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Abstract. A linear regression model is developed to link
anomalies of streamflow to anomalies of precipitation
amounts and temperature with the goal of making multi-
decadal streamflow projections based on CMIP6 multi-
model simulations. Regression coefficients estimated sep-
arately for each catchment and each month show physi-
cally implausible spatial patterns and indicate issues with
overfitting. An alternative approach is therefore explored in
which all regression coefficients are estimated simultane-
ously through a neural network that retains the original linear
model structure, but uses embeddings to map each combina-
tion of catchment and month to a set of regression coeffi-
cients. The model is demonstrated over a set of catchments
in Brazil, where the estimated relationships are used to make
streamflow projections for the next decades based on CMIP6
multi-model simulations. It yields physically more plausi-
ble relationships between streamflow, precipitation amounts,
and temperature for our study area than the locally fitted re-
gression models. The resulting projections indicate reduced
streamflow over northern, north-eastern, central, and south-
eastern Brazil, especially for the austral spring and sum-
mer season. The signal is less clear during austral winter. In
southern Brazil, an increase in streamflow is expected.

1 Introduction

Brazil is considered to be an important growth region for
both wind- and hydropower production and has generated
63 % (over 427.000 GWh) of its electricity in 2022 through
hydropower (International Energy Agency, 2022). Statkraft
is one of the renewable energy producers who own and op-
erate several hydropower plants in Brazil, and is therefore
highly interested in estimates of future streamflow trends in
the country. Many catchments in Brazil have experienced
a decline in precipitation and streamflow in the past (e.g.,
Luiz Silva et al., 2019), and hydroclimatological projections
point towards reduced and more variable rainfall in the fu-
ture (Zaninelli et al., 2019; Reboita et al., 2022; Alves et al.,
2020). Other catchments, primarily in southern Brazil, have
seen an increase in precipitation and streamflow (e.g., Luiz
Silva et al., 2019, their Table 3). These trends are linked to
a southward shifting of the average location of the South
Atlantic Convergence Zone (Zilli et al., 2019) and direct
(through reduced runoff) or indirect (through increased at-
mospheric moisture content) implications of increased evap-
otranspiration. It is unclear, however, to what degree the ob-
served changes are part of longer, on-going trends or part
of multi-decadal oscillations in the climate system. By an-
alyzing multi-decadal simulations of a wide variety of cli-
mate models, e.g. from the Coupled Model Intercomparison
Project Phase 6 (CMIP6, Eyring et al., 2016), one can attempt
to obtain projections of the future potential for hydropower
production in Brazil and help authorities and energy compa-
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nies foresee areas in risk of future long-term energy short-
ages. In this study, our aim is to build a relationship be-
tween streamflow, precipitation and temperature for Brazil-
ian catchments and use it to project future monthly stream-
flow with CMIP6 multi-model simulations as input.

One possible approach to achieve that is to use a process-
based hydrological model (Fatichi et al., 2016; Clark et al.,
2017). For South America, Brêda et al. (2020) and Petry
et al. (2025) use the MGB-SA model (Siqueira et al., 2018)
to study climate change impacts on the water balance and
flood magnitude and frequency. In Norway, the main focus
of Statkraft’s operations, the HBV model (Bergström, 1992)
and other hydrological models that are specialized in simu-
lating snow storage and snow melt (e.g., Xu, 2002) are com-
monly used for simulating streamflow. Statkraft’s in-house
hydrological model has not yet been adapted to tropical cli-
mates like that of Brazil, where evapotranspiration is a ma-
jor component of the water balance. Using e.g. the MGB-
SA model employed by Brêda et al. (2020) and Petry et al.
(2025) is an option but requires both expertise with the local
hydroclimate and substantial amount of time to set up and
calibrate the model for all catchments of interest. The desire
for an approach that can more easily be transferred to dif-
ferent regions was one our primary motivations for consid-
ering data-driven methods as an alternative way to simulate
streamflow.

Long Short-Term Memory (LSTM) networks belong to
this category, and have achieved notable advancements in
the field of rainfall-runoff modeling (Kratzert et al., 2018;
Frame et al., 2022; Arsenault et al., 2023). LSTMs demon-
strate strong performance when trained on daily streamflow
data, but may also perform well with monthly data, provided
that the monthly records are sufficiently long (Clark et al.,
2024). Few studies exist in the literature though which use
LSTMs for decadal predictions (Slater et al., 2023). Chal-
lenges with LSTM networks and other AI models arise in
connection with interpretability, i.e. the ability to fully un-
derstand and trust their decisions (De la Fuente et al., 2024)
and overfitting, i.e. the risk of picking up specific details in
the training data which do not generalize to new, unseen data.
Explainability approaches (e.g., Molnar, 2025) such as fea-
ture importance methods can guide our understanding of the
sensitivity of the output to the various inputs, and articles
such as Jiang et al. (2022) have demonstrated how carefully
analyzing the gradients in an LSTM model during flood-
ing events can reveal input-output relationships that corre-
spond to different flood-inducing mechanisms. Nevertheless,
the need for such additional post hoc methods hampers intu-
itive understanding of the model’s decisions. Hybrid models
have been proposed that combine process-based hydrologi-
cal models with LSTM networks (e.g., Liu et al., 2024), but
an analysis by Acuña Espinoza et al. (2024) suggests that
the data-driven dynamic parametrization partially compro-
mises the physical interpretability of the underlying concep-
tual model.

