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Abstract. It is widely assumed that data-driven models
achieve good results only with sufficiently large training data,
whereas process-based models are usually expected to be su-
perior in data-poor situations. To investigate this, we cal-
ibrated several process-based and data-driven hydrological
models using training datasets of observed discharge that dif-
fered in terms of both the number of data points and the type
of data selection, allowing us to make a systematic compari-
son of the learning behaviour of the different model types.
Four data-driven models (conditional probability distribu-
tions, regression trees, artificial neural networks, and long
short-term memory networks) and three process-based mod-
els (GR4J, HBV, and SWAT+) were included in the testing,
applied in three meso-scale catchments representing differ-
ent landscapes in Germany: the Iller in the Alpine region, the
Saale in the low mountain ranges, and the Selke in the tran-
sition between the Harz and central German lowlands. We

used information measures (joint entropy and conditional en-
tropy) for system analysis and model performance evaluation
because they offer several desirable properties: they extend
seamlessly from uni- to multivariate data, they allow direct
comparison of predictive uncertainty with and without model
simulations, and their boundedness helps to put results into
perspective. In addition to the main question of this study
— to what extent does the performance of different models
depend on the training dataset? — we investigated whether
the selection of training data (random, according to informa-
tion content, contiguous time periods, or independent time
points) plays a role. We also examined whether the shape of
the learning curve for different models can be used to pre-
dict the achievable model performance based on the infor-
mation contained in the data and whether using more spa-
tially distributed model inputs improves model performance
compared to using spatially lumped inputs. Process-based
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models outperformed data-driven ones for small amounts
of training data due to their predefined structure. However,
as the amount of training data increases, the learning curve
of process-based models quickly saturates, and data-driven
models become more effective. In particular, the long short-
term memory network outperforms all process-based models
when trained with more than 2-5 years of data and continues
to learn from additional training data without approaching
saturation. Surprisingly, fully random sampling of training
data points for the HBV model led to better learning results
than consecutive random sampling or optimal sampling in
terms of information content. Analysing multivariate catch-
ment data allows predictions about how these data can be
used to predict discharge. When no memory was considered,
the conditional entropy was high. However, as soon as mem-
ory was introduced in the form of the previous day or week,
the conditional entropy decreased, suggesting that memory
is an important component of the data and that capturing it
improves model performance. This was particularly evident
in the catchments in the low mountain ranges and the Alpine
region.

1 Introduction

Hydrological predictions are often made using process-based
models whose predefined structure (Devia et al., 2015), vari-
ables, and parameters reflect — in a simplified way — our
understanding of how a catchment partitions, stores, and re-
leases water. In contrast, data-driven models have a statistical
background and are built specifically for a catchment or a re-
gion using only available data. Recently, data-driven models
have been shown to perform equally well or better than es-
tablished process-based models in different applications such
as rainfall-runoff modelling (Kratzert et al., 2018; Mai et al.,
2022; Girihagama et al., 2022; Xiang et al., 2020), flood fore-
casting (Zhang et al., 2022), or groundwater level forecasting
(Mohanty et al., 2015; Daliakopoulos et al., 2005). A com-
mon assumption in the hydrological community is that data-
driven models perform well with sufficiently large training
datasets, whereas process-based models are superior in data-
poor situations. As opposed to process-based models, data-
driven models, especially long short-term memory (LSTM)
networks, generally perform better and are more robust when
trained on large sample datasets covering hundreds of catch-
ments with long time series (Kratzert et al., 2024). This is not
surprising given that LSTM networks are general-purpose
architectures with no built-in hydrological knowledge, such
as conservation of mass, and not specifically designed for
rainfall-runoff modelling. As such, they must learn the rela-
tionship between meteorological variables and the discharge
from the data itself each time they are trained, as their
weights are randomly initialized before the training. Con-
sequently, test results for catchments improve when LSTM
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networks are trained regionally (e.g. Loritz et al., 2024). In
contrast, process-based hydrological models are developed
specifically to represent the hydrological system and embed
prior knowledge of hydrological processes. Some process-
based models have been developed to allow for variation in
space, and in this type of process-based models, the repre-
sentation of hydrologic fluxes at different resolutions is con-
sidered (Rakovec et al., 2016). Taken together, this moti-
vates our main research question: how well do both process-
based and data-driven models learn from limited data, and is
there a dataset size beyond which data-driven models outper-
form process-based models? Recently, hybrid models have
emerged as a promising approach to combine the advantages
of both data- and process-based modelling (Reichstein et al.,
2019; Shen et al., 2023), but there is also evidence that such
approaches should be treated with caution (Acufia Espinoza
et al., 2024). This study focuses on the two end members
of the hydrological modelling range, purely data-based and
purely process-based, for the sake of brevity and clarity, but
including hybrid approaches in future work will clearly be
beneficial.

