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Abstract. Climate change increases the risk of disastrous
floods and makes intelligent freshwater management an ever
more important issue for society. A central prerequisite is the
ability to accurately predict the water level in rivers from
a range of predictors, mainly meteorological forecasts. The
field of rainfall runoff modeling has seen neural network
models surge in popularity over the past few years, but a lot
of this early research on model design has been conducted on
catchments with smaller size and a low degree of human im-
pact to ensure optimal conditions. Here, we present a pipeline
that extends the previous neural network approaches in order
to better suit the requirements of larger catchments or those
characterized by human activity. Unlike previous studies, we
do not aggregate the inputs per catchment but train a neural
network to predict local runoff spatially resolved on a regular
grid. In a second stage, another neural network routes these
quantities into and along entire river networks. The whole
pipeline is trained end-to-end, exclusively on empirical data.
We show that this architecture is able to capture spatial vari-
ation and model large catchments accurately, while increas-
ing data efficiency. Furthermore, it offers the possibility of
interpreting and influencing internal states due to its simple
design. Our contribution helps to make neural networks more
operation-ready in this field and opens up new possibilities to
more explicitly account for human activity in the water cycle.

1 Introduction

As one of the most frequent and destructive natural dis-
asters, floods are expected to become more common due
to climate change (Bevacqua et al., 2021) and more haz-
ardous as the worldwide population in high-risk areas is
likely to increase (Kam et al., 2021). Heavy precipitation
is expected to become more frequent, which will increase

flooding risks (Griindemann et al., 2022). Europe is becom-
ing increasingly more vulnerable to flooding due to large-
scale atmospheric patterns that lead to widespread precipita-
tion extremes (Bevacqua et al., 2021) and certain landscape
properties. This study focuses on river floods in central Eu-
rope, where heavy precipitation and snowmelt are driving the
expansion of flood-impacted areas (Fang et al., 2024). Ac-
curate prediction of such events is the foundation for cre-
ating resilience and preventing material damages, displace-
ment of people, and loss of human lives. The field of hydro-
logical research concerned with predicting river levels from
meteorological variables is called rainfall streamflow mod-
eling!. The aim is to capture the process by which precipi-
tation feeds into rivers and other bodies of water. Predicting
runoff, i.e., the amount of excess precipitation being drained
away on the surface, requires modeling different processes
that take place inside or right above the ground, such as
evaporation and seepage. It hinges on keeping some record
of the state of the surface, e.g., the amount of precipitation
in the last days or how much water is stored as snow dur-
ing the winter season. These processes are highly localized,
and as a next step, the resulting local runoff needs to be con-
verted into streamflow along a network of rivers. This mod-
eling step is called routing. There is a large body of research
that employs (conceptually simplified) physical models for
both these tasks (Beven, 2012). Furthermore, models based
on neural networks have increasingly been proposed in re-
cent years, e.g., Kratzert et al. (2018), Nearing et al. (2024).
We build upon this line of work by introducing a neural net-
work that performs both local rainfall runoff modeling on a
regular grid and routing along the river network to predict

! Another commonly used term is rainfall runoff modeling. As
this paper aims to predict streamflow in rivers, we decided to use
the more specific term rainfall streamflow modeling, but we will
use rainfall runoff modeling to refer to the general literature.
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streamflow time series measured at river gauges. The model
is trained to do this in a data-driven, end-to-end fashion. This
spatially distributed modeling framework is able to capture
spatial covariability of the input features, thereby enhancing
prediction accuracy in larger basins (Yu et al., 2024). It also
allows for controllability and scientific discovery, and it is
ready to scale to higher spatial and temporal resolution.

The following Sect. 2 discusses in detail which types of
neural networks have been considered for rainfall runoff pre-
diction and routing and explains our contribution to this on-
going field of research. In Sect. 3, we introduce a novel, pub-
licly available dataset for spatially resolved rainfall stream-
flow modeling in five river basins in Germany and neigh-
boring countries, and we describe our model architecture in
Sect. 4. Section 5 presents the main results from the exper-
iments. Section 6 concludes with a brief outlook on future
directions, highlighting the influence of human activity.

2 Related work

We start this section by introducing a classification scheme
for rainfall streamflow models. This scheme will provide ori-
entation as we subsequently present previous work on neural
networks in rainfall runoff modeling in general and spatially
resolved processing and routing in particular. We carve out
how our approach is different and end this section with an
overview of this paper’s contributions.

2.1 Typology of rainfall runoff models

We adapt a classification scheme for rainfall streamflow
models originally introduced by Sitterson et al. (2018): De-
pending on the level of abstraction, models are said to be em-
pirical (also called detailed or physical) if they involve phys-
ical equations of the involved processes (Horton et al., 2022).
Conceptual (or physically inspired) models make some sub-
stantial simplifications but still contain (abstract) subsystems
or quantities that can be identified with physical entities. Fi-
nally, statistical models refrain from explicit modeling of
anything physical and instead focus exclusively on the statis-
tical relationship between inputs and outputs. Our approach
is based on neural networks and falls into the latter category,
while most operational models, such as LISFLOOD (Van
Der Knijff et al., 2010), fall under the conceptual category.
Another criterion for classifying models is the way space
is represented in the model: Lumped models aggregate all
variables (temporal or static) across a station’s catchment
area before modeling. Not representing the spatial extension
of a catchment can be a reasonable modeling assumption for
small catchments, but it implies losing the opportunity to
model spatial covariance within the catchment. An example
of the importance of spatial covariance is the different effect
that heavy rainfall might have over a forested area versus on
sealed soil. Distributed models, on the other hand, explic-
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itly model local processes, usually on a grid and less com-
monly on a vector-based irregular mesh, e.g., Hitokoto and
Sakuraba (2020); Sun et al. (2022). Most physical or con-
ceptual models fall under the latter category, as the under-
lying formulas are local and it is straightforward to resolve
them on a regular grid for computation. Neural networks in
this domain, on the other hand, started to be developed as
lumped models for a combination of historical and technical
reasons, which we discuss in the next Sect. 2.2.1. In between
sits a class of models called semi-distributed, where some
sort of substructure is modeled. Many routing models fall
under this category. An example of a neural network-based
routing model is Nearing et al. (2024), where a network of
gauging stations is modeled with high temporal resolution,
but not the processes inside each station’s catchment area.
As we detail below, our model first predicts runoff fully dis-
tributed in space and then maps these runoffs onto the river
network in a second stage.