Considering the above factors and some exploratory data
analysis of monthly anomalies of precipitation, temperature
and streamflow over Brazilian catchments, we decided to use
a low-dimensional linear regression model that builds a sta-
tistical relationship between these variables for each catch-
ment. Unlike more complex machine learning models, this
type of model permits an intuitive understanding of how
changes in precipitation and temperature affect streamflow.
Fitting a separate linear regression model for each catch-
ment and month, however, resulted in regression coefficients
that were spatially inconsistent over our study area, and con-
straints had to be imposed to prevent physically implausi-
ble rainfall-temperature-runoff relationships. A variant of the
baseline approach is therefore proposed, which employs a
neural network framework that retains the linear model struc-
ture, but uses embeddings (Guo and Berkhahn, 2016) to map
each combination of catchment and month to a set of regres-
sion coefficients. This permits sharing of information across
space and time and in our example yields coefficient pat-
terns that are physically more plausible, even without the use
of constraints. The simple structure of the model makes it
well-suited for situations where the data availability is lim-
ited, such as when only short records of monthly streamflow
data are available and LSTMs may not perform as effectively.
The model can also easily be transferred to new regions of
the world without additional modeling effort and fine-tuning.
Within the context of explainable machine learning, the lin-
ear structure with regard to the primary predictors puts our
model in the class of fully interpretable models (see Flora
et al., 2024, their Fig. 1), while the proposed use of embed-
dings and model fitting within a neural network framework
offers some of the same benefits as LSTM models regarding
the sharing of information across different catchments.

The rest of the paper is structured as follows: Sect. 2 gives
an overview over the data used in this study and presents
some exploratory data analysis used to inform subsequent
methodological choices. The statistical model itself is intro-
duced in Sect. 3, first in its basic form as a linear regression
model and then in the variant that uses a neural network to
represent spatial and temporal patterns of the regression co-
efficients. Results are presented and discussed in Sect. 4 and
include metrics that assess the quality and limitations of the
statistical model as well as streamflow projections obtained
with it. Section 5 discusses the issue of uncertainty our pro-
jections while Sect. 6 concludes with a summary and a dis-
cussion of the use of the presented methodology.

2 Data and exploratory analysis

2.1 Streamflow data

We use time series of natural total monthly streamflow down-
loaded through the API of Brazil’s National Operator of the
Electric System (ONS). To eliminate the challenges posed
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Figure 1. Overview over the (sub)catchments and gauge locations considered in this study.

by non-stationarities in observed streamflow series due to
evolving consumptive uses, ONS derives natural streamflows
from observed series at river gauging stations by incorporat-
ing inflow and discharge at utilization sites while account-
ing for reservoir operations upstream, consumptive uses, and
net evaporation (Operador Nacional do Sistema Elétrico,
2018). For this project, a subset of 157 Brazilian gauge loca-
tions was used for which we have mostly complete monthly
streamflow series during the period from 1960 to 2020.

Figure 1 gives an overview over the gauge locations and
associated catchments considered here, and shows that catch-
ments from all regions within Brazil are represented with ar-
eas varying from a few hundred square kilometers to several
hundred of thousands of square kilometers. Many of these
catchments are nested, i.e. streamflow is measured at several
points of a river and its tributaries, and in each case the as-
sociated catchment is taken to be the area over which water
flowing through this point is collected.

2.2 Precipitation and temperature data

As a proxy for local rainfall amounts we use the Climate
Hazards group InfraRed Precipitation with a Station dataset
(CHIRPS) version 2.0 (Funk et al., 2015), which was down-
loaded at monthly temporal resolution and 0.05° horizon-
tal resolution and upscaled to 0.25° resolution before fur-
ther processing. This data product is constructed by com-
bining in-situ station observations with satellite precipitation
estimates in order to represent sparsely gauged regions. It
was found to agree well with observations across all regions
in Brazil with some lower similarity over the Northwest of
Amazon and the southwest of Pará state (Costa et al., 2019).
As a consequence of being based on satellite data though, the
CHIRPS product is only available from 1981 onwards, which
makes it the limiting factor in our setup regarding training
sample size.

The average 2 m temperature over each catchment was
calculated from the ERA5 dataset (Hersbach et al., 2023),
a state-of-the-art reanalysis product made by the European
Centre for Medium-Range Weather Forecasts (ECMWF).
These data were downloaded from the Copernicus Climate

Change Service (C3S) Climate Data Store (CDS) for the
1981–2020 period. Total precipitation accumulation is also
available as a variable in ERA5, but station observations of
precipitation are not included in the ERA5 data assimila-
tion scheme, and additional analysis (not shown here) sug-
gested that CHIRPS provides a more accurate representation
of monthly rainfall over Brazil and was therefore preferred
for this variable.

Both CHIRPS precipitation data and ERA5 temperature
data were aggregated to the catchment scale by averaging
the values across all grid points within the boundaries of each
catchments. For very small catchments, the nearest grid point
to the catchment area was used.

2.3 Climate model data

Simulations of 2 m temperature and precipitation from the
Coupled Model Intercomparison Project Phase 6 (CMIP6,
Eyring et al., 2016) multi-model ensemble were downloaded
from the Earth System Grid Federation (ESGF). The SSP2-
4.5 scenario was selected, which assumes a moderate level
of greenhouse gas emissions in the calculations of the fu-
ture precipitation and temperature (O’Neill et al., 2016). The
datasets are available for both a historical period (1850–
2014) and a projection period (2015–2100). Climate model
projections in CMIP6 are aimed at simulating the long-term
future climate based on changed boundary conditions and the
principles of global energy balance. Due to internal climate
variability, even different simulations from a single climate
model can yield very different precipitation and temperature
profiles in individual years and even decades. To sample this
internal climate variability as well as possible, we use output
from all available CMIP6 models which had simulations of
both temperature and precipitation over the time period con-
sidered here. The resulting selection of 22 models is listed in
Table 1. The simulations were aggregated to the catchment
scale in the same way as described above for the CHIRPS
and ERA5 data. For reasons further explained in Sect. 3.1, no
downscaling or bias correction was performed at this stage.
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Table 1. CMIP6 climate models used in this study.