What constitutes a sufficiently large training set is not
straightforward to define. For process-based models, it is
generally recommended to use long continuous discharge
records for model training/calibration (Vrugt et al., 2006;
Yapo et al., 1996; Shen et al., 2022; Mai, 2023). The idea
behind this recommendation is that long records contain in-
formation on processes occurring under a range of hydrolog-
ical conditions (e.g. low, mean, and high flows or extremes)
and at different temporal scales (e.g. event, season, years).
However, many regions lack such records, and it is therefore
important to understand how much data are needed to obtain
a model with satisfactory discharge simulations. Work with
process-based models and catchments with contrasting cli-
mate has shown that much of the hydrological information
relevant for model training is theoretically represented in a
few data points (Wright et al., 2018) covering less than 10 %
of a longer time period (Singh and Bérdossy, 2012; Perrin
et al., 2007). In practice, this means that a continuous time
series of a few months may already be informative enough
to achieve a model performance similar to that when using a
time series of a year or more (Brath et al., 2004; Melsen et al.,
2014; Sun et al., 2017). For example, results from Seibert and
Beven (2009) and Pool and Seibert (2021) suggest that about
12 to 16 discharge observations during peak flows or events
and their subsequent recessions can contain much of the in-
formation of longer continuous time series. Several authors
have examined the characteristics of the most valuable sub-
sets of a longer time series. They have typically emphasized
the importance of having a sample that represents the natural
variability of flow and covers the wetter and hydrologically
active periods (Harlin, 1991; Singh and Bédrdossy, 2012; Sun
etal.,2017; Vrugt et al., 2006; Yapo et al., 1996; Zhang et al.,
2023). It may also be worthwhile to collect discharge data in
a previously ungauged catchment (Correa et al., 2016; Rojas-
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Serna et al., 2006; Pool et al., 2017; Zhang et al., 2023).
Previous research has shown that limited data availability
significantly affects the performance of data-driven models
(Ayzel and Heistermann, 2021). Acufia Espinoza et al. (2024)
found that training an LSTM network on a small, non-diverse
dataset can limit not only its test performance but also its
ability to extrapolate to unseen hydrological states. The re-
sults of Snieder and Khan (2025) suggest that diverse train-
ing data are more valuable, allowing sub-setting of repetitive
datasets using diversity-based sampling.

These studies encourage the use and strategic collection
of short discharge records to calibrate process-based mod-
els, but it remains to be tested how well data-driven mod-
els perform in a data-scarce context. Moreover, it remains
to be tested how random sampling, optimizing information
content, or providing continuous or independent time points
affects the learning of models. We therefore address the fol-
lowing additional research question: how does the scheme
of selecting training data affect model performance (here,
rainfall-runoff modelling) (Q2)?

Similarly, all datasets that are used in catchment hydrolog-
ical modelling contain data that may be either informative,
redundant, or even dis-informative. It would be advantageous
to be able to derive from a prior data analysis both (a) the op-
timal model type and (b) the minimum training data require-
ments for a given catchment and the datasets provided. Such
an analysis would reduce the overall time and effort required.
So, we ask: does analysing the information content of catch-
ment data allow predictions about the performance of differ-
ent model types (Q3)? As a special but typical case of the
ability of models to exploit information contained in data,
we further ask whether spatially distributed meteorological
forcing data contain relevant information and thus enhance
learning without compromising the generality of what has
been learnt (Q4).

The remainder of this paper is structured as follows: in
Sect. 2, we present the catchments, datasets, hydrological
models, and performance measures used in the study. In
the same section, we also describe four experiments (E1)—
(E4), which were designed to address questions (Q1)—(Q4).
In Sect. 3, we present and discuss the results of (E1)—(E4).
There, we also discuss the limitations of our study and the
advantages of using information measures for system analy-
sis and model performance evaluation. Finally, in Sect. 4, we
draw conclusions and point to future research.

2 Methods and data

2.1 Study areas

We selected three meso-scale catchments representing three
different hydrologic regions of Germany: the Iller in the

Alpine region, the Saale head water in the German low
mountain range, and the Selke on the transition between
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the Harz mountains and the central German lowlands. This
choice was made because we expect different processes to be
more important in each of these catchments if we model them
appropriately. For example, snow-related processes should
be most important for the Iller catchment. Having these three
example catchments allows us to have a closer look at the
processes that can explain model performance and the learn-
ing capabilities of specific models focusing less on spatial
diversity and more on investigating the information content
within time series. The location of the catchments within
Germany and their topography are shown in Fig. 1, and Ta-
ble 1 provides some summary information for each catch-
ment.

2.1.1 Iller

The Tller catchment area up to gauge Wiblingen is 2140 km?
and has a diverse topography, including mountainous regions
in the south with elevations above 2000 ma.s.l. and lower,
flatter areas in the north. Approximately 50 % of the catch-
ment area is cropland and pastures, about 30 % is covered by
forests, predominantly mixed and coniferous forests, about
10 % is urban area, and about 10 % is covered by bare rock,
sparsely vegetated areas, peat, and water bodies. A variety
of soil types are found in the catchment, including lithosols
and Cambisols (shallow, rocky, and well-drained), which pre-
dominate in the southern mountainous regions and cover
about 25 % of the catchment. Cambisols (well-drained) oc-
cupy about 30 % of the catchment area and are found primar-
ily in the mid-elevation regions. Alluvial soils (well-drained)
are prevalent in the northern part of the catchment, along
river valleys, and comprise about 20 % of the total area.
Gleysols (poorly drained and often waterlogged) are found
in wetter, low-lying areas and wetlands and comprise about
10% of the catchment. The bedrock geology consists of
Mesozoic limestone and dolomite in the Alpine region. North
of the Alps, the bedrock transitions to the Molasse Basin,
which consists of Tertiary sedimentary rocks, including sand-
stones, marls, and conglomerates. The northern plains are
dominated by Quaternary alluvial deposits of gravel, sand,
silt, and clay.