2.2 Neural networks in rainfall runoff modeling

Neural networks have been used for rainfall runoff modeling
since the 1990s (Smith and Eli, 1995), but they have surged
in popularity since Kratzert et al. (2018), when long short-
term memory (LSTM) layers (Hochreiter and Schmidhuber,
1997) were employed for the first time. Kratzert et al. (2019c¢)
then described the beneficial effects of adding static location
information to the meteorological inputs, albeit in an aggre-
gated manner. This type of model has since been demon-
strated to predict streamflow more accurately than models
not based on neural networks, across a variety of locations
and experimental setups (Lees et al., 2021; Mai et al., 2022;
Clark et al., 2024). It also transfers more readily to ungauged
basins (Kratzert et al., 2019b). Calibrating physical or con-
ceptual rainfall runoff models usually requires hand-crafting
ancillary input features to support the meteorological forcing
variables, such as catchments’ climate type or hydrological
signature (see Beven, 2012, for an overview). Sometimes,
the dataset is first partitioned into hydrologically homoge-
neous subsets, on which separate parameters are then cali-
brated (Beven, 2012). Neural networks do not require such
human labor and in contrast profit from processing all catch-
ments indiscriminately and with a single model (Kratzert
et al., 2024). As we demonstrate in this study, neural net-
works can be stacked flexibly into a task-specific pipeline
and trained end-to-end, without any manual calibration or in-
termediate steps. They are capable of extracting task-relevant
information from a large array of potentially informative, raw
static features (Kratzert et al., 2019¢). These data sources
can include categorical information such as land cover or soil
classes, which cannot be readily integrated into physical for-
mulas. Neural networks can also leverage entirely new types
of input data, such as large-scale remote sensing data (Zhu
et al., 2023), concentrations of isotopes (Smith et al., 2023)
and chemical compounds (Sterle et al., 2024). In addition,
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research on the explainability of neural networks has been
conducted by Kratzert et al. (2019a) and Lees et al. (2022).
These studies focused on identifying hydrological quantities
and concepts within neural networks. Cheng et al. (2023)
used an explainability framework to extract hydrological sig-
natures from networks in a data-driven fashion. Furthermore,
Jiang et al. (2022) showed that the use of explainability meth-
ods can provide a better understanding of the dominant flood-
ing mechanisms across different catchments. Explainability
is crucial for reliable operations in real-life applications be-
cause it enables the control of risk. It also enables scien-
tific discovery (Shen et al., 2018). In summary, LSTM-based
models have been firmly established as state of the art in rain-
fall runoff modeling with a combination of consistently supe-
rior performance and addressing the most pressing concerns
regarding reliability, even though many questions remain to
be answered. Due to their flexibility, they are primary can-
didates for entirely novel approaches that will become more
relevant as climate change gives rise to questions of human
influence and multi-factor disasters.

2.2.1 Spatially resolved processing

Smith and Eli (1995), the first study on neural networks in
rainfall runoff modeling, train a simple, non-recurrent neu-
ral network on a five-by-five grid of synthetic data as a proof
of concept. Another early example of semi-distributed pro-
cessing is Hu et al. (2007). The authors evaluate the effect
of lumping, but use only five rain gauging stations as in-
put instead of a full grid, and a single catchment as a target.
Xiang and Demir (2022), unfortunately not peer-reviewed,
presents an architecture closely resembling the first stage
of our model, which they call GNRRM-TS: Inputs are pro-
cessed separately on a regular grid before being aggregated
using a manually computed flow direction map. Also here
the scope is limited to a single station and the only inputs are
precipitation and drainage area of each grid cell. Xie et al.
(2022) use LSTMs in a gridded fashion to estimate monthly
baseflow instead of daily runoff. They also include static
information as inputs, but they train their model on hand-
selected subgroups of catchments. Muhebwa et al. (2024)
propose a nuanced semi-distributed strategy, which instead
of aggregating entire catchments, aggregates regions within
a catchment that are similarly far upstream. The resulting set
of input features for each region group are concatenated and
jointly processed by a LSTM model. Hitokoto and Sakuraba
(2020) is an interesting example of using an irregular vector-
mesh rather than a regular grid. For each node, a concep-
tual model provides estimates of local runoff that are then
aggregated by iteratively simplifying a mesh using a tech-
nique that is inspired by particle filters. Once coarsened to
96 nodes, they use a relatively simple four layer fully con-
nected neural network for routing. This approach can be clas-
sified as semi-distributed When considering only the portion
of the pipeline managed by the neural network, i.e., after the
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conceptual model’s outputs have been coarsened. Sun et al.
(2022) also act on an irregular mesh, this time training a
graph neural network on the outputs of a conceptual model.
After this pre-training, they fine-tune the neural network on
streamflow observations — an elegant way to deal with sparse
empirical data in this context. However, their study, too, is
limited to a single smaller basin in the western United States.
Because their model consists of complexly interleaved graph
and time convolution layers, they rely on graph coarsening to
be able to scale up this approach to another, larger basin. Yu
et al. (2024) propose a combination of a LSTM model on the
catchment level and a conceptual model for routing.

2.2.2 Routing

Routing refers to modeling the flow of water between gaug-
ing stations in a river network. Neural networks have been
successfully employed for this task as well. In this context,
streamflow at a given station is predicted from the stream-
flows of upstream stations alone, typically at an hourly res-
olution. At such high temporal resolution, routing within the
river system can ignore slower processes like runoff genera-
tion or baseflow and instead focus entirely on the movement
of runoff along the river network. Since the stations within
a river system can be conceptualized as nodes in a directed
acyclic graph, it seems natural to model this data with a graph
neural network, although this term is fairly broad (Bronstein
et al., 2021). Examples of this approach include Moshe et al.
(2020), Sit et al. (2021), Sun et al. (2021), Sun et al. (2022),
Nevo et al. (2022), and Nearing et al. (2024), all of which
demonstrated excellent performance in this setting. In com-
parison, the design of the routing stage in our model, as de-
tailed below, is much more parsimonious in order to give the
user more fine-grained control and interpretability.

Another line of research investigates models that act on
networks of rain gauges instead of a regular grid of inputs.
Such models can be considered semi-distributed as well. The
general focus here seems to be on finding suitable architec-
tures for this task, combining self-attention, LSTM, convolu-
tion, and more complex graph convolution layers. For exam-
ple, Chen et al. (2023) intricately stack several LSTM lay-
ers to represent the river network structure, while Zhou et al.
(2023) propose a mixture of self-attention, recurrence, and
convolution to build a graph neural network for this routing
task. Zhu et al. (2023) aggregate remote-sensing rain data
within each catchment in a data-driven fashion by training
separate convolutional neural networks for every input prod-
uct. They then concatenate each sub-basin’s lumped infor-
mation with rain gauge data for further routing in a semi-
distributed scheme. This convolutional approach amounts to
a more sophisticated form of lumping, as it is concerned with
unimodal spatial integration of data that will be integrated
and temporally modeled only at a later stage. Hu et al. (2024)
partially work on gridded data, namely remote-sensing mea-
surements of rainfall. Each sub-basin is aggregated sepa-
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rately using a convolutional LSTM to produce a spatially
aggregated time series of rainfall within the sub-basin. Ag-
gregated time series are concatenated with static information
and recent runoff and processed further in a semi-distributed
fashion. The crucial difference here is that the convolutional
LSTM serves as a data-driven aggregation mechanism for the
gridded rainfall input data, but hydrological modeling again
takes place in the semi-distributed domain.

