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Abstract. This study presents a comparative analysis of dif-
ferent neural network models, including convolutional neu-
ral networks (CNN), long short-term memory (LSTM) and
gated recurrent units (GRUs), with regard to predicting dis-
charge within ungauged basins in Hesse, Germany. All mod-
els were trained on 54 catchments with 28 years of daily
meteorological data, either including or excluding 11 static
catchment attributes. The training process for each model
scenario combination was repeated 100 times using a Latin
hypercube sampler for hyperparameter optimisation with
batch sizes of 256 and 2048. The evaluation was carried out
using data from 35 additional catchments (6 years) to en-
sure predictions in basins that were not part of the training
data. This evaluation assessed predictive accuracy and com-
putational efficiency concerning varying batch sizes and in-
put configurations and conducted a sensitivity analysis of dy-
namic input features. The findings indicated that all exam-
ined artificial neural networks demonstrated significant pre-
dictive capabilities, with a CNN model exhibiting slightly
superior performance, closely followed by LSTM and GRU
models. The integration of static features was found to im-
prove performance across all models, highlighting the im-
portance of feature selection. Furthermore, models utilis-
ing larger batch sizes displayed reduced performance. The
analysis of computational efficiency revealed that a GRU
model was 41 % faster than the CNN model and 59 % faster
than the LSTM model. Despite a modest disparity in perfor-
mance among the models (< 3.9 %), the GRU model’s ad-
vantageous computational speed rendered it an optimal com-

promise between predictive accuracy and computational de-
mand.

1 Introduction

Artificial intelligence (AI) is increasingly being used to an-
swer scientific questions, including those in the realm of
hydrology (Kratzert et al., 2019a, b; Afzaal et al., 2019;
Nabipour et al., 2020). The predictive accuracy of AI in these
hydrological studies, particularly concerning discharge, is of
paramount importance for flood control, watershed manage-
ment or the estimation of water availability (Sharma and
Machiwal, 2021; Brunner et al., 2021). In the era of cli-
mate change, which causes tremendous variability in rainfall
patterns and increases evapotranspiration, the role of precise
hydrological forecasts becomes even more essential (Tabari,
2020). An area of particular challenge is prediction in un-
gauged basins (PUB), an endeavour fraught with substantial
uncertainty due to the lack of empirical data for model cal-
ibration (Blöschl, 2016). Effective models for PUB should
thus possess robust generalisation capabilities across diverse
watershed behaviours, enabling more universal basin type
predictions (Sivapalan et al., 2003).

As demonstrated by Kratzert et al. (2019a), an artifi-
cial neural network (ANN) model, namely the long short-
term memory (LSTM) network (Hochreiter and Schmidhu-
ber, 1997), showed unprecedented accuracy in PUB. The
employed LSTM model exhibited the ability to generalise
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rainfall–runoff predictions across a substantial number of
basins (531), surpassing the performance of traditional hy-
drological models that typically operate best when indepen-
dently calibrated for each separate basin. Further compara-
tive analyses, such as those by Le et al. (2023), evaluated
the performance of LSTM against other ANNs like multi-
layer perceptrons (MLPs) and convolutional neural networks
(CNNs) in daily streamflow prediction. This study revealed
superior performance by LSTM and CNN models over con-
ventional ANNs, with LSTM exhibiting a marginal edge
over CNN. Moreover, a novel approach proposed by Ghimire
et al. (2021) involved a hybrid CNN–LSTM model, designed
for hourly discharge predictions. When benchmarked against
various ANNs (CNN; LSTM; deep neural network – DNN),
traditional AI models (extreme learning machine, MLP) and
ensemble methods (decision tree, gradient boosting regres-
sion, extreme gradient boosting, multivariate adaptive re-
gression splines), the CNN–LSTM model displayed superior
performance with regard to multiple evaluation metrics, al-
though all ANNs exhibited high efficacy. This is evidence
that deep learning, a subset of machine learning characterised
by multilayered ANNs, holds substantial promise for stream-
flow prediction. However, while numerous studies have ex-
plored discharge prediction using ANNs, only a limited num-
ber have conducted comparative analyses of different ANN
architectures. Table 1 summarises these studies from 2020 to
December 2023, noting that most incorporate lagged target
variables as inputs. This methodology, though effective, is
less applicable for PUB due to the absence of discharge data
in ungauged or poorly gauged regions, necessitating the use
of discharge-independent inputs.

Among the studies shown in Table 1, three specifically ad-
dressed this constraint. The first, by Nguyen et al. (2023a),
evaluated CNN and LSTM models for daily discharge pre-
diction in the 3S river basin, exclusively using daily mean
temperature and precipitation data. This study adopted a “re-
gional” approach, akin to that of Kratzert et al. (2019a), train-
ing both model architectures with data from all three sub-
basins. The LSTM was found to outperform the CNN, al-
though the latter’s results were not extensively discussed.
The second study, by Wegayehu and Muluneh (2023), con-
trasted three super ensemble learners against eight base mod-
els, including LSTM, a gated recurrent unit model (GRU)
and a compound CNN–GRU model, for daily discharge pre-
diction. Here, the LSTM ranked among the top three in
four out of five scenarios based on R2 metrics. However,
its performance declined significantly in the absence of fea-
ture selection, indicating susceptibility to redundant features.
Notably, this study trained separate models for each basin,
thus not directly addressing PUB generalisation capabilities.
The third study, by Oliveira et al. (2023), compared three
ANN models (LSTM, CNN and MLP) for daily discharge
estimation in a single basin, where the CNN model exhib-
ited superior performance (Nash–Sutcliffe efficiency (NSE)
of 0.86). However, this does not imply generalisability in

non-calibrated catchments as both calibration and testing oc-
curred within the same basin. Regrettably, this limitation per-
tains to all three studies. Consequently, this research aimed
to bridge the existing literature gap by comparing the per-
formance of three distinct ANN architectures for predicting
discharge in ungauged basins. Through a comparative anal-
ysis, this study not only addresses a significant gap in hy-
drological literature but also provides valuable insights into
the relative strengths and limitations of each ANN model,
thereby guiding future applications and development in the
field of hydrological prediction. Furthermore, a comprehen-
sive sensitivity analysis was conducted to identify key drivers
affecting the prediction of each model. This methodological
approach contributes to refining model selection and calibra-
tion strategies in hydrological forecasting.

The first architecture under examination was the LSTM,
which demonstrated robust performance in numerous stud-
ies (Kratzert et al., 2019a, b; Le et al., 2023; Nguyen et al.,
2023a). Although LSTM models demonstrated promising
performance, the inherent sequential architecture of LSTM
led to higher computational costs. This resulted in a relative
decrease in computational efficiency when compared to feed-
forward neural networks or CNNs, as discussed in Gauch
et al. (2021). In pursuit of addressing these limitations and
challenges that are inherent to LSTM models, the second ar-
chitecture chosen for examination was the CNN. This model
is characterised by its parallel processing capabilities, sig-
nificantly boosting computational efficiency, a critical factor
when handling large-scale, high-resolution time series data;
extensive input sequences; and a multitude of input features
(Bai et al., 2018). The third architecture under consideration
was the gated recurrent unit. GRU, a variant of LSTM, is
recognised for its proficiency in effectively capturing tem-
poral dependencies in time series data while imposing less
computational burden (Cho et al., 2014).

Given that PUB is often characterised by data scarcity, this
study incorporated two distinct scenarios: the first involving
the use of only daily forcing data and the second extending
this with additional static catchment features. This approach
allowed for an evaluation of the model’s generalisation ca-
pacity when constrained to minimal data. Additionally, it
provided insights into the degree to which static catchment
features could contribute to enhancing model performance,
as indicated by Kratzert et al. (2019a). Accordingly, the ob-
jectives of this study were delineated as follows:

1. to evaluate the potential of predicting discharge in un-
gauged basins by means of daily forcing data with
ANNs, namely LSTM, CNN and GRU;

2. to compare the computational efficiency of LSTM,
CNN and GRU models for daily time series prediction;

3. to investigate the potential of static features to enhance
prediction performance; and
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Figure 1. Geographic distribution of the catchments in Hesse and
Hesse’s location within Germany. Darker shades represent nested
catchments, while intersections indicate catchments partially incor-
porated into both training and testing phases.

4. to assess the impact of batch size on model performance
and computational efficiency.

2 Materials and methods

2.1 Study area

All basins analysed in this study are located in the federal
state of Hesse, Germany (Fig. 1). The climate of this region
is temperate–humid and is characterised by moderate tem-
perature and precipitation levels (Heitkamp et al., 2020). The
topography of Hesse, characterised by a complex blend of
lowlands, hilly terrains and modest mountain ranges, fosters
a multifaceted hydrological setting. A variety of geological
formations and soil types within the region contribute to the
mixed pattern of infiltration rates, groundwater recharge and
surface runoff (Jehn et al., 2021).

