Hydrol. Earth Syst. Sci., 29, 5315-5329, 2025
https://doi.org/10.5194/hess-29-5315-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydrology and
Earth System
Sciences

Alleviating interpretational ambiguity in hydrogeology through
clustering-based analysis of transient electromagnetic and surface

nuclear magnetic resonance data

Mathias Vang', Jakob Juul Larsen’, Anders Vest Christiansen', and Denys Grombacher!

1Department of Geoscience, Aarhus University, Aarhus, Denmark
2Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark

Correspondence: Mathias Vang (mva@geo.au.dk)

Received: 29 January 2025 — Discussion started: 30 April 2025

Revised: 26 August 2025 — Accepted: 27 August 2025 — Published: 20 October 2025

Abstract. Local characterization of groundwater systems is
critical for managing and protecting vulnerable resources.
Geophysical methods can provide dense imaging of subsur-
face parameters to delineate lithological boundaries and wa-
ter tables for hydrogeological investigation, though using a
single geophysical method for determining lithologies can
yield erroneous interpretations as different lithologies can
have similar properties. By using several geophysical meth-
ods, it is possible to reduce this risk and better assign likely
lithologies to subsurface units. We present two case stud-
ies where transient electromagnetics (TEM) and surface nu-
clear magnetic resonance (SNMR) are used in combination
to delineate hydrogeological structures. Novel spatially con-
strained inversion in SNMR was used to provide horizon-
tal consistency between soundings. Three coincident param-
eters, resistivity from the TEM measurements and water con-
tent and relaxation time from the SNMR measurements, were
used in a K-means clustering scheme to resolve subsurface
structures. The K -means clustering was evaluated with a sil-
houette index to pick the number of clusters. After cluster-
ing, each cluster was assigned a hydrogeological description
based on the distinct features in the three parameters; e.g., a
low resistivity, high water content, and high T are assigned
as saltwater-saturated sand. In the first case study, the clus-
ters enabled improved resolution of a regional water table
in an unconfined aquifer setting with the multi-geophysical
approach. The water table estimates were positively evalu-
ated against multiple boreholes within 500 m of coincident
geophysical models. The second case study illustrates how
clustering, of SNMR and TEM models, can delineate salt-

water intrusion in an island coastal aquifer, which would not
be possible with any of these methods individually. Addition-
ally, the clustering resolved the main shallow aquifer on the
island. Our work illustrates how the combination of geophys-
ical data can be used to improve the identification of hydro-
geological layers and reduce interpretational bias.

1 Introduction

Climate-resilient groundwater management hinges on the
need for detailed characterization of local groundwater sys-
tems (Dragoni and Sukhija, 2008). Historically, lithological
descriptions of wells have been used to establish geological
models to forecast local groundwater behavior and inform
conceptual models of local systems (van Roosmalen et al.,
2007). The high cost associated with drilling yields geolog-
ical maps that are generally based on sparse point coverage,
with long-distance interpolation, and simplicity assumptions
between observations where structures may actually be com-
plex. To address these data sparsity issues, geophysics can
be used to delineate structures non-invasively, giving high-
resolution imaging of the subsurface to complement direct
borehole observations (Binley et al., 2015). Methods based
on imaging of subsurface electrical properties are used ex-
tensively in hydrological investigations, where spatial vari-
ations in the electrical properties of the subsurface, specif-
ically the resistivity, are used to study pollution, explore
groundwater resources, and delineate saltwater interfaces,
among many other applications (Binley et al., 2015). Within
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methods imaging electrical properties, electromagnetic (EM)
methods are widely used. They operate inductively by creat-
ing a varying magnetic field inducing eddy currents in the
ground (Nabighian and Macnae, 1991). The secondary mag-
netic field produced by the decaying eddy currents is mea-
sured inductively at the surface. The measurements are rapid,
which leads to high data acquisition rates that enable map-
ping of large areas using towed or airborne platforms (e.g.,
Auken et al., 2019; Sgrensen and Auken, 2004). The EM
data are translated into 1D models of resistivities by inver-
sion (Christiansen et al., 2006), providing valuable insights
into local (hydro)geology. A limitation of these methods is
that they rely on ambiguous links between lithology and re-
sistivity. An implication of this is that local knowledge is re-
quired to link resistivity with the associated lithology or ge-
ological unit (Dickinson et al., 2010). A common challenge
is that different geological units have overlapping resistiv-
ity ranges, making unique identification based on resistivity
alone difficult or sometimes impossible.

Surface nuclear magnetic resonance (SNMR) provides di-
rect sensitivity to water residing in large pores (Hertrich et
al., 2007; Legchenko et al., 2002). By transmitting an excita-
tion pulse oscillating at a specific frequency proportional to
the Earth’s magnetic field strength, the magnetic moment of
hydrogen nuclei is shifted from its equilibrium state (Yara-
manci et al., 1999). After terminating the pulse, the buildup
magnetization decays and is related to the subsurface water
quantity and pore parameters. This allows SNMR to track
changes in water content across lithological boundaries and
can provide valuable information on pore sizes. A limitation
in SNMR is the inability to distinguish unsaturated sand from
clay, as both will be seen with low WC, in the clays caused
by the magnetization decaying extremely rapidly in small
pores, which makes the clay-bound water undetectable with
the SNMR. As such, SNMR has difficulties distinguishing
unconfined aquifers from semi-confined or confined aquifers
without supplemental data, as the increase in water content
cannot be determined to be a saturation or a lithological tran-
sition (Behroozmand et al., 2015), Fig. 1. However, the com-
bined interpretation of SNMR and TEM data, sensitive to
different properties, may alleviate ambiguities in distinguish-
ing between, for instance, unsaturated sand and clays (SNMR
ambiguity) or clays and saltwater-saturated sands (TEM am-
biguity), which is highly relevant for coastal studies of un-
consolidated settings (Costabel et al., 2017). Similarly, elec-
trical resistivity soundings and SNMR have been used to al-
leviate ambiguities in hydrogeological investigations through
a joint inversion approach (Giinther and Miiller-Petke, 2012).