2.2.3 CAMELS-type datasets

We have just discussed several studies featuring individual or
a few select catchments. Yet the bulk of large-scale rainfall
runoff modeling with neural networks has extensively fea-
tured the CAMELS dataset or one of its derivatives, based
on Newman et al. (2015) and extended to its current form
by Addor et al. (2017). It contains meteorological time se-
ries and ancillary data for 671 catchments located within the
contiguous United States, manually selected for minimal hu-
man impact. This implies that the catchments are relatively
small but, on the other hand, ensure “laboratory conditions”
for hydrological modeling. The downside of this is the lim-
ited applicability of findings generated with this dataset to
areas of the world where human influence contributes sig-
nificantly to streamflow, such as central Europe. But as the
dataset covers the contiguous US homogeneously, spans a
large area, contains many catchments with a wide variety
of different climates, it offers optimal conditions for train-
ing neural networks. And so CAMELS rose to popularity to-
gether with the neural network approach in rainfall runoff
modeling. Since then, similar datasets were introduced to the
public that cover other parts of the world: Chile (Alvarez-
Garreton et al., 2018), Great Britain (Coxon et al., 2020),
Brazil (Chagas et al., 2020), Australia (Fowler et al., 2021),
the Upper Danube Basin (Klingler et al., 2021), France (De-
laigue et al., 2022), Switzerland (Hoge et al., 2023), Den-
mark (Liu et al., 2025), and Germany (Loritz et al., 2024).

2.3 Contributions

In this paper, we present three contributions that go beyond
what we have discussed so far: we process the data in a spa-
tially resolved manner without prior aggregation, we use a
simple routing module that allows for interpretability, and we
train this model in an end-to-end fashion on a novel, spatially
resolved dataset in central Europe.

Spatially resolved processing takes place in the first or lo-
cal stage of our model, detailed in Sect. 4.1. Its architecture
largely follows the one presented in Kratzert et al. (2019b).
Instead of using lumped basins as inputs, we apply the same
neural network in parallel to each cell of a regular grid of me-
teorological time series and ancillary inputs. We show that
this finer spatial resolution allows us to capture covariances
and provide regularization, especially benefiting larger catch-
ments. This approach is natural for physical or conceptual
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models that solve local equations at a given rasterization. Yet
no one, to our knowledge, has applied a neural network di-
rectly to the grid of inputs in a way that scales up to entire
river basins. The local stage yields a local runoff quantity for
each grid cell, exemplarily visualized in the right panel of
Fig. 6.

The second or routing stage, detailed in Sect. 4.2, consists
of only two simple network layers without any nonlinear-
ity, efficiently mapping these local runoff quantities onto a
river network. Both stages are trained jointly in an end-to-
end fashion on the entire dataset, rendering any kind of expert
knowledge obsolete. This also means that the model is fitted
exclusively on empirical data, enabling scientific discovery
from raw data. We show that the river network connectivity
graph can be used as an inductive bias to constrain the model
to reproduce the river’s natural layout. This increases data
efficiency and allows for better interpretability. We explain
how, in principle — although this has yet to be shown in prac-
tice — the model can be controlled interactively: extracting or
injecting quantities of water can simulate human influence,
such as industrial, agricultural, or hydroelectric energy gen-
eration activity, which significantly contributes to streamflow
but is independent of the modeled hydrological processes.

Lastly, the lumped datasets discussed above are unsuit-
able for this spatially resolved modeling approach, since it
requires both non-spatially aggregated inputs and stream-
flow data for entire basins. Hence, for this study, we com-
piled gridded meteorological and static data as well as river
streamflow records for five entire basins in central Europe.
These basins are characterized by an overall high level of
human activity compared to the CAMELS dataset. The data
are publicly available and described in more detail in Vischer
et al. (2025b).

3 Data

As discussed above, previously released datasets for rain-
fall streamflow modeling are unsuitable for spatially resolved
processing, so we compiled a new, publicly available dataset,
referenced in the data availability statement. We present the
data sources, preprocessing steps, and practical aspects in
more detail in a separate publication (Vischer et al., 2025b).
The river discharge data that we use as targets for training,
as well as the catchment metadata from which we derive the
river connectivity, are available from the original provider
(https://portal.grdc.bafg.de/applications/public.html, last ac-
cess: 5 June 2025). We provide code that processes and com-
bines them with the input data after manual download.

3.1 Study area, study period, and resolution
Our study covers five river basins in Germany and parts of

neighboring countries: Elbe, Oder, Weser, Rhine and the up-
stream part of the Danube River up to Bratislava (see Fig. 1,
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Figure 1. Overview of the study area, input grid, and data types. (a) Study area: the study area comprises five basins that cover a
contiguous area in central Europe. (b) Input grid and station network in the Upper Danube Basin: cells of the input grid (orange) for
the Upper Danube basin. Catchment boundaries (black) are overlaid with corresponding stations (blue), and connecting arrows rep-
resent the station connectivity network. Cells along catchment boundaries are assigned entirely to the catchment that contains their
center point. (¢) Input types: visualizations for an example feature of each type of input. Basin outlines (black) and borders of Ger-
many (turquoise) are plotted for reference. Orography in panel (a) was adapted from the European Space Agency’s Copernicus Global
90m DEM (GLO-90, https://doi.org/10.5270/ESA-c5d3d65, European Space Agency, 2021) © EuroGeographics for the administrative
boundaries in panels (a) and (c). Watershed boundaries in panels (a), (b), and (c) were taken from the Global Runoff Data Center
(https://portal.grdc.bafg.de/applications/public.html, last access: 5 June 2025).

right panel). Due to the sparser coverage of gauging stations
in the lower reaches of the Danube basin, we decided to fo-
cus on the upper reaches where the station network is more
homogeneous. Additionally, the placement of river gauging
stations varies across countries, as each follows distinct poli-
cies for station location. From a machine learning perspec-
tive, this results in diverse sampling strategies across the river
network. We decided to limit our study to this region so as not
to confound the performance of routing with such different
sample distributions. The total study area covers a contiguous
570581 km? area. Figure 1 also visualizes exemplary fea-
tures in the study area with boundaries of the river basins and
Germany for geographic reference. Based on the consistent
availability of streamflow data, we decided to conduct our ex-
periments on the water years 1981-2011. A water year lasts
from 1 October of the previous year to 30 September. Due to
data availability, we homogenized all input data to daily tem-
poral resolution and a regular grid that is compatible with
the ERA5-Land dataset (Muiioz Sabater, 2019) and covers
the Earth’s surface with a spatial resolution of 0.1° x 0.1° or
roughly 9km x 9km. If a grid cell is located along a catch-
ment boundary, we assign it entirely to the catchment that

https://doi.org/10.5194/hess-29-5233-2025

contains the cell’s center point. This avoids having to repre-
sent fractional cells in the pipeline and seemed an acceptable
trade-off for the sake of simplicity, considering that the area
covered by each grid cell is relatively small.

