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Abstract. Understanding, observing, and simulating Earth’s
water cycle is imperative for effective water resource man-
agement in the face of a changing climate. While NASA’s
Land Information System (LIS)/Noah-MP is widely used
for land surface modeling, its ability to represent ground-
water processes is limited. In contrast, the ParFlow hydro-
logic model explicitly simulates subsurface water movement.
This study explores the effectiveness and usefulness of the
newly coupled modeling framework, ParFlow-LIS/Noah-MP
(PF-LIS/Noah-MP) over the Upper Colorado River Basin
(UCRB). The framework integrates the strengths of both
models to provide a physically based representation of sur-
face and subsurface processes and their interactions. Unlike
standalone LIS/Noah-MP, the coupled system enables three-
dimensional groundwater flow simulations by solving the
Richards’ equation, improving the realism of subsurface hy-
drologic processes. We evaluate PF-LIS/Noah-MP over the
UCRB by comparing its simulations against in-situ and satel-
lite observations, including soil moisture, streamflow, and
groundwater storage. In general, the results show that PF-
LIS/Noah-MP produces soil moisture simulations compara-
ble to those of LIS/Noah-MP across the entire UCRB, with
nearly identical root mean squared error and correlation co-

efficients. However, further analysis — when these metrics are
averaged over areas with complex topography — revealed that
in regions with high elevation gradients, PF-LIS/Noah-MP
slightly outperforms standalone LIS/Noah-MP in soil mois-
ture simulation.

The coupled model’s ability to simulate groundwater stor-
age and lateral subsurface flow introduces new hydrologic
prediction capabilities that were not possible within the stan-
dalone LIS/Noah-MP model.

1 Introduction

The interaction of surface and subsurface hydrologic pro-
cesses is complex and dynamic. Surface hydrologic pro-
cesses include the movements of water on the land surface,
such as runoff, while subsurface hydrologic processes in-
clude the movements of water below the ground, such as
infiltration and groundwater flow. These surface and subsur-
face physical processes are interconnected through various
mechanisms. For instance, precipitation that falls on the land
surface can either infiltrate the soil and become soil mois-
ture or runoff into nearby streams and rivers. Soil moisture
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can be returned to the atmosphere through evapotranspira-
tion or percolate into the subsurface, replenishing ground-
water storage. Streams and rivers can also recharge under-
lying groundwater aquifers, and groundwater can discharge
into rivers and streams (Fleckenstein et al., 2010; Kalbus et
al., 2006; Kourakos et al., 2019; Ntona et al., 2022; Winter et
al., 1998).

The interaction of surface and subsurface hydrologic pro-
cesses is particularly relevant to managing water resources in
arid and semi-arid regions, where water resources are often
limited (Deb et al., 2019; Scanlon et al., 2012; Tian et al.,
2015; Wada et al., 2010). Climate change can impact surface
and subsurface hydrologic processes, as well as their interac-
tions and feedbacks to the atmosphere. In particular, changes
in precipitation patterns, temperature, and evapotranspiration
rates can affect the balance and feedback between surface
water and groundwater, affecting water availability and qual-
ity (Alley, 2007; Christensen et al., 2004; Oki and Kanae,
2006; Scanlon et al., 2012). Furthermore, human activities,
such as irrigation and water pumping, can alter the natural
behavior of surface—subsurface interaction (Boucher et al.,
2004; Gordon et al., 2005; Leng et al., 2014; Leung et al.,
2011; Liang et al., 2003; Sacks et al., 2009; Tang et al., 2007;
Tian et al., 2015), affect the land-atmosphere coupling (Hard-
ing and Snyder, 2012; Kawase et al., 2008; Lo and Famigli-
etti, 2013; Qian et al., 2013) and compromise the health of
ecosystems and water quality (Green et al., 2011; Jasechko
et al., 2017; Scanlon et al., 2012).

Irrigation water use in the Upper Colorado River Basin
(UCRB) is a substantial and growing demand on the region’s
limited water resources. UCRB includes parts of Colorado,
Wyoming, Utah, and New Mexico and is home to a large
agricultural sector. The region’s irrigated agriculture mostly
relies on groundwater (Hutson et al., 2004; Kenny et al.,
2009). Studies show that due to the recent prolonged drought
across the western US (Cook et al., 2015, 2021; Williams et
al., 2022), water managers have increased their dependence
on groundwater to secure public water supply and irrigate
agricultural lands (Famiglietti et al., 2011; Famiglietti and
Rodell, 2013; Taylor et al., 2013). Groundwater pumping is
an important source of water for irrigation in agriculture in
the UCRB, particularly when and where surface water avail-
ability is limited (Castle et al., 2014). Excessive pumping can
lead to the depletion of aquifers, impacting water availability
and the long-term sustainability of agricultural practices. To
address these challenges, many states in the UCRB have im-
plemented regulations and policies to manage groundwater
use in agriculture, such as implementing groundwater mon-
itoring programs and setting limits on the amount of water
that can be pumped (Buero of Reclamation, 2024). In gen-
eral, water management strategies can benefit from skillful
hydrologic modeling that considers the land surface and sub-
surface physical processes in a coupled fashion. In this work,
we introduce and test a coupled land surface-subsurface hy-
drology model (hereafter integrated hydrologic model) as
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one means to address this need. While the current study
does not directly simulate irrigation or groundwater pump-
ing, these processes are critical in understanding the water
dynamics of the region and can influence model outputs. The
discrepancy between the coupled system groundwater sim-
ulations and GRACE groundwater observations, discussed
later in the manuscript, highlights the importance of includ-
ing such human impacts in hydrologic models. Although ad-
dressing these processes is not the primary objective of this
study, this work serves as a foundational step toward that
goal. As an alternative to direct simulation, data assimilation
techniques could be employed in future research to incorpo-
rate observed groundwater data or other relevant measure-
ments. This would enable better representation of irrigation
and groundwater pumping processes in the model, improving
simulation accuracy and addressing the observed mismatch
in groundwater observations.

Integrated hydrologic models have been highly successful
in a broad range of watershed-scale studies (see Table 1 in
Maxwell et al., 2014). These models represent observed sur-
face and subsurface behavior, diagnose stream—aquifer and
land—energy interactions, and enhance our understanding of
how disturbances like changes in land-cover and human-
induced climate change affect different components of the
hydrologic system (Maxwell et al., 2015). The importance
of the interactions between groundwater and surface water
and the use of integrated hydrologic models to better under-
stand these connections has been the subject of many studies
in the past decade (Barthel and Banzhaf, 2016; Brookfield et
al., 2023; Kuffour et al., 2020; Lahmers et al., 2022; O’Neill
et al.,, 2021a; Wang and Chen, 2021; Yang et al., 2021).
Until recently, integrated hydrologic models were mainly
used at local to regional scales, as their implementation re-
quired extensive computational resources. However, recent
advances in parallel High-Performance Computing (HPC)
techniques, numerical solvers, and observational data have
made it feasible to conduct large scale, high-resolution simu-
lations of the terrestrial hydrologic cycle (Kollet et al., 2010;
Maxwell, 2013; Maxwell et al., 2015; Naz et al., 2023). This
has opened up new possibilities for the practical application
of integrated hydrologic models at regional to continental
scales. Many continental to global-scale surface hydrology
studies have ignored groundwater or used a highly simplified
model, despite the importance of lateral groundwater flows
(Krakauer et al., 2014). This limitation has been observed in
studies such as those conducted by Déll et al. (2012); Maurer
et al. (2002); and Xia et al. (2012).