ACCESS-CM2 (Australia) Bi et al. (2020); Dix et al. (2019)
BCC-CSM2-MR (China) Wu et al. (2019); Xin et al. (2019)
CESM2 (USA) Danabasoglu et al. (2020); Danabasoglu (2019)
CMCC-ESM2 (Italy) Cherchi et al. (2019); Lovato et al. (2021)
CNRM-CM6-1 (France) Voldoire et al. (2019); Voldoire (2019a)
CNRM-ESM2-1 (France) Séférian et al. (2019); Voldoire (2019b)
EC-Earth3-CC (Europe) Döscher et al. (2022); EC-Earth (2021)
GFDL-ESM4 (USA) Dunne et al. (2020); John et al. (2018)
HadGEM3-GC31-LL (UK) Kuhlbrodt et al. (2018); Good (2019)
IITM-ESM (India) Swapna et al. (2018); Singh et al. (2020)
INM-CM4-8 (Russia) Volodin et al. (2018, 2019a)
INM-CM5-0 (Russia) Volodin et al. (2017, 2019b)
IPSL-CM6A-LR (France) Boucher et al. (2020, 2019)
KACE-1-0-G (South Korea) Lee et al. (2020); Byun et al. (2019)
KIOST-ESM (South Korea) Pak et al. (2021); Kim et al. (2019)
MIROC-ES2L (Japan) Hajima et al. (2020); Tachiiri et al. (2019)
MIROC6 (Japan) Tatebe et al. (2019); Shiogama et al. (2019)
MPI-ESM1-2-LR (Germany) Mauritsen et al. (2019); Wieners et al. (2019)
MRI-ESM2-0 (Japan) Yukimoto et al. (2019a, b)
NESM3 (China) Cao et al. (2018); Cao (2019)
NorESM2-MM (Norway) Seland et al. (2020); Bentsen et al. (2019)
UKESM1-0-LL Sellar et al. (2019); Good et al. (2019)

2.4 Precipitation and streamflow climatology in
different parts of Brazil

The precipitation regime in northern and northeastern Brazil
is dominated by the Intertropical Convergence Zone (ITCZ),
a belt near the equator associated with heavy precipitation os-
cillating north- and southwards depending on the position of
maximum incoming solar radiation (Garreaud et al., 2009).
In the central part of the country, where several of the large
river systems carrying water northward and southward to
hydro-electrical plants are formed, the South Atlantic Con-
vergence Zone (SACZ) regime dominates (Rosa et al., 2020).
This is a band of deep convection and associated precipita-
tion oriented in northeast/southwest direction over large parts
of tropical and subtropical Brazil and the Atlantic Ocean. In
its active phase during austral summer, especially between
December and February, it brings large amounts of rainfall
to Central Brazil (Rosa et al., 2020). In southern Brazil, rain-
fall originates from synoptic systems, and both rainfall and
streamflow is distributed more evenly over the year.

Figure 2 depicts temperature, precipitation and streamflow
series from catchments in different parts of Brazil and gives
an idea of the respective annual cycles. The Xingu catchment
located in the central-northern part of Brazil receives sub-
stantially less rain between May and September, and with a
1-month lag this is also the low water season for this catch-
ment. The annual cycles look similar for the Tocatins catch-
ment in the north-eastern inland of Brazil, with very little rain
and corresponding reduced streamflow during austral winter.
A much less pronounced but otherwise similar annual cycle

is seen for the Parana main river catchment in the central-
south, while both precipitation and streamflow in the Uruguai
catchment in southern Brazil vary more across different years
than across different seasons. In contrast to the catchments
further north, however, we see a pronounced seasonal cycle
of average temperatures.

2.5 Lagged correlations between precipitation and
streamflow

Among the meteorological variables available as output from
the CMIP6 models, precipitation amounts and temperature
were considered the most important ones. Especially for the
larger catchments the concentration time, i.e., the time it
takes for precipitation that falls in the catchment to arrive
at the outlet, can be on the same order or longer than the
monthly aggregation time scale considered here. Moreover,
without a hydrological model that keeps track of antecedant
soil moisture conditions, precipitation anomalies in preced-
ing months may be an important factor determining stream-
flow. Figure 3 depicts the correlation coefficients of monthly
streamflow anomalies and monthly precipitation anomalies
at different time lags and at different times of the year. The
plots confirm that precipitation anomalies during the preced-
ing month can be equally important predictors in particular
catchments and seasons, and that conditions further back can
also have an impact. This will be considered in the construc-
tion of predictors used in the statistical model described be-
low.
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Figure 2. Monthly ERA5 temperature averages, CHIRPS precipitation accumulations and streamflow for four selected catchments. Each
individual curve corresponds to one year during the 1981–2020 period.

3 Methods

In this section we describe the construction of a statistical
model used to link monthly average temperature and accu-
mulated precipitation over each catchment to the associated
streamflow. The exploratory analysis shown above suggested
that precipitation at different time lags is an important pre-
dictor in any such model. In addition, temperature is in-
cluded due to its close connection with evapotranspiration,
i.e., the sum of evaporation and transpiration by plants, which
both reduce runoff. Specifically, the following predictors for
monthly streamflow are considered:

1. Concurrent precipitation amounts

2. Precipitation amounts during the preceding month

3. Total precipitation accumulation 2–4 months prior to
the month of interest

4. Concurrent monthly average temperature

These choices are based on the insights gained from Fig. 3
and try to balance model flexibility with the need to avoid an
overly complex model with too many parameters. It is clear
though from this figure that the model must be able to adapt
to the season and each particular catchment. The following

subsections describe the technical details of how this can be
accomplished.

3.1 Data standardization

As a preliminary step, both predictand (streamflow) and the
predictors specified above are standardized. If we denote
by ym,c,i the streamflow observation from month m, catch-
ment c and year i, the corresponding standardized stream-
flow anomaly is given by:

ỹm,c,i =
ym,c,i − µ̂m,c

σ̂m,c
, (1)

where µ̂m,c is the mean monthly streamflow for catchment c,
and σ̂m,c is the corresponding standard deviation. The pre-
dictors are standardized in the same way, and concurrent
and lagged/aggregated precipitation anomalies are denoted
by P̃m,c,i , P̃m−1,c,i , and P̃m−2/3/4,c,i , respectively, while con-
current monthly average temperatures anomalies are denoted
by T̃m,c,i .

Working with standardized anomalies has three major ben-
efits:

1. It acts as an implicit bias correction when the regression
model is applied to climate model simulations,
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Figure 3. Correlation coefficients of monthly streamflow anomalies and CHIRPS precipitation anomalies at different time lags.

