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Abstract. Soil moisture memory (SMM), which refers to
how long a perturbation in soil moisture (SM) can last, is
critical for understanding climatic, hydrological, and ecosys-
tem interactions. Most land surface models (LSMs) tend to
overestimate surface soil moisture and its persistency (or
SMM), sustaining spuriously large soil surface evaporation
during dry-down periods. We attempt to answer a ques-
tion: do LSMs miss or misrepresent key hydrological pro-
cesses controlling SMM? We use a version of Noah-MP
with advanced hydrology that explicitly represents preferen-
tial flow and surface ponding and provides optional schemes
of soil hydraulics. We test the effects of these processes,
which are generally missed by most LSMs in SMM. We
compare SMMs computed from various Noah-MP config-
urations against that derived from the Soil Moisture Active
Passive (SMAP) L3 soil moisture and in situ measurements
from the International Soil Moisture Network (ISMN) from
the years 2015 to 2019 over the contiguous United States
(CONUS). The results suggest that (1) soil hydraulics plays
a dominant role and the Van Genuchten hydraulic scheme
reduces the overestimation of the long-term surface SMM
produced by the Brooks–Corey scheme, which is commonly
used in LSMs; (2) explicitly representing surface ponding en-
hances SMM for both the surface layer and the root zone;
and (3) representing preferential flow improves the overall
representation of soil moisture dynamics. The combination
of these missing schemes can significantly improve the long-
term memory overestimation and short-term memory under-
estimation issues in LSMs. We suggest that LSMs for use in

seasonal-to-subseasonal climate prediction should, at least,
adopt the Van Genuchten hydraulic scheme.

Key points.

– Van Genuchten soil hydraulics improves the long-term soil
moisture memory (SMM) of the topsoil.

– Explicitly representing surface ponding and its infiltration en-
hances soil moisture memory in both the topsoil and root zone.

– Representing preferential flow improves both short-term and
long-term SMM in both the topsoil and root zone.

1 Introduction

Land surface model (LSM) efficacy in simulating climate
feedback mechanisms critically depends on soil water re-
tention capacity and soil moisture persistency. The influ-
ence of soil moisture on climate predictions at seasonal-to-
subseasonal (S2S) scales is well-recognized due to its role
in the exchange of surface energy and water fluxes with the
atmosphere (Koster and Suarez, 2001; Koster et al., 2002,
2009a, 2010). Water stored in soil and aquifers, which per-
sists variably from seasons to years, is known to affect pre-
cipitation variability (Koster and Suarez, 1999, 2001). This
impact is particularly pronounced in regions transitioning
from dry to wet conditions, where evapotranspiration (ET)
is highly sensitive to soil moisture levels (Guo et al., 2006;
Koster and Suarez, 2001; Koster et al., 2004; Seneviratne
et al., 2006a). While the nature and scale of soil moisture–
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precipitation feedback are still being debated (Findell et al.,
2011; Taylor et al., 2013), numerous studies have empha-
sized the importance of soil moisture initialization and its
persistency for accurate climate predictions (Dirmeyer, 2011;
Mei and Wang, 2012; Zeng et al., 2010; Shellito et al.,
2016; Tuttle and Salvucci, 2016; Yousefi Sohi et al., 2024b;
Zebarjadian et al., 2024). The strength of soil moisture–
precipitation coupling varies widely across different climate
models (Koster and Suarez, 1999; Koster et al., 2004; Senevi-
ratne and Koster, 2012; Moghisi et al., 2024; Taylor et al.,
2013), and discrepancies in the modeled soil moisture by
LSMs for climate modeling are notable (Boone, 2004; Souri
et al., 2024).

Refinement of soil moisture–precipitation feedback in
LSMs is hindered by the lack of large-scale observational
data, challenging the improvement and validation of model
simulations (Koster and Suarez, 1999, 2001; Koster et al.,
2010; Koster and Mahanama, 2012; Seneviratne and Koster,
2012). This shortfall highlights the necessity for more de-
tailed representations of land–atmosphere feedback mecha-
nisms that are crucial for extreme weather event predictions
but typically parameterized rather than explicitly resolved in
models (McColl et al., 2019; Pastorello et al., 2020). Inte-
grating extensive observational data is vital for simulating
the intricacies of climate and weather and improving model
predictive skill (Koster et al., 2009b, 2017; McColl et al.,
2019; Shellito et al., 2018; Mohammadi et al., 2023). Recent
advancements in remote sensing observations have enabled
analyses of interactions between near-surface soil and the at-
mosphere. Nonetheless, the paucity of root zone data com-
plicates the investigation of deep soil dynamics. Numerous
studies have utilized satellite soil moisture products to eval-
uate and refine models, focusing on the spatial and tempo-
ral patterns of soil moisture variability (Koster et al., 2009a;
Yang et al., 2020). In particular, the Soil Moisture Active
Passive (SMAP) mission has been employed extensively to
assess model performance (McColl et al., 2017a, b, 2019;
Shellito et al., 2016, 2018).

The concept of soil moisture memory (SMM) – the dura-
tion required for a perturbation, such as rainfall, to dissipate –
becomes essential for understanding land–atmosphere inter-
actions. SMM encapsulates the temporal variations of soil
moisture, reflecting the exchange of fluxes between land and
the atmosphere. Therefore, SMM is an important metric for
evaluating LSMs, since one of their functions is to provide
surface flux exchanges and boundary conditions for atmo-
spheric models (Koster et al., 2004; Seneviratne et al., 2006a;
Koster et al., 2009a, b; Guo et al., 2006). SMM also facili-
tates the comparison of how quickly soil loses water between
observations and various models, providing insights into the
mechanisms within LSMs and their hydrometeorological re-
sponses. Moreover, analyzing SMM can yield valuable data
on the configurations and hydrological parameterizations of
specific LSMs, thus improving our understanding of how dif-
ferent configurations impact model performance, particularly

in soil moisture representation. For instance, Shellito et al.
(2018) measured the drying rate of surface soil moisture,
which they considered to be soil moisture memory, using
SMAP data and the Noah LSM during the initial 1.8 years
following SMAP’s launch. They concluded that Noah shows
a slower drying rate and a longer surface SMM compared
with SMAP, likely due to the overly strong soil water suction
represented by Noah.

Determining SMM is not straightforward due to the vari-
ety of calculation methods proposed by researchers (Ghan-
nam et al., 2016; Katul et al., 2007; Koster and Suarez,
1999, 2001; Koster et al., 2002, 2004, 2009a; Mao et al.,
2020, 2017a, b, 2019; Shellito et al., 2016; Seneviratne et al.,
2006a), each introducing its own level of uncertainty. Tradi-
tionally, soil moisture has been conceptualized as a red noise
process, forming the basis for SMM calculations (Delworth
and Manabe, 1988). This approach has led to the definition
of SMM as the e-folding autocorrelation timescale within
such a process (Delworth and Manabe, 1989). SMM has also
been characterized using various other autocorrelation-based
methods, such as the integral timescale (Ghannam et al.,
2016; Nakai et al., 2014), the soil moisture variance spec-
trum (Katul et al., 2007; Nakai et al., 2014), and the constant
time lag autocorrelation (Koster and Suarez, 2001; Senevi-
ratne et al., 2006b). Traditionally, these models were applied
to monthly datasets. However, this approach risks overlook-
ing dynamic processes governed by limitations in water and
energy (McColl et al., 2019). Consequently, there has been a
shift away from their use towards recent high-resolution ob-
servational and modeling data. Therefore, there is a need for
further research to refine SMM measurements that can then
be used as a benchmark for assessing LSMs (McColl et al.,
2019).

