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Abstract. Digital elevation models (DEMs) are essential
datasets, particularly for flood inundation mapping in one-
dimensional (1D) to two-dimensional (2D) flood models.
Given the significant uncertainties associated with DEMs
that can affect flood modelling accuracy, minimizing these
inaccuracies is essential. This study aims to improve the per-
formance of 1D–2D flood models using satellite Earth obser-
vation (EO) data, focusing on the lower Chao Phraya (CPY)
basin.

Two workflows are proposed: DEM analysis and flood
map analysis. The DEM analysis evaluates 10 DEM prod-
ucts, including three local DEMs provided by Thai agen-
cies (LDD, JICA, and a merged LDD-JICA DEM) and seven
global DEMs derived from EO data (ASTER GDEM V3,
SRTM V3, MERIT, GLO30, FABDEM V1–2, TanDEM-X,
and TanDEM-EDEM). The evaluation process uses ICESat-
2 ATL08 data processing, vertical datum reference process-
ing, and evaluation of DEMs using ICESat-2 ATL08 bench-
mark processing. The DEMs are assessed using satellite
laser altimetry data from the Ice, Cloud, and Land Eleva-
tion Satellite-2 (ICESat-2) as the benchmark. The evaluation
employs standardized metrics, including point-wise, grid-
wise, and track-wise comparisons, to identify the most suit-
able DEM for integration in the flood model. Results indi-
cate that the merged LDD-JICA DEM and FABDEM V1–2
DEM exhibit the highest accuracy among local and global

products, respectively, with root mean square errors (RM-
SEs) of 1.93 and 1.95 m, and percentage biases (PBIASs) of
− 15.38 % and 4.59 %.

The flood map analysis workflow involves comparing
flood extent maps derived from multi-mission satellite
datasets and simulated flood maps generated from 1D–2D
flood models using the best available DEMs. This workflow
utilizes surface water extent (SWE) maps from the World-
Water project, obtained from the Sentinel-1 and Sentinel-2
imaging satellites, and flood maps from the Geo-Informatics
and Space Technology Development Agency (GISTDA) in
Thailand to validate flood maps produced by the 1D–2D
flood model based on the merged LDD-JICA DEM and FAB-
DEM V1–2 DEM. The results reveal that flood maps based
on the FABDEM V1-2 DEM slightly outperform those based
on the merged LDD-JICA DEM, with an improvement of
approximately 13.55 %–25.56 % in the critical success in-
dex (CSI). This study highlights the potential of leveraging
satellite EO data to enhance the accuracy and reliability of
1D–2D flood models, thereby improving flood inundation
predictions for effective flood management.
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1 Introduction

Nowadays, flooding is one of the most common haz-
ards globally, impacting health, economies, and livelihoods
worldwide. Flood models play a crucial role in forecasting
floods and assessing flood risks, thereby assisting decision-
makers in effective water management, particularly through
one-dimensional (1D) to two-dimensional (2D) flood mod-
els. These models simulate various aspects of flooding, in-
cluding flow, water levels, flood inundation extents, flood
depths, flood maps, and flood duration (DHI Water and En-
vironment, 2019). The digital elevation model (DEM) serves
as a primary input parameter for 1D–2D flood models, en-
abling accurate simulation of flood overflow from rivers,
floodplains, and inundated areas, particularly in flat and low-
lying regions. The DEM significantly influences the simula-
tion of flood inundation in both 1D–2D and 2D flood models
(Saksena and Merwade, 2015; Shen and Tan, 2020; Wu et al.,
2007; Morrison et al., 2022) for urban areas (McClean et al.,
2020), coastal areas (Darnell et al., 2008), and flood warning
systems (Lamichhane and Sharma, 2018). Ultimately, the re-
liability of flood inundation predictions relies on the accuracy
and resolution provided by the DEM, directly impacting the
representation of flow geometry characteristics within flood
models.

Currently, the advancements in survey technologies, such
as unoccupied aerial vehicles (UAVs) (Perera and Nalani,
2022), light detection and ranging (lidar) (Raj et al., 2020),
and mobile mapping systems (MMSs) (Schwarz and El-
Sheimy, 2007), have significantly enhanced the accuracy,
quality, and resolution of DEMs. These technologies enable
the production of high-resolution terrain data; however, they
remain costly, time-consuming, and less feasible for mon-
itoring dynamic land-use changes or covering large river
basins. For example, following the severe flooding in 2011,
Thailand’s Royal Irrigation Department collaborated with the
Japan International Cooperation Agency (JICA) to survey
a 27 000 km2 area. This effort produced a high-resolution
2× 2 m DEM and required approximately 7 months to com-
plete (JICA, 2012), underscoring the significant resources
needed for such large-scale surveys.

Earth observation (EO) technologies offer a promising
alternative by providing global DEMs with comparable
resolution and quality. EO-based DEMs, such as ASTER
GDEM3 (Abrams et al., 2020), SRTMv3 (Farr et al.,
2007), MERIT (Yamazaki et al., 2017), GLO30 (CDSE,
2022), FABDEMv1–2 (Neal and Hawker, 2023), TanDEM-X
(Krieger et al., 2007), and TanDEM-EDEM, are freely avail-
able for download and utilize advanced techniques of EO
and machine learning to generate elevation estimates. These
satellite-derived DEMs cover remote or inaccessible areas,
offering a cost-effective and efficient solution for generating
high-resolution terrain data. Moreover, global DEMs derived
from EO are increasingly being utilized as inputs for 1D–2D
flood models, providing a practical and scalable option for

flood risk assessment and forecasting in regions with limited
resources.

However, validating the DEM before integrating it in the
1D–2D flood model is essential. The Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2) is a satellite equipped with
a laser altimeter, capable of measuring ice sheet and glacier
elevation change, sea ice freeboard, land elevation, and wa-
ter elevation (Neumann et al., 2019), providing opportuni-
ties for validating DEMs, even in remote and hard-to-reach
areas worldwide, such as Finland (Wang and Liang, 2023),
Spain (Zhu et al., 2022), east Antarctica (Hao et al., 2022),
Alaska in the USA (Wang et al., 2019), and the Qinghai–
Tibet Plateau in China (Weifeng et al., 2024). Additionally,
ICESat-2 has been used to assess the suitability of global
DEMs for hydrodynamic modelling in data-scarce regions
(Nandam and Patel, 2024) and to enhance the accuracy of 2D
hydraulic models in the upstream Yellow River (Coppo Frias
et al., 2024). Moreover, while an efficient DEM enhances the
efficiency of 1D–2D flood simulation, it is important to sys-
tematically validate flood maps. Currently, satellite earth ob-
servation (EO) data can be utilized for monitoring and pro-
viding surface water extent (SWE) with synthetic-aperture
radar (SAR) sensors, such as RADARSAT (Raney et al.,
1991), ENVISAT ASAR (Lv et al., 2005), COSMO-SkyMed
(Pulvirenti et al., 2014), and TerraSAR-X (Martinis et al.,
2013); this is the only way to validate flood inundation maps
from flood models over regional scales. The WorldWater
project developed a robust and scalable EO solution for in-
land SWE monitoring, which can be utilized by a large com-
munity of stakeholders involved in local water management
(Tottrup et al., 2022). The project used free and open optical
and SAR satellite imagery from the Sentinel-1 and Sentinel-2
missions to generate monthly SWE maps over 4 years, which
are accessible from https://worldwater.earth/ (last access: 10
November 2023). The product offers new opportunities for
validating modelled flood maps with higher SWE resolution.

While satellite EO provides SWE maps that delineate wa-
ter bodies and inundated areas, they cannot be directly com-
pared with flood maps from 1D–2D flood models. The out-
puts of 1D–2D flood models are riverine flood maps. Ad-
ditional flood classification processing is necessary to en-
sure comparability between SWE maps and the output of a
flood model. However, flood type classification using SWE
maps poses challenges and difficulties. Many studies fo-
cus on classifying flood types based on meteorological con-
dition rather than using SWE maps, for example, Nied et
al. (2014) and Turkington et al. (2016), while others con-
struct decision trees using meteorological data (Stein et al.,
2019; Yan et al., 2023). Riverine flood classification specif-
ically involves identifying floods caused by river overflow
from SWE maps. Here, we used expanding segmentation la-
bels (ESLs) (van der Walt et al., 2014), connected component
labelling (CCL) (Rosenfeld and Pfaltz, 1966; AbuBaker et
al., 2007), the masking of riverine and permanent water, and
morphological image processing (MIP) techniques (Soille,
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2003) applied to SWE maps to separate riverine flood areas
from other inundated areas.

This study presents two new workflows supporting flood
modelling and forecasting in the lower Chao Phraya (CPY)
River basin in Thailand and elsewhere.

1. Comprehensive DEM evaluation. A detailed assessment
of 10 DEM products, including 3 local and 7 global
DEMs, was conducted using ICESat-2 as a benchmark
for the Thailand domain. DEM performance in the
lower CPY basin was evaluated using statistical meth-
ods, including bias (mean error, ME), mean absolute er-
ror (MAE), mean square error (MSE), and root mean
square error (RMSE), with comparisons made at point
and grid level, as well as track-wise comparisons. The
highest-performing DEM from this evaluation was sub-
sequently integrated in a 1D–2D flood model to simu-
late flood inundation.

2. Systematic comparison of flood maps. Simulated 2D in-
undation patterns were compared with flood maps
derived from satellite EO-based surface water ex-
tent (SWE) using a riverine flood classification process.

The model’s performance was assessed using three statisti-
cal metrics: probability of detection (POD), false alarm ra-
tio (FAR), and critical success index (CSI). These methods
will improve the performance of the operational hydrologic-
hydraulic forecasting system for the Chao Phraya River,
managed by the Hydro-Informatics Institute (HII) in Thai-
land.

2 Study area

The study area is located in the central part of Thailand, as
shown in Fig. 1a. The delta area of the lower CPY River basin
in Thailand forms the study area, depicted in Fig. 1c. The
size of the study area is approximately 16 643 km2, includ-
ing about 70 % irrigation area and 20 % urban area. The to-
pography of the study area is characterized by a flat terrain,
predominantly consisting of a low-lying alluvial floodplain.
To the north of the study area is a mountainous region with
four main rivers: the Ping, Wang, Yom, and Nan rivers. These
rivers converge to form the CPY River, which then flows into
the study area. The eastern and western parts of the study area
are connected to the Bang Pakong River and the Mae Klong
basin, respectively. The southern part of the study area bor-
ders the Gulf of Thailand.

The study area is located in a tropical climate and is influ-
enced by northeast and southwest monsoons. The northeast
monsoon brings cool and dry air from November to Febru-
ary, while the southwest monsoon brings humid air from May
to October. The precipitation is approximately 1100 mm dur-
ing the rainy season and 170 mm during the dry season. The
flooding in the study area is caused by the main rivers and

their tributaries. The tributaries of the CPY River include the
Tha-Chin, Noi, and Lopburi. Flooding problems are more
severe along the main course of the CPY River compared
with others. Nevertheless, flooding mechanisms are compli-
cated, arising from the combined effects of extreme precip-
itation, river overflows, insufficient river conveyance, land-
use change, and sea-level rise. This results in frequent flood-
ing, as shown in Fig. 3c.

3 Materials

3.1 1D–2D flood modelling

In this study, we used the flood model from the decision sup-
port system for flood forecasting and water management in
the CPY River basin, developed in collaboration with HII and
DHI A/S since 2012 (Sisomphon et al., 2013) and updated
with new information in 2016 (Charoensuk et al., 2018). The
decision support system for flood forecasting and water man-
agement in the CPY basin continues to operate, supporting
the Thai Government in managing flood risk and providing
real-time flood forecasts.

The flood model uses MIKE FLOOD software, developed
by DHI A/S. A MIKE FLOOD model (DHI Water and En-
vironment, 2019) consists of coupled one-dimensional (1D)
and two-dimensional (2D) models, namely MIKE11 and
MIKE21, respectively. The 1D hydraulic model (MIKE11)
simulates unsteady flow in river networks, solving the Saint-
Venant equations with an implicit finite-difference solver
(DHI Water and Environment, 2021). The main branches
of MIKE11 include the Chao Phraya, Tha-Chin, Lopburi,
Noi, and Pasak rivers. Cross-sections, rainfall runoff, bound-
ary conditions, hydrodynamic parameters, and control struc-
tures were implemented in MIKE11. The MIKE21 model
is an overland flow model utilizing 2D shallow water equa-
tions (Danish Hydraulic Institute, 2016). MIKE21 employs a
2D flexible mesh based on the digital elevation model (DEM)
to assess flood depth and its propagation. The river network
in MIKE11 is dynamically linked to floodplain bathymetry
through lateral links. The lateral links connect the river to
the floodplain along its length using the cell-to-cell method,
allowing water to overflow to the floodplain in the MIKE21
overland flood model. The lateral link connection uses the
weir equation to calculate overflow in MIKE FLOOD (DHI
Water and Environment, 2019).

The 1D–2D flood model, documented in Hanson (2017),
establishes the following boundary conditions: upstream
boundary forcing with discharge from C.2 station and re-
leases from the Pasak Reservoir from the Royal Irrigation
Department (RID) in the CPY and Pasak rivers. Meanwhile,
the downstream boundary connects to the Gulf of Thailand
using sea level measurements from the Hydrographics De-
partment, Royal Thai Navy (NAVY), as illustrated in Fig. 1c.
The MIKE11 model was calibrated using water level obser-
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Figure 1. (a) The location of the study area, (b) the ICESat-2 orbit, (c) the study area/1D–2D flood model, (d) the flexible mesh in the
flood model, and (e) ICESat-2 beam pairs. © OpenStreetMap contributors 2015. Distributed under the Open Data Commons Open Database
License (ODbL) v1.0.

vations presented in Charoensuk et al. (2024). MIKE21 uti-
lized a flexible mesh to simulate overland flow, as illustrated
in Fig. 1d, and MIKE FLOOD was calibrated against flood
maps and satellite data from 2011, as detailed by Charoensuk
et al. (2018).

3.2 Geoid models

To measure elevations around the Earth, a vertical reference
is needed, with mean sea level chosen as the reference. The
geoid is the level (equipotential) surface of the Earth’s grav-
ity field that best coincides with mean sea level. This sur-
face connects the oceans and extends through the continents.
The geoid serves as the reference surface for levelled heights,
commonly expressed as “heights above sea level”. In order to
compare heights from different data sources, all data have to
be re-referenced to the same geoid model. A geoid model is
a spatial representation of geoid height, encompassing both
global and local scales. This study has collected three geoid
models, summarized in Table 1. Thailand has its own lo-
cal geoid model. The latest one, TGM2017, was released

in 2018. This geoid is based on new gravity measurements
taken around Thailand and has been shown to better match
the expected geoid heights than the EGM2008 model (Dum-
rongchai et al., 2021). TGM2017 provides the best fit for
Thailand; it was chosen as the primary geoid model and all
heights were re-referenced to TGM2017.