3.2 Dynamic input data

Runoff is primarily driven by precipitation, but temper-
ature and solar radiation need to be taken into account
as well to properly capture processes like evaporation or
snow dynamics. Thus, our meteorological input variables
or forcings are daily minimum, average, and maximum
temperature; daily sum and standard deviation of precip-
itation; and average potential evaporation — a score com-
puted from radiation, temperature, air pressure, and hu-
midity. This set of variables has been widely used in pre-
vious studies (Kratzert et al., 2018, 2019b) and was re-
trieved from ERAS5S-Land (Mufioz Sabater, 2019). The vari-
ables, downloaded at 3h intervals, were aggregated to a
daily time step to match the time resolution of the target
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time series’ (Copernicus Climate Change Service, 2019).
We amend these six meteorological input features with two
more sine—cosine embeddings of the day of the week and the
day of the year, which can be considered a coarse proxy for
human activity (Otero et al., 2023).

3.3 Static input data

Following the insights from Kratzert et al. (2019¢) and
Shalev et al. (2019), we include static data, also called ancil-
lary data, with the aim of training models jointly on all loca-
tions and thus increasing transfer performance. Specifically,
we include hydrogeological properties, soil class, land cover,
and orographic features derived from a digital elevation map
for a total of 46 feature dimensions. Please refer to Vischer
et al. (2025b) for a detailed description of the origin and pre-
processing steps of all input features. The number of inputs
could be streamlined in the future, as Cheng et al. (2023)
showed how relevance propagation identifies non-task rele-
vant features.

3.4 Target streamflow time series, station information,
and river networks

Target time series of streamflow at each station were obtained
from the Global Runoff Data Center (GRDC) data portal
https://portal.grdc.bafg.de/applications/public.html (last ac-
cess: 5 June 2025). Together with the streamflow data, the
GRDC offers a catalog of station information. We considered
all stations in the station catalog but excluded stations that
had 10 or more values missing in the time series for the se-
lected study period. Furthermore, initial experiments showed
that including stations with less than 500 km? drainage area
in training decreased performance, even when evaluating ex-
clusively on larger stations. We decided to exclude these
small catchments and discuss this decision in Sect. 6. An-
other natural limitation on the spatial scope of this approach
is that it only captures rainfall streamflow dynamics in lo-
cations contained in the drainage area of a gauging station.
In coastal areas, runoff might directly enter the sea through
smaller streams that are not gauged. Hence, our study area
usually starts several kilometers inland from the sea. The fol-
lowing number of stations resulted in each basin: 62 in up-
per Danube, 34 in Elbe, 36 in Oder, 78 in Rhine, and 29 in
Weser basins, for a total of 239 stations. For comparison, the
CAMELS dataset contains 671 catchments. Further visual-
izations of the river networks can be inspected in the prepro-
cessing scripts, along with all details on how the metadata
were processed.

2The dataset was downloaded from the Copernicus Climate
Change Service (2019), https://doi.org/10.24381/cds.e2161bac.
The results contain modified Copernicus Climate Change Service
information 2020. Neither the European Commission nor ECMWF
is responsible for any use that may be made of the Copernicus in-
formation or data it contains.
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4 Methods

This section provides details on our model’s local and rout-
ing stages. This is followed by an explanation of how the
river network connectivity graph is calculated and integrated
into the routing stage of the model as an inductive bias. We
then describe the end-to-end training process and metrics and
baselines used in our experiments.

4.1 Model local stage — modeling spatially resolved
runoff

The task of the model’s local stage is to integrate all input
modalities and predict local runoff quantities on a regular
grid. These local quantities are then fed through the routing
layer described in the following subsection. As mentioned
before, we follow Kratzert et al. (2019b) by adding static
information to the meteorological input and adapting their
original model design for the local stage. While this model
was originally used on aggregated catchment time series, we
apply it to all grid locations in parallel. Also, contrary to the
original design, we add a simple, fully connected layer that
reduces the 46 static input dimensions down to 10 dimen-
sions. They are concatenated with another 10 dimensions of
meteorological forcings for a total input dimensionality of
the LSTM layer of 20, compared to 32 in the case of Kratzert
et al. (2019b). Their LSTM layer consists of 256 units, while
ours consists of 250. However, we reduce the 250 output val-
ues of the LSTM layer by using two regression layers in-
stead of one. We do not employ a nonlinearity after the sec-
ond readout layer, meaning that the network’s outputs are not
confined to a range, e.g., [—1, 1] but rather live in the range
of actual, physical quantities. Figure 2 visualizes the simple
network architecture. In summary, the routing stage of our
model is largely identical to the model used in Kratzert et al.
(2019b), with a few small modifications. We want to empha-
size here that the model does not have any predictive capa-
bilities in itself. It uses meteorological forecasts to produce a
forecast of runoffs.

In an exploratory experiment, we compared concatenating
static inputs to dynamic inputs before and after the LSTM
layer. Feeding the static inputs through the LSTM together
with the dynamic inputs resulted in substantially better per-
formance. This is consistent with the findings of Kratzert
et al. (2019b) and can be explained by the static inputs help-
ing the LSTM to better adapt to the hydrological dynamics
of a location. It is similar to training separate models for dif-
ferent climatic zones but in a data-driven fashion. Indeed,
Cheng et al. (2023) showed that clustering on the relevance
values of the different inputs results in hydrologically plausi-
ble clusters. Concatenating all features before feeding them
through the LSTM layer requires more parameters in this
layer, which, due to its intricate inner workings, is particu-
larly expensive to train in terms of data and compute. We also
used gated recurrent units (GRUs) (Cho et al., 2014) instead
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Figure 2. Overview of the local stage of the network architecture, acting in parallel on each of the input grid cells. Static inputs are reduced
to 10 features by feeding them through a simple, fully connected embedding layer and applying a nonlinearity function. The resulting feature
vector is repeated for every time step 7' of the meteorological forcing time series and concatenated with the time series. The resulting 20
features are fed through a 250-unit LSTM layer. The recurrent layer’s output is then reduced to a 1D output time series by sequentially
applying two fully connected readout layers, with a nonlinearity in between. Numbers in parentheses signify feature vectors at a given stage
in the model pipeline; numbers without parentheses signify the size of a layer’s weight matrix.

of LSTMs as a backend, which mitigates this problem a little
because they are computationally more efficient. We found
that they do not affect performance but decided to stick with
LSTM as our main backbone, as it is more common in the
literature. Nevertheless, using GRUs could be another way
to further optimize the model.