2.1.2 Saale

The catchment area of the Saale at gauge Blankenstein is
1011 km? with a varied topography, where the upper regions
are hilly to mountainous (elevations around 700900 ma.s.1.)
and the downstream areas have more gentle slopes. About
60 % of the catchment area is used for agriculture and pas-
ture, about 30 % of the catchment area is covered by forests,
mainly coniferous, and about 10 % is urban area (see also
Guse et al., 2019). Podzols (well-drained) are prevalent in
forested areas and cover about 20 % of the catchment. Cam-
bisols (well-drained) cover about 30% of the catchment and
are found in both agricultural and forested areas. Gleysols
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Figure 1. Geographic location, topography, and gauging locations of the sub-basins of the study catchments.

Table 1. Overview of the catchment characteristics for the three study catchments: Iller, Saale, and Selke. P = precipitation, Q = discharge,

AET = actual evapotranspiration (P — Q).

Iller at Saale at Selke at
Wiblingen  Blankenstein ~ Hausneindorf
Size [km?] 2140 1011 461
Mean elevation [ma.s.l.] 906 576 262
Elevation range [ma.s.l.]  475-2584  412-851 105-590
Regime nival nivo-pluvial  pluvial
Mean annual P [mm] 1500 840 660
Mean annual Q [mm] 1000 490 240
Mean annual AET [mm] 500 350 420

(poorly drained and often waterlogged) are found in wetter,
low-lying areas and wetlands and cover about 10 % of the
catchment. Loess soils (highly productive) and alluvial soils
(well-drained) each cover about 20 % of the catchment. In
the upper part of the catchment, the geology consists of meta-
morphic and igneous rocks (schists, gneisses, and granites).
To the north, the geology changes to Triassic sedimentary
rocks, including sandstones, marls, and limestones. Along
the river valleys and floodplains, Quaternary alluvial deposits
of gravel, sand, silt, and clay dominate.

2.1.3 Selke

The Selke catchment at gauge Hausneindorf covers 463 km?.
The catchment has varied topography, with the upper regions
being mountainous and more gentle slopes in the down-
stream areas. Approximately 55 % of the catchment area is
used for agriculture, and about 35 % of the catchment is cov-
ered by forests, predominantly mixed and coniferous forests.
Around 7 % is urban area, and about 3 % is covered by nat-
ural grasslands, wetlands, and water bodies. Podzols (well-
drained) are prevalent in forested areas, covering about 25 %
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of the catchment. Cambisols (well-drained) cover around
30% of the catchment and are found in both agricultural
and forested areas. Gleysols (poor drainage and often water-
logged) are present in wetter, low-lying areas and wetlands,
covering about 10 % of the catchment. Loess soils (highly
productive) cover about 15 % of the catchment. Alluvial soils
(well-drained) are found along river valleys, covering about
20 % of the area. Schist and clay stone are found in the moun-
tain area, and Tertiary sediments with loess soil are found in
the downstream areas. Highly permeable Quaternary alluvial
deposits dominate along river valleys and floodplains.

2.2 Data

For each catchment, static catchment properties and dynamic
data were collected. The static data comprise information
about soils (horizon depth, sand and clay content), land use
(classes from the CORINE map (CLMS, 2019) for SWAT+),
and topography. The dynamic data comprise precipitation
(P), air temperature (7'), and estimated potential evapotran-
spiration (PET) in the form of gridded data, as well as dis-
charge (Q) measured at the outlet of the catchment, and are
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available for the period 2000-2015. The available data and
their temporal and spatial resolutions are summarized in Ta-
ble 2.

Gridded values for temperature and precipitation were ob-
tained by interpolating the observations from meteorological
stations. The density of stations used for interpolation varies
over the years, but for our study catchments and period, it
was between 20 and 30 stations per catchment. PET was
estimated using the Hargreaves and Samani equation (Har-
greaves and Samani, 1985), with minimum and maximum
daily air temperatures from the meteorological stations and
subsequent spatial interpolation. Details of the method can be
found in Boeing et al. (2022). As some process-based mod-
els require station-based or lumped input data, weighted av-
erages of the grid cell values contributing to individual sub-
basins or hydrologic response units (HRUs) were generated.

2.3 Hydrological models

To address our research questions, we set up and applied
three process-based and four data-driven hydrological mod-
els.

2.3.1 Process-based lumped and semi-distributed
models

The process-based models are all provided with the same
meteorological data (precipitation, temperature, and poten-
tial evapotranspiration) and linked with and run through the
Python framework SPOTPY (Houska et al., 2015). SPOTPY
allows for greater consistency between the runs of the differ-
ent models, ensuring that all the sampling and input data are
exactly the same.