3.3 Digital elevation models (DEMs)

A digital elevation model (DEM) is a quantitative repre-
sentation of the Earth’s surface elevation. The term “DEM”
encompasses both digital terrain models (DTMs) and dig-
ital surface models (DSMs). A DSM maps the heights of
all features on the surface, such as vegetation and build-
ings, while a DTM only represents the actual height of
the terrain (“bare earth”). Multiple digital elevation models
are available; local DEMs are often preferred due to their
higher spatial resolution and vertical accuracy (McClean et
al., 2020). In this study, we have collected 10 DEM products,
as shown in Fig. 2. A summary of these products is presented
in Table 2 and detailed statistical analyses are provided in
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Table 1. Geoid model datasets.

Geoid model Scale Download Reference

EGM96: Earth Gravitational Model 1996 Global https://earth-info.nga.mil/ Lemoine et al. (1998)
(last access: 6 October 2023)

EGM2008: Earth Gravitational Model 2008 Global https://earth-info.nga.mil/ Pavlis et al. (2012)
(last access: 6 October 2023)

TGM2017: Thailand geoid model 2017 Local On request Dumrongchai et al. (2021)

Table A1. The three local DEM products were obtained
from the Thai agency, namely, LDD DEM, JICA DEM, and
merged LDD-JICA DEM. Additionally, seven global DEMs
were collected: ASTER GDEM V3, SRTMv3 DEM, MERIT
DEM, FABDEMv1–2 DEM, GLO30 DEM, TanDEM-X, and
TanDEM-EDEM.

3.3.1 LDD DEM

The LDD DEM data are supplied by the Land Develop-
ment Department (LDD) of Thailand in a grid format, with
a resolution of 5m× 5m. This DEM was generated using
photogrammetry, using aerial stereo photo pairs with known
scales (Paengwangthong and Sarapirome, 2012). This ap-
proach involves deducing distances between points from
photos and determining object heights by identifying stereo-
scopic parallax from multiple pictures and rectifying with
ground control points (GCPs) (Sholarin and Awange, 2015).
Subsequently, orthorectification and interpolation are used to
generate a DEM and mask off buildings and vegetation. Be-
cause buildings and vegetation are removed, the LDD DEM
approximates a DTM (Sholarin and Awange, 2015).

3.3.2 JICA DEM

The JICA DEM was produced through a collaborative ef-
fort between the Royal Irrigation Department (RID) and the
Japan International Cooperation Agency (JICA) at a resolu-
tion of 2m× 2m (JICA, 2012). The JICA DEM was gener-
ated using airborne laser scanning techniques with lidar (light
detection and ranging) aerial technology. The lidar aerial sur-
vey employs a pulse laser to measure distances between the
target and the sensor; it is applied on a large scale. The dis-
tance from the vehicle to the surface can be determined based
on the travel time of the laser pulse (Argall and Sica, 2003).
The JICA DEM was processed into a DTM, filtering out such
features as transportation facilities, buildings, and vegetation
from the original data, as described in JICA (2012).

3.3.3 Merged LDD-JICA DEM

The merged LDD-JICA DEM was generated by integrat-
ing the LDD and JICA DEMs, as described by Charoen-
suk et al. (2018). The JICA DEM served as the primary
dataset, while the LDD DEM was utilized in areas with gaps

within the 1D–2D flood modelling boundary. To incorporate
the LDD DEM in the merged LDD-JICA DEM within data
gaps, we applied bias correction. The native LDD DEM and
JICA DEM datasets were not referenced to the same verti-
cal datum. The processing of the merged LDD-JICA DEM
consisted of two primary steps (Fig. A2): (1) re-referencing
both LDD DEM and JICA DEM to the TGM2017 reference
and (2) calculation of the correlation coefficient between the
JICA and LDD DEM for 1000 random points, using linear
regression to correct the bias in the LDD DEM, as shown
in Fig. A3. Following this, the JICA and LDD DEMs were
combined to create the merged LDD-JICA DEM using lin-
ear regression. The resulting combined merged LDD-JICA
DEM has a resolution of 2m× 2m.

3.3.4 ASTER GDEM3

The Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER GDEM3), serving as a global
DEM, was developed by the Ministry of Economy, Trade,
and Industry (METI) of Japan in collaboration with the
United States National Aeronautics and Space Administra-
tion (NASA) and was published on 2019. The footprint
of ASTER GDEM spans latitudes from 83° N to 83° S.
The study area utilized ASTER GDEM3 (Abrams et al.,
2020), which can be downloaded from the associated web-
site: https://gdemdl.aster.jspacesystems.or.jp/ (last access: 12
June 2023). More information is shown in Table 2.

3.3.5 SRTMv3 DEM

The Shuttle Radar Topography Mission (SRTM) DEM, de-
veloped by NASA, was a collaborative effort involving the
National Geospatial-Intelligence Agency (NGA) and the
German and Italian space agencies. It was part of an inter-
national project aimed at acquiring radar data, which were
used to create the first near-global set of land elevations
(Werner, 2001). The DEM was launched in 2000 (Farr et
al., 2007) and many improvements have been made since
then. The SRTMv3 DEM, the latest version, was used for the
study area and can be downloaded from the associated web-
site: https://search.earthdata.nasa.gov/search (last access: 19
September 2023).
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Table 2. Digital elevation model (DEM).

DEM product Spatial
resolution

Data collection
(year)

Datum
reference

Type Scale Acquisition technique

LDD DEM 5 m 2004 EGM96
geoid

DTM Local Aerial stereo photo

JICA DEM 2 m 2012 EGM2008
geoid

DTM Local Airborne lidar

Merged LDD-JICA DEM 2 m – TGM2017
geoid

DTM Local Fusion of multisource data

ASTER GDEM V3 1 arcsec
(≈30 m)

2000–2010 EGM96
geoid

DSM Global Satellite stereo images

SRTM DEM V3 1 arcsec
(≈30 m)

2000 EGM96
geoid

DSM Global SAR interferometry

MERIT DEM 3 arcsec
(≈90 m)

2000 EGM96
geoid

DSM Global Fusion of multisource data

GLO30 DEM 1 arcsec
(≈30 m)

2011–2015 EGM2008
geoid

DSM Global Fusion of multisource data

FABDEM v1–2 1 arcsec
(≈30 m)

2011–2015 EGM2008
geoid

Based on
DSM,
removing
buildings
and forest

Global Fusion of multisource data

TanDEM-X DEM 0.4 arcsec
(≈12 m)

2011–2015 WGS84
ellipsoidal
height

DSM Global SAR interferometry

TanDEM-X EDEM 1 arcsec
(≈30 m)

2011–2015 WGS84
ellipsoidal
height

DSM Global Fusion of multisource data

3.3.6 MERIT DEM

The Multi-Error-Removed Improved-Terrain (MERIT)
DEM, developed by Yamazaki et al. (2017), improves on
previous DEMs by systematically removing various error
components, such as absolute bias, stripe noise, speckle
noise, and tree height bias, from SRTM3 DEM (Farr et al.,
2007) and AW3D-30 m DEM (Tadono et al., 2015) and
gap-filling with the Viewfinder Panoramas (VFP) DEM
(http://viewfinderpanoramas.org/dem3.html, last access:
28 June 2023). The MERIT DEM is a DSM with a reso-
lution of 3 arcsec. It was utilized for the study area and is
available for download from the dedicated website: http://
hydro.iis.utokyo.ac.jp/~yamadai/MERIT_DEM/index.html/
(last access: 19 June 2023).

3.3.7 GLO30 DEM

The Copernicus DEM, published in 2019 by the European
Space Agency (ESA) (CDSE, 2022), represents an upgraded
iteration of the WorldDEM. The backbone of the Copernicus

WorldDEM is the TanDEM-X mission dataset, yet void fill-
ing techniques and integration of other data sources are used
to enhance data completeness and accuracy. The Copernicus
DEM is provided in three different DSM instances: EEA-
10, GLO-30, and GLO-90. For this study, GLO-30 was uti-
lized, offering 1 arcsec resolution. It can be downloaded from
the dedicated website: https://spacedata.copernicus.eu/de/
collections/copernicus-digital-elevation-model (last access:
23 June 2023).

3.3.8 FABDEMv1–2

The Forest and Building Removed Copernicus Digital El-
evation Model (FABDEM) was developed in collaboration
between Bristol-based flood modelling company Fathom
and the University of Bristol FloodLab. FABDEM V1–0,
launched in 2021 (FABDEM V1–0), is derived from the
Copernicus GLO-30 (CDSE, 2022) DSM. FABDEM V1–2,
released in 2023 (Neal and Hawker, 2023), has a 1 arcsec res-
olution and is based on a DSM that removes buildings and
vegetation. This dataset was employed for the study area and
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Figure 2. ICESat-2 ATL08 and DEM products: (a) ICESat-2 ATL08 surface elevation, (b) Land Development Department (LDD) DEM,
(c) JICA DEM, (d) merged LDD-JICA DEM, (e) ASTER GDEM version 3, (f) SRTM DEM version 3, (g) MERIT DEM, (h) GLO-30 DEM,
(i) FABDEM v1.2 DEM, (j) TanDEM-X DEM, (k) TanDEM-EDEM.

is available for download from https://data.bris.ac.uk/data/
dataset/s5hqmjcdj8yo2ibzi9b4-ew3sn (last access: 23 June
2023).

3.3.9 TanDEM-X DEM

TanDEM-X (TerraSAR-X Add-on for Digital Elevation
Measurement) is an innovative space borne-radar interfer-
ometer based on two TerraSAR-X radar satellites flying
in close formation (Krieger et al., 2007). The TanDEM-X
mission represents a collaborative effort between the Ger-
man Aerospace Center (DLR) and AIRBUS (Wessel, 2016),
with the aim of generating a globally consistent DEM.
TanDEM-X, launched in 2016, is a DSM with resolutions
of 0.4, 1, and 3 arcsec. The 3 arcsec TanDEM-X product
is readily accessible and can be downloaded directly from
https://geoservice.dlr.de/data-assets/ju28hc7pui09.html (last
access: 14 September 2023). However, the 0.4 and 1 arcsec
products are available from DLR on request. It is important
to note that the TanDEM-X product has not undergone full
processing to eliminate artefacts, outliers, noisy regions, and
data gaps. As a result, its adoption in flood modelling has
been limited (McClean et al., 2020). In this study, we em-
ployed TanDEM-X with a 0.4 arcsec resolution for our flood
modelling purposes.

3.3.10 TanDEM-EDEM

The TanDEM-X Edited Digital Elevation Model (TanDEM-
EDEM) is an edited version of the TanDEM-X global model,
with a 1 arcsec (≈30 m) pixel resolution, released in 2023
(Wessel, 2016). The main update in TanDEM-EDEM ver-
sion 1 includes the filling of gaps with suitable alternative
DEM data and improved representation of water bodies. The
TanDEM-EDEM dataset, which is a DSM, was utilized for
the study area and is readily available for download from
https://download.geoservice.dlr.de/TDM30_EDEM/ (last ac-
cess: 27 November 2023). It has a resolution of 30 m.

3.4 ICESat-2 satellite laser altimetry

Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) is a
laser altimetry satellite launched by the US National Aero-
nautics and Space Administration (NASA) in 2018. As the
follow-on satellite of ICESat, ICESat-2 continues elevation
measurements of ice sheets, glaciers, sea ice, and various
other land features with a 91 d exact repeat orbit. ICESat-
2 carries the Advanced Topographic Laser Altimeter Sys-
tem (ATLAS), which works by transmitting 10 000 laser
pulses per second using laser light of 532 nm (Neumann et
al., 2019). The pulse rate enables the satellite to capture a
measurement every 70 cm along the ground track. The pulse
divides into six beams, organized into three pairs. Each pair
comprises one right-side beam and one left-side beam, which
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strike the Earth at a distance of 90 m from each other. The
distance between each pair is 3.3 km, as depicted in Fig. 1e.

The National Snow and Ice Data Center (NSIDC) portal
has developed various products that incorporate photon travel
times and locations, determined using the built-in GPS from
the ICESat-2 satellite. This mission generates 21 products,
as detailed on their website: https://nsidc.org/data/icesat-2/
products (last access: 12 June 2023). The two data products
used in this study are ATL03 and ATL08, as summarized in
Table 3, and the ground track pattern of ICESat-2 in the study
area is shown in Fig. 1b. The ICESat-2 data were obtained
from the NSIDC website via their data access tool (https:
//nsidc.org/data/data-access-tool, last access: 12 June 2023).

3.4.1 ATL08

The ATL08 product is derived from ICESat-2 ATL03 data,
which provide detailed information on time, latitude, lon-
gitude, and height for each photon track. This dense pho-
ton dataset enables subsequent analyses and the creation of
surface-specific products, such as land ice height and sea
ice freeboard (Neumann et al., 2021). The ATL08 product
offers estimates of terrain heights, canopy heights, canopy
cover, and other descriptive parameters at fine spatial scales
in the along-track direction. A fixed segment size of 100 m
was chosen to provide continuity of data parameters on
the ATL08 data product. Height estimates from ATL08 can
be compared with other geodetic data and serve as input
for higher-level products like ATL13 (inland water-related
heights) and ATL18 (terrain and canopy feature maps)
(Neuenschwander et al., 2022). In this study, we used ATL08
land heights from ICESat-2 as the benchmark, against which
various DEM products were compared.

3.5 Flood map/surface water extent (SWE) dataset

In this study, SWE and flood maps were collected from
two sources: surface water extent (SWE) data were collected
from the WorldWater project (https://worldwater.earth/, last
access: 10 November 2023), funded by the European Space
Agency (ESA), and flood map data were collected from the
public organization Geo-Informatics and Space Technology
Development Agency (GISTDA) in Thailand. The flood map
datasets are summarized in Table 4 and presented in Fig. 3.

3.5.1 WorldWater surface water extent (SWE)

We used SWE products from the WorldWater project, us-
ing data from the Sentinel-1 and Sentinel-2 imaging satel-
lites, both integral parts of the ESA Copernicus programme.
The Sentinel-1 satellite, launched in 2014, is equipped with
a SAR constellation consisting of two polar-orbiting satel-
lites, with objectives on land and ocean monitoring. Sentinel-
1 comprises a C-band SAR sensor with a 10 m spatial res-
olution (Torres et al., 2012). The Sentinel-2 satellites con-
sist of two satellites, namely Sentinel-2A and Sentinel-2B,

launched in 2015 and 2017, respectively. The dual-satellite
system operates in coordination with a 180° phase differ-
ence in the sun-synchronous orbit, supporting both land
and ocean monitoring (ESA, 2015). The WorldWater SWE
mapping algorithm utilized Sentinel-1 and Sentinel-2 data
from 2017 to 2021 to develop a SWE dataset. The details
of the Sentinel-1 and Sentinel-2 datasets are accessible from
the Copernicus Open Access Hub. This algorithm utilizes a
fusion approach (Tottrup et al., 2022), combining optical and
radar observations, to provide a more robust delineation of
water surfaces. The SWE products provide information on
water occurrence, monthly water presence, water seasonality,
and maximum and minimum water extent, all accessible on
the website: https://swdap.worldwater.earth/ (last access: 10
November 2023). The monthly water presence of the World-
Water SWE in November 2017 is illustrated in Fig. 3c. It is
important to note that the WorldWater SWE dataset uses a
median composite of all Sentinel-1 and Sentinel-2 acquisi-
tions within a given month to predict monthly surface wa-
ter presence. Consequently, it does not necessarily reflect the
maximum extent of flooding within each month.