4.2 Model routing stage — integrating local runoff and
routing

The task of the routing stage of our model is to map the lo-
cally generated runoff to a station’s catchment area and then
route the runoff along the river network to predict streamflow
time series for every station in the basin. Figure 3 visualizes
the layout. Within a given river basin, we concatenate the pre-
dicted runoff time series of all grid cells. The network learns
a simple, strictly linear mapping consisting of two layers:
first, a fully connected layer without nonlinearity that maps
all grid cells G to their respective stations S. Since no nonlin-
earity is added, this layer can be translated into a weighted,
time-dependent average of all grid cells within a catchment.
Location information from the station catalog, described be-
low, can be used as an inductive bias to constrain this layer
so0 as to only route water in a physically plausible way. Then,
a 1D-convolution layer (Kiranyaz et al., 2021) performs time
convolution on each station’s time series to combine infor-
mation inside the river network over the last 9d. Separate
kernel values can be learned for each day, but the same ker-
nel is applied jointly over the entire time series. The kernel
length of 9d was chosen as a conservative estimate of the
maximum time it would take water to run along the entirety
of any of the river networks considered in this study but of
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course awaits empirical validation and further optimization.
The kernels in this layer are constrained by the connectivity
of the river network in order to be physically plausible, as we
explain in the following subsection. Crucially, this stage does
not involve any nonlinearity. Hence, both the fully connected
and the time convolution layers are linear functions and, as
such, can be chained to form yet another linear function.
This means that the quantities of water “flowing” through
this pipeline are physically interpretable. Put differently, in-
put quantities can be added or subtracted meaningfully to and
from the input. A practical application example of this, which
we plan to further investigate, is the injection or extraction of
water in between two stations to simulate agricultural, indus-
trial, or hydroelectric human activity. This sets our approach
apart from previous routing approaches. We also investigated
the effect of not constraining the weight matrices with the
connectivity matrices, which leads to slightly poorer perfor-
mance when data are scarce (see Sects. 4.5 and 5.5).

4.3 Structural bias

The station catalog contains polygons of each station’s catch-
ment area. From this, we can derive two important kinds of
information: first, for every grid cell, we can determine in
which station’s catchment it lies; second, for each station,
we can determine how it is connected to upstream and down-
stream stations. This subsection explains how this informa-
tion is extracted and how we use it as structural inductive
bias to constrain the routing layer to only consider physically
plausible routes of water flow.

Hydrol. Earth Syst. Sci., 29, 5233-5250, 2025
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Figure 3. Overview of the routing stage of the network architecture, acting on the output of the local stage. The local runoff time series of all
grid cells in a given basin are concatenated. Together, they are fed through a fully connected layer that projects them down onto the number
of the basin’s stations. The weight matrix in this layer is constrained to be non-zero only if a grid cell lies in the catchment of a given station.
The stations’ time series are then time-convolved with a kernel length of 9 time steps to model the flow of water between stations. Again,
each kernel is constrained to be non-zero only if a given station is directly upstream of another station. The routing stage yields time series
for all stations in the basin. It does not include any nonlinearity, so all activation values can be interpreted as streamflow quantities. The basin
map icon and dotted arrows indicate that the river connectivity information serves as an inductive bias on these two layers, constraining the

activations to replicate the real river network.

4.3.1 Catchment matrices

Mapping grid cells to stations is important to ensure that the
runoff predicted at a given location ends up at the only sta-
tion that is physically plausible. Since a given station’s catch-
ment area is contained within all the downstream stations’
catchment areas, we need to make sure that we select the one
where the generated runoff first enters the river network. To
do so, we select the station with the smallest catchment area
that contains a given grid cell. For each river network, we
represent this information conveniently in a one-hot matrix
with grid cells as rows and stations as columns. This ma-
trix is then used to constrain the fully connected layer in the
routing stage of the network. This is achieved by multiply-
ing the one-hot matrix pointwise with the freshly initialized
weight matrix of this layer before training begins. Weights
corresponding to physically impossible connections are thus
set to zero from the start. Zero weights cannot contribute to
gradients and will remain zero throughout the training. All
other weights are free to be optimized.

4.3.2 Connectivity matrices

From the catchment area polygons, a graph representing the
connectivity between stations in the river network can be de-
rived. Each node in the graph represents a station; a directed
edge exists between station A and B if A is directly upstream
of B. We determine this by verifying if the catchment area of
A is contained in the catchment area of B, ensuring that there
are no intermediary stations in between, i.e., contained by B
and containing A. Note that this automatically leads to a di-
rected acyclic graph. This fits our approach well, as it does
not require us to apply any model of routing iteratively in or-
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der to capture cyclic movements within the graph. The graph
is represented by a connectivity matrix, i.e., a square matrix
with rows (input) and columns (output) corresponding to sta-
tions, where the entries are 1 if a directed edge exists and 0
otherwise. This matrix is used to constrain the time convolu-
tion layer in a manner similar to the catchment matrix. After
initialization of the weight matrix, the connectivity matrix is
multiplied pointwise, preserving the weights where a con-
nection exists and setting them to zero where no connection
is present. The only difference is that the connectivity matrix
needs to be repeated by the depth of the temporal convolu-
tion, nine times in our case, for the 9d of past information
that we convolve.