GR4]

GR4J (Génie Rural a 4 parametres Journalier) is a daily
lumped rainfall-runoff model designed for hydrological sim-
ulation and streamflow forecasting (Perrin et al., 2003). The
production store represents soil moisture processes, includ-
ing infiltration and evaporation. The percolation and base-
flow routine simulates groundwater contributions. The rout-
ing store manages the flow routing through the catchment.
The flood routing itself is done using a unit hydrograph
that accounts for the temporal distribution of the runoff. The
model is parsimonious, requiring only four parameters, and
has provided reliable results with minimal data requirements
in the past (Smith et al., 2019; Kuana et al., 2024). The
four parameters that are used in the standard model variant
are as follows: maximum capacity of the production store
(mm), groundwater exchange coefficient (mm d’]), 1-day-
ahead maximum capacity of the routing store (mm), and
time base of the unit hydrograph (d~'). To improve dis-
charge modelling in catchments influenced by snow, GR4J
is often combined with the CemaNeige snow module (Valéry
et al., 2014), which comes with two additional parameters.

https://doi.org/10.5194/hess-29-5005-2025
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In this paper, we used the GR4J and CemaNeige imple-
mentations that are provided through the Raven hydrological
modelling framework, as they are perceived as exact emula-
tions of the original models (Craig et al., 2020). The Raven
GRA4J implementation offers the possibility to run GR4J in
a semi-distributed fashion. We used a sub-basin delineation
for better input data representation. With only six parame-
ters, this model is expected to perform well also under parsi-
monious calibration strategies. The parameter ranges used in
this study are shown in Table S1 in the Supplement.

HBV

The HBV model is a semi-distributed model, i.e. a catch-
ment can be divided into different elevation and vegetation
zones as well as into different sub-basins. The model con-
sists of several model routines and simulates catchment dis-
charge based on time series of precipitation and air tempera-
ture and estimates of potential evaporation rates. We used it
in the version HBV-light (Seibert and Vis, 2012) and divided
the catchment only into elevation zones and sub-basins, not
explicitly accounting for different land cover.

In the snow routine, snow accumulation and snowmelt are
calculated using a degree-day method. Meltwater and pre-
cipitation are retained in the snow pack until they exceed a
certain fraction of the water equivalent of the snow. Liquid
water in the snow pack refreezes according to a refreezing
coefficient. The soil routine simulates groundwater recharge
and actual evaporation as a function of actual water stor-
age. Actual evaporation from the soil box is either the po-
tential evaporation or linearly reduced with decreasing soil
moisture. In the response routine, discharge is calculated as a
function of water storage. Groundwater recharge is added to
the upper groundwater box and percolates from there to the
lower groundwater box. Finally, a triangular weighting func-
tion is applied in the routing routine to simulate the routing
of the runoff to the catchment outlet. When different eleva-
tion zones are used in the model, changes in precipitation
and temperature with elevation are taken into account. HBV
has a relatively small total number of model parameters, al-
lowing the use of parsimonious calibration strategies. In our
setup, we used 11 parameters to be calibrated plus 4 param-
eters that were fixed to default values. The parameter ranges
used in this study are shown in Table S2.

SWAT+

The Soil Water Assessment Tool Plus (SWAT+) is a con-
tinuous, semi-distributed ecohydrological model. It is a re-
structured version of the original SWAT (Arnold et al., 1998;
Bieger et al., 2017), designed to simulate the effects of land
management and climate on hydrological processes and wa-
ter quality. The catchment is divided into sub-basins that are
further subdivided into HRUs that each represent a unique
combination of land use, soil type, and topographic condi-
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Table 2. Static and dynamic input data for each catchment. The dynamic input data (time series of precipitation, potential evapotranspiration,

air temperature, and discharge) are available for the period 2000-2015.

Variable Data/map/method Resolution Source

Digital elevation model DEM100 100 m Yamazaki et al. (2019)

Land cover CORINE 100 m CLMS (2019)

Soil map Soil map (BUK200) 100 m (resampled) BGR (1999)

Precipitation Station data, interpolated daily, 1 km DWD, interpolation as described in Zink et al. (2017)
Air temperature Station data, interpolated daily, 1 km DWD, interpolation as described in Zink et al. (2017)
Potential evapotranspiration = Hargreaves and Samani (1985)  daily, 1 km based on DWD variables

Discharge Gauge observations daily Local authorities

tions within a sub-basin. Soil water content is continuously
updated based on the balance of incoming water (precip-
itation and irrigation) and outgoing water (evapotranspira-
tion, runoff, lateral flow, and percolation) for each HRU.
The Curve Number method is used to divide precipitation
into surface runoff and infiltration. Actual evapotranspira-
tion is calculated based on water storage in soil, plant char-
acteristics, and open water bodies. Percolation is simulated
by tracking the movement of water from the root zone to
deeper soil layers and eventually to groundwater. Percola-
tion rates depend on soil properties, soil moisture levels, and
the amount of water available after accounting for evapo-
transpiration and surface runoff. Groundwater flow is routed
through user-defined aquifers and contributes to discharge
based on storage and retention parameters. SWAT+ allows
the calibration of a large number of parameters, leading to
considerable model flexibility, but therefore usually requires
less parsimonious calibration strategies and a higher degree
of user knowledge.

An overview of the different resolutions and aggregations
of the input data for the process-based models is given in Ta-
ble 3, and the parameter ranges used in this study are shown
in Table S3.

2.3.2 Data-driven models

We selected four data-driven models with the aim of cover-
ing a wide range of model complexity, from very simple ones
(EDDIS and RTREE), which serve as a lower benchmark, to
simple approaches based on neural networks (ANN) and to
the current state of the art (LSTM), which serves as an up-
per benchmark. Details of each model are described below.
Many other data-based methods have been used for mod-
elling hydrological systems, e.g. NARX networks (Renteria-
Mena et al., 2023) or random forests (Schoppa et al., 2020).
These typically show performances between our lower and
upper benchmarks; therefore, we did not include them in the
study for the sake of brevity.