Consider the example of an unconfined/confined system,
where SNMR cannot determine whether a transition from
low to high water content marks the water table or a litho-
logical shift from clays to sands. TEM can address this as
it would resolve the conductive clay layer if present and de-
lineate the lithological change to sand as seen in Fig. 1. If it
was an unconfined system, the TEM would image high resis-
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Figure 1. Different hydrogeological units resolved with TEM and
SNMR. In dashed boxes, only one method is used, and the overlap-
ping units show the ambiguities found. Tz* can be implemented to
further separate units. Colors in text are not related to color bars.

tivities in both layers while the saturation change is tracked
by SNMR. Another example involves saline intrusion, where
TEM cannot differentiate between saltwater-saturated sand
and clay. If it is indeed a transition only in salinity, not water
content, SNMR would reveal continuous high water content
across the salinity boundary. SNMR alone would not be able
to distinguish freshwater sand from saltwater-saturated sand,
as it is only sensitive to the abundance of water and not salin-
ity.

A multiple-data-type approach requires forming interpre-
tations consistent with multiple geophysical model types si-
multaneously, which can be achieved through manual in-
spection of disparate data types. This enables one to distin-
guish hydrogeological layers through combined interpreta-
tion of all data types but requires subjective choices regard-
ing boundary delineation. Others have used a joint inver-
sion approach where layer boundaries are set using multi-
ple geophysical methods (Giinther and Miiller-Petke, 2012;
Behroozmand et al., 2012). The joint approaches have the
ability to delineate layer boundaries not seen when inverted
separately. An alternative approach employs statistical corre-
lations across separate parameters to partition these into dif-
ferent clusters. One such approach is K-means clustering,
which enables the subdivision of datasets based on multiple
parameters (Kodinariya and Makwana, 2013). Different clus-
tering approaches have also previously been applied to geo-
physical data and focus primarily on single source datasets,
such as large EM datasets (Dumont et al., 2018) or large
electrical resistivity datasets (Song et al., 2010). Some stud-
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ies investigate clustering on derived parameters such as clay
fraction and resistivity, both linked to EM surveys (Foged
et al., 2014). Clustering across disparate data types, such as
Bouguer anomaly data and magnetic data, has been shown
to improve the resolution of mineral deposits (Sun and Li,
2016). A study focused on delineating structures in urban set-
tings by clustering on multichannel analysis of surface waves
(MASW) and electrical methods to evaluate soil foundation
structure (Le et al., 2022) and found the K-means clustering
to resolve important structures in the shallow subsurface.

In this study, we demonstrate the benefits of combined
SNMR and TEM data collection, where K -means clustering
based on coincident models in two survey areas is shown to
enhance interpretations and address ambiguities that persist
if only a single data type is considered. The first example in-
cludes mapping of the water table in an unconfined meltwater
plain aquifer, where a combined approach is used to address
ambiguity as to the upper aquifer being confined, unconfined,
or semi-confined across the investigated region. A second ex-
ample taken from a small island shows how the method can
delineate saltwater intrusion from clay-rich regions through
a combined interpretation. We demonstrate a workflow for
handling interpretations of SNMR and TEM simultaneously,
reducing possible interpretational bias.

2  Methods
2.1 Transient electromagnetic

In this study we use transient electromagnetics (TEM) to re-
solve subsurface resistivities. The tTEM instrument (Auken
et al., 2019) was used in both field areas and can resolve the
resistivity structure of the top 70 m; however, here only the
top 25 m of the full model domain is used in the analyses.
The induced voltages recorded by the tTEM are translated
to 1D resistivity models by spatially constrained inversion
(SCI) using Aarhusinv (Auken et al., 2015; Viezzoli et al.,
2009). The model is discretized into 30 layers with thick-
nesses varying from 1 m shallowly to 10 m at depth follow-
ing resolution limitations at depth. The resulting resistivity
models will be used for subsequent clustering.

2.2 Surface nuclear magnetic resonance

In this survey we use a recently developed technique for
SNMR called steady state. The steady state has an increased
stacking rate, leading to a higher signal-to-noise ratio and
a decrease in acquisition times (Grombacher et al., 2021).
A set of transmit pulses, optimized to resolve the top 25 m,
was employed in both studies with the Apsu instrument with
an acquisition time of 25 min per site (Larsen et al., 2020).
The resolved water content and the relaxation parameter, 7,
are used in the subsequent clustering. The data are also in-
verted for 7>, more directly linked to pore geometry, but are
not used in the subsequent clustering. The SNMR models are
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discretized into 31 layers down to 50 m, increasing in thick-
ness at depth from 0.5 to 4 m. The resistivity structure from
the nearest TEM sounding is used for the inversion. Resis-
tivity is needed to obtain the excitation fields used for kernel
calculations (Braun and Yaramanci, 2008).

One limitation in SNMR is to detect water residing in
very small pores. Because of instrument dead times associ-
ated with transmitting the excitation pulse (on the order of
8 ms), receiving data immediately after pulse termination is
not possible. 75 relaxation time is linked to pore sizes with
low values occurring in small pores, while large pores have
large values. Signals from very small pores can therefore par-
tially or fully decay, i.e., lose their amplitude and coherency,
before the instrument has begun recording data. As such, the
magnetization from water residing in very small pores de-
cays prior to data recording, which prevents observation of
small pore water in SNMR. As such, SNMR water contents
can be interpreted as a measure of “free” water or an effective
porosity.