The NASA Land Information System (LIS) is a software
framework designed to facilitate the integration of land sur-
face models and satellite remote sensing data for improved
understanding and prediction of land surface processes. LIS
is a modeling framework that offers a variety of model op-
tions. One of the key models that can be run within the LIS
framework is the Noah-MP (Multi-Parameterization) model,
which is a widely used land surface model. The LIS frame-
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work enables the coupling of the Noah-MP model with satel-
lite observations and other data sources, providing a more
comprehensive view of land-atmosphere interactions. Specif-
ically, LIS serves as a tool for executing Noah-MP simula-
tions, allowing for real-time integration of remote sensing
data and enhancing the model’s predictive capabilities (Ku-
mar et al., 2006, 2008a; Peters-Lidard et al., 2007). LIS has
been widely used for a variety of scientific and practical ap-
plications, including drought monitoring and prediction, wa-
ter resource management, and flood forecasting, among oth-
ers (Crow et al., 2012; Getirana et al., 2020; Li et al., 2019;
Mocko et al., 2021; Nie et al., 2022). LIS has been integrated
with other Earth system modeling systems. For example, a
coupled high resolution land-atmosphere system has been
developed by coupling LIS with the Weather Research and
Forecasting (WRF) model (Kumar et al., 2008a). This cou-
pled land-atmosphere system facilitates study of the interac-
tions between the atmosphere and land surface processes.
One of the land surface models available within LIS is
Noah-MP (Niu et al., 2011), an advanced version of the
Noabh land surface model. Noah-MP is specifically designed
to simulate a range of land surface processes, including soil
moisture, temperature, snowpack dynamics, vegetation dy-
namics, and energy fluxes between the land surface and
the atmosphere. It incorporates multiple soil layers, a de-
tailed representation of vegetation types and their proper-
ties, and advanced treatments of surface energy exchanges,
all of which are important for capturing the complexity of
land-atmosphere interactions. In this study, we utilize the LIS
framework with the Noah-MP model to simulate these land
surface processes, which are critical for accurately represent-
ing hydrologic fluxes in the UCRB. Noah-MP’s flexibility in
representing diverse land surface characteristics allows for a
more realistic simulation of hydrological processes such as
evapotranspiration, infiltration, and runoff. Its detailed soil-
vegetation-atmosphere interactions make it especially useful
for understanding water fluxes in regions like the UCRB,
where land surface conditions have significant impacts on
groundwater recharge and surface water availability.
ParFlow (Kollet and Maxwell, 2006) is a robust and ver-
satile groundwater model that integrates advanced numer-
ical techniques to simulate both saturated and unsaturated
flow conditions. This model has been coupled with differ-
ent land surface and atmospheric models, such as the CLM
(Community Land Model) and WRF (Weather Research and
Forecasting model), to better understand the interactions be-
tween the subsurface, surface, and atmospheric processes
(Kollet and Maxwell, 2006; Maxwell et al., 2007, 2011,
2014). Some examples of ParFlow-CLM applications in-
clude studies by O’Neill et al. (2021); Tijerina et al. (2021),
and Tijerina-Kreuzer et al. (2024), which highlight its use
in high-resolution, coupled hydrology—land surface model-
ing at continental scales. O’Neill et al. (2021) introduced
the ParFlow—CLM model (PFCONUSv1) configured over
the U.S. to evaluate water balance components, identifying
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areas for model improvement, such as streamflow biases and
shallow water table depth. Tijerina et al. (2021) compared
two continental-scale, high-resolution models — ParFlow-
CONUS v1.0 and WRF-Hydro — in the first phase of the Con-
tinental Hydrologic Intercomparison Project (CHIP), high-
lighting the importance of model performance evaluation
in large-scale hydrologic predictions. Tijerina-Kreuzer et
al. (2024) focused on the evaluation of subsurface property
configurations for integrated hydrological modeling, em-
phasizing the significance of accurate datasets for effective
model performance and recommending a 1km resolution
subsurface dataset for large-scale hydrologic modeling. All
these studies are based on the ParFlow-CLM framework, un-
derscoring its capability in simulating complex hydrological
processes at continental scales.

Some examples of ParFlow-WRF applications include
studies by Maxwell et al. (2011) and Xu et al. (2023), which
highlight its use in coupled atmospheric and hydrologic mod-
eling. Maxwell et al. (2011) introduced the PF-WRF model,
coupling the WRF atmospheric model with ParFlow to sim-
ulate subsurface flow and overland flow. Their study, applied
to the Little Washita watershed, demonstrated improvements
in water resources and wind-energy forecasting, particularly
in simulating rainfall, runoff, and the effects of soil mois-
ture on wind power output. Xu et al. (2023) used an inte-
grated process model (IPM) combining WRF with ParFlow-
CLM to simulate hydrometeorological conditions in the East
River Watershed. Their findings highlighted the significant
impact of subgrid-scale physics configurations on simulated
hydrological metrics like discharge, snowpack, and evap-
otranspiration, providing guidance for future modeling in
mountainous watersheds. Both studies showcase the versatil-
ity of ParFlow-WRF in simulating complex hydrologic pro-
cesses.

Herein, we use a newly developed coupled land sur-
face and subsurface hydrology model, ParFlow-LIS/Noah-
MP (PF-LIS/Noah-MP) (Maina et al., 2025) and study its
effectiveness and usefulness for simulating land surface and
subsurface hydrologic processes. We encourage the readers
to refer to Maina et al. (2025) for more information about the
coupled system. Our primary objective is to study the degree
to which the coupled PF-LIS/Noah-MP model (Maina et al.,
2025) can contribute to better representation of surface and
subsurface processes over UCRB. In particular, we study the
extent to which the land surface water flux estimates in the
LIS/Noah-MP model are improved by coupling it with the
ParFlow groundwater model. For this purpose, we compared
the coupled PF-LIS/Noah-MP and LIS/Noah-MP model es-
timates of soil moisture, streamflow, water table depth and
terrestrial water storage with a suite of in-situ and satellite
observations over the UCRB in the United States. The main
novelty of this work is to demonstrate the capability of the
newly coupled ParFlow and LIS/Noah-MP model in simu-
lating land surface and subsurface hydrologic processes. Al-
though LIS/Noah-MP has been widely used in many stud-
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ies, its ability to model groundwater processes has been lim-
ited. In this study, we assess the performance of the ParFlow
groundwater hydrology model when coupled with LIS/Noah-
MP, focusing on its ability to simulate subsurface hydro-
logic processes, such as groundwater and soil water content,
and their interactions with land surface processes. This study
demonstrates how ParFlow is integrated with LIS/Noah-MP
and the resulting improvements, not only in simulating soil
moisture (as accurately as LIS/Noah-MP) but also in en-
abling the simulation of groundwater and other subsurface
hydrologic processes, such as pressure head — processes that
could not be modeled using LIS/Noah-MP alone. Unlike
LIS/Noah-MP, the PF-LIS/Noah-MP coupling tracks sub-
surface water movement by solving the three-dimensional
Richards equation, providing a more realistic representation
of groundwater storage and water table dynamics.

The paper is organized as follows: first, we briefly describe
the ParFlow and LIS/Noah-MP model. Next, we discuss the
coupling framework. In the results and discussion section of
the paper, we provide a comparison of the model simulations
against observations and explore how the coupled system
could improve understanding of the land surface processes.

2 ParFlow

ParFlow (PARallel Flow) (Ashby and Falgout, 1996; Jones
and Woodward, 2001; Kollet and Maxwell, 2006) is an in-
tegrated, parallel model platform that simultaneously solves
variably saturated three-dimensional Richards’ equation
throughout the entire subsurface (Kollet and Maxwell, 2008).
ParFlow does not separate the phreatic and vadose zones,
rather, it employs a unified solution by solving the compress-
ible Richards’ equation everywhere in the subsurface. This
inclusive methodology allows a realistic representation of
groundwater dynamics to be obtained, shaped by the under-
lying geology and topography. In addition to its capability to
simulate subsurface flow, ParFlow also tackles the complexi-
ties of overland flow and surface runoff. This is accomplished
through a combination of continuity or Manning’s equations,
implemented in either kinematic or diffusive formats. By in-
tegrating these surface water flow components, ParFlow of-
fers a fully integrated system that simultaneously solves the
partial differential equations (PDEs) governing both surface
water and subsurface flow (e.g. Kollet and Maxwell, 2006).
Importantly, this integration is achieved in a globally implicit
manner, which ensures the robust and efficient solution of
these interconnected processes at each time step. The terrain
following grid formulation in ParFlow is important for accu-
rately representing topography (Maxwell, 2013). By solving
the three-dimensional Richards’ equation for variably satu-
rated groundwater flow, the model simulates lateral ground-
water flow and calculates the spatial and temporal variations
of the water table. It is important to note that groundwater
and the deeper vadose zone may take long simulation times
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(for example compared to shallow soil moisture) to reach a
steady-state due to slow rates of groundwater recharge and
subsurface heterogeneity, which can make it a computation-
ally expensive problem to solve (Maxwell et al., 2014). There
are many factors that influence spin-up time, including the
size of the domain (in 3D), the resolution of the grid, the
geological complexity, and the characteristics of the forcing
data. A steady-state solution is typically sought initially in
order to ensure that the model starts from a physically re-
alistic and stable state before transitioning to transient runs.
Additionally, the plausibility of the initial conditions applied
plays a significant role in determining how quickly the model
reaches steady-state. All of these factors contribute to the
overall computational complexity of the problem.