McColl et al. (2019) organized soil water loss into
two main categories: water-limited (long-term) and energy-
limited (short-term). The energy-limited regime is a pro-
cess where water loss is constrained by available energy
and lasts from hours to a few days. In contrast, the water-
limited regime is a process where water loss depends on the
available water and spans longer periods, such as weeks,
months, and seasons. McColl et al. (2019) specified that
ET and drainage are the main controllers of long-term and
short-term memories, respectively. Utilizing a 2-year dataset
from the SMAP mission and simulations from the Goddard
Earth Observing System Model, Version 5 (GEOS-5), Mc-
Coll et al. (2019) conducted a global analysis under vari-
ous climatic and land conditions. Their analysis revealed that
GEOS-5 tends to overpredict the duration of water-limited
memory and underpredict energy-limited memory compared
to SMM inferred from SMAP data, while the results were
not affected by the SMAP sampling frequency of 3 d. Build-
ing on this, He et al. (2023) employed the hybrid memory
approach proposed by McColl et al. (2019) to assess the
hydrometeorological responses of various LSMs, including
GLDAS-CLSM, GLDAS-Noah, MERRA-2, NCEP, ERA5,
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and JRA55, against SMAP observations for 2015–2020. The
authors observed that LSMs generally overestimate memory
in water-limited regimes and significantly underestimate it in
energy-limited regimes. Moreover, their study suggested that
discrepancies in SMM representation within LSMs are more
attributable to the physical processes incorporated rather than
factors such as soil layer thickness or the nature of model
simulations (online or offline) (He et al., 2023).

A recent review of SMM identified the soil properties and
processes as important controlling factors in SMM in addi-
tion to atmospheric forcings, land use, and management for
future studies in order to examine the fundamental mech-
anisms of SMM emergence (Rahmati et al., 2024). Based
on the works of McColl et al. (2019) and He et al. (2023),
this study aims to examine the impacts of key soil hydro-
logical processes and soil hydraulics on SMM that may be
missed in most LSMs. Current LSMs may not be enough
to address the uncertainties in SMM estimates for incom-
plete representations of key hydrological processes control-
ling SMM and uncertainties in soil hydraulic parameters
(Rahmati et al., 2024). As such, we use a version of Noah-
MP with advanced hydrological representations of prefer-
ential flow, surface ponding, runoff of surface-ponded wa-
ter (infiltration excess runoff), and lateral infiltration (Niu
et al., 2024). We conduct model experiments with various
soil hydraulic parameterizations by Brooks (1964) and Van
Genuchten (1980), preferential flow, and surface-ponding
depth. Our analysis investigates the impact of these con-
figurations on soil moisture persistency across ET regimes
and drainage so that they provide insights into these missing
physical processes affecting SMM. By comparing SMM pro-
duced by various settings of Noah-MP with SMAP L3 data
and International Soil Moisture Network (ISMN) observa-
tions from 2015 to 2019 over the contiguous United States
(CONUS), we seek to identify key processes and soil hy-
draulic schemes controlling SMM and thus provide guidance
for future developments of LSMs (e.g., reducing the preva-
lent SMM overestimations in LSMs).

2 Materials and methods

SMM denotes the duration required for a perturbation to dis-
sipate or the period from the start to end of a perturbation. For
instance, following precipitation, the change in near-surface
soil moisture marks the beginning of the perturbation. This
excess moisture gradually diminishes due to flux exchange
or percolation to deeper soil layers. The moisture level of the
soil plays a critical role in influencing water loss patterns.
Following rainfall, the upper layer of the soil initially holds
more moisture than its field capacity (θfc), causing runoff and
drainage (see Fig. 1a). Subsequently, as the soil gradually
dries, its moisture content decreases to a range between θfc
and the critical threshold (θc). This phase leads to consis-
tent water loss at the maximum ET rate, known as Stage-

I ET. As this process continues, the soil moisture falls be-
low θc (Fig. 1a), at which point ET becomes limited by the
available water, termed Stage-II ET or ET in a water-limited
regime (illustrated in Fig. 1a and b). Ultimately, when the soil
moisture drops below the wilting point (θw), water no longer
leaves the soil. Therefore, the whole process of water loss
depends on the soil’s moisture level and has two main types:
energy-limited including unresolved drainage and Stage-I ET
as well as water-limited including Stage-II ET (Fig. 1b) (Mc-
Coll et al., 2019; He et al., 2023). The energy-limited (green
strips) and water-limited (dotted lines) types are shown in
soil moisture time series at the Tonzi Ranch station (Fig. 1c).

2.1 Soil moisture memory of a water-limited regime
(τL) and an energy-limited regime (τS)

McColl et al. (2019) considered the SMM concept as it re-
lates to two regimes: (a) the memory of a water-limited
regime (τL) specified by an “L” abbreviation for “long-
term” and (b) the memory of an energy-limited regime (τS)
specified by an “S” abbreviation for “short-term”. Their
model incorporates a deterministic equation to represent
water-limited processes during soil moisture dry-down pe-
riods. However, energy-limited processes occur over shorter
timescales and present a challenge for current satellite tech-
nologies to provide precise observations. McColl et al.
(2019) highlighted that drainage is not a process that is com-
pletely resolved by satellite observations. To address this gap,
McColl et al. (2019) proposed a stochastic equation to cap-
ture the unresolved nature of energy-limited processes.

The hybrid model is formulated by McColl et al. (2019) as
follows:

dθ(t)
dt
=


−θ(t)− θw

τL
, P = 0,

−θ(t)− θ

τS
+ ε(t), P > 0,

(1)

where θ is the volumetric soil moisture, P indicates pre-
cipitation, θw is the minimum soil moisture, θ is the time-
averaged SM, and ε(t) is a random variable with a mean of
0. τL and τS are the SMMs for the water-limited and energy-
limited regimes, respectively. McColl et al. (2019) solved
these equations, demonstrating that the memories can be ex-
pressed as

θ(t)=1θ exp
(
−t

τL

)
+ θwP = 0, (2)

τS =
−
1t
2

log
. (3)

1θ represents the soil moisture changes during dry-down,
1t is the temporal resolution of the soil moisture data, α is
the precipitation intensity, 1z is the soil layer thickness, and
1θ+ = θ(t)−θ(t−1t) represents a positive increment in soil
moisture. McColl et al. (2017a) defined 1z[1θ+]

α
as the stored
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Figure 1. Schematic diagrams of the (a) surface water loss process and (b) soil moisture memory in different soil moisture regimes (adapted
from McColl et al., 2017b). Note that the x axis in panel (a) refers to soil moisture (m3 m−3) and the y axis refers to the surface water loss
rate L(θ ) (mms−1). Emax is the maximum evaporation rate (mms−1). In panel (b), the x axis refers to time (e.g., days) and the y axis to
SM content (m3 m−3). Panel (c) shows the SM time series for the Tonzi Ranch station, with the green periods indicating energy-limited
regimes and the dotted lines representing water-limited regimes. θw, θc, and θfc refer to the wilting point, critical point, and field capacity,
respectively.

fraction of precipitation, indicating the average proportion of
water that still exists in the soil layer 1t days after rainfall.
McColl et al. (2019) declared that the short-term memory in
their hybrid model is dominated by drainage when the sam-
pling is relatively high (as in the case of SMAP’s sampling
frequency of 3 d). This approach and its rationale are further
elaborated on in McColl et al. (2017a, 2019).