2. It permits a meaningful comparison of regression pa-
rameters across months and catchments since system-
atic spatial and seasonal differences in the amplitude of
the original variables are removed, and

3. It allows one to omit the intercept parameter from the
regression model.

To see the first point, consider a typical bias correction strat-
egy for climate model simulations (e.g., Ho et al., 2012) in
the basic form where the distributions of the model and ob-
servation climatology have the same shape but possibly dif-
ferent means and standard deviations. For a given month,
year, catchment, and weather variable, say 2 m temperature,
we omit the corresponding subscripts m,c and i from the
notation, and denote by µmod, σmod, µobs, σobs the clima-
tological means and standard deviations of the model and
observations, respectively. The bias-corrected value Tbc of a
temperature value Tmod simulated by a climate model is then
obtained via

Tbc = µobs+
σobs

σmod
(Tmod−µmod).

By rewriting this to

Tbc−µobs

σobs
=
Tmod−µmod

σmod
,

we see that the standardized anomaly of Tbc relative to
the observation climatology is identical to the standardized
anomaly Tmod relative to the model climatology. If a statisti-
cal model based on standardized anomalies P̃m,c,i , P̃m−1,c,i ,
P̃m−2/3/4,c,i , and T̃m,c,i calculated from ERA5 and CHIRPS
data is applied to climate model simulations that are stan-
dardized with respect to their own climatology, the above
equations show that this is equivalent to working with bias
corrected (against ERA5 and CHIRPS data) climate model
output. This is a big advantage in the light of results reported
by Eden et al. (2014), who suggest that climate model sim-
ulations from general circulation models (GCMs) are com-
petitive with those from regional climate models (RCMs) in
a setup where both are bias corrected. Standardization as de-
scribed above thus opens the door to employing the more
widely available GCM simulations without clear detriments
regarding the quality of the resulting projections.

3.2 Constrained linear regression

Additional scatter plots (not shown here) of the four predic-
tors listed above against the associated streamflow values do
not suggest that their relation is extremely complex or non-
linear, so given the objective of a fully interpretable model,
multiple linear regression is a natural choice. With the stan-
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dardized data from Sect. 3.1, this model takes the form:

ỹm,c,· = βm,c,1 · P̃m,c,·+βm,c,2 · P̃m−1,c,·+βm,c,3

· P̃m−2/3/4,c,·+βm,c,4 · T̃m,i,·+ εm,c,·, (2)

with regression coefficients βm,c,1, βm,c,2, βm,c,3, βm,c,4 spe-
cific to each catchment and month, and residuals εm,c,· repre-
senting the year-to-year variability of streamflow anomalies
not explained by the predictor anomalies.

The simple form in Eq. (2) permits a clear understand-
ing of how the streamflow anomalies depend on the differ-
ent predictors: a positive regression coefficient implies that a
positive predictor anomaly translates into a positive stream-
flow anomaly, while a negative regression coefficient trans-
lates a positive predictor anomaly into a negative streamflow
anomaly. This allows one to constrain the regression coef-
ficients based on our physical understanding. For all three
precipitation-based predictors, positive anomalies should en-
tail an increase in streamflow, while negative anomalies
should entail a decrease in streamflow. For temperature, on
the contrary, we expect positive anomalies to go along with
enhanced evapotranspiration and thus reduced streamflow.
These constraints can be imposed on the model by requiring:

βm,c,1 ≥ 0,βm,c,2,≥ 0βm,c,3,≥ 0, and βm,c,4 ≤ 0.

They provide some minimal regularization of the regres-
sion model and prevent physically implausible predictor-
predictand relationships that might otherwise arise due to
collinearity of the different predictors and overfitting. Such
effects were seen in preliminary experiments where uncon-
strained linear regression was tested, sometimes resulting in
streamflow projections that increased dramatically with in-
creasing temperature as a function of time. The above co-
efficients can be estimated by minimizing the least squared
residuals εm,c,·, where minimization, due to the constraints,
must be performed by an optimizer like CVXOPT (Andersen
et al., 2011).

Figure 4 depicts the regression coefficients estimated with
the procedure described above. Due to the standardization,
their magnitude also has a direct interpretation and reflects
the relative importance of the associated predictor. In accor-
dance with Figs. 2 and 3, this importance varies both spatially
and seasonally. In July, for example, concurrent precipitation
anomalies are by far the most important predictor in south-
ern Brazil, while catchments in central Brazil rely more on
the precipitation anomalies a few months earlier to explain
inter-annual streamflow variability.

Some patterns seen in Fig. 4, however, are somewhat ques-
tionable from a hydrological perspective. In central and east-
ern Brazil, temperature coefficients for January differ sub-
stantially even over short distances and with no apparent con-
nection to catchment size. Consider, for example, the sub-
catchents of the Corumbá and Araguari river in central Brazil
for which we have highlighted the corresponding gauge lo-
cations in Fig. 1 in black. These subcatchments are in close

proximity while their temperature coefficients for January
are 0.0 and −0.41, respectively. This would imply no sen-
sitivity to temperature changes at all for the Corumbá sub-
catchment, while in the Araguari subcatchment a 1° increase
of temperature relative to the climatological mean (with pre-
cipitation kept fixed at the climatological mean) would entail
a 21.2 % reduction of inflow. We feel that it is physically im-
plausible that the impact of evapotranspiration on streamflow
would be so spatially sporadic, and we find the magnitude of
implied streamflow changes concerning given the intended
use of this model to project future streamflow based on cli-
mate model output.

A likely cause of these physically unrealistic patterns is
overfitting of the respective regression models. If decreasing
streamflow trends in some subcatchments within the 1981–
2020 period, for example, are not sufficiently explained
through the other predictors, the regression model may er-
roneously attribute them to a general warming trend as ex-
pressed through large negative temperature coefficients for
these catchments. For the precipitation predictors, the spa-
tial patterns in Fig. 4 are more plausible, though upon closer
inspection one can also find examples of small scale variabil-
ity that may caused by overfitting rather than differences in
climatology. In the subsequent subsection we discuss a vari-
ant of the regression model that aims to retain its flexibility
to adapt to regional and seasonal differences in climatology
while suppressing some of the spurious variability of the re-
gression coefficients seen in Fig. 4.