3 LIS

Since the LIS framework has already been extensively de-
scribed in the original papers (Kumar et al., 2006; Peters-
Lidard et al., 2007), here we only briefly review its main
components and features. Land surface modeling within
LIS relies on three key inputs: (1) initial conditions, de-
scribing the land surface’s starting state (i.e., total volu-
metric soil moisture and liquid water volume, soil temper-
ature, canopy intercepted water (ice and liquid), canopy tem-
perature, ground surface temperature, snow water equiva-
lent and snow depth); (2) boundary conditions, encompass-
ing the atmospheric fluxes or “forcings” (upper boundary
condition) and soil fluxes or states (lower boundary con-
dition); and (3) parameters, which represent the soil, veg-
etation, topography, and other land surface characteristics.
Using these inputs, Land Surface Models (LSMs) available
within LIS (e.g., Community Land Model (CLM), Noah-MP,
Variable Infiltration Capacity (VIC), Mosaic and Hydrology
with Simple SIB (HySSIB)) solve the governing equations
of the soil-vegetation-snowpack medium, and estimate the
surface fluxes (i.e., sensible and latent heat, ground heat,
surface and subsurface runoff, and evapotranspiration) and
states (i.e., soil moisture and temperature, snow water equiv-
alent and depth).

One of the significant features of LIS is its high-
performance land surface modeling and Data Assimilation
(DA) infrastructure (Kumar et al., 2008b). Its DA capabil-
ity enables users to utilize a wide range of in-situ and satel-
lite observations, integrating them into various land surface
models (those mentioned above) to enhance their predictive
skill while accounting for the different sources of uncertainty
involved in different layers of simulation. The DA embed-
ded within LIS provides the possibility of performing prob-
abilistic simulations, which facilitate uncertainty characteri-
zation/quantification and help risk assessment and effective
decision making in the case of studying extreme hydrologic
processes, such as floods and droughts, among others. Please
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note that the LIS data assimilation framework is not used in
this study.

In this study, we used the Noah-MP LSM (Niu et al., 2011)
within LIS (LIS/Noah-MP). In LIS/Noah-MP, groundwater
storage changes are represented using a simplified bucket-
type linear reservoir approach. This method tracks variations
in groundwater storage based on inflow, known as recharge,
and outflows, which include capillary rise and exfiltration
to streams and rivers (baseflow). It is important to note that
this approach does not explicitly consider complex hydraulic
properties, such as hydraulic conductivity, which is typically
used in soil moisture modeling and groundwater recharge
prediction. Additionally, while Noah-MP captures some spa-
tial variability through parameterized subsurface properties,
it does not explicitly simulate lateral groundwater flow or
fully resolve spatial heterogeneity at fine scales, which can
limit accuracy in complex hydrogeological settings. As a re-
sult, spatial patterns in subsurface properties are not explic-
itly represented in this simplified approach, which may influ-
ence the accuracy of groundwater storage estimates (Li et al.,
2021).

4 ParFlow-LIS

Here we describe how we coupled the ParFlow and LIS mod-
els. As we mentioned earlier, in the coupled system (PF-
LIS/Noah-MP), when the precipitation reaches the ground
and infiltrates the soil, LIS estimates the land surface pro-
cesses (such as evaporation and transpiration) and then cal-
culates the net downward water flux which is later used as in-
put to feed the ParFlow subsurface model. It should be noted
that the land surface model (LIS/Noah-MP) and groundwa-
ter model (ParFlow) share the top four soil layers: the cou-
pled soil zone, in which the two models exchange fluxes (see
Fig. 1). ParFlow utilizes the Richards’ equation to estimate
the soil moisture in the coupled zone and in the other soil
layers down to the bottom layer. In the PF-LIS/Noah-MP sys-
tem, in addition to the top four soil layers with depth ranges
from 0-0.1, 0.1-0.4, 0.4—1, and 1-2 m, there are six addi-
tional layers, each with varying soil depths, ranging from 2—
7, 7-17, 17-42, 42-92, 92—-192 m, to the bottom layer from
192-492m. By using saturation data generated by ParFlow
as one of its outputs and incorporating the soil layer poros-
ity values, the soil moisture content (6) is estimated. This 3D
moisture data, derived from ParFlow, replaces the 1D soil hy-
drology within the LIS/Noah-MP model, affecting the simu-
lation of other land surface processes by LIS/Noah-MP. This
is a two-way coupling; at each time step, LIS/Noah-MP com-
putes evaporation, transpiration, snowmelt, and throughfall
and passes these to ParFlow and then ParFlow feeds back a
new soil moisture field to LIS/Noah-MP. Figure 1 schemati-
cally illustrates the soil column, with red and green boxes de-
lineating the control volumes for LIS/Noah-MP and ParFlow,
respectively. Where these two areas overlap (shown with yel-
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low arrow) is the coupled soil zone (top four soil layers).
The initial soil moisture condition starts from the land sur-
face with Gegigual (0 can be any value depending on condi-
tion) and varies down to the water table depth, where the
soil becomes saturated (Osapuration). Above the water table,
the pressure head is negative, while below the water table
in the saturated soil zone, it becomes positive. ParFlow pro-
vides estimates of pressure head and soil saturation, which,
along with soil- or more generally geological facies-specific
storage and porosity, are used to calculate subsurface stor-
age. Through ParFlow, we can estimate groundwater storage
and lateral flow, both of which significantly impact the land
surface energy and water flux estimates within the land sur-
face model. By integrating ParFlow with LIS/Noah-MP, we
can accurately estimate the groundwater storage and account
for subsurface lateral flow, facilitating the bi-directional ex-
change between the land surface and subsurface hydrologic
processes. For more information about the model input and
output datasets, we refer the readers to Tables S1-S3 in the
Supplement.

The LIS/Noah-MP model is designed to simulate the en-
ergy and water fluxes at the land surface, along with key state
variables like ET and its components, snow-related variables
(such as SWE and snow cover), and infiltration. It computes
the surface energy balance by representing vegetation with a
detailed canopy model, incorporating its dimensions, orienta-
tion, density, and radiometric properties. A two-stream radia-
tion transfer scheme is employed to account for the complex
interactions of solar radiation within the canopy. For snow
processes, the model features a multi-layer snowpack, capa-
ble of storing liquid water and simulating melt and refreeze
processes. It also includes a snow interception component,
which models the loading and unloading of snow, sublima-
tion, and other snow-related processes. The ET and infiltra-
tion values (which combine snowmelt and rainfall) produced
by LIS/Noah-MP are passed on to ParFlow. ParFlow then
calculates the surface, soil, and subsurface hydrodynamics,
generating important hydrological outputs such as water ta-
ble depth, groundwater storage (derived from pressure-head
and saturation), soil moisture, and streamflow (Maina et al.,
2025). In particular, transpiration is computed by LIS/Noah-
MP using the soil moisture computed by ParFlow. Within
LIS/Noah-MP, transpiration is computed using a Penman-
Monteith based approach, where stomatal resistance (influ-
enced by solar radiation, vapor pressure deficit, temperature,
and soil moisture) controls canopy conductance. Actual tran-
spiration is obtained by scaling potential transpiration with
a soil moisture stress function, considering vegetation type,
root distribution, and dynamic LAI.

5 Study Area

This study is conducted over the UCRB, a snow-dominated
region covering approximately 280 000 km?. Stretching from
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Figure 1. Schematic of the coupled PF-LIS/Noah-MP model. Single soil column representing the coupling zone between the LIS/Noah-MP
and ParFlow. wp and f; are wilting point and field capacity, respectively.
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complex topography — regions with high elevation gradient.
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the river’s origins in the Rocky Mountains of Colorado and
Wyoming to its endpoint at Lee’s Ferry in Northern Ari-
zona, the basin exhibits a significant variation in elevation,
ranging from 4320 to 937 m (Fig. 2). The maximum snow-
covered area within the UCRB varies between 50000 and
280000km? across different winters during the October—
April season (Tran et al., 2022). This seasonal change in
snow covered area plays a pivotal role in both the energy dy-
namics and hydrological cycle of the region (Liu et al., 2015;
Painter et al., 2012). The Colorado River is the primary wa-
ter source for over 35 million people in the United States
and an additional 3 million in Mexico. A recent publication
by the US Geological Survey (Miller et al., 2016) indicates
that up to half of the water coursing through the rivers and
streams within the Upper Colorado River Basin originates
from groundwater sources. Recognizing the extent of avail-
able groundwater and understanding its replenishment pro-
cess holds significant importance for the sustainable man-
agement of both groundwater and surface water resources
within the Colorado River basin. For more information about
the UCRB, including its climatology and geology, we refer
interested readers to Miller et al. (2016).