4.4 Training and metrics

We split the data into three parts, all containing entire water
years: a training set from water years 1981 to 2005, a vali-
dation set for model selection from 2005 to 2008, and a test
set to report the final performance from 2008 to 2011. We
also created two special training datasets to illustrate how
the models perform on less training data: a medium length
training set ranging from 1991 to 2005 and a short train-
ing set from 1999 to 2005. Regardless of the length of the
training set, we divide it into chunks of 400d that partially
overlap. The first 30d are used as a warm-up period for the
LSTM. During this time, no gradients are computed, and the
LSTM can stabilize into an operating regime before start-
ing the learning process. The value of 400 was chosen to ac-
commodate an entire year plus the warm-up period, while
still being able to fit the gradients calculated during train-
ing into GPU memory. It would not be detrimental to use
even longer time series, and the model is capable of pro-

https://doi.org/10.5194/hess-29-5233-2025



M. A. Vischer et al.: Spatial rainfall streamflow modeling

cessing time series of arbitrary length. In fact, no gradients
are computed during inference, which significantly reduces
the memory footprint and allows us to calculate all metrics
on uninterrupted time series in a single model forward pass.
In all experiments, we trained for 2000 epochs on the train-
ing data. This number of epochs is generous for all models
to converge. Since the purpose of this study is to provide a
proof of concept of this type of spatially resolved process-
ing, we decided not to conduct an extensive hyperparameter
optimization or perform input feature ablation. Instead, we
included all potentially relevant static data and ran hyperpa-
rameter tuning experiments only on a limited set of values
for a few key hyperparameters, summarized in Table A2. We
trained 10 different random seeds for every setting and report
the best seed in terms of station-wise median Nash—Sutcliffe
Efficiency (NSE) score on the test period.

We use the widespread NSE metric (Nash and Sutcliffe,
1970) both as a loss function in training and as a score to
quantify performance. The NSE normalizes the squared loss
of each station by the standard deviation of the station’s val-
ues in the training period, so as to count each station eq-
uitably toward the loss or performance, regardless of the
magnitude of the river at this point. We do not split train-
ing and test partitions geographically, as breaking up basins
would make routing impossible. We also refer to Klotz et al.
(2024) for a word of caution when combining NSE values
that are calculated on partitions of a dataset. Unless noted
otherwise, the scores we report were calculated on the test
period. The median NSE over all stations serves as a robust
point estimate of performance, but for the interested reader,
we provide mean NSE scores in Table A1, which we found
to correlate strongly with the median NSE for all seeds. Like-
wise, we report the percentage of stations with an NSE score
below zero, which indicates predictive performance worse
than simply using the average value of a station’s runoff for
prediction, i.e., chance level. The popular Kling—Gupta ef-
ficiency (KGE) metric (Gupta et al., 2009) was developed
in the context of univariate, convex optimization; both these
assumptions do not hold in the case of training a neural net-
work. However, for the sake of comparability, we also report
the KGE values in the appendix.

As stated before, in this study, we refrained from ex-
tensive hyperparameter optimization to maximize the per-
formance. A few exploratory experiments to calibrate our
pipeline seemed necessary nonetheless: dropout (0 %, 10 %,
30 %, and 50 % separately in recurrent and readout layers
of the routing stage) did not increase performance, so we
removed it entirely. In the LSTM layer, 250 units (out of
150, 200, 250, and 300) yielded the best results. We use an
automatic learning rate scheduler, the ReduceLROnPlateau
scheduler provided by PyTorch (Ansel et al., 2024) with a
threshold of 1x 10~ and patience of 10, so the pipeline trains
robustly with regard to the initial learning rate (1 x 1074,
5% 10_4, 1x 10_5). But as the baselines in the experiments
have vastly different numbers of parameters, we decided to
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continue the experiments by always trying out both of the
lower values. Unless explicitly mentioned, we report the per-
formance resulting from the better value for every condition;
Table A2 lists the results in detail.

4.5 Baselines

We introduce two baselines in order to evaluate the perfor-
mance gains of the two central aspects of our pipeline: spa-
tially resolved processing in the local stage and the inclusion
of structural bias in the routing stage. In the first baseline ex-
periment, we aggregate all spatial information within a catch-
ment and feed it through the same architecture as used in the
local stage. Normally, this stage of the model processes in-
dividual grid cells. But here it processes entire, aggregated
catchments, and the output is a prediction of the runoff mea-
sured at the corresponding station. The aggregated baseline
does not require any further routing. This model and process-
ing pipeline are identical to the one in Kratzert et al. (2019b),
apart from the small differences in parameter values listed in
Sect. 4.1. As we discussed above, it has been widely used in
the literature since its introduction, which allows us to com-
pare our own results from our custom dataset to a wider body
of literature. We will call this baseline aggregated, whereas
our default model will be referred to as spatially resolved.

The second baseline leaves the local stage unaltered but
does not constrain the weight matrices in the routing stage.
Instead, we use two fully connected time convolution layers
with a kernel size of 9 and 3 d, respectively, and a nonlin-
earity in between. The design is intended to be simpler and
conventional for neural networks. We will refer to this base-
line as naive routing and to our default model as structured
routing.

5 Results and discussion

We start this section by presenting and contextualizing the
general performance of our model. We then show that our
model excels in modeling large catchments, is less prone to
overfitting, and learns from the data more efficiently than the
baselines. Inductive bias does not make a big difference in
performance. We end this section by showing that our model
is, unlike most neural networks, not an entirely black box
model and that capturing human influence seems to be the
biggest challenge in our study area.

5.1 Model performance

The aggregated baseline achieves a median NSE test per-
formance of 0.69 on our dataset (Table 1). As discussed
above, it is virtually identical to the model from Kratzert
et al. (2019b), who reported a median NSE of 0.74 on
the CAMELS dataset. These results were subsequently con-
firmed, small modifications of the model parameters or test
period notwithstanding, by Shalev et al. (2019) (median
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Table 1. Comparison of median catchment NSE scores and frac-
tion of catchments with NSE scores below zero for the spatially
resolved pipeline (structured and naive routing) and the aggregated
baseline, which corresponds to the model introduced by Kratzert
et al. (2019b). Structured routing outperforms naive routing, and
spatial processing outperforms aggregated processing. Metrics are
reported for the best of 10 random seeds in terms of median NSE
score. An extended version of this table, including KGE scores and
shorter training periods, can be found in Table Al.

Input Processing ~ Routing median  NSE

NSE <0
spatially resolved  structured 0.773  0.000
spatially resolved  naive 0.719  0.000
aggregated - 0.691 0.013

NSE 0.73), Acuiia Espinoza et al. (2025) (median NSE 0.75),
and Frame et al. (2022) (median NSE between 0.72 and
0.81). We conjecture that our baseline performance is proba-
bly lower due to our dataset being smaller than CAMELS and
likely containing greater human activity. Turning to other re-
gions, the same model was used, for example, by Mai et al.
(2022) for the Great Lakes Area (median KGE of 0.76), by
Lees et al. (2021) for Great Britain (median NSE 0.88), and
by Loritz et al. (2024) for Germany (median NSE 0.84). The
latter two results go against our conjecture for inferior perfor-
mance due to human signal. The fact that Loritz et al. (2024)
used an ensemble of models might be a factor at play, but
in any case, this requires further investigation. These studies
provide valuable comparisons with other model types. In all
the studies mentioned, the authors compared the neural net-
work model against a variety of physical, conceptual, or hy-
brid models and consistently found that the alternatives were
outperformed by the neural network.