In the analysis of water-limited memory, we fitted Eq. (2)
to the soil moisture time series during specific dry-down in-
tervals. Then, τL was extracted as a parameter from the fitting
curve (black dotted lines in Fig. 1c). In contrast, short-term
memory was determined directly using Eq. (3), as indicated
by the green periods in Fig. 1c. Further information about
the criteria for calculating memories can be found in McColl
et al. (2019).

2.2 Description of the datasets

We use high-resolution atmospheric forcing datasets to drive
the Noah-MP LSM. This model is set up to simulate soil
moisture dynamics, featuring advanced infiltration and wa-
ter retention processes. Additionally, it includes a precise pa-
rameterization for ponding depth. This setup facilitated five
distinct experiments. Then, we used surface and root zone
soil moisture data derived from the Noah-MP experiments,
SMAP L3 surface soil moisture measurements, and root zone
soil moisture measurements from the ISMN to calculate the
hybrid SMM. The rest of this section describes in detail
the forcing and observational datasets, the Noah-MP LSM
configurations, the employed infiltration and water retention
schemes, and the ponding depth threshold criterion.

2.2.1 Atmospheric forcing, soil, and vegetation
parameters

For modeling purposes, this study utilized the North Amer-
ican Data Assimilation System Phase 2 (NLDAS-2) near-
surface meteorological data at an hourly interval and 0.125°
spatial resolution. This dataset encompasses a range of vari-
ables, including air temperature, specific humidity, wind
speed, surface pressure, shortwave and longwave radiation,
and precipitation (Xia et al., 2012a). We also used precipi-
tation data from the Integrated Multi-satellite Retrievals for
Global Precipitation Measurement (IMERG-Final) dataset
(Huffman et al., 2020; Yousefi Sohi et al., 2024a; Jawad
et al., 2024), which offers half-hourly measurements across
a 0.1° grid extending from 60° S to 60° N. Subsequently, the
IMERG-Final data were mapped to the 0.125° resolution
of NLDAS-2 using bilinear interpolation. These precipita-
tion data sources were integrated into the short-term SMM
computation process. To integrate the IMERG precipitation
product into the model, we modified the forcing component
of the Noah-MP code. Specifically, an average of NLDAS-2
and IMERG precipitation was employed when NLDAS-2 re-
ported negative precipitation values, which was particularly
significant in coastal regions. This adjustment enhanced the
accuracy of precipitation inputs, contributing to more reliable
simulations in these areas.

To ascertain soil and vegetation parameters, the hybrid
State Soil Geographic Database (STATSGO) with 1 km res-
olution and the United States Geological Survey (USGS)
24-category vegetation classification were employed. The
datasets were aggregated to align with a 0.125° resolution,
which is consistent with the NLDAS-2 forcing data. This
process included determining the dominant soil and vegeta-
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tion types for each grid cell. Subsequently, the lookup tables
within the Noah-MP model (Niu et al., 2020) were used to
assign the relevant parameters to the corresponding soil and
vegetation categories.

2.2.2 SMAP L3 surface soil moisture

Since its successful deployment on 31 January 2015, the
SMAP observatory has consistently provided global volu-
metric soil moisture estimates every 2 or 3 d (Entekhabi et al.,
2010). Its onboard radiometer, operating in the L-band fre-
quency of the microwave spectrum, senses the top 5 cm of the
soil column. In this study, we selected the SMAP L3 morn-
ing overpass due to the greater likelihood of air and surface
temperature equilibrium during these hours, a critical condi-
tion for the SMAP retrieval algorithm. The SMAP L3 data
used here span the period from 2015 to 2020, have a spatial
resolution of 9 km, and are instrumental in calculating SMM
across the CONUS.

In line with established methodologies from previous re-
search (He et al., 2023; McColl et al., 2019), a quality con-
trol protocol was deemed necessary to refine soil moisture
data in regions affected by dense vegetation, bodies of water,
and permafrost, thereby mitigating noise present in satellite
measurements (He et al., 2023; McColl et al., 2019; McColl
et al., 2017; Wang et al., 2017). However, this study is con-
ducted to determine SMM to deepen our knowledge of phys-
ical processes and to get closer to optimal soil hydraulic pa-
rameterizations within Noah-MP. This is achieved through
a comparative analysis of SMM derived from the SMAP
and Noah-MP datasets. Given that a specific parameteriza-
tion within Noah-MP has a pronounced impact on the east-
ern region of the CONUS – a region that also corresponds to
a significant portion of SMAP’s low-quality data – we chose
not to filter SMAP data to fully capture the parameterization
effects within our study’s geographical focus. This approach
was intended to maintain consistency across the figures and
enhance the presentation of our findings. Furthermore, our
objective is to showcase the physical process involved in
SMM rather than focus on model accuracy in comparison
with SMAP data. Note that the SMM maps from McColl
et al. (2019) and He et al. (2023) demonstrated the effect
of removing SMAP low-quality data, and hence we did not
include the map of locations with high-quality SMAP data.
Given that the surface water balance is sensitive to the tem-
poral resolution of the analyzed surface soil moisture data,
the SMAP L3 soil moisture data are resampled to achieve a
consistent sampling frequency of 1 of 3 d in each pixel (He
et al., 2023; McColl et al., 2017; Wang, et al., 2017). To en-
sure the comparability, the Noah-MP modeled soil moisture
data were selected to correspond to the SMAP observation
times. This alignment minimizes potential biases introduced
by temporal differences and facilitates a consistent analysis
of soil moisture memory. It is important to note that the sam-
pling frequency, as highlighted by Shellito et al. (2016), can

significantly influence the computation of τL. This potential
impact was mitigated in this study by aligning the Noah-MP
data with SMAP observation times and maintaining a consis-
tent sampling frequency of one observation every 3 d, thereby
ensuring the reliability of the SMM analysis.

2.2.3 ISMN

In evaluating the Noah-MP model’s parameterization for
the root zone soil moisture, SMM is computed using both
the model’s outputs and in situ observations across the
CONUS. We obtained the in situ soil moisture data from the
ISMN portal (Dorigo et al., 2011), which compiles quality-
controlled measurements from various sensors across multi-
ple networks (Fig. 2). We excluded stations with fewer than
90 % of their data rated as “good” quality. Despite the di-
versity of sensor types within the ISMN, its stringent qual-
ity control protocols suggest that it is a reliable benchmark
for validating soil moisture products (Shellito et al., 2016;
Colliander et al., 2017). For the representation of root zone
soil moisture, we select only the data from the top 1 m of
soil flagged as good quality. These measurements are aver-
aged, i.e., hourly data aggregated to daily means, and the
daily time series are used to compute both long-term and
short-term SMM. For the root zone analyses, the Noah-MP
outputs were sampled to ensure temporal consistency with
SMAP surface layer observation times. Similarly, ISMN data
were resampled to match the SMAP observation times, en-
suring the same sampling frequency across all datasets used
as benchmarks for the root zone SMM analysis.