2.3 Inversion considerations

Traditionally, 1D SNMR inversions are most commonly
treated separately as limited measurements are carried out.
However, recent acquisition speed-ups enabled by steady-
state approaches have significantly enhanced spatial data
density, which enables the use of horizontal constraints link-
ing inversions of nearby measurement sites (Grombacher et
al., 2021). One such example is the use of laterally con-
strained inversion (LCI) for SNMR as proposed by Behrooz-
mand et al. (2012) where neighboring sites in a transect can
be connected. Here, we add a dimension to the constraints
using a spatially constrained inversion (SCI) framework, to
bind not only models in line, but all neighboring models.
Delauney triangulation is used to find the relevant neighbors
as in Viezzoli et al. (2009). The strength of lateral bounds
is scaled by the distance between models, with a maximum
strength defined when models are closer than a threshold dis-
tance. This threshold distance is typically set to the nominal
or average distance between neighboring soundings (Vang et
al., 2025).

The computational load increases immensely when imple-
menting SCI with many layers and parameters. To reduce the
number of iterations, the SCI starting models are defined by
single-site inversion results. This allows the SCI to converge
within a few iterations. The TEM data are inverted separately
with an SCI for the entire survey.

2.4 Clustering

Large datasets enable statistical approaches to provide infor-
mation on significant hydrogeological units. In the follow-
ing examples, datasets are composed of 50 and 51 coinci-
dent SNMR/TEM soundings where a K -means clustering is
employed (Kanungo et al., 2002) on their model parameters.
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The first step in this type of clustering is to select the number
of clusters, K, into which the datasets will be clustered (Ko-
dinariya and Makwana, 2013). After selecting the number of
clusters, the algorithm makes an initial guess for the posi-
tion of each cluster center in the parameter domain. The Eu-
clidean distance from each data point to the cluster center is
calculated, and each data point is assigned to the nearest clus-
ter. The total distance from all data to their assigned clusters
is then iteratively minimized through updating cluster center
locations until either the centroid difference between itera-
tions varies below a set tolerance or a maximum number of
iterations is reached.

To improve clustering of datasets for parameters exhibit-
ing different sensitivities and spanning different ranges, nor-
malization was used to ensure that each parameter has the
same weight in the clustering algorithm. Here, we use a Z
score for normalization, where x is either resistivity (p), wa-
ter content (WC), or relaxation parameter (7,):

Xinmorm = —— > (1

where o is the standard deviation of the cloud of parameters
from the inversion, x; is the parameter value for the ith data
point, and 7 is the number of data points. Following the nor-
malization, we use the Scikit learn package in Python for the
clustering and silhouette analysis (Pedregosa et al., 2011).
In this study, the number of clusters is chosen based on the

silhouette index, which calculates the membership S; of each
data point, i:

i=%,3’i€[—l, 1. @
where q; is average distance from data point i to other data
points in the same assigned cluster, and b; is the minimum
average distance of the ith data point to all other data points
in other clusters. The resulting index, or membership score,
is a measure of how well a data point is associated with
the assigned cluster. If the score of a given data point is 1
it indicates that the data point is correctly assigned, while
a score of —1 indicates that the data are wrongly assigned
(Kodinariya and Makwana, 2013; Shutaywi and Kachouie,
2021). By evaluating these results, we can qualify the pre-
ferred number of clusters. The preferred number of clusters
is chosen based on two criteria. Firstly, the highest average
silhouette index indicates that data points in general have the
highest membership score with the given number of clusters.
Secondly, we look at each cluster and their silhouette index.
If more than 50 % of the cluster is above the average silhou-
ette index, the cluster is well-defined, between 30 %—50 %
the cluster is moderately defined, and below 30 % it is poorly
defined. In some cases, prior information can be used to fix
the number of clusters, such as prior geological knowledge
of the area (Dumont et al., 2018).
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In this study we clustered on three parameters: WC, T,
and p. The two geophysical methods used in this study have
different sensitive volumes. SNMR inversion is discretized
finely with 30 layers down to 50 m and the TEM has 30 lay-
ers in 120 m. To cluster on coincident values, a projection
and averaging of the TEM p models onto the SNMR dis-
cretization is used. All TEM soundings within 60 m of an
SNMR sounding are included. If there is no p model (TEM
sounding) within 60 m, the nearest is used and mapped onto
the SNMR discretization. This allows all SNMR points to be
matched and prevents a reduction in data points.

2.5 Field site description

Two field surveys were conducted in different geologies to
evaluate the use of clustering as a tool for alleviating inter-
pretational ambiguity. Both sites were examined thoroughly
with SNMR and TEM to provide the basis for the subsequent
clustering analysis.

2.5.1 Kompedal

The first field site is Kompedal, a national forest in the Cen-
tral Region, Denmark. The local geology consists of melt-
water sand and glacial tills with varying clay contents. The
sparse borehole coverage finds sand shallowly, and the wa-
ter table varies from 5 to 12m in depth. Two geophysical
surveys have been conducted here using TEM and SNMR,
respectively. The scope of the surveys was to delineate the
water table on a regional scale and assess whether the shal-
low aquifer can be considered unconfined or semi-confined
across the region. The TEM data were collected with the
tTEM instrument (Auken et al., 2019) while driving along
the gravel roads within the forest, as seen in Fig. 2a in blue.
p values in the area are generally high, above 200 Q2m, with
some layers of lower p found at depth. There is little to no
contrast between the unsaturated and saturated part of the
meltwater sand in p. The SNMR survey consists of 50 sound-
ings acquired over 5d in June 2021, spread across the forest
as seen in Fig. 2a (Vang et al., 2023). The SNMR survey
found low WC (~ 5 %) and low T2* values (~ 0.1s) shal-
lowly, with a sharp increase to higher WC (~ 25 %) at 6 to
10m depth. Layers with low WC and T can be associated
with both unsaturated sands and clay-rich material. The sec-
tion indicated in Fig. 2a will be used to show the results of
the combined cluster analysis.