2.2 Data sources

The dataset used in this study was derived from Jehn et al.
(2021). For each catchment, daily sums of precipitation
[mm], daily sums of evapotranspiration [mm] and soil tem-

perature at 5 cm soil depth [°C] were available along with
the corresponding discharge [mm]. The discharge data were
obtained from a gauging station located within the respec-
tive catchment. In addition, the dataset included 11 static
catchment features corresponding to every catchment (Ta-
ble 2). As suggested by Kratzert et al. (2019a), the inclusion
of static catchment attributes can improve the performance of
machine learning models. Table 2 provides an understanding
of the underlying aggregation of data, spatial resolution and
units. Apart from discharge data, which are accessible upon
contacting the Hessian Agency for Nature Conservation, En-
vironment and Geology, all other datasets are publicly avail-
able within the associated repository of Jehn (2020).

2.3 Data preprocessing

The preprocessing of the input data was an essential step to
ensure that the quality and integrity of the data were main-
tained. This process entailed a detailed analysis of data conti-
nuity, encoding of non-numerical values, and splitting of the
dataset into training and validation subsets, followed by data
normalisation and subsequent transformation. The data anal-
ysis revealed discontinuities in the discharge data across the
time series of 39 catchments. In order to provide the longest
possible time series for the training process, a total of 54 out
of the full set of 95 catchments were selected for model train-
ing. These catchments covered 28 years (1991–2018). Of the
remaining 39 catchments, 35 were utilised for testing, each
with a temporal resolution spanning 6 years from 1997 to
2002. Rivers containing artificial constructions that impede
discharge through impoundments (e.g. reservoirs) were not
considered in this analysis. However, it should be noted that
a subset of the selected rivers might be equipped with hy-
draulic control mechanisms, such as floodgates (Jehn et al.,
2021).

For both training and testing datasets, all categorical fea-
tures (Table 2) were encoded using label encoding. In this
approach, every unique variable of a categorical feature was
replaced by a non-repeatable integer value (Lin et al., 2020).
This method was preferred over the frequently recommended
one-hot-encoding technique (Duan, 2019; Cerda and Varo-
quaux, 2022) in order to circumvent an increase in the to-
tal feature count equivalent to the number of unique fea-
ture variables, as occurs with the one-hot-encoding tech-
nique (Ul Haq et al., 2019). Moreover, label encoding ac-
commodates ordinal scales, which are better suited for hier-
archical features such as permeability. In contrast, categor-
ical features without a meaningful order, such as soil type
or soil texture, are better handled by the one-hot-encoding
technique, which treats each category independently. Fur-
thermore, Potdar et al. (2017) indicated that label encoding
yielded the lowest performance among various investigated
encoding methods. Consequently, it cannot be unequivocally
asserted that this method stood as the optimal approach. To
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Table 1. Overview of recent studies focused on comparing discharge prediction using various artificial neural networks. “Target indepen-
dence” indicates that discharge data were not utilised as input features during model training and/or testing. “Ungauged” indicates model
evaluation with catchments that were not part of the training dataset. “Multi-catchment” denotes that the models were evaluated on multiple
catchments.

Target
Ungauged

Multi-
Timescale

Lead time step
Prediction algorithm Reference

independent catchment Single Multi

X X X Daily X CNN, GRU, LSTM This study

X X Daily,
monthly

X CNN, LSTM Nguyen et al. (2023a) a

X Daily X CNN-GRU, GRU, LR,
LSTM, LASSO, MLP,
SVR, XGB

Wegayehu and Muluneh (2023) b

X Daily X CNN, LSTM, MLP Oliveira et al. (2023)

X Daily X X CNN, LSTM, MLP,
Transformer

Nguyen et al. (2023b)

X Daily,
monthly

X X ANN, LSTM Cheng et al. (2020) b

Daily X ANFIS, ANN,
BiLSTM,
CNN-GRU-LSTM

Vatanchi et al. (2023) b

Daily X ANN, CNN, LSTM Le et al. (2023)

Daily X ANFIS, LSTM-PSO Haznedar et al. (2023) b

Daily X CNN-LSTM, DT, GB,
LSTM, MLP, RF

Hong et al. (2020) b

Daily X X BiLSTM, CNN, FNN,
GRU, LSTM,
StackedLSTM

Le et al. (2021)

Daily X CNN, DTR, LSTM, RF Li et al. (2022) b

Daily X CNN-LSTM, DT, GB,
MLP, RF, RNN-LSTM

Hong et al. (2021) b

Daily X CNN-LSTM, LSTM Deng et al. (2022) b

Daily X BiLSTM, CNN-LSTM,
ResBiLSTM,
ResCNN-LSTM

Herbert et al. (2021)

ANFIS denotes adaptive neuro-fuzzy inference system, ANN denotes artificial neural network, BiLSTM denotes bidirectional LSTM, CNN denotes convolutional neural network,
DT denotes decision tree, DTR denotes decision tree regressor, FNN denotes feed-forward neural network, GB denotes gradient boosting, GRU denotes gated recurrent unit, LSTM
denotes long short-term memory, LR denotes linear regression, MLP denotes multilayer perceptron, LASSO denotes least absolute shrinkage and selection operator, PSO denotes
particle swarm optimisation, Res denotes residual, RF denotes random forest, RNN denotes recurrent neural network, SVR denotes support vector regression, and XGB denotes
extreme gradient boosting. a Only the results of the LSTM model are stated. b Hyperparameter configuration nontransparent.

avoid further increasing the number of static input features,
label encoding was selected.

The training dataset of 54 catchments was then further di-
vided, using 80 % of the data for training and 20 % for val-
idation. Subsequently, the two datasets were normalised by
employing a min–max scaling method, with a range of [0,1]
chosen as the boundaries. The choice of this scaling method
was made empirically based on the observed performance in

the dataset and model configuration. Concurrently, the preci-
sion of the data representation was configured to adhere to a
float32 format. The target variable was scaled independently
of the features. Moreover, to prevent data leakage, each fea-
ture normalisation was established solely based on the train-
ing dataset.

The normalised training dataset exhibited a shape ofN×D
for each catchment, whereN signified the number of samples
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Table 2. Summary of daily forcing data and static catchment attributes utilised for modelling: detailing the spatial resolution of the original
data sources with the aggregation methods and the respective units.

Feature Spatial resolution Aggregation Unit

Precipitation 1000 m Daily sum mm
Evapotranspiration 1000 m Daily sum mm
Soil temperature (5 cm) 1000 m Daily mean °C

Soil type 1 : 500000 Spatial majority Classes (n= 5)
Soil texture 1 : 1000000 Spatial majority Classes (n= 4)
Geology type 1 : 250000 Spatial majority Classes (n= 2)
Land use 1 : 100000 Spatial majority Classes (n= 3)
Permeability 1 : 250000 Spatial majority Classes (n= 6)
Average precipitation 1000 m Annual mean mm
Catchment size 40 m At reach pour point m2

Elongation ratio 40 m At reach pour point /
Soil depth 1 : 1000000 Spatial mean m
Average slope 40 m Spatial mean °
Average evapotranspiration 1000 m Annual mean mm

in time, and D represented the number of features. To assess
the impact of additional static features, two distinct datasets
were created. The first dataset included only three features
with daily forcing data and assumed a shape of N × 3, while
the second incorporated all 11 static features and took a shape
of N × 14.

To transform the datasets into training batches, a two-
dimensional moving window, characterised by dimensions of
T ×D, was subsequently implemented, where T represents
the moving-window size, also known as the look-back period
or sequence length (Fig. 2). This window is continuously in-
cremented by a single period in the dimension of N , with the
initial window encompassing observations [N1, NT ]. The
consecutive window encapsulates observations [N2, NT+1],
and this pattern is maintained until the window reaches the
final element of the dataset (Nn). Consequently, the entire
dataset was partitioned intom=Nn−T+1 subsamples for ev-
ery catchment. All subsamples were combined into a three-
dimensional array (Nn−T+1×T×D). The transformed catch-
ment datasets were stacked into one final training set with
the shape of C×Nn−T+1×T ×D, where C was equal to the
number of catchments. The identical transformation was im-
plemented for both validation and test datasets, encompass-
ing those with and without static features.

It is important to note that the transformation of the data is
already part of the hyperparameterisation process, a concept
further elucidated below.

2.4 Hyperparameterisation

The performance of machine learning models is influenced
by the optimisation of their respective hyperparameters
(Shekhar et al., 2022; Ozaki et al., 2021). In the domain
of machine learning, hyperparameters are variables that de-
fine the configuration of the models and are set prior to the

training process (Bhattacharjee et al., 2021), while the term
parameter refers to the variables that the model learns dur-
ing training (Goodfellow et al., 2016). The selection of an
appropriate tool for hyperparameter optimisation is a criti-
cal step. Consequently, this task was conducted utilising a
Python framework known as Spotpy (Houska et al., 2015).
The framework offers computational optimisation techniques
for calibrating models, such as a Latin hypercube sampler
(LHS), an appropriate method for selecting input variable
values within a specified range given its ability to generate
near-random samples from a multidimensional hyperparam-
eter distribution (McKay et al., 1979).

The hyperparameters of the models are contingent upon
the architectural design. In this study, three distinct model
architectures were explored: LSTM, GRU and CNN. LSTM
and GRU are both types of recurrent neural networks
(RNNs), specifically designed to handle sequential data, such
as time series. As the employed LSTM and GRU models
possess an identical layer structure, both models share an
equivalent set of hyperparameters. A detailed overview of the
utilised hyperparameters can be found in Table 3.