6 In-situ Observations and Satellite Products

In this section we describe all those in-situ observations and
satellite products that are used for evaluation of model sim-
ulations. As for in-situ observations, we use soil moisture
datasets available from multiple observation networks over
UCRB, USGS streamflow stations and groundwater moni-
toring wells. The locations of these in-situ stations are shown
in Fig. 3. To employ the maximum number of soil moisture
stations covering the region, we used datasets provided by
ISMN (International Soil Moisture Network) which collected
and compiled multiple networks including, ARM (Atmo-
spheric Radiation Measurement), PBO_H20 (Plate Bound-
ary Observatory), SCAN (Soil Climate Analysis Network),
SNOTEL (SNOw TELemetry), USCRN (U.S. Climate Ref-
erence Network), and iRON (Roaring Fork Observation Net-
work). In total, we have data from 238 soil moisture stations
in the UCRB and its vicinity (see Fig. 3). The distribution of
these stations by soil depth is as follows: Layer #1 (0-0.1 m):
235 stations, Layer #2 (0.1-0.4 m): 218 stations, Layer #3
(0.4—1m): 216 stations, Layer #4 (1-2m): 41 stations. Hav-
ing data from multiple depths improves the comparison with
simulated soil moisture and hence the evaluation of the cou-
pled PF-LIS system. The soil moisture datasets are pub-
licly available at https://ismn.earth/en/ (last access: 15 Au-
gust 2023). Streamflow and water table depth data are avail-
able at https://waterdata.usgs.gov/nwis/rt (last access: 15 Au-
gust 2023) and https://waterdata.usgs.gov/nwis/gw (last ac-
cess: 15 August 2023), respectively. We made use of data
from the period 2002 to 2022. In total, there are 374 USGS
stream stations and 18 USGS groundwater monitoring wells
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in the UCRB with observations from 2002 to 2022. Mea-
surements failing to meet the USGS quality control criteria
(e.g., those flagged for potential measurement inconsistency
or negative outlier values) were removed. In this study, the
monitoring wells are used to measure the depth to the water
table, not groundwater head.

In addition, we used two satellite products to study the ef-
fectiveness of PF-LIS/Noah-MP in estimating the soil mois-
ture and terrestrial water storage. For soil moisture, we use
THySM (Thermal Hydraulic disaggregation of Soil Mois-
ture; Liu et al., 2022). This is a downscaled version of
SMAP (Soil Moisture Active Passive) satellite soil mois-
ture data, which has 1km spatial resolution and is avail-
able on a daily time scale. THySM shows higher accu-
racy than the SMAP/Sentinel-1 (SPL2SMAP_S) 1km SM
product when compared to in situ measurements. The sec-
ond satellite product that we used in this study for evalu-
ation of coupled PF-LIS model simulation is anomalies of
Terrestrial Water Storage (TWS), derived from the Grav-
ity Recovery and Climate Experiment (GRACE; Tapley et
al., 2004) and its successor, GRACE Follow-On (GRACE-
FO; Landerer et al., 2020). Launched in 2002 and 2018,
GRACE and GRACE-FO have provided monthly, global
maps of fluctuations in terrestrial water storage (i.e., the sum
of groundwater, soil moisture, surface waters, snow and ice),
based on precise monitoring of variations in Earth’s gravity
field via its effects on the orbits of a pair of twin satellites
(http://www2.csr.utexas.edu/grace/RLO5_mascons.html, last
access: 15 August 2023). The dataset employed in this study,
known as CSR Release-06 GRACE Mascon Solutions, was
disseminated by the Center for Space Research (CSR) at the
University of Texas, Austin (Save et al., 2016). A monthly
TWS anomaly represents the current value minus the 2004 to
2010 mean. While GRACE can detect TWS anomalies rela-
tive to the long term mean, it cannot quantify the absolute
water mass stored. Due to its relatively coarse spatial reso-
lution (> 100000 km?) it has primarily been used to study
major river basins and other large regions (Rodell and Rea-
ger, 2023; Scanlon et al., 2016). UCRB with approximately
280 000 km? area meets this criterion.

7 PF-LIS/Noah-MP Model Setup
7.1 Input Datasets

In this study, we classified model parameters into two cat-
egories: surface and subsurface characteristics. The surface
parameters, which encompass topographic slopes and land
cover data, were determined as follows: Topographic slopes
were calculated using the Priority Flow toolbox (Condon and
Maxwell, 2019), employing elevation data from the hydro-
logical data and maps derived from Shuttle Elevation Deriva-
tives at multiple Scales (HydroSHEDS) as detailed and tested
in Zhang et al. (2021). Land cover information was ex-
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Figure 3. Location of in-situ soil moisture, USGS streamflow, and WTD stations. Note that the monitoring wells are used to measure the
depth to the water table. See also Fig. S1 (in the Supplement) for UCRB along with USGS streamflow stations and river networks.

tracted from the National Land Cover Database (NLCD) at a
30 m resolution and subsequently resampled using the near-
est neighbor method to match the model’s 1 km lateral reso-
lution (see Fig. S2). The land cover values are based on the
classifications of the International Geosphere-Biosphere Pro-
gram (IGBP). The total extent of the UCRB model is 608 km
in the east-west (x) direction and 896 km in the south-north
(y) direction, with a horizontal resolution of 1 km. The model
depth is 392 m and consists of 10 layers with variable thick-
nesses of 200, 100, 50, 25, 10, 5, 1, 0.6, 0.3, and 0.1 m from
bottom to top. Please note that the ParFlow-LIS/Noah-MP
simulations include LIS/Noah-MP simulations of the entire
rectangular grid. The ParFlow coupling is turned on inside
the watershed boundary and turned off outside the watershed
boundary. We present model results using only LIS/Noah-
MP on both maps to highlight the difference between the
coupled ParFlow-LIS/Noah-MP system and the standalone
LIS/Noah-MP model. This comparison demonstrates the ex-
tent to which the coupled system provides more detailed pre-
dictions of land surface processes across regions with vary-
ing land surface characteristics. The boundary conditions for
ParFlow are set to no-flow (Neumann conditions) along the
lateral edges of the region, reflecting the natural limits where
lateral flow into the model domain is negligible. Similarly,
the bottom layer is assigned a no-flow condition, as the model
extends deep enough to reach a zone where vertical flow
is minimal. At the top of the domain, overland flow condi-
tions are applied, corresponding to the land surface (Maina et
al., 2025). The development of the 3D subsurface, which in-
cludes soil datasets (e.g., permeability and porosity), uncon-
solidated, a semi-confining layer, bedrock aquifers, and the
3D model grid, is detailed in Tijerina-Kreuzer et al. (2024).
The subsurface parameters (e.g. saturated hydraulic conduc-
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tivity and van Genuchten parameters for the soil and sub-
surface) are detailed in Yang et al. (2023). For the atmo-
spheric forcing data, we use the phase-2 of the North Amer-
ican Land Data Assimilation System (NLDAS-2) product
(https://1das.gsfc.nasa.gov/nldas/v2/forcing, last access: 15
August 2023). This dataset, available at a spatial resolution
of 12.5 km and a temporal resolution of hourly, includes eight
variables: precipitation, air temperature, shortwave and long-
wave radiation, wind speed in two directions (east-west and
south-north), atmospheric pressure, and specific humidity.

7.2 Model Spinup

Reasonable initial conditions had to be obtained for both
models. To do this, the initial condition (i.e., pressure head)
for the ParFlow model was directly obtained from Yang
et al. (2023) who spunup the ParFlow model over the en-
tire CONUS. We subsetted the UCRB region from that ini-
tial pressure file. For more information about the ParFlow
spinup process etc. we refer the interested readers to Yang et
al. (2023). To spin up the LIS/Noah-MP model over UCRB,
we ran LIS/Noah-MP over 20 years (from 2002 to 2022)
three times. To run the LIS/Noah-MP model, we use the
NASA Land surface Data Toolkit (Arsenault et al., 2018),
to create the LIS/Noah-MP domain file that encompasses all
the parameters that LIS/Noah-MP requires to run. Next, we
use the initial conditions for both ParFlow and LIS/Noah-
MP, to perform the PF-LIS/Noah-MP model spinup. We ran
the PF-LIS/Noah-MP over the period of water year 2005 (a
normal water year, not dry and not wet) six times, which was
sufficient to bring the PF-LIS/Noah-MP system into quasi-
equilibrium.
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8 Results and Discussion

In this section, we discuss the results of the PF-LIS/Noah-MP
model simulations and aim to gain a comprehensive under-
standing of how the coupled system can enhance the mod-
eling of land surface processes and provide a more accurate
representation of groundwater storage, relative to LIS/Noah-
MP alone. Using the initial conditions derived from the
model’s spinup process, we ran the PF-LIS/Noah-MP model
over a 20-year period, spanning from 2002 to 2022. Con-
currently, we ran the LIS/Noah-MP model for the same time
frame, facilitating a comparative analysis of the two model
outputs. All model setup and simulations were executed on
the NASA Discover High-Performance Computing (HPC)
cluster. On average, a one-year simulation utilized approx-
imately 295 000 core hours, resulting in roughly one day of
wall-clock time. The entire 20-year simulation consumed ap-
proximately 6 million core hours of computing time, extend-
ing to approximately 1.5 months of wall-clock time.