3.3 Modeling seasonal and regional patterns through
neural network embeddings

In order to prevent overfitting the coefficients of the regres-
sion model (2), some suitable way of sharing information
across seasons and regions has to be found while still allow-
ing the coefficients to vary across these dimensions. Tradi-
tionally, spatial statistical models like the INLA framework
(Rue et al., 2009) are used for such a task, but those require
certain structural assumptions on the type of spatio-temporal
covariability and can become rather complex for a multi-
variate regression problem like the one studied here. The ad-
vent of user-friendly machine learning libraries like PyTorch
(Paszke et al., 2019) has opened up the alternative avenue
of using neural networks for this purpose, and this approach
will be explored in the following.

3.3.1 General idea of the model

The type of neural network used here, a multilayer percep-
tron (MLP), consists of a sequence of layers that each per-
form a linear transformation of its input followed by a nonlin-
ear activation function. If each input is connected with each
output, the layer is called fully connected or dense. Through
the repeated application of nonlinear activation functions the
MLP is capable of representing rather complex functional re-
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Figure 4. Regression coefficients for January and July, estimated via constrained least squares estimation separately for each catchment and
month.

lationships between its inputs (“features”) and the prediction
target (“labels”, here: streamflow anomalies). A disadvantage
of the multilayer structure is that the learned functional rela-
tionships are rather non-transparent and permit little under-
standing of how the model arrived at its conclusion. Here,
we avoid this by using a somewhat unconventional neural
network architecture in which the actual predictors (temper-
ature and lagged precipitation anomalies) never pass through
any nonlinear function and therefore retain a linear relation
with the prediction target. In contrast to the constrained re-
gression framework discussed in Sect. 3.2, however, the re-
gression coefficients for each catchment and each month are
estimated simultaneously and obtained as a complex, non-
linear function of a (arbitrary but unique) catchment ID and
month ID. This is achieved through so-called embeddings,
mappings from a categorical variable to a vector of real num-
bers encoding information about that variable in an abstract
form. Abstract, because this representation is not necessarily
connected to any physical space, and inferred purely from the
input and output data, though in our case we may for exam-
ple expect that the embedding of the catchments is connected
to their geographical location and possibly to their size.

3.3.2 Neural network architecture

Figure 5 illustrates the proposed neural network architecture
in a schematic. The output data is the same as in Eq. (2),
while the input data now consists of catchment ID and month
in addition to the four meteorological predictors. These ad-
ditional, categorical inputs are embedded into separate real
vector spaces from where they each pass dense layers whose
output is then multiplied pointwise. In the setup of this study,
we found an embedding dimension of 6 for the catchments

and 2 for the month to be good choices (see subsection “Hy-
perparameters” below and Appendix A for more details). The
associated dense layers both have an output dimension of 25.
One may think of the combination of catchment embedding
and dense layer as a component that learns 25 relevant spa-
tial patterns which are then weighted and combined based
on information about the month associated with the respec-
tive input. The resulting vector then passes through another
dense layer with output dimension 20 and a so-called dropout
layer, which randomly masks components of the input vector
during the neural network training process and thereby helps
prevent overfitting (Srivastava et al., 2014). The last dense
layer produces a four-dimensional output that will be inter-
preted as the vector βm,c = (βm,c,1, βm,c,2, βm,c,3, βm,c,4)′

of regression coefficients to be multiplied to the four mete-
orological predictors in the same way as in Eq. (2). Here,
no explicit constraints are imposed on the four coefficients
since we find the information sharing across catchments and
seasons to be sufficent to prevent physically implausible
predictor-predictand relationships like those seen in Fig. 4.

3.3.3 Model training

Both dense and embedding layers depend on a (relatively
large) number of model parameters (“weights”) that deter-
mine the particular data transformation performed in these
layers. These are inferred from the data in a training process
in which we minimize a mean squared error loss function,
similar to the constrained regression framework in Sect. 3.2,
except that we now use the Adam optimizer (Kingma and Ba,
2014) commonly used in connection with neural networks.
For more details about the training process for neural net-
works see e.g. Goodfellow et al. (2016).
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Figure 5. Schematic of the neural network proposed as an alternative approach to estimating the regression coefficients for each catchment
and month.

3.3.4 Hyperparameters

In addition to the model parameters, several hyperparameters
have to be determined that define the specific neural network
architecture and the training process. These include choices
like the particular activation function used within the dense
layer, the batch size, i.e., the number of samples considered
in each iteration of the neural network training process, and
the learning rate, i.e., the step size that the optimizer makes
during each iteration while seeking to reduce the training
loss. We determined those three hyperparameters by moni-
toring the training progress made with different choices in
some test cases, and ended up choosing exponential linear
unit (ELU) activation functions (Clevert et al., 2015), a batch
size equivalent to one year of training data, and a learning
rate parameter of 0.005. There are several other hyperparam-
eters defining the components of the neural network shown in
Fig. 5 for which it is not so easy to find good values through
some basic exploration:

– the dimension of the embedding space for the catch-
ments

– the dimension of the embedding space for the months

– the number of nodes (i.e., the output dimension) in the
first dense layer

– the number of nodes in the second dense layer

– the dropout rate, i.e. the probability with which a con-
nection is masked during training

We determined these parameters through a systematic hyper-
parameter tuning process described in Appendix A.

3.3.5 Early stopping

The primary motivation for embedding regression model (2)
into a neural network framework is to prevent overfitting,
and in addition to enabling information sharing across sea-
sons and catchments, this framework comes with a variety
of measures to accomplish that. One common strategy is to
further split the training data set into a training and vali-
dation sample and use the latter to evaluate how well the
model trained on a different part of the data generalizes to
unseen samples. As the training process progresses, the aver-
age loss over the training sample decreases, and for as long as

the model truly gets better the average loss over the valida-
tion sample decreases as well. A validation loss that stops
decreasing or even increases is a sign of overfitting, and
when this is detected the neural network training is termi-
nated. This strategy is referred to as early stopping and was
used here to save computation time and ensure that the fit-
ted model generalizes well across different combinations of
catchments, months, and across the 1981–2020 training pe-
riod. The training-validation split was performed by diving
the data set into four folds where the first fold contains the
years 1981, 1985, ..., 2017, and the other folds are shifted
each by one year. One fold is then used for validation, the
remaining three are used for training. This entails four dif-
ferent, possible training-validation splits, and we fit a sepa-
rate neural network to each of them, calculate the resulting
regression coefficients βm,c for each catchment and month,
and use the mean over the four sets of regression coeffi-
cients as an alternative to the coefficients obtained through
catchment- and month-wise constrained least squares estima-
tion discussed in Sect. 3.2.