The hyperparameter T denotes the window size employed
in the moving-window mechanism and signifies the length of
the sequence, representing how many time steps (past days)
are used to predict the discharge of the following day. The
feature maps F quantify the number of results or features
generated within the convolution process. This is achieved
by utilising a kernel of size k, referred to as the filter size,
which is systematically applied over the data to extract es-
sential patterns and characteristics, thereby transforming the
input data.

In the context of LSTM and GRU models, the unitU refers
to the number of hidden neurons within the RNN layer. This
quantity not only characterises the internal complexity of the
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Figure 2. Schematic procedure of data transformation by applying a
moving window: this procedure primarily involves the partitioning
of the data into distinct sections, employing a window (blue) that
slides across the dataset, effectively creating a temporal snapshot
(m). T delineates the window size within the temporal dimension,
D represents the feature dimension, and N signifies the temporal
samples with a daily resolution.

layer but also corresponds to the output dimension. The fi-
nal hyperparameter under consideration is the dropout rate
p, which represents the fraction of the neurons that are ran-
domly set to zero during training (Srivastava et al., 2014).

The ranges of the hyperparameters were delineated in pre-
liminary experiments by repeatedly training each model em-
ploying LHS over wider ranges. Any hyperparameter that fell
below or exceeded the minimum and maximum bounds of
Table 3 demonstrated inferior performance on average. The
final training process was executed with a sampling size of
100 for each model and batch size combination, with and
without static features. This culminated in a total of 12 dis-
tinct sampling processes.

2.5 Model architectures

The architecture of the LSTM was first introduced by
Hochreiter and Schmidhuber (1997). An LSTM consists of

Table 3. Ranges of hyperparameters deployed across different neu-
ral network models within the Latin hypercube sampling frame-
work.

Model Hyperparameter Min Max

CNN
Window size (T ) 50 300
Feature maps (F ) 100 500
Kernel size (k) 3 9

LSTM/GRU
Window size (T ) 50 300
Units (U ) 10 500
Dropout rate (p) 0.05 0.5

a memory cell governed by four specific gate units, grant-
ing the capacity to preserve information over extended pe-
riods (Cho et al., 2014). Through this architectural design,
LSTMs possess the capability to mitigate the challenges as-
sociated with exploding or vanishing gradients, as encoun-
tered in traditional RNNs. While the nuanced workings of
LSTM cells and their concomitant advantages are pertinent
(Hochreiter and Schmidhuber, 1997), they have been exten-
sively discussed in prior research and thus will not be re-
peated within this study.

The architectural design of a GRU model is inspired by
the structure of LSTMs, with the distinction that it incorpo-
rates only two gates to regulate the information flow. This re-
sults in reduced computational complexity, thereby rendering
GRUs more computationally efficient while still addressing
the exploding- and vanishing-gradient problem (Cho et al.,
2014).

In contrast, CNNs are tailored for grid-like data structures,
including images. The CNN architecture was first introduced
by Fukushima (1980). The term convolutional neural net-
work was introduced by LeCun et al. (1989), who developed
a model for handwritten digit recognition.

CNN models possess a significant advantage in that the
convolution operation is inherently parallelisable, allowing
for the simultaneous execution of numerous calculations. An
additional merit is the ability to extract features irrespective
of the exact location where the feature is found. This reduces
the number of input samples needed for training and thus
improves computational efficiency (Lecun et al., 1998). Note
that these extracted features are distinct from those listed in
Table 2.

The architectural configurations of the three models em-
ployed in this study are depicted in Fig. 3, with further ex-
planations provided in the subsequent sections.

2.5.1 LSTM

The LSTM model comprises a single LSTM layer config-
ured with a designated number of hidden units (U ). To mit-
igate overfitting and promote generalisation, a dropout layer
is directly connected to the LSTM layer, introducing regular-
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Figure 3. Schematic diagrams of the architectures of the three utilised models: (a) long short-term memory (LSTM), (b) gated recurrent unit
(GRU) and (c) convolutional neural network (CNN).

isation by randomly deactivating a specific fraction (dropout
rate) of the hidden units (Srivastava et al., 2014).

The final layer is a dense layer that applies a sigmoid acti-
vation function, which converts the output into a probability
value between 0 and 1 (Fig. 4c). The adoption of this spe-
cific activation function was motivated by the need to pre-
vent the generation of negative discharge predictions, which
were previously encountered with the use of alternative acti-
vation functions like LeakyReLU or a linear function. Such
negative predictions are hydrologically implausible and un-
dermine the validity of the model outputs. However, the util-
isation of a sigmoid function, in conjunction with a min–max
scaling technique, introduces a structural limitation wherein
the model is incapable of extrapolating beyond the maximum
discharge values observed during the training phase. Consid-
ering these trade-offs, the sigmoid function was chosen as a
compromise to balance model stability and physical realism.

A comprehensive examination of all activation functions
employed within the models is provided in Fig. 4. This il-
lustration delineates the specific characteristics of each func-

tion, highlighting that both the rectified linear unit (ReLU)
and sigmoid functions are designed to avoid negative values.
The ReLU function, in particular, suppresses negative val-
ues by setting them to 0, while the sigmoid function, recog-
nised by its characteristic S shape, maps any input into values
between 0 and 1. Pertinently, in the context of deep learn-
ing, especially in image recognition, ReLU is often favoured
for its expedited learning capabilities, yielding enhanced per-
formance and superior generalisation attributes (Krizhevsky
et al., 2017). However, it was observed in preliminary ex-
perimental setups that the sigmoid function exhibits greater
stability, while ReLU demonstrated a higher propensity to in-
duce gradient exploding. The complete architectural design
of the LSTM model is illustrated in Fig. 3a.

2.5.2 GRU

The architecture of the GRU model shares a structure simi-
lar to that of the previously described LSTM model, with the
primary difference being the substitution of the LSTM layer
with a GRU layer (Fig. 3b). Similarly to the LSTM model,
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the GRU model contains a single layer configured with a des-
ignated number of hidden units (U ) and employs a dropout
layer directly connected to the GRU layer to mitigate overfit-
ting and to promote generalisation. The final dense layer sim-
ilarly employs a sigmoid activation function to ensure that all
predicted discharge values remain within a physically plau-
sible range.

2.5.3 CNN

The CNN is composed of a series of three convolution cells,
each containing a one-dimensional convolution layer fol-
lowed by a pooling layer. The convolution layers incorporate
a ReLU activation function (Fig. 4b) and employ a sliding-
window mechanism known as a kernel that traverses the in-
put data for processing. As previously elucidated, this ker-
nel is responsible for extracting feature maps (F ) from time-
dependent input features. The kernel, with a size of k, is ap-
plied uniformly across all convolution layers. In each suc-
cessive convolution layer, the quantity of feature maps is in-
creased by a factor of 2, thereby enhancing the model’s ca-
pacity to extract and represent complex features.

In the initial pair of convolution cells, the temporal dimen-
sion (T array) within the pooling layer is reduced by a factor
of 2 by employing a stride of size 2 across each T array,
while the third pooling layer extracts a single set of feature
maps along the temporal axis of all T arrays. To preserve
the temporal dimension during the convolution process, each
convolution layer incorporates symmetric zero-padding. This
technique involves adding zeros around the input data, ensur-
ing that the processed dimension remains unchanged after
applying the convolution operation.

The last layer of the model is a dense layer that compresses
the model dimensions to produce a single output value for
each prediction. This layer is fully connected to the preced-
ing layer and uses a leaky rectified linear unit (LeakyReLU)
activation function as depicted in Fig. 4b. The LeakyReLU,
akin to the standard ReLU (shown in the same figure), differs
by introducing a small, non-zero slope for negative values.
This characteristic enhances gradient propagation and miti-
gates the issue of vanishing gradients (Ramachandran et al.,
2021).

The selection of the LeakyReLU over the standard lin-
ear activation function (Fig. 4a) was driven by the lat-
ter’s propensity to generate negative predictions for the dis-
charge values. Although LeakyReLU does not entirely pre-
clude negative predictions, it effectively modulates them into
marginally negative outputs and therefore reduces the ex-
tent of negative predictions. Although the sigmoid function
is effectively utilised in LSTM and GRU models to pre-
vent negative discharge predictions, its application within the
CNN model framework yielded suboptimal results in prelim-
inary trials, particularly when compared to the performance
achieved using the LeakyReLU activation function. This in-
formed the decision to opt for LeakyReLU in our work.

A visual representation of the complete architectural de-
sign of the CNN model is presented in Fig. 3c.

2.6 Loss function

In machine learning algorithms, the role of the loss func-
tion is paramount as it quantifies the discrepancy between the
model’s predictions and the actual data (Wang et al., 2022).
The optimiser, an algorithm designed to minimise the loss,
regulates the process of updating the model’s parameters.
This optimiser strives to enhance model performance by it-
eratively determining the loss and then adjusting the model
parameters to reduce this loss. This is achieved by identifying
the gradient or derivative of the loss function, which denotes
the local minimum (least steep ascent). Thus, by minimising
the loss, the machine learning model can improve its predic-
tive accuracy.

The optimiser used for all models in this study is the Adam
optimiser (Kingma and Ba, 2017). This algorithm provides
high computational efficiency for gradient-based optimisa-
tion and is suitable for large models that include a high num-
ber of parameter sets.