8.1 Soil Moisture Analysis

Here, we study the extent to which the coupled system is able
to simulate the soil moisture in the top four soil layers (re-
ferred to as the coupling soil zone), where the two models in-
teract. Figure 4 illustrates the topsoil moisture (with ~ 10 cm
depth) as simulated by the LIS/Noah-MP model (left panel)
and the PF-LIS/Noah-MP model (right panel). Note that the
PF-LIS/Noah-MP simulations are limited to the UCRB re-
gion, which accounts for the similarity in model results be-
yond the boundaries of this region. The results indicate that
the soil moisture output from the LIS/Noah-MP model gener-
ally aligns with the patterns of land cover (see Fig. S2). How-
ever, the soil moisture data generated by the PF-LIS/Noah-
MP model represents soil moisture distribution in a man-
ner that closely correlates with topographical and land sur-
face characteristics, including vegetation and land cover. In a
broad sense, both models demonstrate wet conditions across
the eastern UCRB and drier conditions towards the western
regions. PF-LIS/Noah-MP provides soil moisture data with
higher spatial specificity, which can be crucial for many ap-
plications. For example, such finer spatial representations can
be useful in irrigation management applications, which al-
lows farmers to make better decisions about when and how
much to irrigate, leading to efficient water use and potentially
higher crop yields.

The results (shown in Fig. 4) also reveal that the coupled
system is able to identify the areas of high soil moisture along
the river corridors. This is attributed to the ParFlow model.
By integrating surface runoff and subsurface flow processes,
ParFlow can simulate the lateral movement of water across
the landscape. This dynamic simulation accounts for the re-
distribution of water due to both surface topography and sub-
surface properties, leading to a more accurate depiction of
soil moisture patterns, particularly in regions influenced by
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river networks. In addition, the model utilizes high-resolution
topographic data to define the land surface and river chan-
nels accurately. This precise representation allows ParFlow
to identify topographic depressions and convergent zones
where water is likely to accumulate, leading to higher soil
moisture content. Such detailed modeling ensures that areas
prone to saturation, especially along river corridors, are ef-
fectively captured.

To further study the model simulation results, we con-
ducted a comparative analysis between PF-LIS/Noah-MP
and LIS/Noah-MP-estimated soil moisture values and the
satellite-based soil moisture product obtained from SMAP.
As previously noted, our analysis employed downscaled soil
moisture data with a spatial resolution of 1 km, which is con-
sistent with the resolution of the model simulation, thereby
enhancing the accuracy of our comparative analysis. Figure 5
illustrates the result, with the first row depicting the correla-
tion coefficients and the second row showing the unbiased
root mean square error (W(bRMSE). The ubRMSE serves as
a metric that SMAP utilizes for reporting product accuracy.
The SMAP mission requirement for soil moisture product
accuracy sets the ubRMSE at 0.040 m3 m—3 (Chan et al.,
2016). Due to the temporal coverage of the SMAP satel-
lite, we calculated both performance metrics over the pe-
riod of April 2015 to December 2022. To perform this, we
used the NASA Land surface Verification Toolkit (LVT; Ku-
mar et al., 2012), which enables rapid evaluation of model
simulations by comparing against a comprehensive suite of
in-situ, remote sensing, and model and reanalysis data prod-
ucts (https://lis.gsfc.nasa.gov, last access: 15 August 2023).
As shown in Fig. 5, both performance metrics (R and RMSE)
from the two models generally exhibit similar spatial patterns
across the UCRB. On average, the metrics are R = 0.608
and RMSE = 0.0357 m3 m~3 across the region. Further anal-
ysis revealed that, particularly in regions characterized by
higher elevations and complex topography, PF-LIS/Noah-
MP-derived soil moisture values closely follow the SMAP
observations, outperforming the performance of LIS/Noah-
MP-derived soil moisture. In terms of soil moisture sim-
ulation, the ubRMSE for the coupled system is generally
lower toward the outlet of the watershed compared to the
LIS/Noah-MP model. This difference may be attributed to
lateral flow transporting moisture toward lower-altitude re-
gions, leading to a wetter soil column. This pattern is also
evident in Fig. 4.

The results also reveal that, in general, when we cou-
pled ParFlow with LIS/Noah-MP, it resulted in soil moisture
fields with more spatial detail while keeping the accuracy
in the same range as compared to the LIS/Noah-MP stan-
dalone soil moisture estimates. ParFlow and LIS/Noah-MP
use a form of Richards’ equation with some different as-
sumptions. LIS/Noah-MP uses a different function for reten-
tion (not the van Genuchten function used within ParFlow)
and it is 1D (one-dimensional). The main difference between
PF-LIS/Noah-MP and LIS/Noah-MP is the deeper subsur-
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Figure 4. Spatial pattern of topsoil layer moisture estimated by LIS/Noah-MP (left panel) and PF-LIS/Noah-MP (right panel). This result is
reported for 23 January /2002. ParFlow-LIS/Noah-MP runs cover the full grid, with ParFlow coupling active inside and inactive outside the

watershed boundary.

face in PF-LIS/Noah-MP and the fact that it accounts for lat-
eral flow, resulting in a more physically realistic represen-
tation of water movement through the soil. This enables the
PF-LIS/Noah-MP model to capture the complex influence of
topography and specific land surface features on soil mois-
ture.

Figure 6 illustrates the comparison between soil mois-
ture estimates from the LIS/Noah-MP and PF-LIS/Noah-MP
models against in-situ networks in the UCRB. In this sec-
tion, we focus on presenting the comparison results for the
topsoil (Fig. 6) and root zone (Fig. 7) soil moisture, while
the analysis for other soil depths can be found in the Supple-
ment (Figs. S3 and S4). The soil moisture comparison anal-
ysis was conducted separately for each soil depth to study
the effectiveness and utility of the coupled PF-LIS/Noah-
MP model in estimating soil moisture within the coupling
soil zone. The 20-year simulation results suggest that, across
all four soil depths, the soil moisture values estimated by
the PF-LIS/Noah-MP model closely resemble those gener-
ated by the LIS/Noah-MP model. The regions’ topography
(see Fig. 2) and the results shown in Fig. 5 collectively
reveals that the coupled system slightly improves the ac-
curacy of soil moisture estimates across the high altitudes
with complex topography in the UCRB. PF-LIS/Noah-MP
utilizes the three-dimensional Richards’ equation, which is
well-suited for accurately modeling soil moisture dynamics
in regions with complex topography due to its inherent fea-
tures and mathematical formulation. The numerical solution
of the equation provides flexibility to handle complex bound-
ary conditions in irregular terrains, while its ability to in-
corporate spatial variability in hydraulic conductivity is vi-
tal for representing changing soil properties across challeng-
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ing landscapes. Noah-MP can model soil moisture dynam-
ics, but there are limitations in handling complex topogra-
phy and boundary conditions compared to ParFlow. Noah-
MP primarily uses a structured grid system, and while it
allows for parameterization of soil moisture processes, it
does not inherently solve three-dimensional flow dynamics
as ParFlow does. This means that in regions with steep topo-
graphic gradients or highly heterogeneous terrain, ParFlow
is better suited because it explicitly resolves lateral flow and
subsurface heterogeneity? ParFlow’s numerical formulation
allows for more flexible and realistic boundary condition rep-
resentations, particularly in irregular terrains. Noah-MP, on
the other hand, relies on predefined lookup tables and soil pa-
rameterizations that may not fully capture spatial heterogene-
ity? Noah-MP can incorporate variations in soil moisture, but
its hydraulic conductivity representation is more generalized,
whereas ParFlow enables explicit simulation of hydraulic
gradients and subsurface interactions. Moreover, ParFlow
considers capillary rise and gravitational effects, which are
critical factors in areas with elevation changes. Noah-MP ac-
counts for both capillary rise and gravitational effects, how-
ever, its treatment differs from ParFlow in terms of complex-
ity and implementation. Noah-MP incorporates capillary rise
through its soil moisture parameterization, which includes
the influence of matric potential on soil water movement.
However, its representation is more simplified and dependent
on predefined soil layers, limiting its ability to dynamically
capture variations in soil moisture redistribution, particularly
in highly heterogeneous terrains? Noah-MP includes gravi-
tational drainage as part of its hydrology scheme, but it as-
sumes a one-dimensional vertical flow, meaning lateral sub-
surface flow and complex topographic-driven gravitational
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Figure 5. The correlation coefficient and ubRMSE between the simulated topsoil moisture and the SMAP product at 1 km spatial resolution.
This result is reported for the period of April 2015 to December 2022. ParFlow-LIS/Noah-MP runs cover the full grid, with ParFlow coupling

active inside and inactive outside the watershed boundary.