3.3.6 Model interpretation

The particular architecture of the neural network model pro-
posed here makes it that the output of the last dense layer
in the schematic in Fig. 5 can be interpreted as a vector of
the same regression coefficients in Eq. (2) that were previ-
ously fitted within a constrained regression framework. We
can therefore look at these coefficients (see Fig. 6) and com-
pare them directly to those depicted in Fig. 4. While the
general spatial and seasonal patterns seen in these two fig-
ures are similar, the neural network based regression co-
efficients are not subject to the spurious small-scale varia-
tions seen in Fig. 4. Their spatial smoothness is quite re-
markable in so far as the neural network did not receive any
explicit information about the location of each catchment,
and no prior assumption about homogeneity within differ-
ent subregions has been made. Even though we have not im-
posed explicit constraints on the coefficients, all precipita-
tion coefficients are positive (i.e., increased precipitation en-
tails increased streamflow) and all temperature coefficients
are negative (i.e., higher temperatures entail more evapora-
tion and decreasing streamflow) in line with our physical in-
tuition. The estimated temperature coefficients for the Co-
rumbá and Araguari subcatchment in January (see discussion
in Sect. 3.2) are now −0.25 and −0.28, respectively. These
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Figure 6. Regression coefficients for January and July, estimated with the neural network approach using embeddings to model their depen-
dence on the catchment and month.

values imply a decrease in inflow by −14.5% and −14.3%,
respectively, if temperature increases by 1° relative to the cli-
matological mean (with precipitation kept fixed at the clima-
tological mean).

The spatially more plausible patterns of the regression co-
efficients come at the expense of their magnitude though,
which is somewhat dampened compared to Fig. 4 and might
imply that less inter-annual streamflow variability is ex-
plained through the meteorological predictors. Whether this
is indeed the case will be examined in the next section.

4 Results

The ultimate purpose of the statistical models proposed in
Sect. 3 is to apply them to climate model output in order to
obtain multi-decadal streamflow projections. This requires
that a sufficiently large fraction of inter-annual streamflow
variability can be explained through meteorological predic-
tors simulated by climate models. We check this before gen-
erating and discussing the resulting streamflow projections.

4.1 Coefficients of determination

To evaluate how well inter-annual streamflow variability is
explained not just within the data set to which the model is
fitted but also for hitherto unseen years, a slightly different
protocol for parameter estimation is adopted. For the results
presented in this subsection, a leave-one-year-out cross vali-
dation approach is applied to the 40 years of available data,
i.e. one year i is held out at a time, the respective models are
fitted/trained with data from the remaining 39 years, used to
predict streamflows during the left-out year, and the predic-
tion error εm,c,i is recorded for each catchment and month.

This procedure is repeated for all 40 years, and the cross-
validated coefficients of determination are calculated as

R2
cv,m,c = 1−

∑40
i=1ε

2
m,c,i∑40

i=1(ym,c,i − µ̂m,c)
2
.

The early stopping and hyperparameter optimization for the
neural network have to be adapted to the leave-one-year-out
cross validation protocol, too. This is done via a training-
validation split of the remaining 39 years at a ratio of 2 : 1
with every third year being used for validation, and a separate
hyperparameter optimization (described in Appendix A) for
each of the 40 left-out years. The results is a fully out-of-
sample evaluation of the respective models’ ability to explain
streamflow through meteorological predictors, visualized in
Fig. 7 for one month from each season.

We note that the patterns for both statistical models are
extremely similar, despite noticeable difference in the regres-
sion coefficients depicted in Figs. 4 and 6, and draw two main
conclusions:

1. The ability to explain interannual streamflow variabil-
ity or lack thereof is more due to regional character-
istics than due to the particular statistical model. For
example, both models struggle in Central Brazil during
austral winter, when precipitation amounts are minimal
and streamflow is driven by other factors not included
in these models.

2. The dampening of the regression coefficients in Fig. 6
relative to those in Fig. 4 does not entail overall lower
coefficients of determination. The larger (in magnitude)
regression coefficients obtained with the constrained re-
gression approach may entail more explained variability
in-sample, but this does not transfer to unseen years.
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Figure 7. Fraction of inter-annual streamflow variability explained (out-of-sample) by the constrained regression model and the neural
network regression approach. The inset numbers represent the 25th, 50th, and 75th percentile of the values across all catchments for a given
month.

The small differences one can observe are in favor of the neu-
ral network regression approach, typically in catchments/sea-
sons with low R2

cv,m,c like the Rio Grande in July, where the
constrained regression model is more prone to overfitting due
to the low signal-to-noise ratio, and the information sharing
across catchments and months achieved by the neural net-
work approach is most beneficial. Yielding physically more
plausible patterns of regression coefficients and comparable
or even improved R2

cv,m,c, this is the approach we choose to
employ for making multi-decadal streamflow projections.

4.2 Streamflow projections

To obtain projections of future streamflow, the climate model
simulations are processed in the same way as the CHIRPS
and ERA5 data in Sect. 3.1, i.e., the same four meteorological
predictors are calculated and standardized similar to Eq. (1),
with mean and standard deviation calculated over the same
1981–2020 period and separately for each catchment, month,
and climate model. Systematic biases of climate model out-
put (seen, e.g., in Firpo et al., 2022, Fig. 6) are removed
through the standardization of this output with respect to
each model’s own climatology, as explained in Sect. 3.1.