2.3 Noah-MP with advanced soil hydrology

In this study, we choose Noah-MP (Niu et al., 2024, 2011;
Yang et al., 2011) for its extensive use within the Weather
Research and Forecasting (WRF) model, the Unified Fore-
cast System (UFS) for weather and short-term climate pro-
jections, and the National Water Model (NWM) for stream-
flow and water resource forecasting. The “semi-tile” sub-
grid methodology of Noah-MP enables detailed calculation
of surface energy and fluxes, differentiating effectively be-
tween bare and vegetated terrains to precisely compute vari-
ables such as latent and sensible heat fluxes (Agnihotri et al.,
2023).

The Noah-MP version used in this study includes addi-
tional developments in plant hydraulics that explicitly rep-
resent plant water storage supplied by root water uptake
driven by the hydraulic gradient between the soil and roots
(Niu et al., 2020) and advanced soil hydrology that solves
the mixed-form Richards equation and thus explicitly repre-
sents surface ponding, infiltration of surface-ponded water,
and preferential flow (Niu et al., 2024). As such, the current
Noah-MP accounts for water flow driven by the hydraulic
gradients from the soil to the vegetation canopy to meet
the plant transpiration demand. It also accounts for subgrid
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Figure 2. ISMN in situ locations and networks over the CONUS.

variability in infiltration capacity through a fractional area
of preferential flow pathways caused by soil macropores in
the fields. A detailed description of the underlying physical
mechanisms for the schemes used in this study can be found
in Niu et al. (2024), and a brief description of the equations
and parameters is also included in the supporting material.

2.3.1 The mixed-form Richards equation

Most LSMs solve the mass-based (or θ -based) Richards
equation (RE) for unsaturated soils (Chen and Dudhia, 2001;
Oleson et al., 2010) and thus are not adequate for represent-
ing saturated conditions, e.g., surface-ponding and ground-
water dynamics. The current Noah-MP adopts the methodol-
ogy of Celia et al. (1990) to solve the mass-pressure (θ −h)
mixed-form (MF) RE. The new solver solves the pressure
head and h and conserves mass due to the mass (θ ) con-
straint. To achieve a more accurate solution of h and the mass
balance, the solver uses an adaptive time-stepping scheme.

Surface ponding occurs when the pressure head of the sur-
face layer is greater than the air entry pressure, and the up-
per boundary condition (BC) shifts from a flux BC to a head
BC following Paniconi and Putti (1994). Infiltration-excess
runoff occurs when the surface-ponding depth, Htop, sur-
passes a predefined threshold,Htop,max, at which the surface-
ponded water at local depressions of a model grid starts to
be connected and runs off. The model extends its vertical do-
main to the bedrock depth (Pelletier et al., 2016) at which
the lower BC is set up as a zero-flux BC. Groundwater dis-
charge is represented simply using the TOPMODEL concept
as a function of water table depth, which is determined by
the modeled pressure head that is interpolated between the
saturated zone and its overlying unsaturated zone.

2.3.2 Optional soil hydraulics schemes

The current Noah-MP provides optional hydraulics schemes
of the Van Genuchten–Mualem (VGM) and Brooks–Corey
with Clapp–Hornberger (BC/CH) parameters. To facili-
tate quicker convergence, particularly near saturation, we

smoothed the BC/CH water retention curve using a polyno-
mial function following Bisht et al. (2018).

2.3.3 Representing preferential flow

To represent preferential flow, the current Noah-MP adopts a
Dual-Permeability Model (DPM) approach, partitioning the
model grid into two domains: one representing rapid flow
with a reduced suction head (macropores) and the other rep-
resenting slower matrix flow, following Šimůnek and van
Genuchten (2008) and Gerke and van Genuchten (1993a, b,
1996). This approach represents subgrid variability in infil-
tration capacity through a fractional area of soil macropores
in the fields Fa (or the volumetric fraction of macropores).
The DPM also represents water transfer between the two
pore domains, which can be either positive (“lateral infiltra-
tion” during rainy days) or negative (diffusion from microp-
ores to drier macropores). It also accounts for lateral move-
ment of surface-ponded water from the matrix to macrop-
ore domains at the soil surface. The aggregated water con-
tent (θ ) and vertical water flux (q) for a grid cell are given by
θ = Faθa+(1−Fa)θi and q = Faqa+(1−Fa)qi, respectively,
where q denotes a water flux and the subscripts a and i, re-
spectively, indicate the macropore and micropore domains.
This approach also extends to other water fluxes, such as di-
rect evaporation from the soil surface (Esoil) and groundwa-
ter recharge.

2.4 Model experiments

We conducted five experiments using the current Noah-MP
driven by the hourly NLDAS-2 forcing data at a spatial reso-
lution of 0.125°, starting with the same uniform initial condi-
tions – i.e., soil moisture at 0.3 m3 m−3 and soil temperature
at 287 K – spanning 2014 to 2019 for six iterations. The five
initial iterations were dedicated to the model’s spinup phase,
and the resulting surface and root zone soil moisture from the
last iteration were used for SMM analysis. Parameters were
adopted as per the updates by Niu et al. (2020), with adjust-
ments to the dynamic vegetation module to align with Mod-
erate Resolution Imaging Spectroradiometer (MODIS) leaf
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area index observations. This study refrained from parame-
ter calibration related to dual-domain schemes for preferen-
tial flow (Šimůnek and Van Genuchten, 2008) and ponding
depth.

The five experiments are conducted with Noah-MP con-
figurations with different water retention and infiltration
schemes. Table 1 lists optional schemes that were the same
for all these experiments for other processes, including
surface layer turbulent exchange, radiation transfer, phase
changes between snow and rain, and the permeability of
frozen soil. For this study, we selected only those schemes
that have a direct impact on the simulation of soil moisture
dynamics (as detailed in Table 2). All these experiments are
set with the same number of soil layers, which vary spa-
tially from 5 to 15 vertical layers with fixed layer thicknesses:
1zi = 0.05, 0.3, 0.6, 1.0, 2.0, 2.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0,
5.0, 5.0, and 5.0 m down to 49.0 m to match the maximum
bedrock depth data of Pelletier et al. (2016) with a minimum
bedrock depth of 4.0 m. The model was customized using a
combination of three soil moisture solver variants, two soil
hydraulics schemes, and two ponding depth thresholds.

To explore the influence of surface ponding on SMM, we
designed two distinct experimental conditions. The first con-
dition, designated MF_VGM0, excluded the ponding effect
by setting Htop,max to 0 mm. Conversely, the second con-
dition, identified as MF_VGM200, incorporated a signifi-
cant ponding depth of 200 mm. Both conditions utilized the
mixed-form RE solver alongside the VGM model (see Ta-
ble 2). Furthermore, we conducted comparative analyses to
assess the role of soil hydraulic properties by conducting ex-
periments with the BC/CH model (MF_CH) and the VGM
model (MF_VGM), each with a ponding depth threshold of
Htop,max = 50mm.