effects are not fully resolved. In contrast, ParFlow explic-
itly solves the three-dimensional Richards’ equation, which
allows it to capture both vertical and lateral water movement
more accurately in complex terrains? ParFlow’s representa-
tion of lateral overland flow contributes to improved accuracy
in complex terrain. These attributes collectively enable the
PF-LIS/Noah-MP model to accurately simulate soil moisture
dynamics in regions characterized by complex topography.
The results confirm that integrating the ParFlow groundwater
model with LIS/Noah-MP not only maintains the modeling
performance of LIS/Noah-MP but also enhances its ability to
represent the spatial variability of land surface processes, as
previously demonstrated in Figs. 4 and 5.
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The decrease in statistical performance (e.g., correlation)
with ParFlow, despite its improved spatial representation, can
be attributed to several factors: ParFlow explicitly resolves
three-dimensional hydrological processes and captures fine-
scale land surface characteristics better than Noah-MP. How-
ever, increased model complexity does not always trans-
late to better statistical agreement with point-based obser-
vations, especially when observations are sparse or have lo-
calized variability that the model does not perfectly resolve.
Soil moisture observations are highly localized, often influ-
enced by microscale factors (e.g., vegetation, microtopogra-
phy) that even high-resolution models like ParFlow may not
capture accurately. In contrast, Noah-MP’s parameterizations
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Figure 6. The Spearman’s correlation coefficient and RMSE between the simulated and observed soil moisture at the soil depth of 0-0.1 m
(10 cm). This result is reported based on 20-year model simulation and observation data, from January 2002 to December 2022. At each
station, performance metrics were calculated using 20 years of observations and model simulations. These metrics were then averaged across
all stations to obtain a regional mean performance measure, which is reported in each plot.

may act as an effective large-scale approximation, leading to
a slightly better correlation with station-based observations.
While Noah-MP shows slightly better accuracy in terms of
correlation, the enhanced spatial realism in ParFlow is valu-
able for applications that require detailed hydrological repre-
sentations. The slight statistical drop may not be as critical
as the ability of ParFlow to resolve soil moisture variations
across heterogeneous landscapes, making it more suitable
for studies focusing on spatial processes rather than purely
station-based validation.
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In general, the results indicate that the coupled PF-
LIS/Noah-MP model produces soil moisture simulations
comparable to those of the LIS/Noah-MP model across
the entire UCRB. Figures 5, 8, and 9 (along with S3 and
S4) show that the root mean squared error and correla-
tion coefficient are nearly identical between the two mod-
els. For instance, in Fig. 5, these metrics are reported as
0.036 m® m—3 and 0.608, respectively. However, further anal-
ysis — when these metrics are averaged over areas with com-
plex topography — revealed that, in regions with a high el-
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Figure 7. The Spearman’s correlation coefficient and RMSE between the simulated and observed soil moisture at the soil depth of 1-2m
(100 cm). This result is reported based on 20-year model simulation and observation data, from January 2002 to December 2022. At each
station, performance metrics were calculated using 20 years of observations and model simulations. These metrics were then averaged across

all stations to obtain a regional mean performance measure, which is reported in each plot.

evation gradient (for instance, regions 1 and 2 shown in
Fig. 2), the PF-LIS/Noah-MP model outperforms the stan-
dalone LIS/Noah-MP model in terms of soil moisture simu-
lation. Figures 8 and 9 demonstrate the performance of the
LIS/Noah-MP and PF-LIS/Noah-MP models compared to
SMAP observations, specifically zooming in on two regions
with latitude and longitude ranges: Region 1 (37 to 38.2° N,
—108 to —106° W) and Region 2 (40.5 to 41°N, —111 to
—109.5°W). In Region 1, the LIS/Noah-MP model yielded
a ubRMSE of 0.0323 m® m~ and a correlation coefficient of
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0.308, whereas the PF-LIS/Noah-MP model showed slightly
higher values of 0.0358 m3>m™3 and 0.343, respectively. In
Region 2, the LIS/Noah-MP model reported a ubRMSE of
0.0388m> m—3 and correlation coefficient of 0.482, while
the PF-LIS/Noah-MP model performed better with a lower
ubRMSE of 0.0330m>m~3 and a higher correlation coef-
ficient of 0.539. These regions were selected due to their
complex topography characterized by high elevation gradi-
ents (see Fig. 2).
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Figure 8. Spatial distribution of soil moisture performance metrics (ubRMSE and R) for Region 1 (shown in Fig. 2), comparing LIS/Noah-
MP and PF-LIS/Noah-MP models against SMAP observations. Note that the performance measures are calculated over the entire rectangle.
ParFlow-LIS/Noah-MP runs cover the full grid, with ParFlow coupling active inside and inactive outside the watershed boundary.

8.2 Streamflow Analysis

To calculate the streamflow at the location of the USGS
stations, we used ParFlow hydrology module available on
ParFlow GitHub page. For more information, we refer the
interested readers to this page (https://github.com/parflow/
parflow/tree/master/pftools, last access: 15 August 2023).
In particular, we used calculate_verland_flow_grid that re-
quires different parameters to operate, these include pres-
sure, slopex, slopey, mannings, grid size and the flow method
(which is OverlandKinematic here). Figure S5 illustrates the
total runoff over the study area for a certain day. We uti-
lized two performance measures, namely Spearman’s corre-
lation (Rho) and Total Absolute Relative Bias, to assess the
performance of our model on timeseries data. As explained
in Maxwell and Condon (2016), Tran et al. (2022), O’Neill
et al. (2021) and Tijerina-Kreuzer et al. (2021) plotting a
graph (hereafter referred to as Condon Diagram) that visu-
alizes these metrics against each other provides a concise
representation of the model’s capability to accurately sim-
ulate the timing and magnitude of streamflow. Spearman’s
Rho was employed to evaluate disparities in timing between
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simulated and observed streamflow, while relative bias mea-
sured differences in their volumes. A high Spearman’s Rho
value and a low relative bias value are indications of when
simulations closely match observations. If Spearman’s Rho
is less than 0.5 and Total Absolute Relative Bias is less than
1, the model simulation produces accurate overall flow esti-
mates but does not match the hydrograph peaks well. Con-
versely, if Spearman’s Rho is greater than 0.5 and Total Ab-
solute Relative Bias is less than 1, the model simulation is
representing the hydrograph shape (i.e. timing) with low flow
bias. However, if Spearman’s Rho is less than 0.5 and Total
Absolute Relative Bias is greater than 1, the model simula-
tion does not reproduce either the flow magnitude or tim-
ing. On the other hand, if Spearman’s Rho is greater than 0.5
and Total Absolute Relative Bias is greater than 1, the model
simulation represents the flow timing well but not the over-
all flow magnitude. We excluded observations from stations
influenced by human activities (Falcone, 2011). While small
drainage basins may experience water withdrawals and irri-
gation ditches, their smaller scale makes them more suscep-
tible to localized anthropogenic influences, which can have
an outsized impact on hydrological processes. In contrast,

https://doi.org/10.5194/hess-29-5429-2025


https://github.com/parflow/parflow/tree/master/pftools
https://github.com/parflow/parflow/tree/master/pftools

P. Abbaszadeh et al.: A case study over the Upper Colorado River Basin 5443

LIS vs. SMAP; [R=0.482]

0.2 0.3 0.4 0.5 0.6 0.7
Correlation Coefficient

LIS vs. SMAP; [ubRMSE=0.0388]

:
0.025 0.030 0.035 0.040 0.045 0.050 0.055
UubRMSE (m3/m3)

PF-LIS vs. SMAP; [R=
Ul g

0.539]

e e e e e e e N R
0.0 0.2 0.4 0.6 0.8
Correlation Coefficient

PF-LIS vs. SMAP; [uUbRMSE=0.0330]

0.02 0.03 0.04 0.05 0.06 0.07
ubRMSE (m3/m3)

Figure 9. Spatial distribution of soil moisture performance metrics (ubRMSE and R) for Region 2 (shown in Fig. 2), comparing LIS/Noah-
MP and PF-LIS/Noah-MP models against SMAP observations. Note that the performance measures are calculated over the entire rectangle.
ParFlow-LIS/Noah-MP runs cover the full grid, with ParFlow coupling active inside and inactive outside the watershed boundary.

larger basins tend to buffer these localized effects, especially
when considering monthly or annual timescales (Hao et al.,
2008; Zhang et al., 2012). Therefore, we set a drainage area
threshold of 500 km?2, and stations with drainage areas ex-
ceeding this threshold underwent manual inspection. For ex-
ample, we removed the station at Lee’s Ferry (drainage area:
289 560 km?), located just downstream of the Glen Canyon
Dam, from the analysis.