2.5.2 Endelave

The second location is a small 13 km? island, Endelave, in
Kattegat, Denmark, with a maximum elevation of 8§ m. The
island’s geology consists of glacial till, meltwater sands, and
post-glacial sands, while boreholes intercept Paleogene clay
at depth throughout the island. Generally, the glacial tills are
found in the west part of the island, while the post-glacial
sands are found to the north. TEM and SNMR surveys shown
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in Fig. 2b were conducted at this more geologically hetero-
geneous location to resolve possible saltwater intrusion and
delineate the shallow aquifer found in the meltwater sands
and tills. The TEM data were acquired in April 2022, cover
the majority of the island, and show p below 150 2m for
the entire area (McLachlan et al., 2025). The p values re-
solve buried valley structures and a very conductive base-
ment. With TEM alone it is not possible to distinguish Pa-
leogene clay from the saltwater-saturated sand. The SNMR
survey consists of 51 soundings over 8d in July and Octo-
ber 2023 and finds high WC shallowly in the east and north
part of the island, while the west part shows low WC and T

3 Results
3.1 Kompedal case study
3.1.1 Clustering analysis

For our combined analysis, we begin by selecting the num-
ber of clusters, K, using the silhouette index. Figure 3 shows
results from four different clustering analyses with two to
five clusters for the Kompedal dataset. Each cluster is la-
beled with its index and the number of data points within
each cluster. In each cluster, the silhouette indices are sorted
to give a higher index when moving up the y axis. We use the
distinction of well-defined, moderately defined, and poorly
defined, subdivided as mentioned in the Methods section. In
the two-cluster analysis in Fig. 3a, we see that both clusters
are well-defined with more than 300 members in each and
could be a well-suited number of clusters. With three clusters
(Fig. 3b), cluster 1 is moderately defined, while cluster 2 is
poorly defined with many data points having a below-average
silhouette index, and cluster 3 is well-defined. In the four-
cluster analysis, two clusters, cluster 1 and cluster 4, become
poorly defined, as seen in Fig. 3c. Lastly, five clusters yield
three poorly defined clusters (2, 3 and 4) with only a few
data points having a high membership score. The total aver-
age silhouette index indicated by the gray line highlights that
either two or three clusters should be used. Prior hydrogeo-
logical information can be used to further qualify the choice
between these (Dumont et al., 2018), and in Kompedal, we
expect three distinct hydrogeological units: unsaturated sand,
saturated sand, and underlying till. The low silhouette indices
in cluster 2 in Fig. 3b are a product of large variation within
the cluster, which can be expected in glacial environments
as mixing occurred during deposition. Finally, three clusters
were chosen to subdivide the data into meaningful and de-
cently determined clusters.

Given three clusters, K-means clustering is used to parti-
tion the model parameters, WC, T, and p. In Fig. 4a, the
three model parameters are shown in a scatter plot where the
color of a point reflects the assigned cluster. The other three
2D scatter plots in Fig. 4b, ¢, and d show the clustering results
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projected onto a plane that reveals correlations between two
of the three. Cluster 1 in blue is characterized by high WC,
a high T value, and high p. Table 1 shows that large varia-
tion occurs within this unit in the SNMR parameters as seen
in Fig. 4b. The unit is interpreted as a sandy aquifer given
its high WC, high T, and high p. The very high p (above
300 2m) is a product of very coarse material and the fact that
the TEM method can have limited sensitivity to determine re-
sistivity above 150 Q@m (Christiansen et al., 2006). The yel-
low cluster, cluster 2, has the largest variation in p (hence the
low average silhouette index) but generally has lower p val-
ues than the other two clusters seen in Fig. 4c, with a large
range in WC. A layer with these signatures is consistent with
a saturated sandy till to a more clay-rich till, with low p.
The overlap with cluster 1 in WC and 75 in Fig. 4b is in-
terpreted as a gradual mixing of till and sands. Cluster 3 in
red has low Tz*, low WC, and high p, which corresponds to
unsaturated sand. However, low SNMR parameters and high
p could indicate a silty deposit with smaller pore sizes, but
with a similar conductivity. In places where the red cluster is
found shallowly, it is interpreted as unsaturated sand, and at
depth under the water table, it is interpreted as saturated silt.

3.1.2 Spatial interpretation

The three clusters are described in Table 1 and will be re-
ferred to by their labels, which are used in the figures to
highlight their spatial extent. After assigning interpreted ge-
ologies to each cluster, we focus on their spatial position il-
lustrated by a cross-section (location shown in Fig. 2a). Con-
sider section 1 in Fig. 5, where the coincident data used in
the clustering are shown as bars with colors associated with
the assigned cluster. The US/Si cluster is situated mostly in
the shallow subsurface extending from the surface down to
depths of 5 to 10m. The gray lines track selected cluster
boundaries at the sounding locations. The upper gray line
in Fig. 5 tracks the bottom of the US cluster and is inter-
preted to be a change from low to high saturation, since the
US cluster is defined by low WC and the underlying clusters
have a higher WC. The SA cluster is found in most soundings
and has a variable thickness from 2 to 17 m. The transition at
sounding location 8 is from the US to Ti cluster, likely due
to lower p in this area. A second deeper gray line tracks the
transition below the SA cluster to the underlying Ti cluster.
To evaluate possible variations within the boundaries esti-
mated from the clustering, the profile shown in Fig. 5 is re-
produced in Fig. 6 with p values and WC and 75" Since clus-
tering is a discrete and often brutal partitioning of smoothly
varying parameters, it is important to return to the original
parameters for evaluation. The SNMR WC values are shown
as bars in Fig. 6a, and both T (left part of the bar) and 7>
(right part of the bar) are shown side by side with the same
color scale in Fig. 6b and will be referred to as 75"/ T, pro-
files. The gray lines from the clustering are superimposed on
this section to track variations within each cluster unit. Fig-
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Figure 2. (a) The Kompedal survey area. SNMR (red) together with TEM (blue) was collected in the area. (b) Map of Endelave survey with
SNMR (red) and TEM (blue). Map data: © Google Maps 2024, UTM zone: 32° N.