Our model achieves a median NSE performance on the
test dataset of 0.77 compared to the baseline of 0.69 and
thus appears to be able to compensate somewhat for the more
demanding modeling context. Only training and testing our
model on a spatially extended version of CAMELS would
allow for more direct comparability with other approaches.
Unfortunately, this has to be left for future research as it
requires creating a spatially resolved version of CAMELS
first. In any case, despite the data being different and not
allowing for a straightforward comparison, this shows that
runoff generation and routing can be learned end-to-end by a
single model pipeline and without additional data along the
way. Moreover, the simplicity of the routing module’s de-
sign, along with the possibilities it offers, does not come at a
significant performance cost. An example in this case is that
the internal activations inside the network between local and
routing stages appear to be hydrologically plausible, as Fig. 6
illustrates. We want to stress that this is an emergent property
and was not incentivized during training.
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5.2 Modeling large catchments

Do larger catchments benefit more from spatially resolved
processing as we expected? Figure 4 shows the effect of
catchment size on per-catchment performance, comparing
our spatially resolved model to the aggregated baseline for
training and testing periods. We focus on the test results first
(right panel): For aggregated processing, we observe a neg-
ative trend between performance and catchment size. This
might be explained by the assumption that underlies spatial
aggregation, namely the homogeneity of the aggregated area,
does not hold for large catchments. Indeed, the trend is re-
versed for spatially resolved processing, where larger catch-
ments outperform smaller ones. Our results suggest that spa-
tially resolved processing should be considered particularly
when modeling large and heterogeneous catchments.

5.3 Inherent regularization

A comparison between the left and right panels of Fig. 4 re-
veals a substantial performance drop between the training
and test periods. To a certain degree, this is normally to be
expected due to overfitting. But the effect is much more pro-
nounced for the aggregated than for the spatially resolved
model. It stands to reason that the neural network in the ag-
gregated baseline, with its associated reduction of data, over-
fits severely. This also becomes apparent when looking at the
median NSE values in training and test datasets. While over-
all performance drops from 0.86 in training to 0.69 in test for
aggregated processing, spatially resolved processing deteri-
orates more gracefully from 0.90 to 0.77. Spatially resolved
processing, with its shared local stage and overall much more
data, seems to have an intrinsic regularization effect.

5.4 Data efficiency

The positive effect of spatially resolved training, especially
for large catchments, becomes even more pronounced when
looking at modeling in an environment with limited avail-
able training data. Figure 5 visualizes the difference in NSE
score between spatial and aggregated processing on a per-
catchment level, when training on 25, 15, and 6 years of train-
ing data. Differences are positive across all sizes of catch-
ments, meaning spatial processing on average performs bet-
ter regardless of the catchment size. Yet the positive trend
becomes stronger as data become scarcer. Spatially resolved
processing utilizes the available data more efficiently.

5.5 Inductive bias

Including inductive bias for what we call structured routing
leads to slightly better performance than naive routing with-
out the additional real-world information, resulting in a me-
dian NSE of 0.77 compared to 0.72. Figure A1 contains more
detailed results but also shows that the performance gain is
small. The point we want to make here is that the practical
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Figure 4. Effect of catchment size: each point corresponds to a station’s performance vs. the size of its catchment, for the aggregated baseline
(blue) and the spatially resolved pipeline (red) on the training (a) and test (b) periods. The individual data points are fitted linearly to show
the trend. Aggregated processing impairs performance, especially in larger catchments. The trend is more pronounced in the test dataset,
indicating overfitting in the training dataset. Spatially resolved processing is less prone to overfitting and manages to handle large catchments

accurately in a low-data setting.
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Figure 5. Effect of training period length: each point corresponds to a station’s NSE test performance after training for 25 years (green),
15 years (purple), and 6 years (orange). Across all catchment sizes and different quantities of training data, the spatial pipeline (a) outperforms
the aggregated baseline (b). The latter’s performance deteriorates quickly when training data are scarce. The spatially resolved pipeline is
much more robust in this regard, demonstrating its increased data efficiency.

benefit of being able to simulate the injection or extraction
of quantities of water in the routing process does not come
at the cost of lowering performance. As we mentioned be-
fore, naive routing, on the other hand, remains an important
tool in modeling basins where catchment delineation infor-
mation is unavailable or unreliable, or where lateral transport
of water inside the bedrock layer across catchment bound-
aries is suspected. Whether or not we use inductive bias in the
routing layer, our networks are extremely simple compared
to other networks proposed in the literature for routing that
we discussed above. Certainly, we demonstrate that routing
modules do not need to be complex, and river network ex-
traction algorithms are not necessary for end-to-end routing,
e.g., when no catchment boundary information is available.
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5.6 Interpretable internal states

Internal states of neural networks are usually not inter-
pretable. In our case, however, the activations of the final
layer of the local stage that would go into the routing mod-
ule stage of the model appear to be hydrologically plausible.
As an illustrative example, Fig. 6 displays these activation
values for two exemplary days in spring and summer. The
spatio-temporal correlation seems to suggest that on the ex-
ample day in spring, runoff is primarily driven by snowmelt
in low mountain ranges, whereas in summer, it seems to be
driven by heavy precipitation events. We want to make the
point that we did not enforce this property during the training
process, e.g., by providing additional target information or
training a special readout layer. This is a purely data-driven,
emergent behavior, resulting from both the end-to-end train-
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Runoff

Figure 6. Internal states of the model are hydrologically interpretable. This figure shows precipitation data from the input (left column) and
activation values after the local stage of the model (right column) for 2 d in March (top row) and August 2006 (bottom row). The days were
manually selected for illustration purposes. Values are displayed in arbitrary units, with blue signifying more runoff or precipitation. We
included the outline of Germany (© EuroGeographics for the administrative boundaries) in dotted lines for geographic reference. For the day
in spring (top row), a low spatial correlation between precipitation and runoff, together with a pattern of high runoff values in low mountain
ranges, suggests that runoff on this day is primarily driven by snowmelt in intermediate altitudes. For the day in summer (bottom row), on
the other hand, we see runoff that is driven by two clusters of heavy precipitation in the eastern part of our study area.

ing process and the model’s parsimonious design. Particu-
larly, we attribute this phenomenon to the shared recurrent
layer in the local stage and the combination of inductive bias
and linearity of the routing stage. Unlike more complex neu-
ral network designs that are generally considered black box
models, this suggests that our model naturally allows for a
certain degree of internal control by manipulating these in-
ternal states, e.g., by subtracting or adding quantities of wa-
ter to the natural runoff. It also creates new opportunities for
further scientific discovery from large quantities of data.