The left panel in Fig. 10 shows the Condon Diagram,
which summarizes the performance of the PF-LIS/Noah-MP
model in estimating streamflow across the USGS stations
within the UCRB region. The results indicate that the cou-
pled system has reasonable skill in simulating the stream-
flow. The right panel in this figure shows the spatial distribu-
tion of the USGS stations where the model performance was
evaluated. Over some USGS stations, PF-LIS/Noah-MP has
shown marginal efficiency in capturing the timing of runoff,
and this is likely not solely due to errors in hydraulic con-
ductivity. As discussed in Maxwell and Condon (2016), the
algorithm used for topographic processing resulted in spa-
tial inconsistencies between the modeled and actual stream
networks. To address this, USGS gauges were mapped to
the PF-LIS/Noah-MP grid using nearest-neighbor mapping
and manual adjustments, ensuring the gauges were correctly
placed on the appropriate ParFlow stream cells. These incon-
sistencies in stream network representation may contribute

https://doi.org/10.5194/hess-29-5429-2025

to inaccuracies in runoff timing, in addition to any potential
errors in hydraulic conductivity. Figure S6 shows the sim-
ulated streamflow versus observed streamflow over the pe-
riod of 20 years at the monitoring location 9066510, which is
associated with a stream in Eagle County, Colorado (Spear-
man’s Rho = 0.83 and RMSE = 3.65 CMS). Overall, the PF-
LIS/Noah-MP model is able to adequately capture the mag-
nitude and timing of streamflow observations. This can be at-
tributed to the robustness of the developed hydrology model,
which excels in precisely simulating base flow and its impact
on overall streamflow. This lies in the model’s comprehen-
sive integration of surface and subsurface hydrological pro-
cesses. By seamlessly incorporating both surface water and
groundwater dynamics, the model achieves a level of accu-
racy that allows it to effectively simulate streamflow time se-
ries, capturing the complex interaction between the surface
and subsurface physical processes. The low bias in model
simulations also indicates that the model is not systemati-
cally overestimating or underestimating streamflow. This fur-
ther suggests that the model’s structure appears to be well-
tailored to capture the lateral and vertical water flow and its
interaction with the land surface processes.
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Figure 10. Left panel: The Condon-diagram streamflow performance plot. Right panel: the performance category of each gauge within the
UCRB domain. This result is reported based on 20-year model simulation and observation data, from January 2002 to December 2022. This
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Table 1. Spearman correlation (Rho) and Total Absolute Relative Bias (TARB) calculated between the water table depth estimated by

PF-LIS/Noah-MP and observed by USGS wells.

Rho TARB Latitude Longitude  USGS Station ID ~ Well Depth (m)
0.196 0.98 36.490834 —109.94817 362936109564101 259.9
—0.79 0.98 36.647222 —110.17068 363850110100801 407.4
—-0.29 0.81 36.715389  —108.09297 364255108053202 18.6
0.62 0.97 36.727221 —110.26319 364338110154601 264.4
0.65 0.34 38.4075 —107.82056 382427107491401 49
0.59 0.08 38.448931 —107.83547 382656107500701 7.5
0.63 0.20 38.488056 —107.80861 382917107483101 4.5
0.54 0.20 38.496389 —107.78278 382947107465801 5.9
0.06 0.48 38.514167 —107.88194 383051107525501 5.5
—-0.32 0.77 38.554167 —107.88111 383315107525201 104
—0.28 0.41 38.607222 —107.97083  383626107581501 6.1
0.75 0.19 38.685556 —107.985 384110107591801 4.4
—0.07 0.47 38. 711111  —108.00194  384240108000701 6.9
—0.78 0.92 39.86 —108.35111 395136108210000 195
—0.25 0.94 39.86 —108.35028 395136108210001 265.4
—0.63 0.91 39.860133 —108.35096 395136108210004 75.9
0.98 0.98 39.964444  —108.35417 395755108211400 384
0.98 0.98 39.964722 —108.35361 395755108211401 534.8

8.3 Water Table Depth Analysis

As mentioned earlier, the most important capability of the
PF-LIS/Noah-MP model lies in its ability to estimate ground-
water levels up to 392 m below the land surface. In this study,
we employed 10 subsurface soil layers with a cumulative
depth of 392 m. However, this depth can be adjusted by the
user based on the availability of geological information for
the study region. Our comparison of water table depth esti-
mates from the PF-LIS/Noah-MP model with those observed
in USGS wells (refer to Table 1) reveals a general agree-
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ment between model simulations and observations. How-
ever, in some locations, model performance is limited due
to both the complex topography and geology of the UCRB.
Additionally, the use of a coarse (1 km) grid may limit the
model’s ability to capture fine-scale topographic variations,
and discrepancies between observation locations and model
grid centroids further contribute to the mismatch. Deeper
wells are typically located in mountainous regions charac-
terized by complex topography. It is important to note that
all wells were assigned to the nearest grid cell center with-
out any additional adjustments. For example, the USGS sta-

https://doi.org/10.5194/hess-29-5429-2025



P. Abbaszadeh et al.: A case study over the Upper Colorado River Basin

42.5°N 42.5°N

40°N 40°N

37.5°N 37.5°N

35°N i 35°N
112.5°wW 110°w 107.5°W 105°wW

1 1 1 1 1
0 50 100 150 200 250 300 350
water table depth (m)

Figure 11. Water table depth simulated by PF-LIS/Noah-MP model
across the UCRB.

tion 382427107491401 is associated with a well in Montrose
County, Colorado. This well, with a depth of ~ 5m, is sit-
uated in close proximity to agricultural lands and central
pivot systems characterized by a predominantly flat topog-
raphy. The dataset has been accessible since 2014, and the
reported values for Rho and bias stand at 0.65 and 0.34, re-
spectively. However, at the USGS station 395136108210000,
linked to a well in Rio Blanco County, Colorado, with a depth
of ~ 195 m, located in a region characterized by more com-
plex terrain and topography, the model’s performance is lim-
ited. Water data has been accessible since 1975. Generally,
the model’s performance is contingent upon the geographical
locations of the stations. Stations located in topographically
complex surroundings, which often coincide with more com-
plex geology, tend to yield lower model performance com-
pared to those in flatter environments (See Fig. S7). Some of
the low skill values (reported in Table 1) could be a result
of groundwater pumping impacts which are not represented
within the modeling framework. It is important to note that
all wells were assigned to the nearest grid cell center with-
out any additional adjustments, that water table depths are
interpolated within grid cells assuming a hydrostatic equilib-
rium and that information regarding screen depth and well
construction are used in the comparison when available.
Figure 11, for example, illustrates the water table depth
simulated by the PF-LIS/Noah-MP model for a certain day
over the UCRB. In general, our observations of water table
depth maps over UCRB show more deep water table depth
in eastern areas with complex topography, such as hilly or
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mountainous areas. These areas are often prone to localized
variations in the water table. However, regions with smoother
topography, like plains, tend to have a more spatially uni-
form water table pattern, with gradual changes over larger
distances. Human activities, such as drainage systems and ur-
banization, can introduce variability in both types of environ-
ments. Overall, water table dynamics are shaped by the inter-
play of topography, geology, and human influence, with com-
plex topography often contributing to more localized varia-
tions compared to smoother environments.

8.4 Terrestrial Water Storage Analysis

A comparison between changes in water storage from
GRACE and GRACE-FO and the PF-LIS/Noah-MP simu-
lation for the period 2002 to 2022 is shown in Fig. 12. The
GRACE-derived water storage anomalies were calculated by
subtracting the mean water storage from 2004 to 2010. The
same procedure was applied to the PF-LIS/Noah-MP outputs
to maintain consistency in the comparison. The two prod-
ucts demonstrated strong agreement throughout the period
from 2002 to 2012, effectively capturing the drought years of
2003 and 2004, as well as the wet years of 2005, 2008, and
2011. However, starting from 2013, there is a noticeable de-
cline in the agreement between the two time series, and this
disparity becomes more pronounced during the years 2020,
2021, and 2022. The observed disparity is likely attributed to
the recent increased anthropogenic effects on groundwater in
the UCRB. The increased demand for water, driven by pop-
ulation growth and agricultural expansion, has contributed to
a decline in groundwater levels (Carroll et al., 2024; Castle
et al., 2014; Miller et al., 2021; Tillman et al., 2022; Tran
et al., 2022). To support the interpretation of TWS anoma-
lies, we incorporated groundwater withdrawal data from se-
lected stations across the UCRB. These data, compiled by
the USGS from state databases in Arizona, Colorado, New
Mexico, Utah, and Wyoming, include annual groundwater
extraction volumes and well-construction details. The time
series of groundwater withdrawals (see Fig. S8) highlight
the temporal trend in pumping, which likely contributes to
the observed TWS declines, particularly during dry periods.
While this trend is accurately captured by the GRACE satel-
lites, PF-LIS/Noah-MP underestimated it. The integration of
data assimilation into the coupled system can help to recon-
cile differences between simulated and observed TWS. LIS
already incorporates a data assimilation feature. In our future
work, we will study the extent to which the data assimilation
capability embedded within LIS improves the representation
of the coupled system’s response to TWS dynamics.