Table 1. Cluster parameter bounds and interpreted geology for Kompedal.

Cluster WC [rn3 m73] T2* [s] o [Q2m] Interpreted geology Label

1 (blue) High High High Saturated sand aquifer ~ SA (sand aquifer)
[0.1-0.4] [0.1-0.4] [130-1000]

2 (yellow) Medium Medium Low Saturated till Ti (till)
[0.07-0.26] [0.03-0.26]  [20-300]

3 (red) Low Low High Unsaturated sand US (unsaturated sand) or Si (saturated silt)
[0.04-0.18] [0.03-0.14]  [130-900]

ure 6a displays the first section where shallow low WC and
high p coincide with the US cluster where the T,/T> pro-
files show low values. Boreholes identify this unit as sand
near sounding locations 3 and 6, which match the interpreted
geology as an unsaturated sand. The upper gray line tracks an
increase in WC from ~ 15 % to ~ 30 % in Fig. 6a and from
below 0.1s to above 0.15 s in 75" in Fig. 6b, while there is no
contrast in p. The lack of structure in the p indicates that the
TEM is not sensitive enough to track this saturation change,
whereas a lithological change would generally be expected
to coincide with a larger p contrast, visible in the TEM data.
The elevated 7" is caused by less interaction of excited hy-
drogen spins with the grain surfaces because of increased
saturation in the sand (Falzone and Keating, 2016). Addi-
tionally, a borehole water table measurement coincides with
this transition line at sounding location 6. The SA cluster unit
contains a range in WC from 20 % to 30 % and in T, from
0.15 to 0.3 s, indicating slight variations within the cluster.
The SA-Ti transition coincides with a decrease in WC and
p, interpreted as a similar reduction in pore size, a product
of an increase in fine content. The 75" values found in the Ti

Hydrol. Earth Syst. Sci., 29, 5315-5329, 2025

cluster, while quite varying, are generally lower than in the
SA cluster, consistent with the interpretation of increasing
fine content at depth, as in a till.

To further evaluate the accuracy of the ability to track wa-
ter tables by the upper cluster transition, consider Fig. 7,
where water tables from clustering are compared to avail-
able borehole-measured water tables within 500 m of SNMR
sites. The clustering water tables are picked as the transition
from the low-WC US cluster to any underlying cluster, SA
or Ti, as both have a high WC compared to the US cluster.
The red line has a slope of 1 and the uncertainty bars are
equal to the inversion layer thickness at the transition depth,
as the clustering method is ternary (i.e., it has three options),
and consequently, some layers found at cluster transitions
could be assigned to either cluster. We see that clustering
tends to overestimate the water table elevation in many cases.
This is a product of clustering being a brute thresholding in
the parameter space. In this geology, the threshold from the
clustering occurs at slightly lower WC than those coinciding
with the water table and produces estimates that are too shal-
low. The trend, however, is similar to a slope of 1, indicating
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Figure 3. Silhouette index analysis for the Kompedal dataset. Four
clustering routines were run with different numbers of clusters, K:
(a) two, (b) three, (c) four, and (d) five. The sorted silhouette indices
are shown for each cluster, with the average index indicated by the
gray dashed line.

that a higher threshold could provide a better resolution of
the regional water table. Additionally, the distance between
the borehole and coincident SNMR and TEM models could
add uncertainty for the comparison, but this uncertainty is
expected to follow the slope of 1. Overall, the clustering cap-
tures the water table trend within an unconfined aquifer at a
regional scale in an automated manner.

3.2 [Endelave case study
3.2.1 Clustering analysis

As before, we start by selecting the appropriate number of
clusters through silhouette index analyses, shown in Fig. 8.
Considering we expect a more heterogeneous geology, three
to six clusters are used in the analysis. In Fig. 8, three clus-
ters are used to partition the data and result in one well-
defined, one moderately defined, and one poorly defined
cluster, whereas the yellow has low and even negative sil-
houette indices, indicating wrongly assigned data points. The
average silhouette index is the highest found with the as-
signed clusters. By using four clusters in Fig. 8, two are well-
defined, one moderately, and one poorly clustered. We see
less negative silhouette index data here, while still maintain-
ing a high average silhouette index. Further increasing the
number of clusters to five reveals similar silhouette indexes
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but has two moderately defined clusters; however, the aver-
age silhouette index drops (see Fig. 8c). Using six clusters
is similar with a few well-defined and moderately defined
and with a lower average silhouette index. The silhouette
analyses show that the number of clusters should either be
three or four as they have well-partitioned clusters, with the
highest silhouette index. Prior information from the area in-
dicates that we have four distinct geological units: tills, sand
aquifers, Paleogene clay, and possible saline intrusion into
sand. The blue cluster in Fig. 8b was found to have important
hydrogeological information, regardless of its low silhouette
index, and, as such, we used four clusters for further results.