3.5.2 GISTDA flood map

GISTDA is a Thai space agency and space research organiza-
tion that utilizes satellites such as Cosmo-SkyMed, KOMP-
SAT, LANDSAT-5, RADARSAT-2, and THAICHOTE
(Channumsin et al., 2020) to conduct research and de-
velopment. GISTDA receives observations of the Earth
through the use of synthetic-aperture radar (SAR) and op-
tical sensor satellites (Nithirochananont et al., 2010). SAR
satellite information is derived from two constellations:
RADARSAT and the Advanced Land Observing Satel-
lite (ALOS). RADARSAT comprises two SAR satellites,
while ALOS integrates a SAR satellite with an optical satel-
lite. Both RADARSAT and ALOS possess SAR data pro-
cessing systems. In flooded areas, the Earth’s surface appears
smooth in the wavelength of the SAR. This smooth surface
causes microwaves to reflect in a specular way, resulting in
low backscatter values. This characteristic allows for real-
time flood imaging and identification. The SAR data undergo
processing and image quality enhancement, with elimination
of any noise present in the data products (Auynirundronkool
et al., 2012).

To generate flood maps from satellite data, GISTDA em-
ployed several analysis methods, including supervised classi-
fication, visual analysis, and thresholding, which were com-
bined with field images. Subsequently, GISTDA used the
boundaries of natural and permanent water sources from the
existing database and removed these areas from the flood
map. Since 2005, GISTDA has annually published now-
cast flood maps and flood occurrence maps on https://flood.
gistda.or.th/ (last access: 10 October 2023), which were uti-
lized in this study. The GISTDA flood occurrence map is
shown in Fig. 3b.
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Table 3. ICESat-2 product.

ICESat-2 product Data Datum reference
collection
(year)

ATL03 Global geolocated photon data (DSM) 2018–2022 WGS84 ellipsoid
ATL08 Land/water/vegetation elevation (DSM) 2018–2022 WGS84 ellipsoid

Figure 3. Flood map/surface water extent in study area: (a) flood frequency from HII, (b) GISTDA’s flood map in November 2017, (c) World-
Water’s SWE in November 2017. © OpenStreetMap contributors 2015. Distributed under the Open Data Commons Open Database Li-
cense (ODbL) v1.0.

From 2014 to 2023, HII analysed flood frequency maps
from GISTDA. The assessment focused on the frequency of
flood occurrences, which were categorized in three levels:
low, medium, and high-risk flood frequency. Low-risk flood
frequency is defined as 1–3 occurrences within the 10-year
span, medium risk as 4–7 occurrences, and high risk as 8–
10 occurrences, as depicted in Fig. 3a.

4 Methodology

The workflow used in this study, illustrated in Fig. 4, com-
prises two primary components. The first component, namely
DEM analysis, focuses on evaluating the DEMs (Sect. 3.3),
with the ICESat-2 benchmark (Sect. 3.4) as a high-precision
reference, which effectively serves as the “ground truth”. The
best DEM identified in the DEM analysis is then used as
the input to the flood map analysis. The flood map analy-
sis focuses on evaluating flood maps generated by the 1D–
2D flood model (Sect. 3.1) against WorldWater SWE and
GISTDA flood maps (Sect. 3.5).

4.1 DEM analysis

The primary objective is to assess the accuracy and reliabil-
ity of the DEMs by comparing them with elevation data ob-
tained from ICESat-2 using statistical methods. In the study
area, ICESat-2 ATL08 data were primarily used for evalua-
tion, while ICESat-2 ATL03 data were employed in complex
terrain. Figure 4a illustrates the workflow, involving process-
ing and re-referencing steps. Subsequently, the evaluation of
DEMs and ICESat-2 was conducted using statistical meth-
ods.

4.1.1 ICESat-2 ATL08 data processing

ATL08 provides estimates of terrain height, canopy height,
and canopy cover at fine spatial scales in the along-track
direction. For each parameter, terrain surface elevation and
canopy heights were provided at a fixed along-track seg-
ment size of 100 m (Neuenschwander et al., 2022). The
ATL08 dataset comprises a total of 18 land parameters, such
as mean terrain height for segment (h_te_mean), mode of
terrain height for segment (h_te_mode), number of ground
photons in segment (n_te_photins), slope of terrain within
segment (terrain_slope), and best fit terrain elevation at the
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Table 4. Flood map datasets.

Product Resolution
(m)

Period Frequency Type file Download

GISTDA’s flood map – 2005–2021 On request, satellite
track, and annual

Shape file https://flood.gistda.or.th/
(last access: 10 October 2023)

WorldWater’s surface
water extent

10 2017–2021 Monthly and annual Raster file https://swdap.worldwater.earth/

(last access: 10 October 2023)

Figure 4. Overall methodology. (a) Component 1: DEM analysis – involves processing ICESat-2 ATL08 data, applying vertical datum ref-
erencing, and evaluating DEMs against the ICESat-2 ATL08 benchmark through point, grid, and track-wise comparisons. (b) Component 2:
flood map analysis – includes setting up the 1D–2D flood model, performing flood classification, and evaluating flood maps using appropriate
methods.

100 m segment mid-point location (h_te_best_fit). We pro-
cessed the ATL08 dataset, extracting the latitude and lon-
gitude of the photon signals along with the photon heights
above the WGS84 ellipsoid. The terrain elevation parameter
used for evaluation was h_te_best_fit.

4.1.2 Vertical datum reference processing

To evaluate the DEMs with the ICESat-2 benchmark, it is
necessary to use the same vertical datum reference. Vertical
datum reference processing was employed to standardize the
datum reference. In this study, the vertical datum reference
was TGM2017, using Eq. (1) to establish accurate measure-
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ments of vertical elevation:

H = h−N , (1)

where H is orthometric height, h is ellipsoid height, and N is
geoid height. Thus,

HDEM ref TGM2017 = hDEM+NDEM−NTGM2017 , (2)

where HDEM ref TGM2017 is the DEM referenced to
TGM2017, hDEM represents the original DEM, NDEM is the
geoid reference of the original DEM, and NTGM2017 is the
TGM2017 geoid model.

To obtain DEMs referenced to TGM2017, EGM96 and
EGM2008 height corrections were added to the DEM
heights, followed by subtracting the TGM2017 geoid cor-
rections, as shown in Eq. (2). The geoid model datasets are
shown in Sect. 3.2 for reference. For ICESat-2 elevations
referenced to TGM2017, the TGM2017 correction was sub-
tracted from the ICESat-2 elevation data.

4.1.3 Evaluation of DEMs using ICESat-2 ATL08
benchmark

The DEM products were estimated and evaluated using sta-
tistical methods, including bias (mean error, ME), mean
absolute error (MAE) (Willmott, 2005), mean square er-
ror (MSE), root mean square error (RMSE) (Chai and
Draxler, 2014), and percentage bias (PBIAS) (Moriasi et al.,
2007). The overall purpose of implementing these statistical
methods is to evaluate the ICESat-2 ATL08 data paired with
the 10 DEM products covering the study area. Subsequently,
the performance of the DEMs was systematically compared
using statistical indices, defined as follows (Samantaray and
Sahoo, 2024):

ME=
1
n

n∑
i=1

(
Yi − Ŷi

)
, (3)

MAE=
1
n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ , (4)

MSE=
1
n

n∑
i=1

(
Yi − Ŷi

)2
, (5)

RMSE=

√√√√√ n∑
i=1

(
Yi − Ŷi

)2

n
, (6)

PBIAS= 100×


n∑

i=1

(
Yi − Ŷi

)
n∑

i−1
Ŷi

 , (7)

where Ŷi represents ICESat-2 ATL08 elevation, Yi denotes
the elevation for each DEM (i.e. LDD DEM, JICA, merged
LDD-JICA DEM, ASTER GDEM V3, SRTM DEM, MERIT

DEM, FABDEM v1–2 DEM, GLO30 DEM, TanDEM-X,
and TanDEM-EDEM), and n is the number of observations.
The ideal PBIAS value is 0: positive values indicate that
the DEM products tend to overestimate, compared with the
ICESat-2 ATL08 benchmark, while negative values indicate
a tendency toward underestimation.

We conducted three types of comparisons, as follows.

Point comparison

Point comparison was performed for every segment of the
ICESat-2 ATL08 pass over the study area. This approach
aimed to provide a quantitative overview of the quality and
identify potential discrepancies among the 10 DEMs, in com-
parison with ICESat-2 ATL08 data (Weifeng et al., 2024),
using statistical methods. A total of 954 800 elevation points
were extracted from the study area for point-to-point com-
parison.

Grid comparison

The grid comparison was conducted using a regular square
grid over the study area. This comparison provides an
overview of the spatial variation of the quality of the DEMs,
in comparison with the ICESat-2 ATL08 benchmark. In this
study, we employed a 5 km resolution for grid comparison,
which involved calculating statistical measures for every seg-
ment within each grid cell and displaying the evaluation spa-
tially on a map.

Track-wise comparison

The track-wise comparison was conducted using tracks of
ICESat-2 over the study area. The distance between the
ICESat-2 points was calculated using UTM x and y coor-
dinates, as shown in Eq. 8. The track-wise comparison repre-
sents an overall elevation profile comparison between DEMs
and ICESat-2 ATL08 data over the study area:

Distance=
√

(x0− xi)
2
+ (y0− yi)

2 , (8)

where x represents the x coordinates, and y denotes the y co-
ordinates.

4.2 Flood map analysis

The purpose of the flood map analysis is to evaluate the per-
formance of simulated flood maps from the 1D–2D flood
model using various DEM products selected from the first
component, in comparison with the WorldWater SWE and
GISTDA flood maps. This comparative analysis aims to as-
sess the accuracy and effectiveness of the improved flood
simulation model.
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4.2.1 1D–2D flood modelling setup

The setup of the 1D–2D flood model mirrored the original
model, retaining the same parameters, with only the DEM
being modified to generate the flood map. The DEM prod-
ucts were selected based on the evaluation of DEMs against
the ICESat-2 ATL08 benchmark. Flood maps in the lower
CPY basin were simulated using the 1D–2D flood model for
the years 2017 and 2021. The flood map simulation results
from the 1D–2D flood model present flood extents that oc-
curred during the simulation period and at each daily time
step (DHI, 2018). In this study, we employ simulated flood
maps generated from a 1D–2D flood model using the merged
LDD-JICA DEM and FABDEMv1–2 DEM products and
compare them with WorldWater SWE and GISTDA flood
maps.

4.2.2 Flood classification processing

The flood map and SWE dataset used for evaluation in this
study (Sect. 3.5) had different resolutions, formats, and flood
map definitions. To effectively assess the simulated flood
map from the 1D–2D flood model, we compared it with the
WorldWater SWE and GISTDA flood map. However, it is
crucial to employ the same resolution, format, and flood def-
inition. Common types of flooding include flood irrigation,
pluvial flash floods, coastal floods, and riverine floods. The
1D–2D flood model only simulates riverine floods, caused by
high water levels in the rivers, eventually overflowing onto
the neighbouring land due to high river discharge over an ex-
tended period. In order to compare the simulated flood map
with the satellite EO products, we first have to extract river-
ine flooding patterns from the surface water extent maps pro-
vided by satellite EO. This is done using the following steps.

Permanent water processing

Permanent water bodies should be removed from the satellite
EO SWE maps prior to comparison. The GISTDA datasets
do not include permanent water bodies. The WorldWater
product includes permanent water bodies, which must be re-
moved prior to comparison with simulated flood maps. We
use relative water frequency (Yamazaki et al., 2015), which
measures the occurrence of surface water within a defined
time period. The relative water frequencyfr of each pixel is
defined by Eq. (9) and shown in Fig. A4a:

fr(t)=
fa(t)

fv(t)
, (9)

where fa depicts the frequency of surface water detections
during a certain time period for each pixel, and fv represents
the frequency of valid observations during the same period
for each pixel.

The relative water frequency ranges between 0.0 and 1.0.
The permanent water designation indicates that there was ob-

served water coverage in every single observation of the con-
sidered time period, which corresponds to a relative water
frequency of 1.0 (Martinis et al., 2022). In many cases, lower
thresholds of 0.9, 0.7, and 0.5 were applied (Rao et al., 2018;
Yamazaki et al., 2015). The permanent water map for each
threshold is illustrated in Fig. A4. In this study, the thresh-
old for relative water frequency is set to 0.7, indicating that a
pixel is considered permanent water if it is present in 70 % or
more of the valid observations over the specified time period.
The output of the permanent water processing is utilized in
riverine flood classification processing to remove permanent
water from the WorldWater SWE.

Riverine flood classification processing

The WorldWater and GISTDA datasets contain both riverine
floods and other inundated areas, caused, for instance, by ir-
rigation or pluvial floods. In order to separate riverine floods
in the satellite EO flood maps, we used the following method
(Fig. A5).

– Expand the wet area from WorldWater and GISTDA
by 200 m using expanding segmentation labels (ESLs)
without overlap (van der Walt et al., 2014). The ESL
method merges labels in a label image based on the dis-
tances between each pixel. Labels that are close by will
be merged.

– Subsequently, label each pixel using connected com-
ponent labelling (CCL) (Rosenfeld and Pfaltz, 1966;
AbuBaker et al., 2007). The CCL method is employed
to detect connected regions in the binary digital im-
age. The assumption of riverine flood identification is
based on the presence of wet connected pixels originat-
ing from the river. These are then masked off using ESL,
and the riverine flood label is selected.

– Subsequently, the SWE undergoes morphological im-
age processing (MIP) using a closing algorithm
(van der Walt et al., 2014). The structuring element, or
footprint, passed to the closing algorithm is a Boolean
array describing the neighbourhood. We used a disc to
create a circular structuring element with a radius of 2,
implemented as the footprint. The output provides river-
ine flood maps, namely WorldWater and GISTDA flood
maps, for evaluation with other flood map products.

4.2.3 Flood map evaluation methods

This study evaluates the flood map of the lower CPY River
basin using the contingency table (Anon, 1998), compar-
ing flood maps from two different dimensions, shown in Ta-
ble 5. We evaluated the flood maps produced by the 1D–2D
flood model by comparing them with the monthly surface
water presence maps from WorldWater and GISTDA for the
years 2017 and 2021. We mainly used probability of detec-
tion (POD), false alarm ratio (FAR), and critical success in-
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Table 5. Contingency table.

Observed flood map

Flood No flood

Modelled flood map
Flood Hit False alarm
No flood Miss True negative

dex (CSI) (Forecast, 1995) to perform the evaluation. These
statistics are based on the number of grid cells or pixels in
the study area and are defined as

POD=
Hit

Hit+Miss
, (10)

FAR=
False alarm

Hit+False alarm
, (11)

CSI=
Hit

Hit+False alarm+Miss
, (12)

where “Hit” represents the number of correctly detected
flooded pixels from two different dimensions, “True nega-
tive” denotes the number of correctly detected non-flooded
or dry areas from two different dimensions, “Miss” indicates
the number of floods from dimension 1 that are not detected
by dimension 2, and “False alarm” represents the number of
floods from dimension 2 that did not occur floods in dimen-
sion 1. A perfect score for both POD and CSI is 1, while a
value of 0 represents the best score for FAR.

