies was then detrended, and another LOWESS model was fitted to the detrended timeseries, Ldetrended. The noise was 

defined as the standard deviation of the residuals of the detrended LOWESS model, σnoise. The S/N ratio is then calculated as: 

𝑆𝑆/𝑁𝑁 =
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 (S1) 

The signal is said to have emerged from the noise if the absolute value of the S/N ratio is above one (Frame et al., 2017). 45 

Although not as common as the S/N ratio, the KS test can also be used to determine emergence (King et al., 2015; Mahlstein 

et al., 2011). The KS test compares the maximum of the difference between cumulative distribution functions (CDFs). Here 

we compare the CDFs of 20-year rolling windows across the entire timeseries to the CDF of the baseline period. Significance 

is assessed at the 95% level, and as such when the p-value is less than 0.05, the trend is said to have emerged. The KS test was 

calculated using KS_2SAMP from the scipy python package. For both tests, emergence must remain until the end of the 50 

timeseries and must have emerged for at least 20 years (Hawkins et al., 2014). These criteria are applied to ensure the change 

is a substantial shift from the baseline variability, and not just a temporary deviation. 

References 

Fowler, K. J. A., Zhang, Z., and Hou, X.: CAMELS-AUS v2: updated hydrometeorological timeseries and landscape attributes 
for an enlarged set of catchments in Australia, Earth Syst. Sci. Data Discuss., 1–21, https://doi.org/10.5194/essd-2024-263, 55 
2024. 

Frame, D., Joshi, M., Hawkins, E., Harrington, L. J., and de Roiste, M.: Population-based emergence of unfamiliar climates, 
Nat. Clim. Change, 7, 407–411, https://doi.org/10.1038/nclimate3297, 2017. 

Hawkins, E. and Sutton, R.: Time of emergence of climate signals, Geophys. Res. Lett., 39, 
https://doi.org/10.1029/2011GL050087, 2012. 60 



3 
 

Hawkins, E., Anderson, B., Diffenbaugh, N., Mahlstein, I., Betts, R., Hegerl, G., Joshi, M., Knutti, R., McNeall, D., Solomon, 
S., Sutton, R., Syktus, J., and Vecchi, G.: Uncertainties in the timing of unprecedented climates, Nature, 511, E3–E5, 
https://doi.org/10.1038/nature13523, 2014. 

Hawkins, E., Frame, D., Harrington, L., Joshi, M., King, A., Rojas, M., and Sutton, R.: Observed Emergence of the Climate 
Change Signal: From the Familiar to the Unknown, Geophys. Res. Lett., 47, e2019GL086259, 65 
https://doi.org/10.1029/2019GL086259, 2020. 

King, A. D., Donat, M. G., Fischer, E. M., Hawkins, E., Alexander, L. V., Karoly, D. J., Dittus, A. J., Lewis, S. C., and Perkins, 
S. E.: The timing of anthropogenic emergence in simulated climate extremes, Environ. Res. Lett., 10, 094015, 
https://doi.org/10.1088/1748-9326/10/9/094015, 2015. 

Mahlstein, I., Knutti, R., Solomon, S., and Portmann, R. W.: Early onset of significant local warming in low latitude countries, 70 
Environ. Res. Lett., 6, 034009, https://doi.org/10.1088/1748-9326/6/3/034009, 2011. 

 

Supplementary Tables 
Table S1: The R2 scores between the predicted drought trend and true drought trend for each of the random forest models trained 
for the quantification of contribution of the key hydrometeorological variables to agricultural and hydrological drought trends. 75 

 
Agricultural Drought Hydrological Drought 

 
DJF MAM JJA SON Range DJF MAM JJA SON Range 

Central 
Slopes 

0.64 0.64 0.55 0.58 0.55-
0.64 

0.61 0.60 0.56 0.57 0.56-
0.61 

East Coast 
0.68 0.74 0.60 0.63 0.60-

0.74 
0.56 0.54 0.47 0.48 0.47-

0.56 

Monsoonal 
North 

0.75 0.84 0.74 0.73 0.73-
0.84 

0.61 0.67 0.50 0.55 0.50-
0.67 

Murray 
Basin 

0.63 0.58 0.63 0.63 0.58-
0.63 

0.54 0.46 0.48 0.55 0.46-
0.55 

Rangelands 
0.76 0.79 0.82 0.78 0.76-

0.82 
0.55 0.53 0.64 0.55 0.53-

0.64 

S/SW 
Flatlands 

0.62 0.73 0.81 0.78 0.62-
0.81 

0.38 0.45 0.58 0.65 0.38-
0.65 

Southern 
Slopes 

0.46 0.74 0.65 0.64 0.46-
0.74 

0.50 0.59 0.56 0.58 0.50-
0.59 

Wet Tropics 
0.69 0.67 0.76 0.68 0.67-

0.76 
0.63 0.70 0.67 0.57 0.57-

0.70 

Range 
0.46-
0.76 

0.58-
0.84 

0.55-
0.82 

0.58-
0.78 

 0.38-
0.63 

0.45-
0.70 

0.47-
0.67 

0.48-
0.65 
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Supplementary Figures 