The choice of loss function is dictated by the specific task
at hand. A commonly used loss function when predicting
continuous data is the mean square error (MSE), which is
favoured for its computational efficiency. However, MSE suf-
fers from sensitivity to outliers due to its quadratic penalty
and exhibits scale dependence, rendering it less interpretable
and comparably challenging when evaluating models across
disparate output scales (Liano, 1996; Gupta et al., 2009).

Another metric used to capture model performance, tra-
ditionally employed in hydrology, is the Nash–Sutcliffe ef-
ficiency (NSE) (Knoben et al., 2019). Based on the close
similarities between MSE and NSE and, hence, the inherent
disadvantages, NSE is not an ideal choice as a loss function
either (Gupta et al., 2009).

To mitigate the systematic issues encountered in optimi-
sation processes that arise from formulations linked to the
MSE or NSE, we decided to utilise the more resilient Kling–
Gupta efficiency (KGE). KGE corrects for underestimation
of variability by providing a direct evaluation of four differ-
ent facets of the discharge time series, encompassing shape,
timing, water balance and variability (Santos et al., 2018).
The definition of KGE is delineated in Eq. (1):

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (1)

with

r =
Cov(obs, sim)

σobs · σsim
,

α =
σsim

σobs
,

β =
µsim

µobs
,
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Figure 4. Visualisation of the three activation functions utilised within the employed models. The diagrams show the graphical represen-
tations and functional ranges of (a) the linear function, which preserves the raw, untransformed input; (b) the rectified linear unit (ReLU)
function, which maps negative inputs to zero and passes positive inputs unchanged; and (c) the sigmoid function, characterised by its distinct
S shape, which compresses any input into a range between 0 and 1. Note the different y-axis scales.

where µ is the mean, σ is the standard deviation, and r is
the linear correlation factor between observations and simu-
lations. The variable α is a measure of how well the model
captures the variability of the observed data, and β defines
a bias term indicating how much the model’s predictions
systematically deviate from the true values (Knoben et al.,
2019).

Analogously to NSE, KGE also indicates the highest per-
formance when equal to 1. However, the goal of the loss
function is to minimise the error; thus, the discrepancy be-
tween simulation and observation should approach 0. There-
fore, the implemented loss function L results in Eq. (2).

L(obs, sim) =

√
(r − 1)2+

(
σsim

σobs
− 1

)2

+

(
µsim

µobs
− 1

)2

(2)

2.7 Model training

The training process was conducted using a GeForce RTX
3090 graphics card equipped with 24 GB of memory. Each
model was subjected to training with batch sizes of 256 and
2048. The batch size is a fraction of the total number of train-
ing samples and represents the number of samples utilised to
train the model prior to an update of the internal parameters
(Radiuk, 2017).

The batch size has no physical interpretation in the context
of hydrological processes but functions as a crucial hyperpa-
rameter in the training of neural networks. Prior studies, such
as that of Kratzert et al. (2019a, b), have demonstrated the
successful application of a batch size of 256. In this study,
this batch size was also adopted and served as the baseline.
To further explore the impact of larger batch sizes, a mul-
tiple of 256 was employed. A batch size of 2048 was then
utilised, representing the upper limit of the memory capacity
of the graphics card used.

The maximum number of epochs designated for training
was set to 60. An epoch refers to a single iteration over the
entire training dataset during which the model’s parameters
are adjusted to minimise loss. However, the training process
was configured to terminate when the validation loss failed
to show improvement throughout five consecutive epochs.
An enhancement was recognised when the validation loss
decreased by a minimum of 0.001 during these five epochs.
This mechanism is called early stopping.

Given that the input data for the training procedure are ar-
ranged by catchments, shuffling of data was implemented to
circumvent the potential for overfitting to a specific catch-
ment. Furthermore, each model was trained both with and
without the inclusion of static features for the two speci-
fied batch sizes. This leads to a total of four distinct training
phases for every model with a specific hyperparameter set.

The static features were processed analogously within the
models in relation to the treatment of the daily features. The
learning rate, frequently acknowledged as the paramount hy-
perparameter to tune, exerts a considerable influence on the
training of models that employ gradient descent algorithms
(Xu et al., 2019).

When the learning rate is too high, the optimiser may di-
verge from the local minimum, while setting it too low can
result in a protracted learning process (Zeiler, 2012). To ef-
ficiently address this behaviour, a dynamic adjustment of the
learning rate was integrated into the training process using a
learning-rate scheduler.

This algorithm modifies the learning rate based on the cur-
rent epoch number. During the warm-up period, the learning
rate linearly increased from the initial rate to the base rate
throughout three epochs. The warm-up period was followed
by a decay period lasting 10 epochs, during which the learn-
ing rate linearly decreased from the base rate to the mini-
mum rate. Following the decay phase, the learning rate was
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Table 4. Gradual alterations in the learning rate throughout the 60
epochs of the model training process.

Epoch Stage Learning rate

1–3 Warm-up Linear increase from 1× 10−6 to 5× 10−4

4–13 Decay Linear decrease from 5× 10−4 to 5× 10−5

14–60 Cool-down Constant 5× 10−5

kept constant at the minimum rate for the remaining epochs.
Detailed information can be found in Table 4.

3 Results and discussion

3.1 Model performance

The analysis depicted in Fig. 5 delineates a comparative eval-
uation of model performance concerning architectural varia-
tions, batch sizing and the incorporation of supplementary
static attributes. The findings reveal that employing CNN
models in conjunction with static features yielded a mean
KGE of 0.80 and 0.78 for batch sizes of 256 and 2048, re-
spectively. The inclusion of static features provides a perfor-
mance benefit as the mean accuracy drops to 0.71 and 0.67
when static features are omitted for batch sizes of 256 and
2048, respectively. This aligns with the findings presented
by Kratzert et al. (2019b), who assert that static catchment
attributes enhance overall model performance by improving
the distinction between different catchment-specific rainfall–
runoff behaviours.

Notably, the maximum KGE in the absence of static fea-
tures reached 0.97 and 0.92 for batch sizes of 256 and 2048,
respectively, highlighting the potential for high model per-
formances even without static features. On the contrary, the
minimum KGE drops when omitting static features to−0.21
and −0.26 for batch sizes of 256 and 2048, respectively,
showing the lowest minimum performance of all models.
This suggests a deficiency in the model’s ability to gener-
alise, a phenomenon frequently observed when overfitting
occurs (Srivastava et al., 2014).

Regarding the minimum KGE values when utilising static
features, the CNN models demonstrated the third and fourth
highest minimum values, registering at 0.24 and 0.20 for
batch sizes of 256 and 2048, respectively.

In the case of LSTM networks, mean KGE values of 0.78
and 0.73 with static features for batch sizes of 256 and 2048,
respectively, can be noted. The mean KGE declined to 0.73
and 0.68 when static features were omitted for batch sizes
of 256 and 2048, respectively. Notable is the maximum per-
formance achieved with static features, which reached 0.94
for a batch size of 256. In contrast, the LSTM with a batch
size of 2048 exhibited the lowest minimum value of 0.05
across all models with static features. For models run without
static features, the LSTM with a batch size of 256 recorded

the highest minimum value of 0.09. Conversely, the LSTM
model with no static features and a batch size of 2048 pre-
sented the lowest maximum KGE of 0.86.

For GRU, the mean KGE exhibited similar trends with
the inclusion of static features, reaching 0.77 and 0.75 for
batch sizes of 256 and 2048, respectively. The mean per-
formance declined to 0.71 and 0.69 when static features
were omitted for batch sizes of 256 and 2048, respectively.
The GRU model with a batch size of 2048 demonstrated
the highest minimum KGE value of 0.37 among all models
when static features were incorporated. Following closely,
the GRU model with a batch size of 256 under the same fea-
ture scenario presented the second highest minimum KGE of
0.28.

Upon examining the performance range, the GRU model
with static features and a batch size of 2048 exhibited the nar-
rowest performance range of 0.52. Subsequently, the GRU
model with static features and a batch size of 256 displayed
a performance range of 0.63, indicating robust generalisation
capabilities for these two models. Notably, for both batch
sizes, the GRU model demonstrated a marginally higher
maximum KGE when static features were omitted. This find-
ing contradicts the outcomes of all other models, where the
inclusion of static features consistently reduced the maxi-
mum KGE, regardless of batch size. The sole exception to
this pattern was observed in the CNN model with a batch
size of 256 and utilising no static features.

Altogether, when analysing the influence of batch size
across various models, it becomes evident that an increase
in batch size correlates with a decrease in performance. This
observation is confirmed by the study of Masters and Luschi
(2018), who discovered that smaller batch sizes contribute to
enhanced training stability and generalisation performance
when employing CNN models for image classification. Ad-
ditionally, Kandel and Castelli (2020) identified a strong
correlation between learning rate and batch size, proposing
that higher learning rates should be employed when utilis-
ing larger batch sizes. However, the learning rate remained
constant across varying batch sizes throughout this study.

Altogether, these results suggest the following:

1. The smaller batch size of 256 contributes to better
model performance with regard to mean KGE values.

2. Static features generally improved the mean KGE
across all architectures and batch sizes.

3. The CNN model with static features and a batch size of
256 showed the highest mean KGE and therefore out-
performs LSTM and GRU models slightly.