5 Results

5.1 1D–2D flood model calibration results

The 1D river model was calibrated using in situ water sur-
face elevation data for the period 2012 to 2013. The calibra-
tion results of the main river in the study area are presented
in Charoensuk et al. (2024). The overall performance during
the calibration period is generally satisfactory for all main
rivers, with an average R2 of 0.96, RMSE of 0.30 m, and
MSE of 0.90.

The 1D–2D flood model has been calibrated for extreme
floods in 2011, as presented in Charoensuk et al. (2018).
Normally, flooding in Thailand is influenced by meteorolog-
ical conditions, river conveyance, and sea level rise. How-
ever, the primary cause of the 2011 flood was dyke breach-
ing along the Chao Phraya River, resulting in uncontrollable
flood inundation. The simulated flood, when compared with
the GISTDA’s flood map, satisfactorily corresponds to flood
depth, flood propagation direction, and duration.

5.2 Results of DEM evaluation against the ICESat-2
ATL08 benchmark

5.2.1 Point comparison evaluation results

Figure 5 illustrates point comparisons between the statistical
metrics of 10 DEM products against the ICESat-2 ATL08
benchmark. As depicted in Fig. 5a, the average ME of the
local DEM products was −0.88 m, whereas the average ME
of the global DEM products was +1.62 m. The results in-
dicate that local DEM products tend to have negative bias,
while global DEM products tend to show positive bias, when
compared against the ICESat-2 ATL08 benchmark. This ten-
dency is attributed to the algorithms described in Sect. 3.3,
which remove buildings and vegetation from the local DEM
products. Moreover, the local DEM products have a finer grid
resolution, compared with the global DEM products. The av-
erage performance statistics of the local and global DEMs
were 1.25 and 2.17 m for MAE, 4.23 and 13.52 m for MSE,
and 2.04 and 3.38 m for RMSE, as shown in Fig. 5b–d re-
spectively.

Table 6 presents the statistical results of point compar-
isons between 10 DEM products, compared with the ICESat-
2 ATL08 benchmark, indicating that the accuracy of JICA
DEM and FABDEMv1–2 DEM was higher than that of
other local and global DEMs. The statistical results of JICA
DEM were −0.65, 1.04, 3.51, and 1.87 m and −17.00 %
for ME, MAE, MSE, RMSE, and PBIAS, respectively.
Specifically, the FABDEMv1–2 DEM showed the highest
accuracy, with ME, MAE, MSE, RMSE, and PBIAS values
of 0.25, 0.80, 3.79, and 1.95 m and 4.59 %, respectively.

Figure 6 presents the histogram distributions of ME for
10 DEM products relative to the ICESat-2 ATL08 bench-
mark. The histogram distributions illustrate that the entire
curves of local and global DEMs shift towards negative and
positive biases, respectively. These shifts indicate that local
DEMs, including LDD DEM, JICA DEM, and merged LDD-
JICA DEM, exhibit a negative bias in elevation relative to the
ICESat-2 ATL08 benchmark, with ME averages of −1.30,
−0.65, and −0.68 m, respectively.

Conversely, the shifts observed in the histogram distribu-
tion of global DEMs, including ASTERv3 DEM, SRTMv3
DEM, Merit DEM, GLO30 DEM, FABDEMv1–2 DEM,
TanDEM-X DEM, and TanDEM-EDEM DEM, indicate a
positive bias of the elevation of ICESat-2 ATL08 bench-
mark. The ME averages for these DEMs were+4.78,+2.03,
+1.56, +0.84, +0.25, +0.94, and +0.91 m, respectively.
Further details are provided in Figs. A7 and A8, illustrat-
ing the mean absolute error (MAE) and mean squared er-
ror (MSE), respectively.

5.2.2 Grid comparison evaluation results

Figure 7 displays the ME spatial grid comparison of 10 DEM
products against the ICESat-2 ATL08 benchmark, with a

https://doi.org/10.5194/hess-29-5065-2025 Hydrol. Earth Syst. Sci., 29, 5065–5097, 2025



5078 T. Charoensuk et al.: Enhancing the performance of 1D–2D flood models using satellite laser altimetry

Figure 5. Statistical metrics, comparing 10 DEM products against the ICESat-2 ATL08 benchmark: (a) mean error (ME), (b) mean absolute
error (MAE), (c) mean squared error (MSE), (d) root mean square error (RMSE). The resulting averages are computed across the datasets in
the study area.

Table 6. Statistical metrics, comparing 10 DEM products against the ICESat-2 benchmark. The resulting averages are computed across the
datasets in the study area.

DEM product Scale Statistical method

ME MAE MSE RMSE PBIAS
(m) (m) (m) (m) (%)

LDD Local −1.30 1.64 5.45 2.33 −34.76
JICA Local −0.65 1.04 3.51 1.87 −17.00
Merged LDD-JICA Local −0.68 1.08 3.74 1.93 −15.38

Average local DEMs −0.88 1.25 4.23 2.04 −22.38

ASTER Global +4.77 5.57 44.28 6.65 47.71
SRTM Global +2.04 2.58 12.92 3.59 27.99
MERIT Global +1.56 1.79 6.76 2.60 22.99
GlO30 Global +0.84 1.30 5.89 2.43 13.87
FABDEMv1–2 Global +0.25 0.80 3.79 1.95 4.59
TanDEM-X Global +0.94 1.73 13.29 3.65 15.24
TanDEM-EDEM Global +0.91 1.43 7.74 2.78 14.84

Average global DEMs +1.62 2.17 13.52 3.38 21.03

resolution of 5km× 5km. As shown in the figure, the lo-
cal DEMs indicated, overall, lower values than the bench-
mark, with LDD DEM showing the lowest ME. In con-
trast, the overall ME spatial grid comparison of global DEMs
was higher than the benchmark and clearly reveals that most
global DEMs exhibit poor performance in urban areas. No-
tably, in the lower middle of the study area lies Bangkok,
the capital city of Thailand. However, the FABDEMv1–2
DEM performed better in urban areas, compared with other
global DEMs; this can be attributed to the fact that vegeta-
tion and buildings are eliminated in this DEM, as described
in Sect. 3.3.8 and Dandabathula et al. (2023).

5.2.3 Track-wise comparison evaluation results

The track-wise comparison involves comparing the land ele-
vation profile over the study area between the 10 DEM prod-
ucts and the ICESat-2 ATL08 benchmark (see Fig. 8). As

shown in Fig. 8, it is evident that the local DEMs exhibit
lower land elevation, compared with the ICESat-2 ATL08
benchmark. For most of the tracks, the LDD DEM measures
a lower elevation than the benchmark, while the JICA and
merged LDD-JICA DEM follow the ICESat-2 ATL08 mea-
surements more closely. This trend is consistent along the
majority of the tracks, indicating that the LDD DEM exhibits
a negative bias in elevation when compared with ICESat-2.
Additionally, both the JICA and merged LDD-JICA DEMs
closely track the ICESat-2 measurements for most of the
tracks. Moreover, local DEMs show lower elevations in ur-
ban areas, in agreement with ICESat-2 ATL08. However, we
expect that both local DEMs and ICESat-2 ATL08 still have
residual positive bias, compared with the true bare earth ele-
vation in urban areas.

Overall, the track-wise comparison of global DEMs shows
a higher elevation than the benchmark, especially in urban
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Figure 6. Histogram distribution of mean error (ME), comparing 10 DEM products against the ICESat-2 ATL08 benchmark.

Figure 7. Mean error (ME) spatial grid comparison of 10 DEM products against the ICESat-2 ATL08 benchmark, with a resolution of
5km× 5km.

areas, clearly indicating higher elevations in these urban ar-
eas, as illustrated in Fig. 8. In most tracks, ASTERv3 and
SRTMv3 DEMs exhibit a notable positive bias and fluctu-
ations, compared with the benchmark. Meanwhile, Merit,
GLO30, TanDEM-X, and TanDEM-EDEM DEMs tend to
follow a fluctuating pattern and measure slightly higher than
the benchmark’s track. FABDEMv1–2 closely aligns with
the benchmark, indicating its strong performance. More de-

tailed information on the track-wise comparison is provided
in Appendix A.

The summary results of the evaluation of the 10 DEM
products are presented in the parallel plot shown in Fig. 9,
which displays the 10 DEM products along with the results
of statistical methods, including MAE, RMSE, and DEM res-
olution. In the local DEM products, it is notable that LDD
DEM exhibits higher error and resolution, compared with
the JICA and merged LDD-JICA DEMs. Both the JICA and
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Figure 8. Track-wise comparison of 10 DEM products with ICESat-2 ATL08 benchmark. © OpenStreetMap contributors 2015. Distributed
under the Open Data Commons Open Database License (ODbL) v1.0.

merged LDD-JICA DEMs demonstrate similar accuracy but
the JICA DEM does not cover the entire study area (Fig. 2).
Therefore, we utilized the merged LDD-JICA DEM from the
local DEM product to implement the 1D–2D flood model.
For the global DEM product, the FABDEMv1–2 demon-
strates the best performance, compared with other global
DEM products. Therefore, we selected the FABDEMv1–2
DEM to implement in the 1D–2D flood modelling, even
though its spatial resolution is lower than the TanDEM-
X DEM.

5.3 Results of evaluation of flood inundation maps

We evaluated simulated flood maps produced using two
DEMs: (1) the merged LDD-JICA DEM and (2) the
FABDEMv1–2 DEM, as described in Sect. 5.2 from the 1D–
2D flood model. The simulated flood map generated by the
1D–2D flood model, referred to as the Model flood map, was
evaluated using flood maps from WorldWater and GISTDA
for September, October, and November (the flood season) in
the years 2017 and 2021. The 1D–2D flood model generated
daily simulated flood maps. To ensure accurate comparisons,
we selected the dates of satellite passes over the study area,
according to WorldWater and GISTDA datasets. These dates
were then combined to represent the flood areas that occurred
in each month. The results of the flood map evaluation were
categorized based on the DEM and compared with the flood
maps from WorldWater and GISTDA.

Table 7 provides a comparison of the POD, FAR, and
CSI scores for the flood simulation using the merged LDD-
JICA DEM, month, and year. Overall, the flood model using
the merged LDD-JICA DEM tends to overestimate flood-
ing, particularly in the eastern part of the study area. This
overestimation in the eastern part of the study area was at-
tributed to the boundary between the JICA and LDD DEMs
in the merged LDD-JICA DEM. The average FAR val-
ues of 0.926 and 0.790, along with POD values of 0.713
and 0.585 compared with WorldWater and GISTDA flood
maps, respectively, indicate that the Model flood map por-
trays a larger flood extent while still effectively detecting
floods. The average CSI values of 0.072 and 0.183 indicate
low model performance and a reflection of the larger flood
extent simulation when compared with the flood maps by
WorldWater and GISTDA. The overall flood map evaluation
based on the FABDEMv1–2 DEM indicates that the Model
flood map tends to overestimate, with average FAR values
of 0.916 and 0.730 compared with WorldWater and GISTDA
flood maps, respectively. Meanwhile, the average CSI values
of 0.081 and 0.230 indicate low performance.

Figure 10 shows flood maps and contingency tables for
September, October, and November in 2017 and 2021. Fig-
ure 10a-1 presents contingency tables comparing WorldWa-
ter monthly SWE and Model flood maps based on the merged
LDD-JICA DEM in 2017. The results of the evaluation show
low CSI values of 0.046, 0.071, and 0.076 for September, Oc-
tober, and November in 2017, respectively, indicating that the
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Figure 9. Parallel plot of evaluation of 10 DEMs against ICESat-2 ATL08 benchmark.

Table 7. Statistical metrics of contingency table, comparing flood map dimensions 1 and 2.

Time Dimension 1: WorldWater Dimension 1: GISTDA DEM product
Dimension 2: Model Dimension 2: Model

POD FAR CSI POD FAR CSI

Sep 2017 0.549 0.952 0.046 0.259 0.913 0.070 Merged LDD-JICA
Oct 2017 0.612 0.926 0.071 0.567 0.727 0.226 Merged LDD-JICA
Nov 2017 0.842 0.923 0.076 0.642 0.699 0.258 Merged LDD-JICA
Sep 2021 0.593 0.903 0.091 0.564 0.852 0.133 Merged LDD-JICA
Oct 2021 0.845 0.928 0.071 0.667 0.760 0.214 Merged LDD-JICA
Nov 2021 0.835 0.923 0.075 0.810 0.790 0.200 Merged LDD-JICA

Total average 0.713 0.926 0.072 0.585 0.790 0.183 Merged LDD-JICA

Sep 2017 0.625 0.946 0.052 0.331 0.834 0.124 FABDEMv1–2
Oct 2017 0.710 0.913 0.084 0.664 0.612 0.325 FABDEMv1–2
Nov 2017 0.907 0.914 0.085 0.672 0.591 0.341 FABDEMv1–2
Sep 2021 0.584 0.887 0.105 0.502 0.832 0.144 FABDEMv1–2
Oct 2021 0.885 0.920 0.079 0.680 0.738 0.234 FABDEMv1–2
Nov 2021 0.850 0.916 0.083 0.837 0.776 0.215 FABDEMv1–2

Total average 0.760 0.916 0.081 0.614 0.730 0.230 FABDEMv1–2

Model flood map based on the merged LDD-JICA DEM has
low performance. Additionally, the number of false alarms
was high, resulting in high FAR values of 0.952, 0.926, and
0.923 for September, October, and November in 2017, re-
spectively. Figure 10b-1 illustrates contingency tables com-
paring GISTDA and Model flood maps based on the merged
LDD-JICA DEM in 2017. The POD values of 0.259, 0.567,
and 0.642 are due to the high number of misses, particu-
larly in September in the upper part of the study area. More-
over, the results show more false alarms in the eastern part
of the study area, attributed to the combination of LDD and
JICA DEMs. The FAR values are 0.913, 0.727, and 0.699 for
September, October, and November in 2017, respectively.

The CSI values were low in September at 0.070 but increased
to 0.226 and 0.258 for October and November, respectively.
The detailed statistics are summarized in Table 7.

Figure 10a-2 and b-2 present contingency tables compar-
ing WorldWater and the Model and GISTDA and the Model
for each flood-season month in 2021, respectively. The re-
sults of flood map evaluation in 2021 followed a similar
trend to that of the 2017 flood. In Fig. 10a-2, low CSI val-
ues of 0.091, 0.071, and 0.075 are depicted for September,
October, and December in 2021, respectively. Additionally,
FAR values of 0.903, 0.928, and 0.923, and POD values
of 0.593, 0.845, and 0.835, observed for September, October,
and November in 2021, respectively, were high. These values
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Figure 10. Contingency tables of dimension 1 and dimension 2 flood maps on the spatial map: (a) comparison between WorldWater and
Model, based on the merged LDD-JICA DEM, in (a-1) 2017 and (a-2) 2021; (b) comparison between GISTDA and Model, based on the
merged LDD-JICA DEM, in (b-1) 2017 and (b-2) 2021.

suggest that the WorldWater flood map indicates a smaller
flood extent, compared with the Model flood map based on
the merged LDD-JICA DEM. Figure 10b-2 illustrates an in-
crease in CSI values to 0.133, 0.214, and 0.200 for Septem-
ber, October, and November in 2021, respectively, confirm-
ing that the Model flood map based on the merged LDD-
JICA DEM fit the GISTDA flood map as well. However,
the FAR values were high, at 0.852, 0.760, and 0.790, for
September, October, and November in 2021, respectively, in-
dicating that the Model flood map based on the merged LDD-
JICA DEM shows overestimated flood extents. Despite this,
the POD values of 0.564, 0.667, and 0.810 suggest that the
Model flood map based on the merged LDD-JICA DEM can
effectively detect GISTDA flood map extents, particularly in
October and November.