Figures 8 and 9 depict the resulting projections for differ-
ent months and subcatchments of the Uruguai and Paranaiba
catchment, respectively. Streamflow data were available back
to 1960, so we also show the historical CMIP6 simulations
back to that year. To filter out some of the year-to-year vari-
ability, centered 30-year moving averages of all curves are
shown. The different scenarios – one for each climate model
– give an idea of the range of possible outcomes. We note

though that this is not a probabilistic forecast in any strict
sense as several other sources of uncertainty are not ac-
counted for in these plots (see discussion in Sect. 5). One of
these sources of uncertainty is the unexplained part of the in-
terannual streamflow variability, which is quite large for ex-
ample in July in the subcatchment of the Paranaiba shown in
Fig. 9. In this plot, the large unexplained interannual stream-
flow variability manifests in a poor agreement of the ob-
served streamflow with the values predicted by the CHIRPS
and ERA5 based covariates. With the regression models used
here, a low R2

cv,m,c tends to go along with projections that
are too conservative, i.e. they underestimate trends in stream-
flow and do not sufficiently represent the internal variability
of streamflow on decadal time scales, thus making it more
likely for the historical observed streamflow curve to be out-
side the range of historical simulated streamflows. In most of
the other plots in Figs. 8 and 9, the fitted curves match the
observed streamflow much better and thus indicate a lesser
degree of statistical model uncertainty. Whenever this goes
along with a clear trend in the CMIP6 multi-model output,
this trend translates into a trend of anticipated future stream-
flow, seen e.g. in the October panel of Fig. 9. The trends
in the CMIP6 multi-model simulations over southern Brazil
are less pronounced, and we therefore only see relatively
weak trends in Fig. 8, despite generally good model fits. This
discussion illustrates that Fig. 7 provides important context
for the interpretation of the projections discussed here and
helps determine how much confidence we should have in the
streamflow projections for each catchment and month.

To get an overview over projected changes in streamflow
across all catchments, we calculate, for each climate model
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Figure 8. Historical and simulated 30-year moving average streamflows for a subcatchment of the Uruguai catchment in southern Brazil for
different months. The purple curves represent the 30-year moving average streamflow predictions by the statistical model when applied to
the CHIRPS- and ERA5-based predictors it was trained with.

Figure 9. Same as Fig. 8 but for a subcatchment of the Paranaiba catchment in the midwest/southeast part of Brazil.

simulation, the relative change of simulated streamflows be-
tween a reference period 1991–2020 and two future periods,
2021–2050 and 2036–2065. The median change across the
22 CMIP6 models for different months is depicted in Fig. 10.
From the discussion above we recall that in regions and sea-
sons where the R2

cv,m,c of the statistical model is low, the

magnitude of change tends to be underestimated. Yet, some
clear patterns emerge that are in line with projected hydro-
climatological changes in South America reported e.g. by
Marengo et al. (2012) or Zaninelli et al. (2019). Over north-
ern, north-eastern, central, and south-eastern Brazil, a trend
towards reduced streamflow is expected for virtually all sea-
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Figure 10. Projected change (%) in streamflow between the reference period 1991–2020 and two 30-year periods centered around 2035 and
2050, respectively, for selected months across different seasons.

sons, especially though for the austral spring and summer
season. The lack of a clear change signal during austral win-
ter is at least in part due to a lower R2

cv,m,c of the statistical
model in that season. Since part of the streamflow during that
season originates from rainfall in preceding months (see dis-
cussion in Sect. 2.4), especially in central and north-eastern
Brazil, we surmise it is in fact also subject to a decreas-
ing trend that carries over from the preceding seasons. The
only region with a projected increase in streamflow is south-
ern Brazil, where e.g. the Uruguai catchment is projected to
see a 10.7 % (13.3 %) increase in streamflow in July and a
10.1 % (12.2 %) increase in streamflow in October between
the 1991–2020 and 2021–2050 (2036–2065) period.

To what degree are different the predictors in our linear
model driving these trends? To answer this, we repeat the
above calculation for the reference period and the 2036–
2065 period with all but one of the four regression coef-
ficients set to zero. The resulting median change signal is
then only based on a single predictor, and we can compare
the sign and magnitude of that change, depicted in Fig. 11,
with the changes seen in Fig. 10 above. Despite the larger
(in magnitude) regression coefficients of the precipitation
based predictors, most of the projected decrease in stream-
flow is driven by the projected increase in temperature over
the next decades and the associated increase in evapotranspi-
ration. Some minor contributions from projected decreases
in precipitation can be observed over central and eastern
Brazil during the austral spring and summer season. The pro-
jected increase in streamflow over southern Brazil, on the
contrary, is driven by the projected increase in precipitation
over this area. We note that, in addition to the caveat re-
garding unexplained interannual streamflow variability, this
analysis is limited by the simplifying assumption of a lin-
ear model structure which does not account for possible non-
linear responses of the hydrological system to a future cli-

mate or interaction between precipitation and evapotranspi-
ration. While the discussion of Fig. 6 illustrates that great
care was used to prevent overrepresenting the role of tem-
perature in our model, there is still a danger of an omitted
variable bias caused by falsely attributing the effects of ex-
cluded covariates or more complex processes to temperature.
On the upside, cause and effect are fully transparent in our
model, and the analysis above can at least serve as a bench-
mark which more complex (and less interpretable) models
can be compare with.