An additional experiment employs the DPM within the
VGM framework, maintaining the same ponding threshold of
Htop,max = 50mm, referred to as DPM_VGM (see Table 2).
The comparison of DPM_VGM with the MF_VGM setup
aimed to shed light on the effects of preferential flow chan-
nels on soil moisture forecasting and runoff forecasting in
future studies, thereby enhancing our comprehension of the
complexities inherent in hydrological modeling.

To define the macropore volume fraction, we used the
modeled soil organic matter (SOM), which is computed from
Noah-MP with a microbial-enzyme model (Zhang et al.,
2014) prior to the major experiments conducted in this study
through a long-term (120-year) spinup simulation from 1980
to 2019 driven by the NLDAS data. The modeled SOM
shows a pattern of less SOM in wet regions but more in arid
regions due to more active microbial activities (decomposi-
tion and respiration) in wetter regions. The resulting macrop-
ore volume fraction ranges from 0.05 to 0.15, changing with
spatially varying SOM. While we conducted sensitivity anal-
yses of key parameters such as the ponding depth threshold
and macropore fraction to identify ranges yielding realistic
outcomes, we acknowledge that further model development

(building relationships with global high-resolution DEM and
soil data, e.g., SoilGrids 250 m; Poggio et al., 2021) is neces-
sary for refining the parameters.

3 Results

In Sects. 2.1 and 2.2 of our study, we focus on computing the
SMM for both the surface (5 cm) and root zone (up to 1 m)
layers, respectively. This dual-layer analysis is fundamen-
tal to our experiments as it allows us to understand the dif-
ferential impacts of various parameterizations on soil mois-
ture. By comparing and analyzing the SMM values across
these two distinct layers, we can identify specific physical
processes that influence soil moisture dynamics. This com-
parative approach not only elucidates how these processes
affect SMM but also helps in understanding the interaction
between surface characteristics and subsurface moisture dy-
namics, which are critical for improving hydrological mod-
eling and prediction.

3.1 Long- and short-term soil moisture memory of the
surface layer

Figure 3 illustrates the spatial distribution of the median
long-term memory derived from the 5-year soil moisture
dataset. We also provide plots for the SMM spatial distri-
butions to offer insights for each model experiment. How-
ever, it turns out that interpreting the fundamental mecha-
nisms behind the distribution is very challenging regarding
the spatial distributions of other controlling factors, e.g., cli-
matic forcing, vegetation and soil types, elevation, or slope
angle and aspect (affecting solar radiation), which directly or
indirectly control the actual ET and runoff as well as interac-
tions between ET and soil moisture (Rahmati et al., 2024). As
such, we focus on comparing the median SMM values across
model scenarios to find the dominant hydrological processes
controlling SMM, because the modeled distributions from
the different experiments generally show the same shape, es-
pecially for the same hydraulics (e,g., VGM). Analysis of
the SMAP data revealed that long-term memory (τL) is sig-
nificantly higher in the energy-limited and humid regions of
the eastern USA and lower in the arid western regions. These
findings are consistent with those of He et al. (2023) and Mc-
Coll et al. (2019).

The MF_CH experiment displays a spatial pattern that
contrasts with the SMAP data, with a longer memory in
the arid western regions but a shorter memory in the wet
northeastern regions (Fig. 3a and b). This is likely caused
by the faster drainage of topsoil water under the wetter con-
ditions, whereas under the drier conditions the spuriously
stronger suction from the CH hydraulics sustains the sur-
face soil moisture for a longer period. Further examination
reveals that models using the Van Genuchten scheme re-
flect SMAP’s patterns. Specifically, the eastern regions dis-
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Table 1. The Noah-MP options used in this study.

Process Options Schemes

Dynamic vegetation DVEG= 2 Dynamic vegetation
Canopy stomatal resistance OPT_CRS= 1 Ball–Berry type
Moisture factor for stomatal resistance OPT_BTR= 1 Plant water stress
Runoff and groundwater OPT_RUN= 1 TOPMODEL with groundwater
Surface layer exchange coefficient OPT_SFC= 1 Monin–Obukhov similarity theory (MOST)
Radiation transfer OPT_RAD= 1 Modified two-stream
Ground snow surface albedo OPT_ALB= 3 Two-stream radiation scheme (Wang et al., 2022)
Precipitation partitioning OPT_SNF= 5 Wet bulb temperature (Wang et al., 2019)
Lower boundary condition for soil temperature OPT_TBOT= 2 2 m air temperature climatology at 8 m
Snow or soil temperature time scheme OPT_STC= 1 Semi-implicit
Surface evaporation resistance OPT_RSF= 1 Sakaguchi and Zeng (2009)
Root profile OPT_ROOT= 1 Dynamic root (Niu et al., 2020)

Table 2. Model experiment configuration.

Experiment ID Model Htop,max (mm) Soil hydraulics

MF_VGM0 Mixed-form RE 0 Van Genuchten
MF_VGM200 Mixed-form RE 200 Van Genuchten
MF_CH Mixed-form RE 50 Brooks–Corey/Clapp–Hornberger
MF_VGM Mixed-form RE 50 Van Genuchten
DPM_VGM DPM 50 Van Genuchten

play higher τL values, while the western regions show lower
values (see Fig. 3b–f). DMP_VGM demonstrates a shorter
memory in the eastern CONUS compared to MF_VGM (see
Fig. 3c, d and Fig. S1 in the Supplement. The VGM sce-
nario with zero ponding depth shows a shorter memory com-
pared with MF_VGM200 in the eastern CONUS (Fig. 3e, f),
where surface ponding happens more frequently and with a
greater depth. Figure S2 shows a better match of data points
with the agreement line in the DPM_VGM–SMAP scatter-
plot. In contrast, the MF_CH–SMAP scatterplot lacks this
alignment, with a correlation of −0.10. The correlation val-
ues have risen from −0.10 to 0.15 with VGM, a sign of
progress, but they are still not strong.

To assess the influence of plant water storage on SMAP
soil moisture data and the resultant SMM, we employed the
MODIS Normalized Difference Vegetation Index (NDVI) to
categorize the entire CONUS into wet (NDVI> 0.45) and
dry (NDVI< 0.45) regions. In the dry areas (see Fig. 4a),
the probability distribution function (PDF) of the surface
SMM from MF_CH differs from that of SMAP and exhibits a
higher median of 10.53 d compared to SMAP’s 8.47 d (over-
estimation). Other model scenarios using van Genuchten
(VG) hydraulics, with an SMM median of around 8.6 d, show
a PDF like SMAP’s. Note that the VGM scenarios effectively
tackle the problem of long-term memory overestimation, a
point emphasized by He et al. (2023). This improvement
is due to the refined parameterization of physical processes
within the VGM experiments.