Figure 11 shows flood maps and contingency tables
in 2017 and 2021. Figure 11a-1 illustrates contingency ta-
bles comparing WorldWater and Model flood maps based on
FABDEMv1–2 DEM for each flood-season month in 2017.
The evaluation results clearly indicate that the Model flood
tends to overestimate the extent of flooding, as evidenced
by FAR values of 0.946, 0.913, and 0.914 and low CSI
values of 0.052, 0.084, and 0.085 in September, October,
and November in 2017, respectively. However, the POD val-
ues were high, with values of 0.625, 0.710, and 0.907 in
September, October, and November, respectively, indicating
that the Model flood map based on FABDEMv1–2 DEM ef-
fectively corresponds to the WorldWater flood map as well,

as shown in Table 7. Figure 11b-1 presents contingency ta-
bles comparing GISTDA and Model floods for each flood-
season month in 2017. Figure 11b-1 confirms the observa-
tions made in Fig. 11a-1, indicating that the Model flood
map tends to overestimate the extent of flooding, compared
with the GISTDA flood map. However, the FAR values de-
crease slightly, to 0.834, 0.612, and 0.591, and the POD
values decrease, to 0.331, 0.664, and 0.672, in September,
October, and November in 2017, respectively. The decrease
in POD is attributed to a higher number of misses in the
upper part of the study area, suggesting that the GISTDA
flood map depicts more flooding than the Model flood map
based on the FABDEMv1–2 DEM. Conversely, the CSI
improved to 0.124, 0.325, and 0.341 in September, Octo-
ber, and November in 2017, respectively, indicating that the
model results are more accurate when compared with the
GISTDA flood map. Additionally, the figure illustrates that
the GISTDA flood map shows a greater extent of flooding,
compared with the WorldWater flood map.

Figure 11a-2 and b-2 depict contingency tables comparing
WorldWater and the Model and GISTDA and the Model for
each flood-season month in 2021, respectively. The Model
flood map based on the FABDEMv1–2 DEM exhibits an
overestimation of flooding, which is particularly noticeable
in the eastern part of the study area. Figure 11a-2 illus-
trates high FAR values, of 0.887, 0.920, and 0.916, that indi-
cate that there are more false alarms in September, October,
and November, respectively. The POD was high, with val-
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Figure 11. Contingency tables of dimension 1 and dimension 2 flood maps on the spatial map: (a) comparison between WorldWater and
Model, based on the FABDEMv1–2 DEM, in (a-1) 2017 and (a-2) 2021; (b) comparison between GISTDA and Model, based on the
FABDEMv1–2 DEM, in (b-1) 2017 and (b-2) 2021.

ues of 0.584, 0.885, and 0.850, and there were low CSI val-
ues, of 0.105, 0.079, and 0.083, in September, October, and
November in 2021, respectively. This figure illustrates that
the Model and the WorldWater flood map indicate more and
less flooding, respectively. Figure 11b-2 reveals more misses
in the upper part of the study area, resulting in a decrease
in the POD values to 0.502, 0.680, and 0.837, compared
with Fig. 11a-2. Despite this, the FAR values remain high,
at 0.832, 0.738, and 0.776; this is particularly notable in the
eastern part of the study area. However, the Model flood map
effectively corresponds to the GISTDA flood map as well.
The CSI values of 0.144, 0.234, and 0.215 for September,
October, and November in 2021, respectively, indicate that
the Model flood map exhibits improved accuracy in compar-
ison with the GISTDA flood map.

The overall assessment of the Model flood map, based on
both the merged LDD-JICA and FABDEMv1–2 DEMs, indi-
cates an overestimation of flood extent, compared with both
the WorldWater and GISTDA flood maps. When compar-
ing the model flood map based on the merged LDD-JICA
and FABDEMv1–2 DEMs with each of the WorldWater and
GISTDA flood maps, the results consistently indicate a slight
improvement in performance for the Model flood map based
on FABDEMv1–2. The CSI of the Model flood map based on
FABDEMv1–2 increases by 0.010 and 0.047, compared with
the Model flood map based on the merged LDD-JICA DEM
for the WorldWater and GISTDA flood maps, respectively.
Additionally, the FAR is reduced by approximately 0.010

and 0.060 for the WorldWater and GISTDA flood maps, re-
spectively. Although the study used flood classification pro-
cessing to extract riverine flood maps from the SWE map for
comparison, there are still limitations. Continuous improve-
ments in the flood classification process are necessary. The
study results show that the overall assessment of flood sim-
ulation based on the FABDEMv1–2 DEM reveals a slight
improvement of 13.55 %–25.56 % in terms of the CSI, com-
pared with flood simulation based on the merged LDD-JICA
DEM. However, the DEM is one factor contributing to im-
proved performance; many other factors still require further
improvement.

Figure 12 illustrates the overall performance of the Model
flood map, based on both the merged LDD-JICA and
FABDEMv1–2 DEMs. The results are presented in three
box plots, corresponding to the evaluation metrics: POD,
FAR, and CSI. FABDEMv1–2 exhibits a slightly higher me-
dian POD than the merged LDD-JICA, indicating a bet-
ter ability to correctly detect flood events. The interquar-
tile range (IQR) for the merged LDD-JICA is wider, sug-
gesting greater variability in detection performance, com-
pared with FABDEMv1–2, which shows more consistent
POD values. Both DEMs show relatively high FAR values,
with the merged LDD-JICA having a slightly higher me-
dian FAR, indicating that it generates more false alarms.
FABDEMv1–2 has a smaller IQR, reflecting more consistent
performance in minimizing false alarms, compared with the
merged LDD-JICA. Additionally, FABDEMv1–2 demon-
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strates a significantly higher median CSI than the merged
LDD-JICA, reflecting superior overall performance in bal-
ancing correct detections and false alarms. The narrower IQR
for FABDEMv1–2 suggests more consistent performance,
while the merged LDD-JICA shows greater variability in CSI
values.

6 Discussion

6.1 Overall result of DEM analysis workflow

The result of the DEM analysis shows that ICESat-2 ATL08
data offer a unique advantage in verifying DEM accuracy
(Carabajal and Boy, 2020). The overall precision of DEM
products was evaluated using the ICESat-2 ATL08 bench-
mark, showing that the JICA and FAMDEMv1–2 DEMs
were significantly better than the local and global DEM prod-
ucts, in terms of average RMSE, with values of 1.87 and
1.95 m, respectively (Fig. 5 and Table 6) in point compar-
isons. The merged LDD-JICA DEM showed a slight differ-
ence of 0.06 m in average RMSE, compared with the JICA
DEM. This variance is primarily attributed to the combina-
tion of LDD and JICA DEMs, with the JICA DEM chosen
as the primary DEM. However, it is noteworthy that the local
DEM product exhibited a negative average bias (ME) rang-
ing from −1.30 to −0.65 m, indicating that the elevation of
local DEM products is lower than the benchmark. Another
study conducted in Spain, which verified airborne lidar data
with ICESat-2 ATL08, also reported a negative bias, with av-
erage ME values of −0.48 m (Zhu et al., 2022). Conversely,
the average ME of the global DEM products yielded positive
values ranging from 0.25 to 4.77 m, indicating that the global
DEM products overestimate the benchmark. This result has
been previously confirmed in such studies as ASTERv3
(Weifeng et al., 2024), STRMv3, and TanDEM-X (Liu et
al., 2020). The ASTERv3 DEM showed the lowest over-
all accuracy, with an average RMSE of 6.65 m. This is in
line with other areas, such as the Qinghai–Tibet Plateau,
where the RMSE reached 11.47 m (Weifeng et al., 2024).
The TanDEM-EDEM is an updated version of the TanDEM-
X, which can reduce the error value from 3.65 to 2.78 m in
terms of average RMSE.

Figures 7, A10, and A11 illustrate the spatial grid com-
parison of 10 DEM products against the ICESat-2 ATL08
benchmark, with a resolution of 5km× 5km for ME, MAE,
and RMSE, respectively. The results clearly reveal that the
global DEM tends to overestimate, particularly when com-
pared with the ASTERv3 DEM. As shown in the figures, the
error of the global DEM clearly clusters in urban areas, ex-
cept for the FABDEMv1–2, which employs an algorithm to
remove building discrepancies, as discussed in Sect. 3.3.8.
Although ICESat-2 ATL08 is capable of measuring land ele-
vation very accurately, some urban areas still exhibit positive
bias, particularly in dense high-rise areas (Liu et al., 2020), as

shown in Fig. 8. This suggests that the DEM analysis work-
flow can effectively utilize ICESat-2 ATL08 data for evalu-
ation. In certain areas, the incorporation of ATL03 data may
be necessary to enhance the evaluation process.

Despite the high spatial resolution of the local DEM
(merged LDD-JICA DEM), which is derived from airborne
lidar and expected to be highly accurate, the results of this
study demonstrate that the global DEM (FABDEMv1–2)
can surpass it in specific ICESat-2-based evaluation metrics.
Although this finding may appear counterintuitive, it is at-
tributable to several underlying factors that influence DEM
performance and consistency.

6.1.1 ICESat-2 ATL08 benchmark

The ICESat-2 ATL08 dataset is derived from ICESat-2
ATL03 photon cloud data through a sequence of process-
ing steps designed to extract accurate land surface eleva-
tion and canopy height information. The algorithm com-
prises several key stages, including noise filtering, surface
detection, top-of-canopy identification, photon classification,
photon label refinement, canopy height estimation, and link
scale for the data product as depicted (Neuenschwander et
al., 2021). Notably, the algorithm is optimized to produce
smoothed land surface elevation estimates over fixed seg-
ment lengths of 100 m. This smoothing inherently aligns bet-
ter with the spatial resolution of coarser global DEMs. Con-
sequently, global DEMs – such as FABDEMv1–2 – tend to
yield terrain representations that are more consistent with the
footprint-averaged elevations derived from ATL08.

6.1.2 Quality of DEMs

The accuracy of local DEMs is highly dependent on data
acquisition techniques, the acquisition time of the data, and
post-processing workflows. Errors can arise from incomplete
ground point classification, outdated surveys, or inconsisten-
cies in vertical datum alignment. In the case of the merged
LDD-JICA DEM, multiple datasets were combined – some
of which were collected long ago (Sect. 3.3) – potentially in-
troducing temporal inconsistencies. Although the JICA DEM
component is considered a reliable source, the merging pro-
cess and age of the data may reduce overall accuracy. In con-
trast, the ICESat-2 ATL08 dataset benefits from continuous
updates, offering more current elevation observations. This is
particularly relevant in rapidly evolving urban areas such as
Bangkok, where frequent land-use changes can quickly ren-
der older DEMs obsolete.

6.2 Overall result of flood map analysis workflow

The flood classification process aims to classify flood types
from the SWE map. This method is based on various assump-
tions and simplifications. The validity of the approach is hard
to evaluate, given the lack of ground-truth flood extent ob-
servations. However, it is evident that, in this study area, sur-
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Figure 12. Box plots illustrating the performance of the flood model based on the merged LDD-JICA and FABDEMv1–2 DEMs across three
statistical metrics: (a) probability of detection (POD), (b) false alarm ratio (FAR), (c) critical success index (CSI).

face water extent is due not only to riverine flooding but also
to various other flooding mechanisms, such as irrigation and
pluvial flooding.

The Model flood map, based on both Model and
FABDEMv1–2 DEMs, tends to overestimate flood extent,
compared with the classified flood maps derived from SWE
data provided by the GISTDA and WorldWater projects. Ad-
ditionally, the flood map based solely on FABDEMv1–2
performs slightly better than the one based on the merged
LDD-JICA DEM, with an improvement of approximately
13.55 %–25.56 %, according to the CSI. The overestimation
of flood inundation from the flood model occurs predomi-
nantly in the eastern part of the CPY River, indicating a clear
need to improve the 1D–2D flood model. Although this study
has incorporated high-quality DEM data, implemented in the
1D–2D flood model, there are still many factors affecting
flood map generation. For instance, the 1D–2D flood model,
developed long ago (Sect. 3.1), needs to be updated and re-
calibrated, due to continuous developments in water manage-
ment plans, such as the Ayutthaya Bypass Channel (JICA,
2018) and ongoing land-use changes in the lower CPY basin
(Visessri and Ekkawatpanit, 2020), which impact flood map
simulations.

The results of the flood map comparisons demonstrate
that the CSI value is relatively better when compared with
GISTDA but lower when compared with WorldWater. It is
observed that the overall WorldWater flood map shows rela-
tively low flooding compared with the GISTDA flood map.
This is due to fundamental differences in the mapping ap-
proaches, with WorldWater aiming to provide long-time se-
ries of the typical distribution and persistence of monthly
surface water presence, whereas GISTDA is targeting real-
time maps, showing the extent of flooding at a specific mo-
ment in time. Additionally, WorldWater uses only Sentinel-1
and Sentinel-2 data, whereas GISTDA combines data from
multiple other satellites, as described in Sect. 3.5. This can
be further verified for accuracy with additional information

from news sources and by cross-referencing with ICESat-2
ATL13 data, extracted from ICESat-2 ATL03 (inland water
surface heights), in main rivers (Coppo Frias et al., 2023;
Dandabathula and Srinivasa Rao, 2020). This suggests that
the flood analysis workflow can effectively verify the perfor-
mance of flood simulation using satellite data. Although the
flood simulation results in this study meet acceptable stan-
dards and are sufficiently reliable for practical applications,
the SWE data were generated using different algorithms and
satellite sources, resulting in variations in the datasets. These
observed datasets were subsequently compared with simu-
lated flood maps derived from various DEM products.

6.3 Advantages and limitations

This study proposes to enhance the performance of 1D–2D
flood models using satellite laser altimetry and multi-mission
surface water extent maps from EO data. The proposed work-
flows, encompassing comprehensive DEM analysis and flood
map analysis, are designed to be adaptable, scalable, and
standardized for the development of 1D–2D flood models.
These workflows enable their application across diverse spa-
tial domains, ranging from local to national scales, and can
be readily tailored to address flood management challenges
in other regions or countries.

Furthermore, the increasing availability of EO data has
proven highly effective in improving the accuracy of 1D–2D
flood models, particularly in calibration and validation pro-
cesses. ICESat-2, with its high data precision and 91 d ex-
act repeat orbit, serves as a robust benchmark for evaluating
DEM products. Its near-real-time capability is particularly
beneficial in areas undergoing rapid land-use changes. Freely
available global DEM products, developed using advanced
EO techniques, provide high-resolution and high-quality el-
evation data essential for accurate modelling.

Datasets such as WorldWater’s SWE maps and GISTDA’s
flood maps are valuable resources for assessing the accuracy
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and reliability of simulated flood maps. By comparing ob-
served flood extents with model outputs, these datasets help
identify discrepancies, refine model parameters, and enhance
the performance of flood models. This iterative process facil-
itates the development of more reliable and accurate tools for
flood forecasting and management.