4. The KGE performance ranges for models with static
features are substantially smaller and at a higher level
than the ranges for models without static features.

5. Overall, the GRU model with a batch size of 256 and
static features exhibited favourable KGE performances
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Figure 5. Evaluation of performance discrepancies in the applied models relative to batch size and additional static catchment attributes
during the testing period. The number represents the average KGE over all 35 catchments. The dotted line displays the percentile intervals.

akin to LSTM and CNN models and mitigated poor pre-
dictions across all test catchments.

Comparing evaluation metrics

To further investigate the efficacy of the applied models,
additional performance metrics were incorporated. Among
these, the NSE was selected to facilitate comparison with
prior studies that conventionally utilise this metric. More-
over, the percent bias (PBIAS) was employed to gauge the
systematic deviation of the modelled data from observed
values, indicating whether the model predictions consis-
tently overestimate or underestimate the observations (Mo-
riasi et al., 2007). The mean absolute error (MAE) was inte-
grated as a metric to quantify the absolute discrepancies be-
tween model predictions and actual observations, serving as
a direct assessment of model precision (Siqueira et al., 2016).
Lastly, the coefficient of determination (R2) was adopted as
an indicator for evaluating the degree of alignment between
simulations and observed data, reflecting the model’s “good-
ness of fit” (Onyutha, 2022). A comparative view of the re-
sults of all of the employed performance metrics is shown in
Table 5.

Overall, the presented data indicate that NSE metrics are
marginally lower than the KGE values. This phenomenon
could potentially stem from the presence of counterbalancing
errors, an inherent limitation associated with the KGE met-
ric. Such counterbalancing errors materialise through con-
current overestimation and underestimation of the predictive
target. Given that bias and variability collectively constitute
two-thirds of the KGE, their effects may augment the aggre-
gate score without necessarily indicating a more accurate or

relevant model (Cinkus et al., 2023).

NSE= 1−
∑N
i=1(obsi − simi)

2∑N
i=1(obsi − obs)2

(3)

PBIAS= 100×
∑N
i=1(simi − obsi)∑N

i=1obsi
(4)

MAE=
1
N

N∑
i=1

|obsi − simi | (5)

R2
=

 ∑N
i=1(obsi − obs)(simi − sim)√∑N

i=1(obsi − obs)2
√∑N

i=1(simi − sim)2

2

(6)

Notably, the CNN and LSTM models, when configured with
a batch size of 256 and incorporating static features, achieved
the highest NSE (Eq. 3) values of 0.76 and 0.75, respectively.
In comparison, the GRU model under identical configura-
tions exhibited a slightly inferior performance, marked by
an NSE of 0.72. In the context of existing literature, Nguyen
et al. (2023a) reported an NSE of 0.66 for an LSTM model
calibrated across three distinct catchments, each with its own
separate calibration and not extending to ungauged scenar-
ios.

While models calibrated to individual basins often per-
form better than those generalised across multiple catch-
ments, particularly in PUB, our results demonstrate that the
generalised models trained here achieve even better results
than these specialised models. Kratzert et al. (2019a) docu-
mented an NSE of 0.54 for an LSTM model, which, despite
being lower, is deemed to be more robust due to its vali-
dation across 531 catchments using k-fold cross-validation.
Nonetheless, the observation that NSE values surpassing 0.7
in the most efficacious model across each architecture under-
scores the potential of these artificial models, provided that
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optimal hyperparameter tuning is applied and that sufficient
data are available to support the learning process.

All CNN models universally exhibit a positive PBIAS
(Eq. 4), signifying a consistent underestimation of discharge
rates, regardless of variations in batch size or feature scenar-
ios. Notably, CNN models lacking static features manifest,
on average, smaller discharge deviations of approximately
7 %, marking them as the models with the most significant
underestimations. Conversely, the CNN model employing a
batch size of 256 alongside static features demonstrates the
smallest PBIAS, recorded at 0.06 %.

In contrast, LSTM models display a PBIAS pattern that
does not adhere to a discernible trend. The LSTM model
achieving the highest KGE metric overestimates the dis-
charge by an average of 3.46 %. The LSTM models with a
batch size of 2048 and inclusion of static features exhibit the
most substantial overestimation, with a PBIAS of −5.1 %.
The absence of static features in LSTM models tends to yield
PBIAS values closer to zero, which is preferable.

GRU models reveal a negative PBIAS when static fea-
tures are incorporated and show a positive PBIAS without
them. The most favourable PBIAS among GRU models,
−0.48 %, is observed in the model with a batch size of 256
and static features, closely aligning with the best-performing
CNN model’s PBIAS of 0.06 %. Overall, GRU models dis-
play the least average deviation in PBIAS.

Regarding MAE (Eq. 5), most models exhibit comparable
outcomes, with an MAE of around 0.3 mm. However, LSTM
and GRU models with a batch size of 2048 are exceptions,
showing a slightly elevated MAE around 0.4 mm. Despite
this, the models generally demonstrate an ability to minimise
this error metric, particularly evident in CNN models with
higher PBIAS values where the cancellation of positive and
negative predictive errors does not occur.

The R2 (Eq. 6) scores of every model architecture show
a slightly better fit without static features when comparing
equal batch sizes. One exception to this trend is the GRU
model with a batch size of 2048, where the model incor-
porating static features shows a higher fit than that without
static features. Furthermore, the R2 values confirm the anal-
ysis of the KGE performance, which showed better perfor-
mance with smaller batch sizes.

After considering the effects of batch size, feature scenar-
ios and resulting performance metrics, it is also instructive to
examine the chosen window sizes across the employed mod-
els, which may offer further insight into how each model pro-
cesses temporal dependencies.

Across architectures, CNN models generally utilise
smaller window sizes compared to LSTM models, with GRU
models employing window sizes that lie between the two.
This trend might reflect the intrinsic architectural efficien-
cies of CNN models in handling spatial–temporal data more
compactly, while LSTM models, designed to capture long-
term dependencies, benefit from broader temporal windows.
The GRU models, with their simpler architectural design,

may not manage extensive temporal sequences as effectively
as the more complex LSTM models. Regarding batch sizes,
there is an observable trend where smaller window sizes are
generally favoured when larger batch sizes are used, with the
exception of GRU models. The usage of static features does
not directly influence the choice of window size but consis-
tently correlates with enhanced performance across all win-
dow sizes and models.

Furthermore, for GRU models and, to a certain extent, for
LSTM models at a batch size of 256, a decline in perfor-
mance with increasing window size is observed, suggesting a
potential overload of contextual information that may not be
essential for accurate predictions. Conversely, for CNN and
LSTM models at a batch size of 2048, an increase in window
size correlates with improved performance.

Overall, these observations indicate that, while window
size is a critical parameter in model configuration, its im-
pact on performance is significantly modulated by other fac-
tors such as model architecture; batch size; and, especially,
the inclusion of static features. In summary, the insights of
Table 5 corroborate that CNN models, when incorporating
static features, manifest superior efficacy, particularly in the
context of the metrics assessed for validation.

Statistical variability across model runs

To assess whether the differences in performance among the
best-performing CNN, LSTM and GRU models with a batch
size of 256 and incorporating static features stem from ran-
dom initialisation, each model was trained 20 times with dis-
tinct random seeds. The results are summarised in Fig. 6,
which illustrates the distribution of KGE values across the
repeated runs.

The mean KGE for CNN LSTM, and GRU models re-
mained consistent within the range of the initial single-run
results, registering at 0.76, 0.75 and 0.76, respectively. The
interquartile range (IQR) for each model is relatively small,
indicating low variability in performance due to random ini-
tialisation. Notably, the GRU model exhibits the narrow-
est IQR, reflecting its robustness across multiple runs. The
LSTM model exhibits slightly greater variability, though its
performance distribution largely overlaps with that of the
GRU model. In comparison, the CNN model displays the
widest IQR; however, the majority of its distribution is po-
sitioned at higher KGE values relative to the other models.
Furthermore, the CNN model achieves the highest reported
KGE value (0.80) but also includes the lowest outlier at 0.62.

These findings confirm that the CNN model exhibits a
slight performance advantage over the LSTM and GRU mod-
els in terms of KGE. This observed difference is not predomi-
nantly influenced by random initialisation but instead reflects
distinctions in the architectural design of the models and their
respective capacities for generalisation. However, while the
observed difference is relatively small, it is important to note
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Table 5. Synthesis of performance metrics across models, batch sizes and feature scenarios during the testing period. Numbers shaded blue
denote higher scores for each metric.

that the overall performance of all models is strong, inher-
ently leaving limited room for substantial improvement.

3.2 Runtime

To investigate the computational efficiency associated with
the models employed, the runtime of the training process
was measured for each model, considering variations in both
batch size and the combination of features.

Both the batch size and the integration of additional static
features significantly influence the runtime of models across
all employed architectures, as evidenced in Fig. 7. The CNN
model with a batch size of 2048 and without static features
presented the shortest runtime of approximately 2.3 min. Al-
though the CNN model demonstrated rapid convergence to-
wards its optimal minimum error, it simultaneously exhibited
the lowest performance as delineated in Fig. 5. This suggests
that the conditions were not sufficiently robust to discern the
intrinsic patterns.