In the wet regions with dense vegetation (Fig. 4b), the
SMM PDF of MF_CH (median of 8.03 d) significantly de-
viates from the SMAP PDF (median of 10.71 d), showing
an underestimation of τL. However, due to the strong ef-
fect of plant water storage on SMAP’s soil moisture re-
trieval (commonly in the eastern CONUS), our focus here
is on model sensitivity to process representations rather than
on model accuracy relative to SMAP data. Other models
with the VG scheme display greater variability among them-
selves in wet areas (Fig. 4b) than in the dry region (Fig. 4a).
MF_VGM0 (with a zero ponding depth threshold) shows
a shorter long-term SMM, with a median of 10.72 d, com-
pared to MF_VGM200 (with a 200 mm ponding threshold)
with a median of 12.05 d and MF_VGM (with a 50 mm
ponding threshold) with a median of 12.03 d. This sug-
gests that extra water inputs from the surface-ponded water
(MF_VGM200) can help extend the surface SMM. Chang-
ing the ponding depth threshold from 50 mm (MF_VGM) to
200 mm (MF_vGM200) has a marginal effect on τL, sug-
gesting that the response does not proportionally increase
with higher values. With the same 50 mm ponding thresh-
old, DPM_VGM produces a shorter SMM, with a median of
11.73 d, than MF_VGM, indicating that the effects of faster
water drainage of the topsoil water caused by the preferential
flow (as represented by DPM_VGM) can last longer.

For the short-term SMM, all the scenarios produce an
overall spatial pattern similar to that of the SMAP-derived
τS, showing a longer memory in the drier western USA than
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Figure 3. Long-term SMM derived from various datasets from 2015 to 2019 for the soil surface layer: (a) SMAP, (b) MF_CH, (c)
DMP_VGM, (d) MF_VGM, (e) MF_VGM0, and (f) MF_VGM200. SMM: soil moisture memory.

Figure 4. Violin plot of the surface τL estimated from the SMAP and Noah-MP scenarios for dry regions with less vegetation (NDVI< 0.45)
and wet regions with more vegetation (NDVI> 0.45).

in the wetter eastern USA (Fig. 5). However, MF_CH shows
a shorter memory in the northwestern USA than that derived
from SMAP (Fig. 5a and b). MF_CH with a median of 1.9 d
underestimates SMAP with a median of 2.02 d, while VG
scenarios have a median τS of around 2.09 d over the dry re-

gions. This effectively rectifies the underestimation of short-
term memory by LSMs, as reported in a previous study (He
et al., 2023). He et al. (2023) highlighted that most LSMs
tend to underestimate τs, which is strongly affected by soil
water drainage as specified by McColl et al. (2019). Note
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that higher τs values indicate slow drainage, whereas lower τs
values suggest faster drainage; this is exemplified by Fig. 5a,
which shows more rapid drainage in the eastern CONUS
compared to the western CONUS. The incorporation of sur-
face ponding and the DPM (2.08 d) has shown fewer effects
on short-term memory than the soil hydraulics for the dry re-
gion (more macropores are available in the wet regions, and
hence the DPM would have a greater effect there). The intro-
duction of surface ponding (comparing MF_VGM0 (2.11 d)
to MF_VGM200 (2.108 d) in Figs. 5 and 6) contributes to
more persistent surface soil moisture and drainage that is a
bit quicker. The PDF of the SMM from all the VGM mod-
els more closely resembles the SMAP PDF in the western
United States than in the eastern part of the country, likely
due to the SMAP soil moisture retrieval being affected by the
plant water storage and thus the spatial variations in canopy
density.

For the wet regions, MF_CH with a median of 1.26 d un-
derestimates SMAP with a median of 1.56 d. DPM_VGM
with faster drainage of surface soil water produces a median
τs of 1.43 d, shorter than MF_VGM with a median of 1.48 d.
The DPM accelerates the drainage of water from the topsoil.
This effect is more significant in the eastern CONUS. As a
result, it lowers the short-term memory in areas where the
soil has macropores.

The modeling results also indicate that the long-term
memory of the surface soil moisture is more sensitive to the
four VGM schemes in the wet regions (Fig. 4b) than the
short-term memory (Fig. 6b). This can be attributed to the
differences in how topsoil water responds to surface pond-
ing and preferential flow, as represented by the four VGM
schemes across different moisture regimes. Under higher soil
moisture conditions right after a rainfall event, the persis-
tence of soil moisture is mainly dominated by drainage of
topsoil water to deeper soil, whereas at relatively lower soil
moisture the long-term memory is more controlled by persis-
tent water inputs from surface-ponded water and prolonged
drainage by preferential flow. This also indicates that the
infiltration effects of surface-ponded water and preferential
flow can last longer, up to more than 10 d. Under dry condi-
tions (Figs. 4a and 6a), these hydrological processes become
less important. However, the soil water retention curves as
represented by the CH and VG schemes play a more im-
portant role under any conditions (Figs. 4a and 6a). Another
possible reason could be the issue of timescales. Short-term
memory has values of up to 5 d, and given the SMAP re-
visit time of 3 d, generating values for intervals shorter than
3 d may challenge the validity of short-term memory as a
reliable measurement for soil drainage, as demonstrated by
McColl et al. (2019). Since we selected Noah-MP days cor-
responding to the SMAP revisit time, it is possible that the
effects of different VG parameterizations were diminished
by this sampling. We suggest that other measurements, such
as streamflow and baseflow analysis, should be considered to

better quantify the effect of soil hydraulics on soil drainage
(Farmani et al., 2024).

3.2 Long- and short-term soil moisture memory of the
root zone layers

We use the ISMN dataset as the benchmark and compute
SMM at the ISMN stations, as illustrated in Fig. 2. We com-
pute the long-term SMM across 654 sites within the CONUS
for the period from 2015 to 2019. The median values of these
computations indicate that the root zone SMM (Figs. 7 and 9)
is generally higher than the surface SMM (Figs. 3 and 5).
Analysis of ISMN data reveals that the root zone τL (Fig. 7)
generally exceeds the surface τL (Fig. 3), particularly in the
western USA. Some eastern locations also exhibit a longer
τL, whereas the central region demonstrates lower values.

MF_CH produces a shorter root zone τL across nearly
all the sites in the CONUS (Figs. 7 and 8). The Van
Genuchten scheme mirrors the ISMN-derived τL, albeit with
slightly higher values (Figs. 7 and 8). An increase in the
surface-ponding depth raises the τL. This is particularly true
in the eastern USA, where surface ponding occurs more
often, and its impact on soil moisture is more substan-
tial. Figures S3 and S4 illustrate this effect. Additionally,
DMP_VGM (Figs. 7c and 8) reduces the root zone long-term
SMM across most of the CONUS relative to the other models
(Figs. 7c–f and S3).

As for the surface layer, we use the MODIS NDVI to as-
sign all the stations to wet and dry regions. In the dry re-
gions (Fig. 8a), MF_CH has a different probability distribu-
tion function and a lower median of 19 d compared to that
of the ISMN (median of 23 d). All the other scenarios using
VG schemes exhibit similar SMM PDFs to each other, yet
they are somewhat different from the one derived from the
ISMN. Also, the presence of macropores reduces the long-
term SMM, with a median of 25 d, and results in the median
closest to the ISMN (Fig. 8a). The ISMN, however, shows a
large range of long-term SMMs compared with all the Noah-
MP experiments, indicating that the complex nature of the
observed SMM needs further investigation (Fig. 8a and b).
Note that the analyses were conducted at a limited number
of locations, presenting challenges in fully capturing the im-
pacts of different parameterizations on SMM.

In the wet regions, MF_CH shows a smaller τL value (me-
dian of 9.8 d) than that of the ISMN (median of 18 d), to-
gether with a noticeable PDF difference. The effect of dual
permeability decreases the soil moisture and long-term mem-
ory compared with the other model experiments, resulting in
a median (19 d) close to the ISMN (18 d) (Fig. 8b). However,
it seems that the ponding depth does not show a noticeable
impact on τL. It should be noted that the effect of ponding
depth, which slightly increases the long-term memory in the
root zone (RTZ), can be observed in Figs. S3 and S4 when
we take a close look at them.