Empirical discrete distributions (EDDIS)

This approach represents the case where there is no prior
knowledge of the structure of the real-world system, and
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therefore the model can learn only from the available training
data. The model is deliberately kept as simple as possible to
serve as a lower benchmark and consists of the multivariate
joint discrete (binned) distribution of all available training
data, including the desired model output (here, discharge).
The binning method is explained in Sect. 2.4. As the model
is built directly from the training data, no training is required.
Applying the model consists of binning a given set of input
data and then retrieving the conditional discrete distribution
of the output given the input from the joint distribution. If
necessary, this probabilistic prediction can be reduced to a
single number by calculating the expected value. The model
can be interpreted as a probabilistic lookup table or analogue
model, and for applications where no analogue situation was
included in the training data, we set the model prediction to
be a uniform — i.e. minimally informative — distribution of
the output value. By design, the model cannot account for
memory effects, such as those caused by water storage in the
catchment. The only way such memory effects can enter the
prediction is through the model input. We therefore built sev-
eral models with different sets of predictors, including those
with temporal aggregations, and then selected the set of pre-
dictors that had the best predictive performance across all
catchments. Notably, this is not necessarily the case for the
predictor set with the largest number of variables, as over-
fitting quickly occurs in such cases. We tested all possible
combinations of the following options: splitting the range of
values of each variable into 2, 4, 6, or 8 bins; providing pre-
cipitation input either spatially lumped or split into two sub-
basins; providing precipitation input either as a single vari-
able with the value of the current day or as four variables,
i.e. daily value of the current day and day —1, precipitation
sum of day —2 through —6, and precipitation sum of day
—7 through day —30, thus providing precipitation memory;
and providing spatially lumped temperature as a single vari-
able with the value of the current day or as two variables,
i.e. daily value of the current day and mean temperature of
day —1 through day —30, thus providing temperature mem-
ory. Among all variants and across all catchments, the best
input combination was the spatially lumped combination of
precipitation and temperature, both with memory (preceding
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day and preceding week), splitting the value ranges into two
bins each. This model was used for all further investigations.

Regression tree (RTREE)

Like the EDDIS model, regression trees are simple and com-
pletely agnostic to the structure of the real-world system, so
their predictive power depends entirely on the information
content of the chosen input data. The RTREE therefore also
serves as a lower model benchmark, but it is slightly more
sophisticated than EDDIS: through supervised learning, it
optimizes the partitioning of the input data to maximize the
predictive power of the output. We used the “fitrtree” func-
tion in MATLAB R2024a to fit the trees, testing the same
input variants as for EDDIS. Interestingly, the same spatially
lumped precipitation—temperature input set with memory as
for EDDIS showed the best performance and was therefore
used for all further studies. Regression trees have been ap-
plied to hydrological problems, e.g., by Zhang et al. (2018);
Paez-Trujilo et al. (2023).

Artificial neural network (ANN)

The ANN consists of multiple layers of interconnected nodes
or neurons, including input, hidden, and output layers. Each
neuron in the hidden layer applies a weighted transformation
to the input data, followed by a nonlinear activation function
to capture nonlinear relationships. During training, the model
adjusts its weights using backpropagation, an optimization
algorithm designed to minimize the error between predicted
and observed outputs. This allows the model to learn from
the data and improve its predictions over time. In hydrolog-
ical modelling, ANNs are used because of their ability to
capture complex, nonlinear relationships between variables
(Hsu et al., 1995). However, because an ANN lacks inherent
memory or recurrence, it cannot alone account for temporal
dependencies in hydrological data. To account for the strong
autocorrelation typically present in such data, it is necessary
to shift the inputs over a time window. By applying a time
window lag, the ANN can account for delayed effects, i.e.
inputs from previous time steps are used to predict current
conditions. In this case, the ANN is used to predict discharge
based on past time series data, including variables such as
precipitation, temperature, and evapotranspiration. The input
data are shifted by seven daily time steps, generating 21 in-
put features. The model architecture consists of three layers
of 64 hidden units each. The first two layers use a rectified
linear unit activation function. The training optimization in-
cludes a learning rate of 0.001, which decays by a factor of
0.5 after every 5 epochs. A 40 % dropout rate is applied to
prevent overfitting. The model is trained for 30 epochs with
a batch size of 32. To account for variability due to random
weight initialization, each model is initialized and trained
three times.
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Long short-term memory (LSTM) network

Long short-term memory (LSTM) networks have become the
benchmark model for streamflow and rainfall-runoff mod-
elling (Kratzert et al., 2018; Acuifia Espinoza et al., 2024).
Unlike ANNSs, which inherently cannot capture temporal
dependencies, LSTM networks are specifically designed to
handle time-series data through their internal memory cells
and gating mechanisms. In this study, three LSTM networks
are built for each of the three test catchments. The model ar-
chitecture consists of an LSTM layer, followed by a linear
output layer, both featuring 64 hidden units. The networks
are trained with a learning rate of 0.01, and a learning rate
decay factor of 0.5 is applied after every 5 epochs to opti-
mize training. A 40 % dropout rate is used to prevent overfit-
ting. Training is performed over 20 epochs with a sequence
length of 365 d, and the forget gate bias is set to 1 to facilitate
the learning of long-term dependencies. The LSTM networks
predict discharge using the same input features as the ANN
models, including precipitation, temperature, and evapotran-
spiration. However, unlike ANNSs, the inputs are not shifted
over time. To account for variability due to random weight
initialization, each LSTM model is initialized and trained
three times, and we use the average of the three models in
any further analysis.