Using an identical batch size and feature configuration, the
GRU model, along with the CNN model configured with a
batch size of 256 and no static features, had the second short-
est runtimes of approximately 4.2 min.

The introduction of static features resulted in a notable in-
crease in the runtime for all models, barring the GRU model
with a batch size of 256, where the inclusion of static fea-
tures marginally reduced the runtime, rendering it the fastest
among all models that utilised static features. The runtime
augmentation was especially pronounced in the CNN model
with a batch size of 2048, showing a more than 12-fold in-
crease, thereby marking it as the most time-consuming model

across all evaluated scenarios. LSTM models also exhibited
a substantial increase in runtime across both batch sizes upon
the incorporation of static features.

Within identical model architectures, it is observed that
larger batch sizes contribute to faster runtimes in the absence
of static features. Conversely, when static features are em-
ployed, models tend to exhibit faster runtimes with smaller
batch sizes, with the exception of the LSTM models. For
these models, an escalation in batch size consistently results
in accelerated runtimes, irrespective of the feature configura-
tion.

The different behaviour of additional features towards
training runtime while using different batch sizes is unex-
pected and cannot be explained solely by considering the
batch size and feature scenarios. As reported by Radiuk
(2017), larger batch sizes correlate with increased runtimes,
which is attributable to the higher computational utilisation
required to process an increased quantity of training sam-
ples for the purpose of updating model weights. Nonetheless,
this assertion assumes that the models under comparison di-
verge only in terms of batch and feature size. This presump-
tion does not apply to the present study, where each model
is also characterised by a unique optimised combination of
hyperparameters (Table 3). A possible explanation might be
that all models exhibiting a more protracted runtime require
additional epochs to converge. This phenomenon could be fa-
cilitated by the early-stopping mechanism deployed in model
training, which permits the termination of the training pro-
cess when the optimised metric ceases to demonstrate im-
provement.
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Figure 6. Distribution of KGE values for CNN, LSTM and GRU models across 20 independent runs with different random seeds using a
batch size of 256 and incorporating static features. The number represents the average KGE over all 20 runs.

Figure 7. Comparison of model runtime across three different architectures (CNN, LSTM and GRU) with varying batch sizes (256 and 2048)
and the presence or absence of static features.

Altogether, when static features are incorporated, the GRU
model utilising a batch size of 256 demonstrates the fastest
runtime (9.5 min). In contrast, the CNN model, configured
identically with respect to batch size and employed features,
exhibited a runtime of 16.1 min, consequently rendering the
runtime of the GRU model 41 % faster. In the final analy-
sis, it becomes evident that the GRU model exhibits superior
runtime performance compared to both the CNN and LSTM
models, specifically when employing a batch size of 256 and
utilising static features. In the context of RNN models, with a
focus on runtime, GRU models were found to be superior in
terms of efficiency compared to LSTM models. This stands

in alignment with the findings of Yang et al. (2020), who
reported that GRU was 29 % faster than LSTM when pro-
cessing the identical dataset. However, as stated before, the
examined models in this study not only exhibit disparities in
terms of batch size but also encompass other architectural pa-
rameters such as the number of utilised epochs, hidden units
and the window size (Table 6). These differences may result
in altered computational efforts.

Apart from the different model architectures, the specific
configuration of hyperparameters in each model yields vary-
ing computational effort. For example, an increase in window
size results in a more extended sequence to process, thereby
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necessitating additional computational effort. In the context
of the CNN models, the computational effort is contingent
on the window size, feature maps, kernel size and quantity
of input features. Models incorporating static features (+SF)
possess 14 input features, whereas those without static fea-
tures (−SF) contain only 3 dynamic features. In contrast, the
computational effort of the LSTM and GRU models is deter-
mined by the units within the corresponding cell, the input
feature size and the window size.

The observed increase in computational time for the GRU
model, when running with a batch size of 256 and no static
features, is mainly due to a significantly larger window size,
which increased from 87 to 298. This expansion, in the ab-
sence of static features, requires a more extensive computa-
tional effort. In contrast, for CNN models employing a batch
size of 2048, the pronounced augmentation in execution time
is primarily induced by an increase in the quantity of feature
maps, presenting a 2.3-fold increase. Generally, the marked
prolongation in computational duration for CNN models in-
corporating static features, as opposed to those excluding
them, can be elucidated by the incorporation of a consider-
ably higher number of feature maps in the former. This en-
largement is a direct consequence of the increased data vol-
ume processed by the models when supplemented with static
features. Notably, CNN models utilising a batch size of 2048
manifest a reduction in window size, implying that the model
may encounter challenges in generalising from extended in-
put sequences due to potentially excessive variability among
the samples within a batch.

For the LSTM models with a batch size of 2048, an 83 %
increase in the number of hidden units when static features
are introduced is the primary factor contributing to the sub-
stantial increase in runtime for this configuration. Notably,
the GRU model with a batch size of 256 and static features,
which exhibits the smallest window size of 87 among all re-
current models, achieves the fastest runtime for models in-
corporating static features, a result directly attributable to its
reduced window size, while still maintaining commendable
predictive performance.

The architectural differences between CNN models and
recurrent models (LSTM and GRU) render direct compar-
isons of their hyperparameter configurations impracticable,
with the exception of window size. As indicated in Table 6,
the window sizes of CNN models are smaller than those ob-
served in recurrent models, except for the GRU model em-
ploying a batch size of 256 and incorporating static features.

Moreover, an assessment of the best-performing models
within each architecture (all configured with a batch size of
256 and incorporating static features) reveals that the afore-
mentioned GRU model possesses the smallest window size
(87), followed by the CNN (179) and the LSTM (232) mod-
els. The increased length of input sequences implies greater
computational demands, which partly accounts for the ele-
vated runtime observed in the specified CNN model despite
its inherent capacity for parallel processing. As outlined in

Table 6. Selection of utilised hyperparameters for the employed
CNN, LSTM and GRU models: a comparative examination of dif-
ferent feature scenarios, including scenarios with static features
(+SF) and without static features (−SF), across two distinct batch
sizes (256 and 2048).

Model Hyperparameter
Batch size 256 Batch size 2048

+SF −SF +SF −SF

CNN
Window size (T ) 179 183 86 70
Feature maps (F ) 346 105 466 205
Kernel size (k) 4 6 8 8

LSTM
Window size (T ) 232 288 168 159
Units (U ) 491 377 453 248
Dropout rate (p) 0.37 0.34 0.29 0.23

GRU
Window size (T ) 87 209 150 229
Units (U ) 373 364 480 172
Dropout rate (p) 0.48 0.11 0.27 0.17

Sect. 2.5, this attribute is typical of CNN models, whereas
the sequential-processing nature of LSTM and GRU models
limits such parallelisation.

In conclusion, the comparative analysis suggests that the
GRU model, particularly when utilising a batch size of 256
and incorporating static features, emerges as the optimal
choice for hydrological applications prioritising computa-
tional efficiency alongside predictive performance. Further-
more, the differential impact of batch sizes and feature con-
figurations on the runtime across CNN, GRU and LSTM
models underscores the critical role of tailored hyperparame-
ter optimisation in achieving computational efficiency with-
out compromising model performance.

Given the observed favourable outcomes when employing
a batch size of 256 with static features, subsequent analyses
will focus exclusively on models adhering to this configura-
tion.

Assessment of flow segment performance

To reinforce the analysis of performance, the recorded dis-
charge data from all evaluated catchments, corresponding to
the highest-performing model within each architectural cat-
egory, were divided into quartiles. First, the discharge data
for each catchment were sorted in ascending order. Then, the
sorted data were divided into four quartiles, with each quar-
tile representing a 25 % portion of the data range for each
catchment, thereby forming four distinct segments. Subse-
quently, for each segment, KGE and PBIAS of the predicted
discharge were calculated in relation to the observed values,
as illustrated in Fig. 8.

Across all models, a noticeable increase in KGE is ob-
served from the lowest to the highest flow segments, with
the exception of Q2, which represents lower flow levels and
records the lowest KGE values. Remarkably, only within the
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highest flows is a positive KGE observed. This implies that
the models predominantly discern peak flow events as criti-
cal data for learning, treating low flows as less significant or
noise, which the models aim to diminish.

This phenomenon may be attributed to a bias in the KGE
towards elevated flows, thereby inadequately penalising in-
accuracies in lower flow predictions. Specifically, KGE in-
cludes three parts, namely the Pearson correlation coefficient
r , variability α and bias β (Eq. 1). Because peak flows typ-
ically exhibit larger numerical values than lower flows, they
might dominate the overall variance; slight improvements
in capturing these high-flow events can thus yield relatively
large gains in all three components, thereby improving the
overall KGE score.

Consequently, forthcoming research should explore eval-
uation metrics that facilitate a more holistic optimisation ap-
proach. Regarding the highest flows, the KGE metrics ex-
hibit close resemblance across models, with the CNN model
leading slightly with a KGE of 0.69. Conversely, the LSTM
model demonstrates superior efficacy in modelling Q1 and
Q2 flow segments.