Next, the partitioning of WC, T, and p is inspected in
Fig. 9. First, the red cluster (1) is defined by quite low
WC and T2* values (Fig. 9b), while the p varies from 10 to
120 2m. This cluster exhibits properties consistent with till
containing varying sand content and affecting p (Fig. 9c).
The green cluster (2) has mainly high p, high WC, and
medium 75 values in Fig. 9a. The high WC and p are proper-
ties associated with saturated sand aquifers. The yellow clus-
ter (3) has similar SNMR attributes to the red cluster, with
low WC and 77", but has a lower p range illustrated in Fig. 9d.
This unit is interpreted to be of Paleogene clay due to the very
low p found in this cluster. The range of WC found within the
yellow cluster indicates that layers with low to medium sand
contents, but with low p, are grouped here. The last clus-
ter, blue (4), has a distinct 7" range in Fig. 9b and a large
range of WC with p situated around 10 Q2m. The WC and T
values indicate that this layer has aquifer properties usually
associated with sand, while the p indicates this as a conduc-
tive material. This is interpreted as saltwater-saturated sand.
In general, the clusters are not as distinct within the Endelave
dataset, as the glacial interaction with the deposited sediment
has caused a mixing of lithologies. This is evident from the
p values where none exceed 130 Q2m, whereas the Kompedal
survey consisted of p from 50 to 1000 Q2m. All the descrip-
tions and interpreted geologies are found in Table 2.

3.2.2 Spatial interpretation

Following the clustering we will examine their spatial ex-
tent on Endelave. We will show the results of two sections
(Fig. 2b) to see how the clustering performs in a more het-
erogenous setting. Consider first the section across the main
shallow aquifer in Fig. 10a, where we see a shallow Ti unit
corresponding to either a till or unsaturated sand. The SA
cluster unit has a thickness from 5 to 12 m and is found be-
low the Ti cluster at sounding locations 3 to 6. Sounding lo-
cation 1 is located 30 m from the coast, which aligns with the
presence of the Sws cluster. The Ti cluster at depth is inter-
preted as a decrease in pore size from an increased clay or
silt content. At sounding 7, all layers are grouped as the Ti
cluster, a sign of low SNMR parameters throughout the en-
tire sounding location. The deepest discretized layers at most
sounding locations are grouped in the CI cluster, tracked by

Hydrol. Earth Syst. Sci., 29, 5315-5329, 2025



5322

(a)

0.34

WC [m3/m?]
o
i

0.14

M. Vang et al.: Alleviating interpretational ambiguity in hydrogeology

0.1 0.2 0.3
WC [m3/m?3]
(d)
<1 M Sa .
Ti
B us/si

0.3
)
;_N

0.11

p [Qm]

Figure 4. Clustering results from the Kompedal survey for three parameters: WC, 75, and p. (a) All three parameters in a scatter plot:
(b) WC and Tz* , (¢) p and WC, and (d) p and T2* . The color of each data point defines the assigned cluster (1: blue, 2: yellow, 3: red) and

their interpreted geology seen in Table 1.

Table 2. Cluster parameter bounds and interpreted geology for Kompedal.

Cluster wC [m3 m_3] T2* [s] p [2m] Interpreted geology  Label
1 (red) Low-medium  High High Till Ti (till)
[0.03-0.18] [0.02-0.1] [10-120]
2 (green) High Medium High Sandy aquifer SA (sand aquifer)
[0.15-0.40] [0.04-0.13] [15-120]
3 (yellow) Low-medium  Low Low Paleogene clay ClI (clay)
[0.03-0.18] [0.02-0.1] [1-25]
4 (blue) Low-high High Low Saltwater sands Sws (saltwater-saturated sand)
[0.07-0.40] [0.07-0.21] [2-35]

a gray line, indicating a drop in p, as expected from the Pa-
leogene clay.

To highlight possible saltwater intrusion, a section inter-
secting sounding locations at the coast is shown. The section
in Fig. 10b is quite complicated as it transects different ge-
ological regions. We consider three main points in this sec-
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tion: the Sws cluster, the SA cluster, and the south end of
the profile. In Fig. 10b we see the Sws cluster at sounding
locations 1 to 3, defining a shallow and deep layer, while at
sounding locations 6, 8, and 9 the cluster is seen shallowly
at low elevations following the coast. The transition from the
Sws cluster to the underlying clusters is tracked by a gray line
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Figure 5. Clustering section from Kompedal where the partitioning
of data is shown at every sounding. The gray lines track selected
cluster boundaries. See Table 1 for cluster descriptions. A increases
in the south direction.
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Figure 6. Profile of eight SNMR soundings (bars) and the TEM
profile (background): section 1 in Fig. 2a. (a) SNMR WC and (b) a
split bar with Tz* (left) and T, (right). Boreholes at sounding loca-
tions 3 and 6 are shifted ~ 40 m to avoid overlapping with the bars.
Gray lines track transitions between clusters in Fig. 5. A increases
in the south direction.

at sounding locations 1 to 3. Below the gray line at sounding
locations 1 and 2, the layers are grouped with the CI cluster,
representing low p and lower T, and WCs. It is important
to note that even with combined SNMR and TEM, it will be
hard to distinguish between saltwater and freshwater clays as
both will be conductive and have low free-water content and
T signatures in SNMR.

From sounding locations 3 to 8, the SA cluster is found
with a varying thickness from 2 to 10 m. This unit, inter-
preted as the aquifer, is outlined in gray to compare with
original parameter values and borehole information later. At
the south end of the profile, the clustering divides layers into
Cl and Ti clusters, associated with clay and till by their low
WC and 7.
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The discrete boundaries from the clusters are now used in
the original parameter space to evaluate possible variations
within the clusters and the estimated boundaries. In Fig. 11,
we consider the main shallow aquifer found on Endelave.
The gray lines from Fig. 10a are used to delineate cluster
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Figure 9. Clustering results from the Endelave survey for WC, T, and p. (a) All three in a scatter plot: (b) WC and Tz*, (¢) p and WC, and
(d) p and Tz*- The color of each data point defines the assigned cluster and their interpreted geology; abbreviations can be seen in Table 2.