5 Discussion: uncertainty of the projected changes

The projected changes depicted in Fig. 10 represent the me-
dian across a range of different climate models. While they
are in line with projected hydroclimatological changes in
South America reported e.g. by Marengo et al. (2012) or Za-
ninelli et al. (2019) and the patterns agree with the stream-
flow projections shown in Fig. 4 from Brêda et al. (2020), we
want to stress that these numbers are subject to substantial
uncertainty arising from several sources:

1. Uncertainty about future atmospheric greenhouse gas
concentrations.

2. Uncertainty due to limitations of climate models.

3. Uncertainty due to natural variability in the climate sys-
tem.

4. Streamflow variability not explained by our statistical
model.

Looking at the full range of projections (see examples in
Figs. 8 and 9) associated with the different climate mod-
els gives some idea of the magnitude of internal variability
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Figure 11. Projected change (%) in streamflow between 1991–2020 and 2036–2065 with all but one predictor in our regression model
removed.

and disagreement between climate models, but the scenarios
should not be viewed as an exact probabilistic representation
of these sources of uncertainty. The uncertainty about future
atmospheric greenhouse gas concentrations cannot be quan-
tified in any objective way. Only the unexplained interannual
streamflow variability could be quantified objectively as the
residual variance in our statistical model and superimposed
on the different climate model projections. Since this would
still only capture part of the overall uncertainty, we have cho-
sen not to calculate confidence intervals on that basis and
rather encourage readers to consider the R2

cv,m,c values de-
picted in Fig. 7 when drawing conclusions from Sect. 4.2,
as they provide important context for the uncertainty of the
projections related to shortcomings of the statistical model in
explaining streamflow variability.

A low R2
cv,m,c value means that interannual streamflow

variability for month m and catchment c is poorly explained

by our model, and the associated projections will likely un-
derestimate future changes in streamflow. It can have various
causes, including impacts of deforestation and changing land
use on the hydrological cycle, which can be quite significant
in Brazil (e.g., Baudena et al., 2021; Caballero et al., 2022;
Chagas et al., 2022). To the degree that data about these ef-
fects is available, it could be added to the catchment em-
bedding pipeline of our model, but the future development
of these variables would constitute another source of uncer-
tainty that is hard to quantify.

6 Conclusions

This paper proposes a linear statistical model that links
monthly precipitation and temperature anomalies to anoma-
lies of streamflow and can thus be used in combination with
climate model output to obtain streamflow projections in
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cases where a hydrological model is not readily available.
The model overcomes the challenge of a small training sam-
ple size by using a neural network framework which esti-
mates the regression parameters for all catchments and all
months of the year simultaneously, while retaining the inter-
pretable linear model structure that can easily be checked for
physical plausible relationships between temperature, pre-
cipitation and streamflow. The model is particularly well-
suited for situations where interpretability is a priority and/or
when only short records of monthly streamflow data are
available and LSTMs may not perform as effectively.

To demonstrate the proposed model over Brazil, it is ap-
plied to the output of 22 CMIP6 climate models to gener-
ate multi-decadal streamflow projections over 157 Brazilian
catchments. Under the caveat of substantial internal variabil-
ity that is also reflected by a large spread between projec-
tions by the different CMIP6 models, several trends emerge.
Streamflow in northern and central Brazil, where ITCZ and
SACZ, respectively, are the main drivers of rainfall, is pro-
jected to decrease during all months in which streamflow is
primarily driven by concurrent rainfall. For southern Brazil,
on the contrary, streamflow is projected to increase during
the austral winter and spring season, while no clear trend is
expected for the remaining two seasons. These results are
in line with projections of hydroclimatological changes in
South America reported previously.

The framework proposed here allows one to translate
projections of meteorological conditions into projections of
streamflow. Those can be used, for example, for projections
of hydroelectric power production and thereby help inform
allocation of resources. Its conceptual simplicity entails that
additional, possibly non-stationary factors like land use, de-
forestation, or possible feedbacks in drying trends through
increased water use are not considered. This can reduce the
model’s ability to explain a major fraction of interannual
streamflow variability, especially during seasons with limited
rainfall. However, the simple form makes it easy to transfer
the methodology to others regions on the globe and apply it
to any set of catchments for which streamflow data is avail-
able. It can also serve as a baseline approach that can be fol-
lowed up later with more complex approaches which require
more time and effort to set up but may be more adept e.g. in
representing streamflow that depends on long-term storage
of water.

Appendix A: Hyperparameter tuning

We use the open-source, automated hyperparameter opti-
mization framework Optuna (Akiba et al., 2019) to effi-
ciently explore the search space of candidate hyperparam-
eters (see Table A1) which determine the specific architec-
ture of the neural network model proposed in Sect. 3.3. The
optimization was performed in the leave-one-year-out cross-
validation setup of Sect. 4.1, i.e. a separate set of optimal hy-
perparameters was determined for each left-out year 1981–
2020 with a 2 : 1 split of the remaining years into training
and validation data. In addition to permitting a rigorous as-
sessment of the coefficients of determination of the resulting
regression models, this approach yields an entire distribution
of hyperparameters and thereby insights into the sensitivity
of the model performance to the particular choice of hyper-
parameters. Given the large overlap of data used for the dif-
ferent cross-validation folds, a highly dispersed distribution
indicates that the specific hyperparameter value is not all that
crucial. A tight distribution, on the contrary, indicates that
certain values are particularly conducive to good model per-
formance.

Figure A1 shows histograms of the selected values across
the 40 years. It suggests that only for the catchment embed-
ding dimension there is a very clear preference for a particu-
lar value, namely 6, the largest value within the tested range.
For the dropout rate, an intermediate value of 0.3 tends to
give the best results but there is significant spread around
that value. Similarly, for the month embedding dimension,
smaller values tend to perform better, but not by a huge mar-
gin. For the number of nodes in the hidden layers, there is no
clear tendency at all. As a result of this analysis and the con-
clusion that model performance is not overly sensitive to the
particular choice of hyperparameters, we use the optimized
values only within the cross-validated setting of Sect. 4.1. For
the neural network used in Sect. 4.2 to generate streamflow
projections we just use fixed values, shown in the last col-
umn of Table A1, instead of running a new Optuna hyperpa-
rameter optimization for the four different training-validation
splits of that setting.
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Figure A1. Histograms of the optimal hyperparameters selected by Optuna for each of the 40 cross-validated years.

Table A1. Candidate values for the hyperparameters to be optimized, and value selected for the model used to generate the streamflow
projections.

hyperparameter candidate values selected value

embedding dimension for catchments 3, 4, 5, 6 6
embedding dimension for months 1, 2, 3 2
number of nodes in the 1st hidden layer(s) 10, 15, ..., 40 25
number of nodes in the 2nd hidden layer 10, 15, ..., 40 20
dropout rate 0.0, 0.1, ..., 0.5 0.3
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