Addressing the PBIAS, the pattern of enhanced model per-
formance with increasing flow magnitudes, as noted with
KGE metrics, persists. This is evidenced by the narrowing
spread of the violin plots. Intriguingly, except for the Q4
segment, the PBIAS remains positive across all models for
each flow segment, indicating a general overestimation of the
lowest to higher flows and a mild underestimation of peak
flows. This phenomenon may be attributed to the limitation
described in Sect. 2.5.1, whereby the integration of a sig-
moid activation function with a min–max scaler inherently
limits the highest possible prediction value to the maximum
observed during the training phase.

Notably, the predictions by the CNN model for the lowest
flow exhibit the most pronounced bias, particularly on the
positive spectrum, pointing to a lack of adequate generalisa-
tion capabilities.

A further decomposition of the KGE is illustrated in Fig. 9,
where each of the three components of the KGE (Pearson
correlation coefficient (r), variability (α) and bias (β)) are
presented separately. These components offer insights into
distinct aspects of the model’s performance. The Pearson
correlation coefficient (r) measures the strength and direction
of the linear relationship between the observed and simulated
data. A value of 1 indicates perfect positive correlation, −1
indicates perfect negative correlation, and 0 indicates no cor-
relation. The variability (α) measures the ability of the model
to capture the observed variability. A value of 1 indicates that
the model’s variability matches the observed variability. Val-
ues greater than 1 indicate that the model has higher variabil-
ity, while values less than 1 indicate lower variability. The
bias term (β) indicates the systematic overestimation or un-
derestimation by the model. A bias value of 1 means there
is no bias, values greater than 1 indicate overestimation, and
values less than 1 indicate underestimation.

Figure 9 reveals that r is more consistent across Q1 to
Q4 for the LSTM model, unlike the CNN and GRU mod-
els, which display a wider range for r below 0.25. This indi-
cates that the LSTM model is better at matching the timing
of prediction for low flows. A similar trend is observed for α,
where the LSTM and GRU models exhibit higher variability,
particularly for the lowest flows (Q1). However, the GRU
model shows difficulties in capturing variability for lower
and higher flows (Q2 and Q3), with values of 3.96 and 2.63,
respectively, compared to the LSTM and CNN models.

The bias term (β) shows that the CNN model achieves the
best score for the highest flows (Q4). Nevertheless, it also
exhibits the largest bias for the lowest flows (Q1) among all
models. Conversely, the LSTM model demonstrates superior
performance for Q1 through Q3.

Overall, this analysis suggests that the LSTM model ex-
hibits favourable results across all KGE components. Ap-
pendix A presents the three best-performing and three worst-
performing hydrographs of each model. Within the poorly
performing hydrographs, it becomes evident that, while the
timing of the flow events is mostly accurate, the magnitude
is poorly captured, and the base flow is often underestimated.
This suggests that these catchments might exhibit differ-
ent hydrological behaviours compared to the better-predicted
catchments, indicating the need for more diverse catchments
in the training dataset. Furthermore, Appendix A4 presents a
comparison of the simulated hydrographs for the same basin.
Consistent performance trends are observed across all mod-
els, with either poor or high performance in the same basin.
However, one plot exhibits mixed performance, where both
LSTM and GRU models perform well, while the CNN model
shows poor performance. Notably, this is the only validated
catchment where such a strong discrepancy is observed.

In summary, the evaluation of flow segment performance
has provided valuable insights into the performance distribu-
tion. While the CNN model showed superior average perfor-
mance, as demonstrated within the preceding sections, the
LSTM model exhibited a higher degree of consistent per-
formance across all flow segments. Additionally, the recur-
rent models displayed enhanced generalisation capabilities
for the lowest flow rates in each catchment.

3.3 Model sensitivity

To elucidate the effect of the input features on discharge pre-
diction, a sensitivity analysis was conducted. For that, each
daily input feature was uniformly increased by 10 %, and,
subsequently, the prediction was executed again with the
modified inputs. The newly predicted discharge values were
then systematically averaged over both time and all catch-
ments, resulting in one metric. Variations in the mean dis-
charge resulting from these adjustments yield insights into
the comparative significance of each evaluated feature within
the model. This analysis focuses solely on dynamic features
due to the limited number of catchments (35). With only 35
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Figure 8. Comparative performance of CNN, LSTM and GRU models incorporating static features across different flow segments. The top
row (a–c) displays the Kling–Gupta efficiency (KGE), and the bottom row (d–f) shows the percent bias (PBIAS) for the lowest flows (Q1),
lower flows (Q2), higher flows (Q3) and highest flows (Q4). Each violin plot represents the distribution of model performance metrics for all
evaluated catchments within each flow segment. The black dots indicate the mean values for each segment.

samples for static features, the models lack sufficient vari-
ability in the input to reliably interpret these features.

The results of this analysis are shown in Fig. 10, represent-
ing the mean percentage change in discharge, calculated by
averaging over all daily predictions and across all 35 catch-
ments.

For the CNN model, the meteorological feature precip-
itation exhibited the most positive impacts on the model,
with changes of 11.1 % (Fig. 10a). This underscores its piv-
otal role in influencing the output of the CNN model. In-
creasing the daily feature soil temperature led to a decline
in discharge of −2 %, likely related to increasing atmo-
spheric water losses with rising temperature through increas-
ing actual soil evaporation and plant transpiration. The daily
forcing evapotranspiration showed a small positive impact
of 0.4 %. The observation that daily evapotranspiration in-
creases with discharge is seemingly counterintuitive. How-
ever, daily evapotranspiration derived from Jehn et al. (2021)
represents actual evapotranspiration, which can increase with
wetter conditions and therefore also correlate positively with
discharge.

Although this may offer a plausible explanation for the ob-
served anomalous behaviour, it is unlikely within the context
of this study. Given that all models share the same input fea-
tures, both the LSTM and GRU models should exhibit similar
behaviour, which is not observed (see Fig. 10).

Analogously to the findings from the CNN model analysis,
the LSTM model further corroborated the fact that precipita-
tion exerts the most substantial positive impacts on discharge,
registering enhancements of 15 % (Fig. 10b). Conversely,
daily sum evapotranspiration negatively impacted discharge,
resulting in decreases of −2.2 %. In comparison to the CNN
model, the LSTM model displays a substantially higher sen-
sitivity to precipitation, implying that this feature serves as
the principal driving force for this model. The daily feature
soil temperature revealed a decrease of −3.3 %.

The sensitivity analysis of the GRU model parallels the
findings of the LSTM model. Precipitation exerts strong pos-
itive effects on discharge, with increases of 13.3 % (Fig. 10c).
Evapotranspiration demonstrated a negative impact on dis-
charge by−3.1 %. This makes the GRU model the most sen-
sitive to this feature. The soil temperature exhibited a uni-
form reduction in discharge of −3.3 %.

In summary, the GRU model’s sensitivity analysis reveals
a high degree of concordance with the LSTM model in terms
of feature influences on discharge predictions. All daily input
features of these two models exhibited expected behaviours,
aligning with established hydrological principles. This indi-
cates a robust understanding of the input features’ influences
by both models.

The similarity in effects across all input features suggests
that GRU models are also adept at accurately discerning hy-
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Figure 9. Components of the Kling–Gupta efficiency (KGE) for the employed CNN, LSTM and GRU models with a batch size of 256 and
incorporating static features, evaluated across four flow segments: lowest flows (Q1), lower flows (Q2), higher flows (Q3) and highest flows
(Q4). From top to bottom, the rows represent the Pearson correlation coefficient (r), the variability ratio (α) and the bias (β). Each violin plot
illustrates the distribution of these metrics for all evaluated catchments within each flow segment, with black dots indicating the mean values
for each segment. The ideal value for all three metrics is 1, indicating perfect performance.

drological processes despite their simpler architecture com-
pared to LSTM models. The CNN model exhibits counterin-
tuitive results with the daily evapotranspiration feature, indi-
cating potential limitations in handling these inputs, although
it is possible that certain static features had a greater influ-
ence on this model’s performance.

Overall, the sensitivity analysis of the LSTM and GRU
models revealed a more realistic representation for evapo-
transpiration compared to the CNN model. These findings
emphasise the importance of considering various input pa-
rameters and their interactions in improving discharge pre-
diction models for hydrological applications.

4 Conclusions

This study conducted a comparative evaluation of CNN,
LSTM and GRU models for predicting daily discharge in
ungauged basins across Hesse, Germany. All three deep-
learning architectures exhibited significant predictive capa-
bilities. Specifically, the CNN model yielded marginally
higher accuracy (KGE= 0.8) compared to the recurrent mod-
els, effectively capturing local short-term rainfall–runoff dy-
namics. Conversely, the LSTM model (KGE= 0.78) demon-
strated superior consistency across the entire flow spectrum,
maintaining balanced performance from low to high flows

rather than disproportionately excelling at peak events, as
observed with CNN models. The GRU model (KGE= 0.77)
provided a robust balance between computational efficiency
and predictive accuracy. The minor performance gaps ob-
served indicate that no single architecture dominates signifi-
cantly in terms of predictive skills.

Consistently with the findings of Kratzert et al. (2019a),
augmenting models with static catchment attributes im-
proved prediction performance, underscoring the critical im-
portance of integrating catchment-specific information into
ungauged basin modelling. Additionally, models trained with
smaller batch sizes yielded better KGE scores compared to
larger batch sizes, suggesting that optimisation dynamics
such as gradient noise and update frequency substantially
influenced generalisation performance. These results rein-
force existing evidence that modern deep-learning methods
achieve robust streamflow predictions even in data-scarce
basins (Nabipour et al., 2020; Afzaal et al., 2019).