2.3.3 Data used by the models

All models are provided with the same meteorological forc-
ing data and the daily discharge observations at the outlet of
each catchment. Although the meteorological data were pro-
vided to each model as the same daily grid, different aggrega-
tions were applied to use the data. SWAT+ uses averages of
the internally generated sub-basins and HBV, and the GR4J
models use sub-basin averages delineated at the gauging sta-
tions (Table 3). EDDIS and RTREE use catchment-averaged
data, and ANN and LSTM use sub-basin averaged data, all
of them with several temporal aggregations (details are ex-
plained in the respective sections above).

Some of the process-based models require additional data
for the setup, which allow building the specific model archi-
tecture and partly also the model parameterization. For ex-
ample, SWAT+ uses soil information and land use to define
soil storage and root depth (Table 3). These additional data
also require different spatial discretization, e.g. for SWAT+
to the HRU. For this study, these additional data are consid-
ered as part of the model structure and not as comparable in-
put data, i.e. we treat these additional data as model-specific
prior knowledge that constitutes the model architecture. ED-
DIS, RTREE, ANN, and LSTM do not apply additional static
data.
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Table 3. Input data and temporal and spatial discretization of the data as used in the process-based and data-driven models. All of the data

are daily. DEM = digital elevation model, PET = potential evapotranspiration.

Data HBV GR4J SWAT+  EDDIS RTREE ANN LSTM
DEM elevation zone  sub-basin  grid - - - -
Slope - sub-basin HRU - - - -
Land cover - - HRU - - - -
Soil type - - HRU - - - -
Precipitation  sub-basin sub-basin  sub-basin lumped lumped sub-basin  sub-basin
Temperature  sub-basin sub-basin  sub-basin lumped Ilumped sub-basin  sub-basin
PET sub-basin sub-basin  sub-basin lumped Iumped sub-basin  sub-basin
2.4 Distance measures and objective functions For a multivariate set of discrete variables X1, X2, ..., Xn,
and realization thereof x 1, x2, ..., xn, their overall joint vari-

In this section, we describe the distance measures used to
address research questions (Q1)—(Q4), specifically for data-
driven catchment characterization, for model parameter es-
timation during model training, and for model performance
evaluation.

In particular, for the characterization of catchments based
on available data, we needed a measure that would allow the
integration of multivariate data of different dimensions on a
single scale, the measurement of the total variability of catch-
ment dynamics both with and without memory, and the di-
rect comparison of joint unconditional variability of all vari-
ables with conditional variability of the target variable, i.e.
discharge, given all other variables. All of these requirements
are met by joint entropy Hj, which is an information measure,
as it operates on probabilities of variable values rather than
on the values themselves. A good general introduction to in-
formation theory is provided by Cover and Thomas (2006),
an overview of applications in the earth sciences by Kumar
and Gupta (2020), and a comparison to other methods of
uncertainty quantification by Abhinav and Rao (2023). Re-
cent applications of information concepts to hydrology in-
clude, among others, Jiang et al. (2024a) for model training,
Ehret and Dey (2023) for system classification, Moges et al.
(2022) for data analysis, Azmi et al. (2021) for model evalua-
tion, Ruddell et al. (2019) for model diagnostics, Neuper and
Ehret (2019) for hydrometeorological data-driven modelling,
and Nearing et al. (2018) for process diagnostics.

Information measures exist for both continuous and dis-
crete distributions. Computing continuous information mea-
sures typically requires fitting a continuous parametric dis-
tribution function to the data, which can be challenging, es-
pecially for high-dimensional distributions and sparse data.
Computing discrete information measures from continuous
data requires binning, which inevitably leads to information
loss, but is straightforward even for high-dimensional and
sparse data. Because a central question of this paper is how
well models learn from a small amount of data, we explain
discrete information measures below and use them through-
out the study.
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ability can be measured by the entropy of their joint distribu-
tion Hj (j here indicates “joint”) according to Eq. (1).

Hj(X1,X2,...,Xn) = — >
xleX,x2€X2,...,.xneXn

p(x1,x2,...,xn)log, p(x1,x2,...,xn) (D)

If the log of the probability p is taken to base 2, Hj is
measured in bits and can intuitively be interpreted as the
number of binary (Yes/No) questions that would need to be
asked to correctly guess a particular multivariate measure-
ment if the joint distribution were known. Entropy there-
fore is a measure of uncertainty expressed as number of
questions. Hj is non-parametric, seamlessly expands from
uni- to multivariate datasets, and is therefore well-suited for
our task. Additionally, lower and upper bounds of Hj ex-
ist. This allows standardization of results and thus facilitates
inter-comparison between datasets of different dimensional-
ity. The lower bound of 0 is reached by a Dirac distribution,
and the upper bound of log2(n) is reached by a uniform dis-
tribution, where n is the number of bins.