5.7 On human influence
We conclude this section by discussing a specific negative
outlier in terms of station-wise NSE. As explained above,

a negative NSE value indicates performance below chance
level. The only two stations that yielded negative NSE val-
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ues after training — consistently across all 10 random seeds —
are Spremberg and Boxberg (GRDC numbers 6340800 and
6340810) located along small rivers next to large brown coal
surface mining operations in the Lusatia region. A potential
explanation for these extreme outliers is that those mining
operations have an influence on the overall water balance that
is relatively large compared to the hydrological processes in
such catchments. This seems to support our assumption that
human influence is one of the main obstacles to be overcome
by rainfall streamflow models in the densely populated areas
of central Europe. We want to emphasize that the two sta-
tions in question only performed very poorly in the validation
period but not in the test period. We hypothesize that opera-
tions might have changed in the meantime or that the test pe-
riod simply lacked substantial events of human influence by
chance. We plan to investigate this phenomenon more closely
and explore potential solutions in future work.
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6 Summary and future directions

We have successfully trained a neural network in an end-
to-end fashion to capture runoff generation in a spatially re-
solved manner on a large scale. Training on five entire river
basins in central Europe, we have shown that this approach
is advantageous especially in large catchments. The parsi-
monious network design of the module that performs rout-
ing within these river basins is also noteworthy. Not only
does this approach mitigate overfitting and increase data ef-
ficiency, but the simplicity of the design and the ability to
integrate inductive bias open new possibilities to control the
inner workings of the model. This is not common for neural
networks.

Our model reaches a level of performance comparable to
that of other benchmark models, both conceptual and sta-
tistical. In future work, we plan to compare our model to
other state-of-the-art models used in science and operations.
The creation of a spatially resolved version of the popular
CAMELS dataset would make our model’s performance di-
rectly comparable to a large portion of the neural network
literature. A direct comparison of our overall pipeline to that
of an operational system like LISFLOOD would be similarly
interesting. Another question that needs to be addressed in
the future is how the performance of our model decreases
with the forecast horizon. As we discussed before, our model
does not have predictive capabilities of its own. Instead, it
relies on a suitable meteorological forecast as input to gen-
erate a forecast of streamflow quantities, and the quality of
the model’s predictions thus depends on the quality of the
forecast meteorological input. Quantifying this effect is im-
portant for real-world applications.

In this study, we excluded catchments where we suspected
that human influence was too strong based on a simple catch-
ment area heuristic. Unlike much research in this area, we
do not train our model exclusively on catchments with lit-
tle human influence. However, a more sophisticated strategy
— inspired, for example, by Loritz et al. (2024) or Tursun
et al. (2024) — is needed to properly quantify human impact
and thus be able to disentangle the effects of catchment area
and human influence on performance. Likewise, while we in-
cluded day of the week and day of the year as simple approxi-
mations to human influence, the effectiveness of this measure
can only be properly evaluated with a suitable ground truth.

Another significant limitation in terms of data availability
is the temporal and spatial resolution, as the relatively small
size of the recurrent layer enables our model to process time
series at a higher temporal resolution than daily. Because the
local stage is applied in parallel to all input locations, the
number of parameters is independent of the number of in-
puts. This is where most of the computation happens, and its
computational demands grow only linearly with the number
of locations. The weight matrices in the routing stage grow
quadratically but are much smaller in the first place.
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Another important aspect that we will address in future
work is discussed in Klotz et al. (2022), where the authors
extend a model similar to ours by using the outputs as param-
eters of a distribution. Such distributional predictions could
be obtained from our model in the same way and would be
of great interest for many real-world applications. Producing
genuinely probabilistic forecasts and warnings in this man-
ner is theoretically more sound than training an ensemble of
more or less different models and combining their predic-
tions.

As would be expected from the high degree of human ac-
tivity in our study area, we found evidence that the effect of
human influence was the central obstacle to further improv-
ing model performance in such an environment. Yet, a com-
prehensive investigation into the extent and impact of this
phenomenon is still required. Future research could demon-
strate that our neural network is capable of incorporating
simulated human activity, such as water extraction or diver-
sion, into the modeling of hydrological processes.
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Figure Al. Station-wise differences in NSE performance between structured and naive routing, plotted against the size of the station’s
catchment in the training (a) and test periods (b). Positive values indicate that structured routing performs better. The individual data points
are fitted linearly. Structured routing marginally outperforms naive routing on the test dataset (indicated by values greater than zero). In the
training dataset, naive routing performs better when data are scarce (values below zero for the short training period in green), indicating
overfitting.
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Table A1. Various performance metrics for the experiments presented in Sect. 5. The metrics were calculated after picking the best out of 10
random seeds for each condition based on median NSE.

Input Processing  Routing Train Period median NSE mean NSE NSE <0 median KGE mean KGE
spatially res. structured  long 0.773 0.751 0.000 0.803 0.779
spatially res. naive long 0.719 0.706 0.000 0.791 0.775
aggregated - long 0.691 0.643 0.013 0.731 0.702
spatially res. structured  med. 0.739 0.717 0.004 0.775 0.753
spatially res. naive med. 0.735 0.692 0.008 0.776 0.744
aggregated - med. 0.642 0.603 0.013 0.708 0.666
spatially res. structured ~ short 0.687 0.633 0.017 0.752 0.724
spatially res. naive short 0.653 0.605 0.004 0.739 0.709
aggregated - short 0.485 0.318 0.126 0.610 0.513

Table A2. Median NSE over 20 seeds for exploratory experiments
on the optimal initial learning rate. Performance was evaluated in
the validation period, as this is part of the model selection process.

Input Processing  Routing initial LR median NSE
spatially res. structured 5 x 10~% 0.738
spatially res. naive 5% 1074 0.724
aggregated - 5% 1074 0.691
spatially res. structured 1 x 1073 0.745
spatially res. naive 1x 1073 0.721
aggregated - 1x 1073 0.704
Code and data availability. The data wused in this study
are publicly available under CC BY-NC-SA license at

https://doi.org/10.4211/hs.05d5633a413b4aec93b08a7e61a2abbb
(Vischer et al, 2025a); the code used to preprocess
them is available under Clear BSD license at https:
//gitlab.hhi.fraunhofer.de/vischer/spatial_streamflow_dataprep
(last access: 5 June 2025).
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