Hydrol. Earth Syst. Sci., 29, 547–566, 2025 https://doi.org/10.5194/hess-29-547-2025



M. A. Farmani et al.: Do LSMs miss key soil processes controlling SMM? 557

Figure 5. Short-term SMM derived from various datasets from 2015 to 2019 for the soil surface layer: (a) SMAP, (b) MF_CH, (c)
DMP_VGM, (d) MF_VGM, (e) MF_VGM0, and (f) MF_VGM200.

Figure 6. Same as Fig. 4 but for short-term memory.

Further investigation reveals an enhancement in the
model’s ability to capture soil hydraulic dynamics when
shifting from the Clapp–Hornberger scheme to the Van
Genuchten scheme, with an improvement in τL values from
0.05 to 0.12 (Fig. S5). Also, DPM_VGM demonstrates supe-

rior performance with a correlation of 0.15 compared to all
the other scenarios tested.

The findings show that τS values in most Noah-MP sce-
narios are comparable to those observed in the ISMN data, as
shown in Fig. 9b–f. However, there is a consistent underes-
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Figure 7. Long-term root zone SMM derived from various datasets from 2015 to 2019: (a) ISMN, (b) MF_CH, (c) DMP_VGM, (d)
MF_VGM, (e) MF_VGM0, and (f) MF_VGM200.

Figure 8. Violin plot of the root zone τL estimated from the ISMN and Noah-MP scenarios for dry regions with less vegetation (NDVI< 0.45)
and wet regions with more vegetation (NDVI> 0.45).

timation in some eastern locations. Figure 10 highlights this
pattern, showing that the wet regions tend to underestimate
τS, with the ISMN reporting a median of 2.5 d and Noah-MP
experiments a median of around 2 d. Conversely, the dry re-
gions tend to overestimate τS, with the ISMN at a median of
2.1 d and Noah-MP experiments at approximately 2.7 d.

Although distinguishing between MF_VGM0 and
MF_VGM200 in Figs. 9 and 10 is challenging, Fig. 11

(Fig. 11c and d) reveals that an increase in ponding depth
leads to a slight decrease in short-term memory in the
eastern CONUS. Comparing Fig. 9 with Fig. 11 indicates
that ISMN stations partially reflect the spatial pattern of
long-term and short-term memory in the root zone across
the CONUS. It may be concluded that the spatial patterns
of long-term and short-term memory (Figs. 11 and S7) of
the root zone are quite similar to those of the surface layer
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Figure 9. Same as Fig. 7 but for the short term.

Figure 10. Same as Fig. 8 but for the short-term SSM.

(Figs. 3 and 5). Hence, long-term memory is more prevalent
in the eastern CONUS and mountainous areas, while longer
short-term memory occurs predominantly in the western
areas. However, this conclusion is not totally true, and
further investigation is needed.

4 Discussion

4.1 How do different parameterizations affect SMM?

The efficacy of LSMs in simulating climate feedback mech-
anisms critically depends on the soil’s ability to retain mois-
ture and how quickly the soil releases the moisture into the
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Figure 11. Spatial distribution of the root zone τs estimated from (a) MF_CH, (b) MF_VGM, (c) MF_VGM0, and (d) MF_VGM0.

atmosphere through soil surface evaporation and plant tran-
spiration and down to the aquifers through recharge. The
rapid infiltration of incident water (rainfall and snowmelt)
into deeper subsoil strata reduces the soil’s capacity to return
moisture into the atmosphere through evaporation and tran-
spiration, thereby disrupting potential atmospheric feedback
loops in LSMs (McColl et al., 2019). Conversely, if LSMs
lose water too quickly through ET, they provide feedback
to the atmosphere more quickly than they should. Thus, the
concept of SMM becomes essential in LSMs, as it can pro-
vide information about the rate at which moisture disappears
from the soil. Hence, understanding the effects of various
physical processes on SMM is vital for enhancing the rep-
resentation of these processes in LSMs, thereby improving
their overall performance in simulating the complex interac-
tions between the land surface and the atmosphere.

The water retention curve characteristics of the BC/CH hy-
draulics scheme are characterized by a strong suction force
that is more pronounced than in the Van Genuchten model
for various soil types (Niu et al., 2024). This stronger suction
promotes moisture transfer from the deeper layers to the sur-
face layer, causing the surface soil to retain more moisture
(Fig. S6), and it has a longer τL (Figs. 3 and 4), which is a
common issue in LSMs according to He et al. (2023). More-
over, the higher suction reduces the root zone moisture, and
consequently it would have a shorter τL (Figs. 7 and 8). Con-
versely, the VG scheme, with weaker suction, transfers less
moisture from the root zone to the surface, resulting in a drier
surface layer and a shorter τL for the surface but a longer τL
for the root zone, as depicted in Figs. 7 and 8.

Short-term memory is inversely related to moisture avail-
ability; thus, a wetter soil has a shorter τS, whereas a drier
layer has a longer τS. The VG scheme produces a drier sur-

face layer and a moister root zone, leading to a longer surface
τS but a shorter root zone τS compared to the BC/CH scheme,
as shown in Figs. 5, 6, and 11.

As indicated in a previous study (He et al., 2023), a com-
mon issue in LSMs is the overestimation of the long-term
memory of surface soil over dry regions. This could be at-
tributed to underestimation of evaporation within LSMs us-
ing the CH parameterization (Fig. S7a), resulting in overes-
timation of soil moisture. However, a shift towards the VG
scheme increases the evaporation (Figs. S7b and S8), and
hence it overcomes the τL overestimation (Figs. 3 and 4).

The presence of soil macropores promotes infiltration at
the soil surface and rapid flow through preferential pathways
from the surface to the root zone (Mohammed et al., 2021),
consequently reducing the moisture retained in the surface
layer. Moreover, macropores lead to reduced suction of the
soil and hence less water from the subsurface soil was pulled
up to the surface, causing the topsoil to have less moisture
(Fig. S6). Therefore, macropores lead to a decrease in sur-
face τL (Figs. 3d and 4b). Moreover, the presence of macrop-
ores increases the root zone soil moisture, and consequently
it should prolong the root zone τL. However, the even distri-
bution of macropores throughout the soil profile in the cur-
rent Noah-MP configuration, DPM_VGM, increases water
infiltration into deeper layers, resulting in faster flow to deep
soil layers, recharge to groundwater, and thus a drier root
zone. As a result, macropores reduce the root zone long-
term SMM (Figs. 7d–f and S8) of DPM_VGM. This high-
lights the importance of calibration of the macropore profile
in DPM_VGM for better representations of macropore ef-
fects and soil hydraulic dynamics.

While the soil matrix typically only allows for slow wa-
ter movement due to the pressure gradient, macropores
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enable rapid gravitational flow (Mohammed et al., 2018).
These macropores facilitate quicker infiltration into the root
zone (Mohammed et al., 2021). Therefore, they increase the
drainage rate to these deeper layers, which slightly reduces
the short-term soil moisture memory at the surface (Figs. 5
and 6). Additionally, as water moves from the surface to
the root zone, the increased moisture content there leads to
quicker drainage. We speculate that this occurs in the real
world; however, in the current DPM_VGM, the deep soil is
wetter than the root zone, indicating a need for calibration of
the macropore profile, as we have stated. Consequently, this
process further decreases the short-term moisture memory in
the root zone due to the higher drainage rates of wetter soil.