While Hj measures the unconditional overall variability of
a dataset, to evaluate model performance, we need to mea-
sure how uncertain we are about the value of the target vari-
able of interest, knowing the model prediction. This is mea-
sured by conditional entropy H., where c indicates “condi-
tional”, as shown in Eq. (2), where Y is the observed target
value, y is a realization thereof, and X is the related model
prediction.

He(Y|X)=— Y p(yln)log,p(x) )

yeY,xeX

For simplicity, Eq. (2) is shown for the case of a single tar-
get variable and a single prediction thereof, but H, like H;,
expands seamlessly to multivariate targets and predictions,
and like H;, it is bounded. The lower bound is 0, which is
reached when the model unambiguously identifies the target
observation, and the upper bound is the unconditional en-
tropy of the target Hj(Y), which is reached when the model
has no predictive power at all.
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As mentioned above, binning of continuous data in-
evitably loses the information about the position of each vari-
able value within the bin, and the fewer and wider the bins,
the higher the loss. On the other hand, choosing many narrow
bins leads to sparsely populated and hence non-robust dis-
tributions, especially for high-dimensional datasets. Binning
therefore is a two-sided optimization problem. We solved it
by choosing, for a given number of bins, their edge positions
such that they (i) cover the entire value range of the data
and (ii) minimize the sum of squared errors (SSE) between
the original and the binned data, where the latter is repre-
sented by the respective bin centre. Such an optimization is
essentially a clustering problem with SSE as the measure for
the within-cluster distance, and we implemented it with the
“clusterdata” function in MATLAB R2024a. Such a binning
by optimization respects both the values and the frequency of
the data. Regarding the choice of the number of clusters: for
the predictors in the EDDIS model, we tested several options
ranging from two to eight (see related paragraph above); for
the observations and predictions of the target variable dis-
charge then, we chose 12 as the best trade-off between reso-
lution and bin population.

In summary, we used joint entropy and conditional en-
tropy for data-driven catchment characterization (Q3). For
performance evaluation of all models in (Q1), (Q2), and
(Q4), we used the conditional entropy of the observed dis-
charge given the simulated discharge. Additionally, we pro-
vide performance results measured by the Kling—Gupta ef-
ficiency (KGE) (Gupta et al., 2009) in the Appendix, as it
is widely used in hydrology and thus facilitates the interpre-
tation of results for hydrologists. In the Appendix, we also
provide a table (Table Al) with a comparison of the char-
acteristics of information-based and value-based distance
measures. Several measures were used for model training.
The reason for this is that the models used in this study
cover a wide range from data to process based, and differ-
ent training methods and appropriate performance measures
are used in the respective communities. In order not to dis-
rupt well-established method—measure interactions, we de-
cided to keep the domain-specific measures, acknowledging
the slight inconsistency we introduced. In particular, for all
process-based models, KGE was used as an objective func-
tion during training; for RTREE, the root mean square er-
ror (RMSE) was used, and for ANN and LSTM, the mean
squared error (MSE) was used. EDDIS did not require any
training.

In order to better emphasize how well a particular model
can learn from data of a particular catchment, we introduce a
standardized measure of “relative learning” L], as shown in
Eq. (3):

(Lm - Llower)

Ly = ——2owet?
h (Lupper — Liower)

3

where Ly, is the learning of the model, defined as the differ-
ence between the conditional entropy of the model predic-
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tion when the training sample size is minimal and the con-
ditional entropy of the model prediction when the training
sample size is maximal. Liower and Lypper serve as upper and
lower benchmarks for standardization, inspired by the gen-
eral benchmarking suggestion of Seibert (2001). Ligwer is the
smallest possible value Ly, can take (here, 0), and Luypper,
the largest (here, the unconditional entropy of the observed
discharge of each catchment). Ly, thus takes values between
minus infinity and 1, where negative values indicate that the
final performance is less than the lower benchmark, O indi-
cates that a model cannot learn anything from the available
data, and 1 indicates that a model can learn all information
contained in the available data and perfectly predict the tar-
get.

2.5 Experiments

For all experiments (see overview in Table 4), training is
done for each sample size, each replicate, each process-based
model, and each catchment using Latin Hypercube Sampling
(LHS). For details on the LHS settings, see the Supplement.
All models, i.e. data-driven and process-based, have a warm-
up run in the period from 1 January 2000 to 31 December
2000, and all training samples are from the period 1 January
2001 to 31 December 2010. Model performance was vali-
dated using an independent period from 1 January 2012 to
31 December 2015, also preceded by a warm-up period from
1 January 2011 to 31 December 2011. The simulations from
this validation period are the basis for all presented model
performances and model learning behaviour. Both training
and test data periods were very similar in terms of the distri-
bution of high and low flows. For all experiments (again, see
overview in Table 4), we provide the models with 10 sample
sizes from the available discharge data up to the full length
of the time series. These are 2, 10, 50, 100, 250, 500, 1000,
2000, 3000, and 3654. For each sample size, the models are
trained/calibrated on discharge, and only the data of the spe-
cific sample size were evaluated during the training. The pa-
rameter ranges that were defined for each model can be found
in the Supplement.