Despite these advantages, EO data are not without lim-
itations. For instance, ICESat-2 offers an elevation accu-
racy of approximately 0.70 m (Neuenschwander et al., 2021;
Carabajal and Boy, 2020). However, delays or gaps in
EO data acquisition, as discussed in Sects 3.4 and 3.5, can
affect the evaluation of simulated flood maps. Furthermore,
while the best available DEMs were selected for this study,
elevation inaccuracies in certain areas may still compromise
the precision of flood inundation maps. Periodic updates to
the data, as explained in Sect. 6.2, are necessary to address
these limitations and maintain modelling accuracy.

6.4 Future applications

The workflows developed in this study represent a signif-
icant advancement in upgrading 1D–2D flood models by
integrating satellite laser altimetry and multi-mission satel-
lite surface water extent (SWE) maps. These workflows not
only enhance the accuracy and reliability of flood inunda-
tion simulations but also offer scalable solutions for improv-
ing flood forecasting systems across multiple regions. Their
success in the Chao Phraya River Basin sets the foundation
for expanding these methodologies to other regions of Thai-
land, including the eastern (Finn et al., 2018), northeastern
(Thanathanphon et al., 2014), southern, and western regions.
These regions will benefit from improved model calibra-
tion, validation, and more accurate flood forecasts, thereby
supporting better decision-making for flood mitigation, re-
sponse, and water resource management.

Moreover, satellite technology offers new opportunities
for measuring water surface elevation (WSE), such as
ICESat-2 ATL13 (Jasinski et al., 2023), Surface Water and
Ocean Topography (SWOT) (Biancamaria et al., 2016),
CryoSat-2 (Kittel et al., 2021; Shen et al., 2020), Jason-2,
and Envisat (Okeowo et al., 2017). These technologies en-
hance calibration, validation, error diagnosis, and monitor-
ing of main river systems, especially in areas with limited
ground-based instrumentation.

On a broader scale, the workflows could be adapted for use
in other countries, particularly in regions facing similar chal-
lenges related to data scarcity, terrain complexity, and high
flood risk. The integration of satellite EO data, combined
with local hydrological models, could provide valuable in-
sights for flood-prone regions across southeast Asia and be-
yond, contributing to global efforts in disaster risk reduction
and climate resilience.

7 Conclusions

The present study enhanced the performance of 1D–2D flood
models using satellite laser altimetry and multi-mission sur-
face water extent maps from Earth observation (EO) data. We
demonstrated two workflows in the lower CPY basin.

– DEM analysis workflow. This involved evaluating
DEM accuracy using satellite laser altimetry data from
ICESat-2 ATL08 before integrating the DEM products
into the flood model. The assessment aimed to assess
the overall performance of DEM products through verti-
cal, spatial, track-wise analysis, and statistics measures
to select the most suitable DEM for the study area. Fur-
thermore, this workflow is transferable to other study ar-
eas, providing a method to reduce uncertainty before de-
veloping flood models. The results show that the merged
LDD-JICA and FABDEMv1–2 DEMs are highly suit-
able in the study area, with RMSE values of 1.93 and
1.95 m, respectively.

– Flood map analysis workflow. This workflow encom-
passed riverine flood classification and the evaluation
of simulated flood maps generated by the 1D–2D flood
model using multi-mission satellite SWE maps. While
the flood classification algorithm still presents chal-
lenges, it is important to recognize that SWE maps de-
rived from satellite EO cannot be directly compared
with the output of flood models without further process-
ing. The flood map evaluation method facilitated the as-
sessment of flood simulation accuracy against satellite
SWE maps, employing statistical and spatial analyses.
These evaluations contribute significantly to the cali-
bration and validation of flood maps derived from the
1D–2D flood model. The results indicate that simulated
flood maps based on FABDEMv1–2 DEM can improve
the performance of the 1D–2D flood model by 13.55 %
to 25.56 %, as determined by the CSI, when compared
with simulated flood maps based on the merged LDD-
JICA DEM.

Integrating these workflows will enhance the efficiency of the
1D–2D flood model and showcase the potential of utilizing
EO satellite data to enhance flood modelling capabilities for
operational flood forecasting in Thailand and elsewhere.
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Appendix A

Table A1. Descriptive statistics of 10 different DEM products.

DEM product Statistical parameters

Min Max Mean Standard Median
(m) (m) (m) deviation

(m)

ICESat-2 ATL08 −7.00 218.42 5.29 6.81 2.49
LDD −9.41 254.27 4.34 7.75 1.51
JICA −22.97 239.31 4.20 5.48 1.95
Merged LDD-JICA −16.00 378.73 5.21 8.26 1.87
ASTER −2.00 267.93 6.23 8.23 2.85
SRTM −34.97 262.17 8.02 8.47 5.25
MERIT −1.29 257.32 7.53 8.17 4.34
GlO30 −15.93 271.15 6.87 8.30 4.15
FABDEMv1–2 −14.99 267.93 6.22 8.23 2.85
TanDEM-X −7.00 274.93 7.06 8.48 4.24
TanDEM-EDEM −36.91 271.26 6.93 8.35 4.13

Figure A1. 1D–2D flood model.
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Figure A2. Merged LDD-JICA DEM workflow.

Figure A3. Merged LDD-JICA DEM processing.
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Figure A4. (a) Relative water frequency; (b) threshold, 0.9; (c) threshold, 0.8; (d) threshold, 0.7; (e) threshold, 0.5.

Figure A5. Riverine flood classification processing. © Google Earth 2023.
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Figure A6. Histogram distribution of mean error (ME), comparing 10 DEM products against the ICESat-2 ATL08 benchmark.

Figure A7. Histogram distribution of mean absolute error (MAE), comparing 10 DEM products against the ICESat-2 ATL08 benchmark.

Figure A8. Histogram distribution of the mean square error (MSE), comparing 10 DEM products against the ICESat-2 ATL08 benchmark.
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Figure A9. Mean error (ME) spatial grid comparison of 10 DEM products against the ICESat-2 ATL08 benchmark, with a resolution of
5 km× 5km.

Figure A10. Mean absolute error (MAE) spatial grid comparison of 10 DEM products against the ICESat-2 ATL08 benchmark, with a
resolution of 5km× 5km.
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Figure A11. Root mean square error (RMSE) spatial grid comparison of 10 DEM products against the ICESat-2 ATL08 benchmark, with a
resolution of 5km× 5km.

Figure A12. Track-wise comparison of 10 DEM products with ICESat-2 ATL08 benchmark. © OpenStreetMap contributors 2015. Dis-
tributed under the Open Data Commons Open Database License (ODbL) v1.0. © Google Earth 2023.
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Code availability. The code for the processing of ICESat-
2 data against DEMs is openly available on Zenodo:
https://doi.org/10.5281/zenodo.17070190 (Technical Univer-
sity of Denmark, 2025).

Data availability. ICESat-2 data are freely available from
the National Snow and Ice Data Center (NSIDC) at
https://doi.org/10.5067/GA5KCLJT7LOT (Neumann et al., 2022,
ATL03 product), https://doi.org/10.5067/ATLAS/ATL03.005 (Neu-
mann et al., 2021), and https://doi.org/10.5067/ATLAS/ATL08.005
(Neuenschwander et al., 2021, ATL08 product). The LDD DEM
and JICA DEM can be obtained upon request from the Land
Development Department (LDD) of Thailand and the Royal
Irrigation Department (RID), respectively. The SRTM v3 DEM is
available from NASA at https://doi.org/10.1029/2005RG000183
(Farr et al., 2007). The ASTER GDEM v3 can be freely
downloaded from https://doi.org/10.3390/rs12071156
(Abrams et al., 2020). The MERIT DEM is accessible at
https://doi.org/10.1016/j.rse.2015.10.014 (Yamazaki et al., 2017),
and the Copernicus GLO-30 DEM is available from the European
Space Agency (ESA) at https://doi.org/10.5270/ESA-c5d3d65
(CDSE, 2022). The FABDEM v1-2 dataset can be obtained at
https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn (Neal
and Hawker, 2023). The TanDEM-X DEM and TanDEM-
X EDEM are available through the EOC Geoservice at
https://tandemx-science.dlr.de/ (last access: 27 September 2023)
and https://download.geoservice.dlr.de/TDM30_EDEM/#details
(last access: 27 September 2023) (Lachaise and Schweißhelm,
2023), respectively. Flood extent products are available from the
Geo-Informatics and Space Technology Development Agency
(GISTDA) at https://disaster.gistda.or.th/ (last access: 28 Febru-
ary 2024) and from the WorldWater project’s Surface Water Extent
(SWE) portal at https://swdap.worldwater.earth/ (last access:
10 November 2024).

Author contributions. TC: conceptualization, methodology, valida-
tion, formal analysis, investigation, data curation, visualization,
writing – review & editing, writing – original draft. CKCL: coding
and visualization. ABB: coding and visualization. JL: software, re-
view. CT: data curation, review. PBG: methodology, conceptualiza-
tion, resources, supervision, writing – review & editing.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We gratefully acknowledge the Hydro-
Informatics Institute (HII), DHI A/S, the Geo-Informatics and

Space Technology Development Agency (GISTDA), the Ger-
man Aerospace Center (DLR), and the WorldWater project
(https://worldwater.earth/, 10 November 2023), funded by the
European Commission and the European Space Agency (ESA),
for providing historical observed data, in situ data, Chao Phraya’s
1D–2D flood models, MIKE powered by DHI software, flood
maps, and digital elevation model and water surface extent data.
This study received no funding. Theerapol Charoensuk received
financial support from the Office of the Civil Service Commis-
sion (OCSC) scholarship provided by the Thai Royal government.
Their unwavering support and invaluable contributions have been
instrumental in the fruition of this work.

Review statement. This paper was edited by Yue-Ping Xu and re-
viewed by three anonymous referees.

References

Abrams, M., Crippen, R., and Fujisada, H.: ASTER Global
Digital Elevation Model (GDEM) and ASTER Global Wa-
ter Body Dataset (ASTWBD), Remote Sens., 12, 1–12,
https://doi.org/10.3390/rs12071156, 2020.

AbuBaker, A., Qahwaji, R., Ipson, S., and Saleh, M.: One Scan
Connected Component Labeling Technique, in: 2007 IEEE Inter-
national Conference on Signal Processing and Communications,
24–27 November 2007, Dubai, United Arab Emirates, 1283–
1286, https://doi.org/10.1109/ICSPC.2007.4728561, 2007.

Anon: Glossary of Terms, Mach. Learn., 30, 271–274,
https://doi.org/10.1023/A:1017181826899, 1998.

Argall, P. S. and Sica, R. J.: LIDAR|Atmospheric Sounding Intro-
duction, edited by: Holton, J. R., Academic Press, Oxford, 1169–
1176, https://doi.org/10.1016/B0-12-227090-8/00203-7, 2003.

Auynirundronkool, K., Chen, N., Peng, C., Yang, C., Gong, J., and
Silapathong, C.: Flood detection and mapping of the Thailand
Central plain using RADARSAT and MODIS under a sensor
web environment, Int. J. Appl. Earth Obs. Geoinf., 14, 245–255,
https://doi.org/10.1016/j.jag.2011.09.017, 2012.

Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The
SWOT Mission and Its Capabilities for Land Hydrology,
Surv. Geophys., 37, 307–337, https://doi.org/10.1007/s10712-
015-9346-y, 2016.

Carabajal, C. C. and Boy, J.-P.: ICESAT-2 altimetry as geode-
tic control, Int. Arch. Photogramm. Remote Sens. Spatial Inf.
Sci., XLIII-B3-2020, 1299–1306, https://doi.org/10.5194/isprs-
archives-XLIII-B3-2020-1299-2020, 2020.

CDSE: Copernicus DEM – Global and European Digital Elevation
Model, CDSE [data set], https://doi.org/10.5270/ESA-c5d3d65,
2022.

Chai, T. and Draxler, R. R.: Root mean square error (RMSE)
or mean absolute error (MAE)? – Arguments against avoid-
ing RMSE in the literature, Geosci. Model Dev., 7, 1247–1250,
https://doi.org/10.5194/gmd-7-1247-2014, 2014.

Channumsin, S., Sreesawet, S., Saroj, T., Saingyen, P., Putta-
suwan, K., Udomthanatheera, P., and Jaturut, S.: Collision
avoidance strategies and conjunction risk assessment anal-
ysis tool at GISTDA, J. Space Safe. Eng., 7, 268–273,
https://doi.org/10.1016/j.jsse.2020.07.019, 2020.

https://doi.org/10.5194/hess-29-5065-2025 Hydrol. Earth Syst. Sci., 29, 5065–5097, 2025

https://doi.org/10.5281/zenodo.17070190
https://doi.org/10.5067/GA5KCLJT7LOT
https://doi.org/10.5067/ATLAS/ATL03.005
https://doi.org/10.5067/ATLAS/ATL08.005
https://doi.org/10.1029/2005RG000183
https://doi.org/10.3390/rs12071156
https://doi.org/10.1016/j.rse.2015.10.014
https://doi.org/10.5270/ESA-c5d3d65
https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn
https://tandemx-science.dlr.de/
https://download.geoservice.dlr.de/TDM30_EDEM/#details
https://disaster.gistda.or.th/
https://swdap.worldwater.earth/
https://worldwater.earth/
https://doi.org/10.3390/rs12071156
https://doi.org/10.1109/ICSPC.2007.4728561
https://doi.org/10.1023/A:1017181826899
https://doi.org/10.1016/B0-12-227090-8/00203-7
https://doi.org/10.1016/j.jag.2011.09.017
https://doi.org/10.1007/s10712-015-9346-y
https://doi.org/10.1007/s10712-015-9346-y
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1299-2020
https://doi.org/10.5270/ESA-c5d3d65
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1016/j.jsse.2020.07.019


5094 T. Charoensuk et al.: Enhancing the performance of 1D–2D flood models using satellite laser altimetry

Charoensuk, T., Lolupiman, T., Chantip, S., and Sisomphon, P.:
Modeling dike breaching in The Chao Phraya River Basin using
high resolution elevation data (Lidar), in: 13th International Con-
ference on Hydroscience & Engineering, Advancement of hydro-
engineering for sustainable development, Chongqing, China, 18–
22 June 2018.

Charoensuk, T., Luchner, J., Balbarini, N., Sisomphon, P.,
and Bauer-Gottwein, P.: Enhancing the capabilities of the
Chao Phraya forecasting system through the integration of pre-
processed numerical weather forecasts, J. Hydrol. Reg. Stud., 52,
101737, https://doi.org/10.1016/j.ejrh.2024.101737, 2024.

Coppo Frias, M., Liu, S., Mo, X., Nielsen, K., Ranndal, H., Jiang,
L., Ma, J., and Bauer-Gottwein, P.: River hydraulic modeling
with ICESat-2 land and water surface elevation, Hydrol. Earth
Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-
2023, 2023.

Coppo Frias, M., Liu, S., Mo, X., Druce, D., Yamazaki, D., Folk-
mann Musaeus, A., Nielsen, K., and Bauer-Gottwein, P.: Improv-
ing 2D hydraulic modeling in floodplain areas with ICESat-2
data: A case study in Upstream Yellow River, EGU General As-
sembly 2024, 14–19 April 2024, Vienna, Austria, EGU24-14669,
https://doi.org/10.5194/egusphere-egu24-14669, 2024.