Finally, the ponding threshold allows water to remain on
the surface before turning into runoff. This provides water
with more time to percolate into the soil. The consequent in-
crease in ponding depth allows extended water infiltration,
thus enhancing soil moisture and lengthening moisture reten-
tion through the soil profile (Fig. S6e and f). So, as discussed
before, wetter soil leads to prolonged τL and shortened τS
(Fig. 5–7 and 11).

4.2 Limitations of our study

Some sources of uncertainty may affect our results in this
study, including uncertainties in input data and models. The
SMAP L-band penetration depth can indeed be shallower
than 5 cm, especially over wetter regions like the eastern
CONUS, which may introduce a mismatch when comparing
SMAP observations with the Noah-MP 5 cm layer. SMAP
reliability is affected by plant water storage change (in the
eastern part of the CONUS and some mountainous sites),
introducing uncertainties into SMM values for the bench-
mark. While SMAP observations may be less reliable over
these densely vegetated areas, they still support our objec-
tive of enhancing our understanding of the physical processes
in soil hydrology. Furthermore, the SMM patterns captured
from SMAP can be insightful in understanding regional vari-
abilities in SMM.

Another concern is the influence of ISMN spatial repre-
sentation on SMM analysis. ISMN stations are point-based,
and it is assumed that one point represents a 1/8° grid area. It
is possible that the point measurements cannot fully capture
the spatial variability within the Noah-MP grid cells, lead-
ing to discrepancies in the representation of values and spa-
tial patterns. The limited number of stations may further am-
plify this issue. One potential solution to addressing the scale
mismatch between point-based observations and grid-scale
simulations is the use of high-resolution or hyper-resolution
models. These models can provide finer spatial detail, al-
lowing for a more direct comparison between observational
data and model outputs, thereby improving the accuracy of
the analysis and reducing scale-induced biases. Incorporat-
ing such approaches into future studies would help mitigate
the limitations posed by the current scale differences.

Additionally, some model representations may require fur-
ther investigation. The DPM_VGM scheme uses a verti-
cally constant macropore volume fraction, which means that
macropores generated by biotic factors (formed by worm-
holes and dead roots) and abiotic factors (cycles of freezing–
thawing and drying–wetting) are fixed down to the bedrock.
However, in nature, these macropores would decrease below
a few meters from the soil surface. Because the existence of
macropores in nature drains the surface layer and increases
the root zone soil moisture, to better represent the actual
physical process, it is necessary to incorporate more soil data,
e.g., the soil organic matter and coarse materials from Soil-
Grids 250 m (Hengl et al., 2017) for climate predictions, or
to calibrate the macropore volume fraction for hydrological
applications. Such a calibration is anticipated to further ad-
vance the fidelity of soil moisture simulations, enhancing the
model’s utility in various hydrological and climate applica-
tions.

Concerning surface water ponding, a constant ponding
threshold may not be justified, and a spatially variable sur-
face ponding may lead to improved model accuracy. Fu-
ture model developments should consider microscale topo-
graphic variations to represent the hydrological connectivity
of surface-ponded water. We tested a scheme of a ponding
threshold as a linear function of the subgrid standard de-
viation of a DEM derived from a DEM at 30 m resolution
(although this is not enough), resulting in higher surface-
ponding thresholds over the alpine western USA. Further in-
vestigation is needed to validate and calibrate the modeled
areal ponding fraction and depth against satellite (or cam-
era) observations. We expect a more realistic representation
of ponding thresholds through further calibration of the pa-
rameters in the function.

There are additional factors, such as water convergence
through surface and subsurface lateral flows (e.g., Barlage
et al., 2021), that may affect SMM but are not represented
by the current Noah-MP version and thus not considered in
our analysis. The primary focus of our study is to understand
the impacts of missing processes on SMM and use this un-
derstanding to guide future LSM development for S2S cli-
mate predictions, e.g., the surface ponding and preferential
flow. Consequently, we narrowed our examination down to
key missing processes represented within Noah-MP. Future
research would further evaluate the impact of lateral flows
and other processes on SMM, expanding our understanding
of these dynamics and their implications for climate predic-
tion. Moreover, this study focuses primarily on physical pro-
cess representations and parameterizations for soil moisture
dynamics, while we acknowledge the strong impacts of un-
certainties on hydraulic parameters.
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5 Conclusion

In this study, we have explored the effects of soil hydraulic
schemes and hydrological processes on SMM using the
Noah-MP LSM with advanced hydrology. Our research was
motivated by a need to understand how missing physical pro-
cesses help solve biases in long-term and short-term SMM
commonly observed by LSMs. We aim to find the key miss-
ing processes controlling SMM and thus to improve the rep-
resentation of soil hydrology in LSMs, using the knowledge
gained from our analysis of SMM. We designed and imple-
mented five scenarios to focus on the impacts of key missing
processes and different hydraulic parameterizations. These
scenarios include two soil hydraulic models (Clapp and
Hornberger and Van Genuchten), a dual-permeability model
representing preferential flow, and three surface-ponding
thresholds. Using soil moisture datasets from SMAP and the
ISMN for surface and root zone measurements, respectively,
we conducted a comprehensive analysis of the effects of dif-
ferent Noah-MP parameterizations on soil moisture memory.

Our findings suggest that the soil water retention curve is
the most important factor controlling SMM due to its strong
influence on soil water persistence through suction by soil
particles. We show that the adoption of the Van Genuchten
parameterization considerably mitigates the long-standing is-
sue of overestimating SMM in LSMs employing the Brooks–
Corey/Clapp–Hornberger (BC/CH) hydraulic model. The
Van Genuchten model, with its reduced suction effect at-
tributable to a drier surface layer, leads to a more accurate
depiction of moisture transfer from the root zone to the sur-
face, which is important for a more realistic description of
soil moisture dynamics.

Moreover, representing surface-ponding processes allows
for an extended period of soil water infiltration, thus ex-
tending both surface and root zone long-term memories and
reducing the short-term memories. Implementing a dual-
permeability approach fine-tunes soil moisture representa-
tion by accounting for preferential flow paths, marking a step
forward in the enhancement of soil moisture memory and the
overall fidelity of hydrological simulations. Macropores lead
to a decrease in short-term memory and long-term memory
due to faster drainage and thus decreased surface soil mois-
ture. Given these compelling advancements, we strongly rec-
ommend that LSMs adopt the VG hydraulics to advance the
prediction of hydrological and climatic phenomena.

The findings from this study have important implications
for future research on SMM. By identifying the specific pa-
rameterizations that lead to discrepancies in long-term and
short-term SMM, future studies should focus on refining
these parameters to reduce biases in LSMs. Moreover, while
this study focuses on the effect of the missing hydrological
processes on the timescale of SMM, future research should
analyze the impact of these parameterizations on the strength
and legacy of SMM and assess whether the findings based on

timescales align with those related to the strength and legacy
(Rahmati et al., 2024).
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