9 Conclusions

In this study, we explored the effectiveness and usefulness
of a newly coupled surface-subsurface hydrology model, PF-
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Figure 12. Time series of the total water storage anomaly from the PF-LIS/Noah-MP model simulations and the GRACE and GRACE-FO

observations.

LIS/Noah-MP, and studied its performance in estimating dif-
ferent hydrologic variables. This study was conducted in
the UCRB, a region heavily dependent on groundwater to
supply water for millions of people in the western United
States. With an anticipated increase in drought occurrences
due to climate warming, the region faces a heightened risk of
groundwater depletion in the future. Understanding the dy-
namics of land surface and subsurface water in the UCRB is
crucial for effective water resource management and policy-
making.

In this study, we employed the recently developed inte-
grated surface-subsurface hydrology model, PF-LIS/Noah-
MP, to assess key components such as soil moisture, stream-
flow, water table depth, and total water storage anomaly
across the UCRB. These estimations were then compared
with a comprehensive set of in-situ and satellite observa-
tions, encompassing soil moisture data from various net-
works, USGS streamflow and well observations, as well as
satellite data from SMAP for soil moisture and GRACE for
groundwater.

The findings demonstrate that the integration of ParFlow
with LIS/Noah-MP expands the physics represented by the
LIS/Noah-MP model. These increased process representa-
tions have two main advantages: better performance of land
surface fluxes, especially in regions with complex topogra-
phy, and accurate estimations of subsurface hydrologic pro-
cesses, including water table depth. In particular, our results
highlight that the coupled PF-LIS/Noah-MP model improves
soil moisture representation in steep terrain, where stan-
dalone LIS/Noah-MP struggles due to its simplified ground-
water formulation. This enhanced performance is crucial
for capturing water availability in headwater regions, which
serve as critical water sources for downstream users. More-
over, the ability to simulate lateral subsurface flow offers
an improved understanding of groundwater redistribution,
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an important mechanism influencing baseflow and long-term
water availability.

PF-LIS/Noah-MP presents a viable approach to studying
land surface and subsurface hydrologic processes and their
interactions across different scales. This research contributes
valuable insights for informed decision-making in the man-
agement of water resources in the UCRB, particularly in
the face of future climate challenges. The ability of PF-
LIS/Noah-MP to explicitly resolve groundwater processes
also makes it a promising tool for evaluating the impacts of
future climate scenarios on water availability, particularly in
arid and semi-arid regions where groundwater plays a crucial
role in sustaining ecosystems and human activities. Future
work should explore the model’s sensitivity to different pa-
rameterizations and meteorological forcing datasets, which
could further refine its applicability for large-scale hydro-
logic assessments.

Although the current study does not explicitly incorpo-
rate groundwater pumping or irrigation, these processes are
essential for understanding regional water dynamics. The
observed discrepancies between PF-LIS/Noah-MP ground-
water simulations and GRACE-derived groundwater storage
highlight the need to account for human impacts on ground-
water availability. Future work can leverage data assimila-
tion techniques to integrate observed groundwater data and
improve model accuracy. The more detailed representation
of subsurface processes within the PF-LIS/Noah-MP system
allows for improved utilization of remote sensing informa-
tion through data assimilation. For example, to date, the as-
similation of GRACE terrestrial water storage observations
has only been demonstrated within models that have a shal-
low groundwater representation and without the representa-
tion of lateral subsurface moisture transport processes (e.g.,
Kumar et al., 2016). By incorporating a fully integrated sub-
surface representation, PF-LIS/Noah-MP offers an opportu-

https://doi.org/10.5194/hess-29-5429-2025



P. Abbaszadeh et al.: A case study over the Upper Colorado River Basin 5447

nity to advance hydrologic data assimilation systems by di-
rectly leveraging GRACE-based water storage estimates. The
ongoing development will extend LIS’ data assimilation ca-
pabilities to PF-LIS, to enable better exploitation of the in-
formation from remote sensing.

Appendix A

The ParFlow model operates in three distinct modes: (1) vari-
ably saturated; (2) steady-state saturated; and (3) integrated
watershed flows. This adaptability enhances its utility across
a range of hydrological scenarios. Here we summarize each
mode following the work of Kollet and Maxwell (2006).

Al Variably Saturated Flow

ParFlow can operate in variably saturated mode through the
well-known mixed form of the Richards’ equation:

ap (Sw(p))
SsSw (p)§+¢T =Vq+gs (AD)
q = —ksk:(p)V(p—12) (A2)

where S; is the specific storage coefficient [L~1], S, is the
relative saturation [-] as a function of pressure head p, ¢ is
time, is the porosity of the medium [-], ¢ is the specific vol-
umetric (Darcy) flux [L T, ks is the saturated hydraulic
conductivity tensor [LT~!1, k; is the relative permeability [—
], which is a function of the pressure head p, g is the general
source or sink term [T~!] (includes wells and surface fluxes,
e.g., evaporation and transpiration). z represents depth be-
low the surface [L]. ParFlow has been utilized for numeri-
cal simulations, including the modeling of river—aquifer ex-
change involving both free-surface flow and subsurface flow.
It has also demonstrated efficacy in addressing highly hetero-
geneous problems under variably saturated flow conditions.
For the situations where the saturated conditions are predom-
inant, the steady-state saturated mode in ParFlow becomes a
valuable tool.

A2 Steady-State Saturated Flow

The fully saturated groundwater flow equation is expressed
as follows:

Vg—q=0 (A3)
qg=—kVP (A4)

where P represents the 3-D hydraulic head-potential [L].
ParFlow does include a direct solution option for the steady-
state saturated flow that is distinct from the transient solver.
When studying more sophisticated or complex processes,
such as when simulating a fully coupled system is of interest
(i.e., surface and subsurface flow), an overland flow bound-
ary condition is employed.
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A3 Overland Flow

Surface water systems are interlinked with the subsurface
system; this interaction plays a critical role for rivers. How-
ever, explicitly representing the connections between the
two systems in numerical simulations is a difficult task. In
ParFlow, overland flow is implemented as a two-dimensional
kinematic wave equation approximation of the shallow wa-
ter equations. The continuity equation for two-dimensional
shallow overland flow is expressed as follows:

s
ot

=V (i) +gs (A5)

where v is the depth-averaged velocity vector [LT~!] and s
is the surface ponding depth [L]. Ignoring the dynamic and
diffusion terms results in the momentum equation, which is
known as the kinematic wave approximation:

Sti = So,i (A6)

The Sr; and S, ; represent the friction [-] and bed slopes
(gravity forcing term) [—], respectively. i indicates the x and
y directions in the following equations. Therefore, Man-
ning’s equation can be used to build a flow depth-discharge
relationship as follows:

VSt x 2/3

Uy = — s (AT)
n
/Sty

vy = Yyl (A8)

where 7 is the Manning roughness coefficient [TL~!/3]. The
shallow overland flow formulation (Eq. A9) assumes the ver-
tical averaging of flow depth and disregards any vertical
change in momentum within the surface water column. To
incorporate vertical flow (from the surface to the subsurface
or vice versa), a formulation that couples the system of equa-
tions through a boundary condition at the land surface be-
comes essential. We can modify Eq. (AS) to include an ex-
change rate with the subsurface, g.:

Vs
at

In ParFlow, the overland flow equations are directly cou-
pled to the Richards’ equation at the top boundary cell un-
der saturated conditions. Conditions of pressure continuity
(i.e., equal pressures at the ground surface for the subsurface
and surface domains) and flux at the top cell of the bound-
ary between the subsurface and surface systems are assigned.
Setting pressure head in Eq. (A1) equal to the vertically av-
eraged surface pressure, ¥g:

pP=Ys=Y

and the flux, ¢., equal to the specified boundary conditions
(for example, Neumann-type boundary conditions):

gBc = —ksk:V (f —2)

=V (is) +qs +qe (A9)

(A10)

(Al1)
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and one solves for the flux term in Equation (A10), the result
becomes:

_alyol

\% L0l — gs
o7 v, 0l —gs

(A12)

S

where the ||y, 0| operator is defined as the greater of the
quantities, v, 0. Putting the Egs. (A10) and (A11) together
results in the following relationship:

21y, 0]
ke V(== VOG0 —

a7 (A13)

As we see here the surface water equations are represented
as a boundary condition to the Richards’ equation. For more
information about the coupled surface and subsurface flow
systems in ParFlow, we refer the interested readers to Kollet
and Maxwell (2006).

Data availability. ParFlow-LIS is included in the Nasa
Land Information System (LIS), an open-source soft-
ware that can be found at Rosen and Dunlap (2024,
https://doi.org/10.5281/zenodo.14058196). NUOPC CAP has been
integrated in both ParFlow and LIS. The data set and model con-
figuration for LIS/Noah-MP and PF-LIS/Noah-MP models can be
found at Maina (2024, https://doi.org/10.5281/zenodo.10950634).
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