Dandabathula, G. and Srinivasa Rao, S.: Validation of
ICESat-2 Surface Water Level Product ATL13 with
Near Real Time Gauge Data, Hydrology, 8, 19,
https://doi.org/10.11648/j.hyd.20200802.11, 2020.

Dandabathula, G., Hari, R., Ghosh, K., Bera, A. K., and Srivas-
tav, S. K.: Accuracy assessment of digital bare-earth model us-
ing ICESat-2 photons: analysis of the FABDEM, Model. Earth
Syst. Environ., 9, 2677–2694, https://doi.org/10.1007/s40808-
022-01648-4, 2023.

Danish Hydraulic Insitute: MIKE 21 Flow Model & MIKE21 Flood
Screening Tool – Hydrodynamic Module – Scientific Docu-
mentation, 53 pp., http://manuals.mikepoweredbydhi.help/2017/
Coast_and_Sea/M21HDFST_Scientific_Doc.pdf (last access: 10
February 2023), 2016.

Darnell, A. R., Tate, N. J., and Brunsdon, C.: Improv-
ing user assessment of error implications in digital eleva-
tion models, Comput. Environ. Urban Syst., 32, 268–277,
https://doi.org/10.1016/j.compenvurbsys.2008.02.003, 2008.

DHI: MIKE 21 Flow Model FM, Reference mannual, 55 pp.,
http://icoe.org.vn/upload/2009/06/10/MIKE21_HD_Step_By_
Step.pdf (last access: 7 June 2023), 2018.

DHI Water and Environment: MIKE FLOOD Reference Man-
ual, 81–88, https://www.scribd.com/document/660190956/
MIKE-FLOOD-UserManual-1-152-3 (last access: 10 February
2023), 2019.

DHI Water and Environment: MIKE 11 Reference
Manual, https://www.scribd.com/document/94010463/
Mike-11-Reference-Manual (last access: 9 February 2023),
2021.

Dumrongchai, P., Srimanee, C., Duangdee, N., and Bairaksa, J.: The
determination of Thailand Geoid Model 2017 (TGM2017) from
airborne and terrestrial gravimetry, Terr. Atmos. Ocean. Sci., 32,
859–874, https://doi.org/10.3319/TAO.2021.08.23.01, 2021.

ESA – European Space Agency: Sentinel-2 user handbook,
https://sentinels.copernicus.eu/documents/247904/685211/
Sentinel-2_User_Handbook (last access: 20 February 2024),
2015.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren,
R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E.,
Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J.,
Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The Shuttle Radar Topography Mission, Rev. Geophys., 45,
https://doi.org/10.1029/2005RG000183, 2007.

Finn, H., Storm, B., Richaud, B., Klinting, A., and Gasc, A.: Flood
Forecasting and Water Management System for Thailand, in:
Advances in Hydroinformatics, Springer, Singapore, 541–557,
https://doi.org/10.1007/978-981-10-7218-5_38, 2018.

Forecast, B.: Chapter 7 Forecast verification, Int. Geophys.,
59, 233–283, https://doi.org/10.1016/S0074-6142(06)80043-4,
1995.

Hanson, F.: Final report: Improving the Efficiency of the CPY Flood
Modelling System, Hydro and Agro Informatics Institute (HAII),
DHI, Hørsholm, Denmark, 2017.

Hao, T., Cui, H., Hai, G., Qiao, G., Li, H., He, Y., and
Li, R.: Impact of Slopes on ICESat-2 Elevation Accuracy
Along the CHINARE Route in East Antarctica, IEEE J. Se-
lect. Top. Appl. Earth Obs. Remote Sens., 15, 5636–5643,
https://doi.org/10.1109/JSTARS.2022.3189042, 2022.

Jasinski, M., Gsfc, N., Stoll, J., Hancock, D., Robbins, J.,
Nattala, J., Morison, J., Jones, B., Ondrusek, M., Parrish,
C., Ssai, C. C., Jasinski, M., Stoll, J., Hancock, D., Rob-
bins, J., Nattala, J., Morison, J., Jones, B., Ondrusek, M.,
Pavelsky, T., Parrish, C., and Carabajal, C.: ICESat-2 Al-
gorithm Theoretical Basis Document (ATBD) for Along
Track Inland Surface Water Data, ATL13, Version 6, NASA,
https://doi.org/10.5067/03JYGZ0758UL, 2023.

JICA – Japan International Cooperation Agency: Project for
comprehensive flood management plan for the chao phraya
river basin (sub-component 1–1 aerial survey by lidar),
https://openjicareport.jica.go.jp/pdf/12127205.pdf (last access:
21 September 2023), 2012.

JICA: Data Collection Survey on the Outer Ring Road Diversion
Channel in the Comprehensive Flood Management Plan for the
Chao Phraya River Basin in the Kingdom of Thailand, https:
//openjicareport.jica.go.jp/pdf/12308631_01.pdf (last access: 21
September 2023), 2018.

Kittel, C. M. M., Hatchard, S., Neal, J. C., Nielsen, K.,
Bates, P. D., and Bauer-Gottwein, P.: Hydraulic Model
Calibration Using CryoSat-2 Observations in the Zam-
bezi Catchment, Water Resour. Res., 57, e2020WR029261,
https://doi.org/10.1029/2020WR029261, 2021.

Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M.,
Younis, M., and Zink, M.: TanDEM-X: A Satellite Formation for
High-Resolution SAR Interferometry, IEEE T. Geosci. Remote,
45, 3317–3341, https://doi.org/10.1109/TGRS.2007.900693,
2007.

Lachaise, M. and Schweißhelm, B.: TanDEM-X 30m DEM Change
Maps Product Description, Issue Public Document TD-GS-PS-
0216 Issue 1.0, 12 October 2023 [data set], https://download.
geoservice.dlr.de/TDM30_EDEM/#details (last access: 20 May
2024), 2023.

Lamichhane, N. and Sharma, S.: Effect of input data in hydraulic
modeling for flood warning systems, Hydrolog. Sci. J., 63, 938–
956, https://doi.org/10.1080/02626667.2018.1464166, 2018.

Lemoine, F., Kenyon, S. C., Factor, J., Trimmer, R., Pavlis,
N., Chinn, D., Cox, C., Klosko, S., Luthcke, S., Torrence,

Hydrol. Earth Syst. Sci., 29, 5065–5097, 2025 https://doi.org/10.5194/hess-29-5065-2025

https://doi.org/10.1016/j.ejrh.2024.101737
https://doi.org/10.5194/hess-27-1011-2023
https://doi.org/10.5194/hess-27-1011-2023
https://doi.org/10.5194/egusphere-egu24-14669
https://doi.org/10.11648/j.hyd.20200802.11
https://doi.org/10.1007/s40808-022-01648-4
https://doi.org/10.1007/s40808-022-01648-4
http://manuals.mikepoweredbydhi.help/2017/Coast_and_Sea/M21HDFST_Scientific_Doc.pdf
http://manuals.mikepoweredbydhi.help/2017/Coast_and_Sea/M21HDFST_Scientific_Doc.pdf
https://doi.org/10.1016/j.compenvurbsys.2008.02.003
http://icoe.org.vn/upload/2009/06/10/MIKE21_HD_Step_By_Step.pdf
http://icoe.org.vn/upload/2009/06/10/MIKE21_HD_Step_By_Step.pdf
https://www.scribd.com/document/660190956/MIKE-FLOOD-UserManual-1-152-3
https://www.scribd.com/document/660190956/MIKE-FLOOD-UserManual-1-152-3
https://www.scribd.com/document/94010463/Mike-11-Reference-Manual
https://www.scribd.com/document/94010463/Mike-11-Reference-Manual
https://doi.org/10.3319/TAO.2021.08.23.01
https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook
https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1007/978-981-10-7218-5_38
https://doi.org/10.1016/S0074-6142(06)80043-4
https://doi.org/10.1109/JSTARS.2022.3189042
https://doi.org/10.5067/03JYGZ0758UL
https://openjicareport.jica.go.jp/pdf/12127205.pdf
https://openjicareport.jica.go.jp/pdf/12308631_01.pdf
https://openjicareport.jica.go.jp/pdf/12308631_01.pdf
https://doi.org/10.1029/2020WR029261
https://doi.org/10.1109/TGRS.2007.900693
https://download.geoservice.dlr.de/TDM30_EDEM/#details
https://download.geoservice.dlr.de/TDM30_EDEM/#details
https://doi.org/10.1080/02626667.2018.1464166


T. Charoensuk et al.: Enhancing the performance of 1D–2D flood models using satellite laser altimetry 5095

M., Wang, Y., Williamson, R., Pavlis, E., Rapp, R., and Ol-
son, T.: The development of the joint NASA GSFC and the
National Imagery and Mapping Agency (NIMA) geopotential
model EGM96, https://ntrs.nasa.gov/api/citations/19980218814/
downloads/19980218814.pdf (last access: 12 February 2024),
1998.

Liu, Z., Zhu, J., Fu, H., Zhou, C., and Zuo, T.: Evaluation of the
vertical accuracy of open global dems over steep terrain regions
using icesat data: A case study over hunan province, china, Sen-
sors, 20, 1–16, https://doi.org/10.3390/s20174865, 2020.

Lv, X., Liu, R., Liu, J., and Song, X.: Monitoring flood us-
ing multi-temporal ENVISAT ASAR data, in: International
Geoscience and Remote Sensing Symposium (IGARSS),
29–29 July 2005, Seoul, South Korea,3627–3629,
https://doi.org/10.1109/IGARSS.2005.1526633, 2005.

Martinis, S., Twele, A., Strobl, C., Kersten, J., and Stein, E.: A
multi-scale flood monitoring system based on fully automatic
MODIS and terraSAR-X processing chains, Remote Sens., 5,
5598–5619, https://doi.org/10.3390/rs5115598, 2013.

Martinis, S., Groth, S., Wieland, M., Knopp, L., and Rättich,
M.: Towards a global seasonal and permanent reference wa-
ter product from Sentinel-1/2 data for improved flood map-
ping, Remote Sens. Environ., 278, 113077, ISSN 0034-4257,
https://doi.org/10.1016/j.rse.2022.113077, 2022.

McClean, F., Dawson, R., and Kilsby, C.: Implications of Us-
ing Global Digital Elevation Models for Flood Risk Anal-
ysis in Cities, Water Resour. Res., 56, e2020WR028241,
https://doi.org/10.1029/2020WR028241, 2020.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner,
R. L., Harmel, R. D., and Veith, T. L.: Model Eval-
uation Guidelines for Systematic Quantification of Accu-
racy in Watershed Simulations, T. ASABE, 50, 885–900,
https://doi.org/10.13031/2013.23153, 2007.

Morrison, D., Beevers, L., Wright, G., and Stewart, M.
D.: The impact of data spatial resolution on flood vul-
nerability assessment, Environ. Hazards, 21, 77–98,
https://doi.org/10.1080/17477891.2021.1912694, 2022.

Nandam, V. and Patel, P. L.: A framework to assess suit-
ability of global digital elevation models for hydrodynamic
modelling in data scarce regions, J. Hydrol., 630, 130654,
https://doi.org/10.1016/j.jhydrol.2024.130654, 2024.

Neal, J. and Hawker, L.: FABDEM V1-2 [data set],
https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn,
2023.

Neuenschwander, A. L., Pitts, K. L., Jelley, B. P., Rob-
bins, J., Klotz, B., Popescu, S. C., Nelson, R. F., Hard-
ing, D., Pederson, D., and Sheridan, R.: ATLAS/ICESat-
2 L3A Land and Vegetation Height, (ATL08, Version 5),
NASA National Snow and Ice Data Center Distributed Ac-
tive Archive Center [data set], Boulder, Colorado, USA,
https://doi.org/10.5067/ATLAS/ATL08.005, 2001.

Neuenschwander, A., Pitts, K., Jelley, B., Robbins, J., Markel,
J., Popescu, S., Nelson, R., Harding, D., Klotz, B., Sheri-
dan, R., and Neuenschwander, A.: Ice, Cloud, and Land
Elevation Satellite 2 (ICESat-2) Algorithm Theoretical Basis
Document (ATBD) for Land – Vegetation Along-Track Prod-
ucts (ATL08), https://nsidc.org/sites/default/files/documents/
technical-reference/icesat2_atl08_atbd_r005.pdf (last access: 2
December 2024), 2022.

Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M.
R., Brenner, A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S.
T., Hancock, D. W., Harbeck, K., Lee, J., Kurtz, N. T., Luers,
P. J., Luthcke, S. B., Magruder, L., Pennington, T. A., Ramos-
Izquierdo, L., Rebold, T., Skoog, J., and Thomas, T. C.: The Ice,
Cloud, and Land Elevation Satellite – 2 mission: A global geolo-
cated photon product derived from the Aadvanced Ttopographic
Llaser Aaltimeter Ssystem, Remote Sens. Environ., 233, 111325,
https://doi.org/10.1016/j.rse.2019.111325, 2019.

Neumann, T. A., Brenner, A., Hancock, D., Robbins, J., Saba, J.,
Harbeck, K., Gibbons, A., Lee, J., Luthcke, S. B., Rebold, T.,
et al.: ATLAS/ICESat-2 L2A Global Geolocated Photon Data,
ATL03, Version 5 [data set], NASA National Snow and Ice Data
Center Distributed Active Archive Center, Boulder, Colorado
USA, https://doi.org/10.5067/ATLAS/ATL03.005, 2021.

Neumann, T. A., Brenner, A., Hancock, D., Robbins, J., Gibbons,
A., Lee, J., Harbeck, K., Saba, J., Luthcke, S., and Rebold, T.:
Ice, Cloud, and Land Elevation Satellite (ICESat-2) Project Al-
gorithm Theoretical Basis Document (ATBD) for Global Geolo-
cated Photons ATL03, Version 6, ICESat-2 Project [data set],
https://doi.org/10.5067/GA5KCLJT7LOT, 2022.

Nied, M., Pardowitz, T., Nissen, K., Ulbrich, U., Hundecha,
Y., and Merz, B.: On the relationship between hydro-
meteorological patterns and flood types, J. Hydrol., 519, 3249–
3262, https://doi.org/10.1016/j.jhydrol.2014.09.089, 2014.

Nithirochananont, U., Chivapreecha, S., Peanvijarnpong, C., and
Dejhan, K.: GISTDA EOC synthetic aperture radar data pro-
cessing system, in: Proceedings – CSPA 2010: 2010 6th In-
ternational Colloquium on Signal Processing and Its Ap-
plications, 21–23 May 2010, Malacca, Malaysia, 327–332,
https://doi.org/10.1109/CSPA.2010.5545261, 2010.

Okeowo, M. A., Lee, H., Hossain, F., and Getirana, A.: Au-
tomated Generation of Lakes and Reservoirs Water Eleva-
tion Changes from Satellite Radar Altimetry, IEEE J. Se-
lect. Top. Appl. Earth Obs. Remote Sens., 10, 3465–3481,
https://doi.org/10.1109/JSTARS.2017.2684081, 2017.

Paengwangthong, W. and Sarapirome, S.: DEM data assessment for
hydrologic applications: A case study in Nam Khek Watershed,
Thailand, in: 33rd Asian Conference on Remote Sensing 2012,
ACRS 2012, 26–30 November 2012, 336–342, 2012.