extents and each unit is assigned a cluster label. Shallowly,
the Ti unit coincides with low WC and a high p in Fig. 11a.
T /T, values are low in this unit and boreholes reveal either
till or unsaturated sand here, matching the clustering inter-
pretation. The upper Ti—-SA gray line tracks an increase in
WC at four sounding locations, coincides with a lithologi-
cal change from clay to sand in two boreholes, and coincides
with a water table measurement in a separate borehole. This
is interpreted as a semi-confined system with the water table
coinciding with a lithological layer boundary. The SA unit
here consists of high WC and low to medium 7 within a
resistive unit. The boreholes identify this unit as sand or a
mixture of sand and silt, which explains the range of WC
grouped within this unit. The lower SA/TT transition tracks
a decrease in WC, still with low to medium T2* as seen in
Fig. 11b. The transition coincides with a decrease in p at
sounding locations 1 and 2 and with a lithological bound-
ary from sand to clay in a few boreholes. Furthermore, two
boreholes terminate exactly at this interface, which could in-
dicate that the drillers hit something harder or more clay-rich,
prompting them to stop drilling. The Ti/Cl transition at depth
tracks a decrease in p, which in the deep borehole is identi-
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fied as a lithological boundary from clays and sand to Pale-
ogene clay, agreeing with the clustering interpretations. This
deep boundary is not seen in the SNMR parameters as the Ti
and CI clusters are only distinguishable by their p.

After reviewing the section through the main shallow
aquifer in Fig. 11, we will assess a second, more complex
section. The gray lines from Fig. 10b will be used to de-
lineate the cluster units and illustrate differences within the
units. Consider now Fig. 12, where the p and SNMR param-
eters are shown with lines following cluster transitions. The
Sws unit is seen mainly at locations 1 to 3 and is defined
by high WC, very high T3, and low p. At sounding loca-
tion 8, a borehole finds sand coinciding with the Sws clus-
ter, in agreement with the saltwater-saturated sand interpre-
tation. The high T/T, associated with the Sws cluster in
Fig. 12b is a product of limited compaction within the newly
deposited sand in the coastal environments. Below the Sws
unit, the gray line tracks a transition to lower WC and 75,
but maintaining the low p, which is defined by the CI clus-
ter. At sounding location 6, this transition is different, with
an increase in p tracking the border to the SA unit. Low WC
at sounding locations 10 and 11 coincides with clay in a lo-
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Figure 10. Clustering sections from Endelave where the partition-
ing of data is shown at every sounding location. (a) Section 1 and
(b) section 2 in Fig. 2b. The gray lines track selected cluster bound-
aries. A increases in the southeast direction. B increases in the south
direction.
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Figure 11. Profile of 7 SNMR soundings (bars) and TEM p (back-
ground): section 1 in Fig. 2b. (a) SNMR WC and (b) a split bar
with T2* (left) and T, (right). Gray lines track transitions between
clusters in Fig. 10. A increases in the southeast direction.

cal borehole for the first 15 m where all layers are grouped
within the Ti or CI clusters. The low water content and T
signature at these locations prevent them from being clus-
tered with the saltwater-saturated sands in Sws, highlighting
the value of SNMR to distinguish these conductive units. The
gyttja layer found in the borehole coincides with a drop in the
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Figure 12. Profile of 11 SNMR soundings (bars) and TEM p (back-
ground): section 2 in Fig. 2b. (a) SNMR WC and (b) a split bar with
T2* (left) and 7, (right). Gray lines track transitions between clus-
ters in Fig. 10. B increases in the south direction.

SNMR WC due to the increases in organic matter, decreasing
the pore size, and it was grouped with the CI cluster (Mash-
hadi et al., 2024).

By clustering on this dataset, we have proven the abil-
ity to identify regions of possible saltwater intrusion. Fig-
ure 13 shows which sounding locations have layers that
cluster within the saltwater aquifer, the freshwater aquifer,
that have layers of both clusters, or only have the till and
clay clusters. The saltwater cluster is observed mostly at the
northern sounding locations where the post-glacial sands are
located, but also along the east coast. The main aquifer unit,
SA, is found in the east and north parts of the island, while
the west part is dominated by the low-water-content clusters,
shown in yellow and red. One sounding location with both
saline and freshwater clusters far from the coast is observed
in the north of the island. The closest TEM sounding was
acquired in a lowland south of this sounding, with elevation
almost at sea level, which might cause issues with saltwater
intrusion. There is also a wetland close to this location, which
might have a higher clay content with low p. If the TEM
and SNMR are not exactly coincident, some differences and
anomalies in the clustering might occur. But in general, the
K -means clustering is able to map this possible saltwater in-
trusion, which is a valuable asset in aquifer management.

4 Discussion
In this study we investigated the use of clustering to combine
the analysis of two geophysical methods, SNMR and TEM.

The K -means clustering was found to be able to differentiate
units into interpretable hydrogeological layers and was con-
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Figure 13. Sounding locations where saltwater or freshwater has
been identified. Locations with only clay and till clusters are shown
with red and yellow. Map data: © Google Maps 2024, UTM zone:
32°N.

sistent with manual interpretations. Combining the datasets
helped alleviate some of the ambiguities found when inter-
preting one of the individual datasets alone, i.e., unsaturated/-
confined conditions in Kompedal and saltwater/freshwater in
Endelave.

K-means clustering on geophysical models offers a sim-
ple, automated approach to identifying lithological transi-
tions. It allows for reproducible boundary definitions with-
out subjective interpretations of the geophysical models. Dis-
cretizing smoothly varying parameters into predefined clus-
ters is, however, brutal and there will be variability within the
unit definitions. The ability to return to the original parameter
space with cluster boundaries is crucial in addressing subtle
variations within units and can be used to evaluate cluster
transitions.

K-means clustering applied to geophysical models is not
limited to SNMR and TEM parameters; it can also be ex-
tended to other collocated datasets with distinct sensitivities.
For example, in areas where a deep water table is expected
within a sand layer, seismic methods may be appropriate.
However, because the seismic velocity of saturated sands can
be similar to that of clays or tills, incorporating collocated
TEM models can help reduce interpretational bias. Similarly,
relying solely on TEM data may make it difficult to detect the
water table due to limited sensitivity to high-to-high resistiv-
ity contrasts.