Figure S1: The years (left) and locations (right) for which there were drought impact reports in the data used to create the impacts-
based drought metric. 
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Figure S2: The skill scores for various metrics used to test the performance of the random forest model when trained on the drought 
impact reports. 100 models were trained, changing the random seed and train/test split each time. The bars indicate the mean skill 
score between the 100 models. The error bars indicate the variance of the skill scores between the 100 models. All metrics take values 
between 0 and 1, with 1 indicating the best possible performance for all metrics aside from False Alarm (where 0 indicates the best 
possible performance). 90 
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Figure S3: Trend emergence for time under drought characteristic, shown for each of the traditional drought types. This is shown 
for both the signal-to-noise (S/N) ratio (top row) and the Kolmogorov-Smirnoff (KS) test (bottom row).  

 95 

Figure S4: Trends in time under drought for the three traditional drought types and three time periods. The maps show the change 
in the number of drought months per 2 years. The hatching indicates where the trend is not significant (p > 0.05). The white spaces 
indicate the area masked out due to sparse observation network. 



6 
 

Figure S5: Trends in time under drought for the three traditional drought types and three time periods. These maps show the change 
in number of drought months per 3 years. The hatching indicates where the trend is not significant (p > 0.05). The white spaces 100 
indicate the area masked out due to sparse observation network. 

Figure S6: Trends in time under drought for the three traditional drought types and three time periods. The maps show the change 
in number of drought months per 7 years. The hatching indicates where the trend is not significant (p > 0.05). The white spaces 
indicate the area masked out due to sparse observation network. 
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Figure S7: Trends in time under drought determined using a logistic regression model for the three traditional drought types and 105 
three time periods. The maps show the change in probability of a drought month. The white spaces indicate the area masked out 
due to sparse observation network. 

Figure S8: Trends in time under drought for annual-scale drought months determined using 12-month running means. The maps 
show the change in number of drought months per 5 years for the three traditional drought types and three time periods. The 
hatching indicates where the trend is not significant (p > 0.05). The white spaces indicate the area masked out due to sparse 110 
observation network. 
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Figure S9: Trends in drought intensity for the three traditional drought types and three time periods. The hatching indicates where 
the trend is not significant (p > 0.05). The white spaces indicate the area masked out due to sparse observation network. 
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Figure S10: Timeseries of the signal-to-noise (S/N) ratio, calculated on the area under drought for each of the three traditional 
drought types and each of the NRM regions. The change in area under drought is said to have emerged if the S/N ratio remains 115 
outside the range of -1 to 1 (indicated by the red doted lines), for at least 20 years and until the end of the timeseries. The black 
dotted line indicates the year 2000 (20 years before the end of the timeseries). 
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Figure S11: Timeseries of the Kolmogorov-Smirnoff (KS) test p-value, calculated on the area under drought for each of the three 
traditional drought types and each of the NRM regions. The change in area under drought is said to have emerged if the p-value 
remains below 0.05 (indicated by the red dotted line) for at least 20 years and until the end of the timeseries. The black dotted line 120 
indicates the year 2000 (20 years before the end of the timeseries). 



11 
 

Figure S12: Seasonal trends in time under drought for autumn (MAM) and spring (SON). The maps show the change in number of 
drought months per 5 years for the three traditional drought types and three time periods. The hatching indicates where the trend 
is not significant (p > 0.05). The white spaces indicate the area masked out due to sparse observation network. 
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Figure S13: Evaluation of AWRA-L runoff against observed streamflow time under drought trends. Panels a and c show the 125 
observed streamflow time under drought trends at the catchments overlayed onto the AWRA-L runoff time under drought trends. 
Panels b and d show scatterplots of the AWRA-L runoff time under drought trends against the observed streamflow time under 
drought trends. Both types of plots are shown for 1981-2020 (a-b) and 1951-2020 (c-d) trends. The white spaces on a and c indicate 
the area masked out due to sparse observation network. 
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