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.:
The development and evaluation of the Earth Gravitational
Model 2008 (EGM2008), J. Geophys. Res.-Solid, 117, B04406,
https://doi.org/10.1029/2011JB008916, 2012.

Perera, G. S. N. and Nalani, H. A.: UAVS for a com-
plete topographic survey, Int. Arch. Photogramm. Re-
mote Sens. Spatial Inf. Sci., XLIII-B2-2022, 441–447,
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-441-
2022, 2022.

Pulvirenti, L., Boni, G., Pierdicca, N., Fiorini, M., and Rudari, R.:
Combined use of multi-temporal COSMO-SkyMed data and a
hydrodynamic model to monitor flood dynamics, in: Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS),
13–18 July 2014, Quebec City, QC, Canada, 3346–3349,
https://doi.org/10.1109/IGARSS.2014.6947197, 2014.

Raj, T., Hashim, F. H., Huddin, A. B., Ibrahim, M. F., and Hussain,
A.: A survey on LiDAR scanning mechanisms, Electronics, 9,
741, https://doi.org/10.3390/electronics9050741, 2020.

https://doi.org/10.5194/hess-29-5065-2025 Hydrol. Earth Syst. Sci., 29, 5065–5097, 2025

https://ntrs.nasa.gov/api/citations/19980218814/downloads/19980218814.pdf
https://ntrs.nasa.gov/api/citations/19980218814/downloads/19980218814.pdf
https://doi.org/10.3390/s20174865
https://doi.org/10.1109/IGARSS.2005.1526633
https://doi.org/10.3390/rs5115598
https://doi.org/10.1016/j.rse.2022.113077
https://doi.org/10.1029/2020WR028241
https://doi.org/10.13031/2013.23153
https://doi.org/10.1080/17477891.2021.1912694
https://doi.org/10.1016/j.jhydrol.2024.130654
https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn
https://doi.org/10.5067/ATLAS/ATL08.005
https://nsidc.org/sites/default/files/documents/technical-reference/icesat2_atl08_atbd_r005.pdf
https://nsidc.org/sites/default/files/documents/technical-reference/icesat2_atl08_atbd_r005.pdf
https://doi.org/10.1016/j.rse.2019.111325
https://doi.org/10.5067/ATLAS/ATL03.005
https://doi.org/10.5067/GA5KCLJT7LOT
https://doi.org/10.1016/j.jhydrol.2014.09.089
https://doi.org/10.1109/CSPA.2010.5545261
https://doi.org/10.1109/JSTARS.2017.2684081
https://doi.org/10.1029/2011JB008916
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-441-2022
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-441-2022
https://doi.org/10.1109/IGARSS.2014.6947197
https://doi.org/10.3390/electronics9050741


5096 T. Charoensuk et al.: Enhancing the performance of 1D–2D flood models using satellite laser altimetry

Raney, R. K., Luscombe, A. P., Langham, E. J., and Ahmed,
S.: RADARSAT (SAR imaging), Proc. IEEE, 79, 839–849,
https://doi.org/10.1109/5.90162, 1991.

Rao, P., Jiang, W., Hou, Y., Chen, Z., and Jia, K.: Dy-
namic change analysis of surface water in the Yangtze river
basin based on MODIS products, Remote Sens., 10, 1–20,
https://doi.org/10.3390/rs10071025, 2018.

Rosenfeld, A. and Pfaltz, J. L.: Sequential Operations
in Digital Picture Processing, J. ACM, 13, 471–494,
https://doi.org/10.1145/321356.321357, 1966.

Saksena, S. and Merwade, V.: Incorporating the ef-
fect of DEM resolution and accuracy for improved
flood inundation mapping, J. Hydrol., 530, 180–194,
https://doi.org/10.1016/j.jhydrol.2015.09.069, 2015.

Samantaray, S. and Sahoo, A.: Groundwater level prediction using
an improved ELM model integrated with hybrid particle swarm
optimisation and grey wolf optimisation, Groundw. Sustain.
Dev., 26, 101178, https://doi.org/10.1016/j.gsd.2024.101178,
2024.

Schwarz, K. P. and El-Sheimy, N.: Mobile mapping systems–
state of the art and future trends, International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, 35, Part B, https://isprs.org/proceedings/XXXV/congress/
comm5/papers/652.pdf (last access: 2 December 2024), 2007.

Shen, J. and Tan, F.: Effects of DEM resolution and resampling
technique on building treatment for urban inundation modeling: a
case study for the 2016 flooding of the HUST campus in Wuhan,
Springer Netherlands, 927–957, https://doi.org/10.1007/s11069-
020-04198-z, 2020.

Shen, Y., Liu, D., Jiang, L., Yin, J., Nielsen, K., Bauer-Gottwein,
P., Guo, S., and Wang, J.: On the contribution of satel-
lite altimetry-derived water surface elevation to hydrodynamic
model calibration in the Han river, Remote Sens., 12, 1–18,
https://doi.org/10.3390/rs12244087, 2020.

Sholarin, E. A. and Awange, J. L.: Photogrammetry, in: Environ-
mental Project Management. Environmental Science and Engi-
neering, Springer, Cham., 213–230, https://doi.org/10.1007/978-
3-319-27651-9_10, 2015.

Sisomphon, P., Boonya-aroonnet, S., Chonwattana, S., and Hansen,
F.: Towards the development of a decision support system for
flood management in Chao Phraya River Basin, Thailand, in: In-
ternational Conference on Flood Resilience (ICFR), 5–7 Septem-
ber 2013, Exeter, UK, 2013.

Soille, P.: Morphological Image Analysis: Principles and Applica-
tions, in: 2nd Edn., Springer-Verlag, Berlin, Heidelberg, ISBN
3540429883, 2003.

Stein, L., Pianosi, F., and Woods, R.: Hydrological Processes – 2019
– Stein – Event-based classification for global study of river flood
generating processes, Hydrological Processes, 34, 1514–1529,
https://doi.org/10.1002/hyp.13678, 2019.

Tadono, T., Takaku, J., Tsutsui, K., Oda, F., and Nagai, H.:
Status of “ALOS World 3D (AW3D)” global DSM genera-
tion, in: International Geoscience and Remote Sensing Sym-
posium (IGARSS), 6–31 July 2015, Milan, Italy, 3822–3825,
https://doi.org/10.1109/IGARSS.2015.7326657, 2015.

Technical University of Denmark: Enhancing the performance of
1D–2D flood models using satellite laser altimetry and multi-
mission surface water extent maps from Earth observation (EO)

data, Zenodo [code], https://doi.org/10.5281/zenodo.17070190,
2025.

Thanathanphon, W., Chanthip, S., and Sisomphon, P.: Development
of an operational real time monitoring system for flood risk as-
sessment, forecasting and management of mun and Chi River
Basins, Thailand, 19th IAHR-APD Congress 2014, Hanoi, Viet-
nam, ISBN 978604821338-1, 2014.

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., At-
tema, E., Potin, P., Rommen, B. Ö., Floury, N., Brown, M.,
Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda,
N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., Huch-
ler, M., and Rostan, F.: GMES Sentinel-1 mission, Remote Sens.
Environ., 120, 9–24, https://doi.org/10.1016/j.rse.2011.05.028,
2012.

Tottrup, C., Druce, D., Meyer, R. P., Christensen, M., Riffler,
M., Dulleck, B., Rastner, P., Jupova, K., Sokoup, T., Haag,
A., Cordeiro, M. C. R., Martinez, J. M., Franke, J., Schwarz,
M., Vanthof, V., Liu, S., Zhou, H., Marzi, D., Rudiyanto, R.,
Thompson, M., Hiestermann, J., Alemohammad, H., Masse, A.,
Sannier, C., Wangchuk, S., Schumann, G., Giustarini, L., Hal-
lowes, J., Markert, K., and Paganini, M.: Surface Water Dy-
namics from Space: A Round Robin Intercomparison of Us-
ing Optical and SAR High-Resolution Satellite Observations
for Regional Surface Water Detection, Remote Sens., 14, 2410,
https://doi.org/10.3390/rs14102410, 2022.

Turkington, T., Breinl, K., Ettema, J., Alkema, D., and Jetten,
V.: A new flood type classification method for use in cli-
mate change impact studies, Weather Clim. Extrem., 14, 1–16,
https://doi.org/10.1016/j.wace.2016.10.001, 2016.

Visessri, S. and Ekkawatpanit, C.: Flood management in the con-
text of climate and land-use changes and adaptation within
the chao phraya river basin, J. Disast. Res., 15, 579–587,
https://doi.org/10.20965/jdr.2020.p0579, 2020.

Van Der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne,
F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T.: Scikit-
image: Image processing in python, Pee J., 2014, 1–18,
https://doi.org/10.7717/peerj.453, 2014.

Wang, C., Zhu, X., Nie, S., Xi, X., Li, D., Zheng, W., and
Chen, S.: Ground elevation accuracy verification of ICESat-2
data: a case study in Alaska, USA, Opt. Express, 27, 38168,
https://doi.org/10.1364/oe.27.038168, 2019.

Wang, X. and Liang, X.: Accuracy evaluation of ICESAT-
2 ATL08 in Finland, Int. Arch. Photogramm. Remote
Sens. Spatial Inf. Sci., XLVIII-1/W2-2023, 1817–1822,
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-
1817-2023, 2023.

Weifeng, X., Jun, L., Dailiang, P., Jinge, J., Hongx-
uan, X., Hongyue, Y., and Jun, Y.: Multi-source DEM
accuracy evaluation based on ICESat-2 in Qinghai-
Tibet Plateau, China, Int. J. Digit. Earth, 17, 1–24,
https://doi.org/10.1080/17538947.2023.2297843, 2024.

Werner, M.: Shuttle Radar Topography Mis-
sion (SRTM) mission overview, Frequenz, 55, 75–79,
https://doi.org/10.1515/FREQ.2001.55.3-4.75, 2001.

Wessel, B.: TanDEM-X Ground Segment DEM Products Spec-
ification Document, Public Document TD-GS-PS-0021,
46 pp., https://tandemx-science.dlr.de/pdfs/TD-GS-PS-0021_
DEM-Product-Specification_v3.2.pdf, 2016.

Hydrol. Earth Syst. Sci., 29, 5065–5097, 2025 https://doi.org/10.5194/hess-29-5065-2025

https://doi.org/10.1109/5.90162
https://doi.org/10.3390/rs10071025
https://doi.org/10.1145/321356.321357
https://doi.org/10.1016/j.jhydrol.2015.09.069
https://doi.org/10.1016/j.gsd.2024.101178
https://isprs.org/proceedings/XXXV/congress/comm5/papers/652.pdf
https://isprs.org/proceedings/XXXV/congress/comm5/papers/652.pdf
https://doi.org/10.1007/s11069-020-04198-z
https://doi.org/10.1007/s11069-020-04198-z
https://doi.org/10.3390/rs12244087
https://doi.org/10.1007/978-3-319-27651-9_10
https://doi.org/10.1007/978-3-319-27651-9_10
https://doi.org/10.1002/hyp.13678
https://doi.org/10.1109/IGARSS.2015.7326657
https://doi.org/10.5281/zenodo.17070190
https://doi.org/10.1016/j.rse.2011.05.028
https://doi.org/10.3390/rs14102410
https://doi.org/10.1016/j.wace.2016.10.001
https://doi.org/10.20965/jdr.2020.p0579
https://doi.org/10.7717/peerj.453
https://doi.org/10.1364/oe.27.038168
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1817-2023
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1817-2023
https://doi.org/10.1080/17538947.2023.2297843
https://doi.org/10.1515/FREQ.2001.55.3-4.75
https://tandemx-science.dlr.de/pdfs/TD-GS-PS-0021_DEM-Product-Specification_v3.2.pdf
https://tandemx-science.dlr.de/pdfs/TD-GS-PS-0021_DEM-Product-Specification_v3.2.pdf


T. Charoensuk et al.: Enhancing the performance of 1D–2D flood models using satellite laser altimetry 5097

Willmott, C. J.: Advantages of the mean absolute error (MAE) over
the root mean square error (RMSE) in assessing average model
performance, Clim. Res., 30, 79–82, 2005.

Wu, S., Li, J., and Huang, G. H.: Modeling the effects of eleva-
tion data resolution on the performance of topography-based wa-
tershed runoff simulation, Environ. Model. Software, 22, 1250–
1260, https://doi.org/10.1016/j.envsoft.2006.08.001, 2007.

Yamazaki, D., Trigg, M. A., and Ikeshima, D.: Develop-
ment of a global ∼ 90 m water body map using multi-
temporal Landsat images, Remote Sens. Environ., 171, 337–351,
https://doi.org/10.1016/j.rse.2015.10.014, 2015.

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T.,
O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae,
S., and Bates, P. D.: A high-accuracy map of global
terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017.

Yan, L., Zhang, L., Xiong, L., Yan, P., Jiang, C., Xu, W.,
Xiong, B., Yu, K., Ma, Q., and Xu, C. Y.: Flood Fre-
quency Analysis Using Mixture Distributions in Light of Prior
Flood Type Classification in Norway, Remote Sens., 15, 401,
https://doi.org/10.3390/rs15020401, 2023.

Zhu, J., Yang, P.-F., Li, Y., Xie, Y.-Z., and Fu, H.-Q.: Ac-
curacy assessment of ICESat-2 ATL08 terrain estimates: A
case study in Spain, J. Cent. South Univers., 29, 226–238,
https://doi.org/10.1007/s11771-022-4896-x, 2022.

https://doi.org/10.5194/hess-29-5065-2025 Hydrol. Earth Syst. Sci., 29, 5065–5097, 2025

https://doi.org/10.1016/j.envsoft.2006.08.001
https://doi.org/10.1016/j.rse.2015.10.014
https://doi.org/10.1002/2017GL072874
https://doi.org/10.3390/rs15020401
https://doi.org/10.1007/s11771-022-4896-x

	Abstract
	Introduction
	Study area
	Materials
	1D–2D flood modelling
	Geoid models
	Digital elevation models (DEMs)
	LDD DEM
	JICA DEM
	Merged LDD-JICA DEM
	ASTER GDEM3
	SRTMv3 DEM
	MERIT DEM
	GLO30 DEM
	FABDEMv1–2
	TanDEM-X DEM
	TanDEM-EDEM

	ICESat-2 satellite laser altimetry
	ATL08

	Flood map/surface water extent (SWE) dataset
	WorldWater surface water extent (SWE)
	GISTDA flood map


	Methodology
	DEM analysis
	ICESat-2 ATL08 data processing
	Vertical datum reference processing
	Evaluation of DEMs using ICESat-2 ATL08 benchmark

	Flood map analysis
	1D–2D flood modelling setup
	Flood classification processing
	Flood map evaluation methods


	Results
	1D–2D flood model calibration results
	Results of DEM evaluation against the ICESat-2 ATL08 benchmark
	Point comparison evaluation results
	Grid comparison evaluation results
	Track-wise comparison evaluation results

	Results of evaluation of flood inundation maps

	Discussion
	Overall result of DEM analysis workflow
	ICESat-2 ATL08 benchmark
	Quality of DEMs

	Overall result of flood map analysis workflow
	Advantages and limitations
	Future applications

	Conclusions
	Appendix A
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