Evaluation across varying flow conditions further revealed
that the model architecture substantially influenced the pre-
diction accuracy of peak and low-flow events. The LSTM
demonstrated superior generalisation across lowest-flow con-
ditions, indicating reduced systematic errors during extended
dry spells. This generalisation capability can be attributed
to the LSTM model’s gated recurrent structure, effectively
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Figure 10. Sensitivity analysis of the CNN (a), LSTM (b) and GRU (c) models with static features and a batch size of 256. All features have
been uniformly increased by 10 % to evaluate their impact on discharge prediction.

capturing long-term dependencies associated with baseflow
and recession periods. Conversely, the CNN model em-
ploys fixed-size convolutional filters optimised for identi-
fying short-term flow patterns, particularly sharp increases
from precipitation events, but exhibited limited capability
in terms of capturing slower hydrological processes such as
evapotranspiration-driven drawdown.

Sensitivity analyses confirmed precipitation to be the pri-
mary discharge driver across all models. However, CNN
models showed reduced sensitivity to daily evapotranspira-
tion signals. This characteristic suggests that the CNN ar-
chitecture may inadequately represent cumulative drying ef-
fects, potentially explaining its comparatively weaker per-
formance during low-flow periods. These architectural dis-
tinctions highlight how internal model designs significantly
affect learned hydrological behaviours. Recurrent networks
inherently integrate temporal information, aiding the mod-
elling of sustained processes, whereas convolution-based
models may necessitate additional mechanisms or expanded
receptive fields to achieve equivalent long-term awareness.
Despite these nuances, CNN models still attained the high-
est aggregate accuracy (KGE), suggesting that accurate peak-
flow predictions compensated for deficits in low-flow estima-
tions. Consequently, alternative metrics focused specifically
on low-flow performance might rank the LSTM ahead of the
CNN.

Regarding computational efficiency, clear distinctions
emerged. The GRU model trained significantly faster (over
40 % runtime reduction compared to the CNN model and
nearly 60 % faster runtime than the LSTM model), at-
tributable to its streamlined gating mechanism, with fewer
parameters and simpler operations (Chung et al., 2014). CNN
models, despite being marginally slower than GRU mod-
els, benefited from parallelisable convolutional operations
and exhibited competitive runtimes coupled with the high-
est accuracy. In contrast, LSTM models’ sequential pro-
cessing and complex gating incurred greater computational
demands (Goodfellow et al., 2016). Additionally, Ebtehaj
and Bonakdari (2024) reported an equivalent performance
of LSTM and CNN models for high-precipitation events yet
observed that CNN models outperformed LSTM models for
significant precipitation events at short lead times, thereby
reinforcing our results.

Furthermore, our findings align with recent literature on
data-driven streamflow forecasting. Oliveira et al. (2023)
similarly reported superior CNN model performance rela-
tive to LSTM and multilayer perceptron models within cal-
ibrated basins. However, that result, obtained from a cali-
brated basin, did not guarantee broader generalisability. Our
multi-basin study confirms CNN model efficacy even in un-
gauged basins, alongside consistently strong performances
by LSTM and GRU models. The minor accuracy differ-
ences align with Farfán-Durán and Cea (2024), emphasis-
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ing context-dependent model performance. For example, the
GRU model excelled at very short lead times in one basin
(Spain), whereas, in another basin, CNN, LSTM and GRU
models performed comparably. Additionally, the computa-
tional efficiency advantages observed for GRU and CNN
models corroborate prior studies, highlighting parallelism
and simplified gating mechanisms as significant computa-
tional benefits. Nonetheless, GRU models’ simplified gating
may reduce performance relative to LSTM models as We-
gayehu and Muluneh (2023) demonstrated that LSTM mod-
els generally outperform GRU models regardless of input
data.

Certain design choices and limitations must be acknowl-
edged. Both recurrent models (LSTM and GRU) constrained
outputs to non-negative discharges within the training-data
range using sigmoid activation and min–max normalisa-
tion. This constraint ensures physically plausible predictions
but restricts extrapolation beyond maximum observed flows.
This saturation effect may attenuate extreme flood peaks,
limiting the model’s extrapolation capacity. For practical ap-
plications requiring accurate flood forecasting (primarily fo-
cusing on high discharge), alternative activation functions
such as LeakyReLU, which allow unbounded outputs, may
offer greater flexibility and should be considered in future
model designs.

Furthermore, our analysis was confined to Hesse, Ger-
many, potentially limiting generalisability to different hydro-
climatic contexts such as arid or monsoon climates. Hybrid
or ensemble models combining CNN and LSTM layers were
outside the scope of this comparison.

Future research should explore loss functions better
aligned with hydrological objectives and sequence length
handling through longer sliding windows or emerging self-
attention transformers (Lim et al., 2021). Investigating archi-
tectures that seamlessly fuse static and dynamic inputs via
attention mechanisms or dedicated subnetworks could im-
prove the use of catchment attributes and remote sensing
data, thereby enhancing generalisation (Lim et al., 2021).

These insights serve as guidance for researchers utilising
neural networks in hydrology and contribute to a comprehen-
sive framework for evaluating algorithms. By systematically
comparing CNN, LSTM and GRU models in multiple un-
gauged basins, this work bridges a critical gap in hydrologi-
cal modelling literature and paves the way for more informed
and effective application of artificial intelligence in hydrol-
ogy. In summary, successful prediction in ungauged basins
accentuates the potential of neural networks in advancing
streamflow forecasting.
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Appendix A

A1 Hydrographs of the CNN model with static features
and batch size of 256

A1.1 Highest performance

Figure A1. Hydrograph at gauge no. 25840253 illustrating high performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).

Figure A2. Hydrograph at gauge no. 25840650 illustrating high performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).
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Figure A3. Hydrograph at gauge no. 24870055 illustrating high performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).

A1.2 Lowest performance

Figure A4. Hydrograph at gauge no. 41510205 illustrating low performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).
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Figure A5. Hydrograph at gauge no. 41860900 illustrating low performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).

Figure A6. Hydrograph at gauge no. 25140058 illustrating low performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).
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A2 Hydrographs of the LSTM model with static
features and batch size of 256

A2.1 Highest performance

Figure A7. Hydrograph at gauge no. 25840708 illustrating high performance of the LSTM model, with observed discharge (blue) and
predicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).

Figure A8. Hydrograph at gauge no. 25810558 illustrating high performance of the LSTM model, with observed discharge (blue) and
predicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).
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Figure A9. Hydrograph at gauge no. 25840650 illustrating high performance of the LSTM model, with observed discharge (blue) and
predicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).

A2.2 Lowest performance

Figure A10. Hydrograph at gauge no. 24880208 illustrating low performance of the LSTM model, with observed discharge (blue) and
predicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).
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Figure A11. Hydrograph at gauge no. 41510205 illustrating low performance of the LSTM model, with observed discharge (blue) and
predicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).

Figure A12. Hydrograph at gauge no. 41860900 illustrating low performance of the LSTM model, with observed discharge (blue) and
predicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).
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A3 Hydrographs of the GRU model with static features
and batch size of 256

A3.1 Highest performance

Figure A13. Hydrograph at gauge no. 25840708 illustrating high performance of the GRU model, with observed discharge (blue) and
predicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).

Figure A14. Hydrograph at gauge no. 25880305 illustrating high performance of the GRU model, with observed discharge (blue) and
predicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).
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Figure A15. Hydrograph at gauge no. 25811255 illustrating high performance of the GRU model, with observed discharge (blue) and
predicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).

A3.2 Lowest performance

Figure A16. Hydrograph at gauge no. 44950055 illustrating low performance of the GRU model, with observed discharge (blue) and pre-
dicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).
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Figure A17. Hydrograph at gauge no. 24480695 illustrating low performance of the GRU model, with observed discharge (blue) and pre-
dicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).

Figure A18. Hydrograph at gauge no. 41860900 illustrating low performance of the GRU model, with observed discharge (blue) and pre-
dicted discharge (orange), evaluated using the Kling–Gupta efficiency (KGE).
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A4 Hydrograph comparison of the best-performing
models with static features and batch size of 256

A4.1 Mixed performance

Figure A19. Hydrograph comparison at gauge no. 25140058 for the CNN, LSTM and GRU models, highlighting varying performance across
the models. Performance is measured using the Kling–Gupta efficiency (KGE), with “+SF” denoting the inclusion of static features.

A4.2 High performance for all models

Figure A20. Hydrograph comparison at gauge no. 25850257 for the CNN, LSTM and GRU models, illustrating uniformly high performance
across all models. Performance is quantified using the Kling–Gupta efficiency (KGE), with “+SF” indicating the integration of static features.
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A4.3 Low performance of all models

Figure A21. Hydrograph comparison at gauge no. 41860900 for the CNN, LSTM and GRU models, illustrating uniformly low performance
across all models. Performance is quantified using the Kling–Gupta efficiency (KGE), with “+SF” indicating the integration of static features.
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