In SNMR, correlations between WC and T2* may exist
(Falzone and Keating, 2016). For example, in unsaturated
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sands, the low water content residing in the pores will be in
close contact with the grain surfaces, resulting in a faster ex-
change of energy between excited hydrogen spins and pore
walls, leading to low 7,°/T5. Since water content is propor-
tional to signal amplitude, in low-WC environments, low sig-
nal amplitude results in reduced confidence in the T esti-
mates. When such parameters are linked, it might be of in-
terest to simplify the approach by clustering on the product
of water content and 7. Thus, combining these two param-
eters may help reduce the influence of low-confidence T
values in low-water-content environments. A similar option
is to use a principal component analysis to reduce the basis
to two parameters that describe most of the variance, which
in the Kompedal case would be resistivity and the product of
the SNMR parameters. However, in more complex geologies
such as Endelave, a decrease in basis dimension may reduce
the ability to distinguish layers of high WC and low T3 from
layers with low WC and high T>f. By examining the data’s
variation and correlation, we can make qualified decisions
about whether to decrease the parameter space.

In this study, we focused on interpreting two survey areas
using K -means clustering, which has proven to be sufficient
in meaningfully partitioning data and identifying lithological
boundaries. One feature of the employed K-means cluster-
ing approach is the need to specify clusters beforehand. In
this study we based the choice of clusters on the silhouette
index and prior geological information about the area. One
alternative study uses agglomerative hierarchical clustering
on SkyTEM data, which avoids selecting the number of clus-
ters by starting with one cluster and subdividing until each
data point has its own cluster (Dumont et al., 2018). This can
alleviate some of the choices made for the silhouette index
analyses and provides a better understanding of how clus-
ters are further subdivided. A second challenge is to attribute
uncertainties to the layer boundaries picked by the discrete
K-means clustering. Here, others use fuzzy C-means where
data points are assigned a membership score and can be par-
tial members of more than one cluster (Paasche and Tronicke,
2007). Applying the fuzzy C-means can give an estimate of
uncertainty for the picked cluster boundaries; i.e., if a data
point could be a member of several clusters, it is less cer-
tain. This could apply to the Endelave data where the saline
intrusion cluster in places could overlap with the freshwater
cluster.

Another way of exploiting collocated datasets is the use
of joint inversion for layer boundary picking. Studies iden-
tifying layers from SNMR and TEM implementing vari-
ous regularization techniques have shown promise in reduc-
ing the ambiguity found when interpreting each separately
(Behroozmand et al., 2012; Skibbe et al., 2018). These ap-
proaches focus mostly on the collocated datasets and invert
these jointly. In our study, the tTEM data are inverted sepa-
rately with the full survey of more than 23 000 datasets. As
such, we have the ability to track the changes in resistivity
in places where the SNMR is not present. Additionally, the

https://doi.org/10.5194/hess-29-5315-2025



M. Vang et al.: Alleviating interpretational ambiguity in hydrogeology

framework for using joint inversion in steady-state SNMR is
not established as kernels are calculated before the inversion,
fixing the discretization. Further investigations could focus
on implementing clustering in a joint inversion framework
with a large spatial extent. This could alleviate some of the
interpretational load when dealing with large datasets.

Since clustering is performed on coincident values, we are
limited by the lowest-dimension dataset, which in this case
is the SNMR; e.g., on Endelave the survey consists of 51
soundings, while there are over 23000 TEM soundings in
the same area. This reduction in data space disregards large
amounts of TEM data, which of course have valuable re-
gional information but lack coincident SNMR parameters.
Additionally, lower data quantity can lead to clusters not rep-
resentable for the area. If SNMR information could be ex-
trapolated to the full TEM domain through appropriate spa-
tially variable measures, it would allow for clustering on a
much larger dataset. Future research will focus on extrapo-
lating SNMR parameters across the full TEM domain. This
would enable a subdivision of the full TEM domain based on
the coincident data clusters, and it will be possible to better
delineate areas of potential saline intrusion spatially.

As there is limited ground-truthing information, the clus-
tering has been mostly compared to manual interpretations
based on the data collected. This does not directly provide
validation of the layers seen but indicates that the clustering
is performing like expert interpreters would if given a similar
dataset. As such this study shows the value in having clus-
tering as the main subdivider of lithological units instead of
having manual inspection of each collocated dataset. Given
the recently enabled larger-scale mapping with SNMR, a less
subjective and fast interpretation scheme is a step towards au-
tomation from data to lithology.

5 Conclusion

Through two field studies we demonstrated the automated
spatial identification and separation of hydrogeological units
in large-scale geophysical campaigns. Recent improvements
in the data acquisition rates of SNMR now offer data volumes
sufficient to exploit clustering approaches when combining
these data with other geophysical data. K-means clustering
of complementary SNMR and TEM models is shown to pro-
vide a less subjective approach, where enhanced hydrogeo-
logical interpretations can be formed by exploiting the com-
plementary nature of two data types. To detect lithological
boundaries, they must correspond to a contrast in geophys-
ical properties. SNMR is shown to provide value when dis-
criminating clay-rich sediments from saline-saturated sand
conditions, a challenging task based on only TEM models.
Similarly, TEM is able to separate low-water-content con-
ditions from clay-rich conditions, which is impossible with
SNMR alone. This is key to discriminating between un-
confined and semi-confined conditions. A silhouette-index-
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based approach, combined with the a priori knowledge of
the likely number of lithological units present, was used to
select the number of clusters and found to be suitable for
these datasets.

In the examples, clustering of NMR and TEM data pro-
vides a more complete characterization of local hydrogeo-
logical conditions than what can be achieved by each dataset
separately.
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