For the different experiments, we used various sampling
schemes (Fig. 2): in the fully random sampling scheme, we
sampled x random points that form the basis for calculating
the model performance, with x being the respective sample
size. For each sample size, we performed 30 repetitions, i.e.
30 random samples over the training period. For the random
consecutive sampling scheme, we randomly sampled a sin-
gle point in the time series and then used all the subsequent
points. If the sample size was larger than from that point to
the end of the data, the points preceding the single sampling
point were also used to achieve the desired sample size. For
each sample size, we used 30 repetitions, i.e. we sampled a
random starting point of the continuous series 30 times. This
sampling scheme resembles the case where a measurement
campaign is started (randomly in time) and continues until
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Table 4. Overview of the model experiments, purpose, and models used. “semi-distributed” means the spatial distribution that is commonly
used for each model, i.e. for the HBV model divided into sub-basins and for SWAT+ divided into HRUs.

Experiment Spatial discretization Sampling Models

Experiment 1: how well do different models learn from  lumped, random consecutive all

limited discharge data, and, more specifically, is there a  semi-distributed,

dataset size beyond which data-driven models distributed

outperform process-based models?

Experiment 2: how does the strategy of selecting semi-distributed random consecutive, HBV

training data affect model performance? fully random, optimal
(Douglas—Peucker)

Experiment 3: does analysing the information content lumped random consecutive -

of catchment data allow predictions of the performance

of different model types?

Experiment 4: do spatially distributed data contain semi-distributed, random consecutive HBV

relevant, general information that goes beyond lumped
data?

lumped

the study or funding ends. This is probably the most com-
mon type of dataset we have available for model training,
and it neglects potentially interesting periods, such as floods
or long dry spells leading to droughts.

In order to achieve optimal sampling, the algorithm pro-
posed by Douglas and Peucker (Ramer, 1972; Douglas and
Peucker, 1973) was selected. The algorithm searches for the
most informative points, specifically targeting turning points
such as flood peaks, points before the start of the rising limb
of the hydrograph, and so forth. The most informative points
for this algorithm are those where there are changes in the
time series. This approach could be used if we did training
but wanted to reduce the dimension/data size for one rea-
son or another. An example of the points selected using the
Douglas—Peucker algorithm is shown in the supplementary
material for some of the used sample sizes of the Iller catch-
ment (Fig. S1).

2.5.1 Experiment 1: how well do different models learn
from limited discharge data, and, more
specifically, is there a dataset size beyond which
data-driven models outperform process-based
models?

In this main experiment, we compared the learning behaviour
of three process-based and four data-driven models. We
trained all models with data from the same time period using
the random consecutive sampling scheme, providing each
model with the same increasing sample and the same 30 rep-
etitions of each sample size to train. Although the exact same
gridded data were provided to each model, different pre-
processing was required to force the models. For the semi-
distributed process-based models, the data were spatially ag-
gregated to sub-catchments (HBV model, GR4J, SWAT+),
and for the simpler data-driven models (EDDIS, RTREE),
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the data were fully lumped. By comparing the conditional
entropy of each model for the independent validation period,
we can assess how well the models learn relative to each
other and how this varies between the different catchments
for which the experiment is conducted.

2.5.2 Experiment 2: how does the strategy of selecting
training data affect model performance?

In this experiment, we tested the effect of different sampling
schemes on the performance of the HBV model. To assess
the influence of the training data on the actual training, we
tested three sampling schemes: fully random sampling, con-
secutive random sampling, and optimal sampling using the
Douglas—Peucker algorithm. As an example of a model com-
monly used in a lumped or semi-distributed model setup, this
experiment was performed using the HBV model.

2.5.3 Experiment 3: is there a relationship between the
information contained in the data and the shape
of the learning curve for different models that
allows predicting the achievable model
performance?

Concepts from information theory have been used for a broad
range of tasks related to data retrieval and system analysis.
For example, Foroozand and Weijs (2021) used them for the
optimal design of monitoring networks, Neuper and Ehret
(2019) to identify the most important predictors for quanti-
tative precipitation estimation, and Sippel et al. (2016) for a
data-based dynamical system analysis. Along the same line,
we used information concepts here to determine whether we
can predict the success of training a model from a prior
analysis of the available multivariate input and target data
(precipitation, temperature, evapotranspiration, streamflow).
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Random consecutive sampling

>
»

Douglas-Peucker optimal sampling

Figure 2. Sketch of the different sampling strategies, i.e. fully random, random consecutive, and optimal sampling using the Douglas—Peucker

algorithm.

Specifically, we investigated whether model performance,
expressed as the conditional entropy of the streamflow given
the input data, can be predicted from the joint entropy of the
input and target data. These two types of entropy give dif-
ferent insights: joint entropy — about the overall variability
(information content) of the data; conditional entropy — about
the information content of the input data about the target data.

We computed the unconditional entropy of the datasets
with four variables (input P, T, PET, and target Q) with and
without memory, i.e. with and without any temporal depen-
dence of the data: (1) only the value at time step ¢ is used,
resulting in four variables (P, T, PET, Q); (2) in addition to
the four variables at time step ¢, the variables at time step
t — 1 are also used, resulting in eight variables that are each
binned; (3) in addition to the four variables at time step ¢,
the variables averaged over the preceding week r —1tor —6
are used, resulting in eight variables that are each binned.
The joint entropy values between cases (2) and (3) can be
directly compared, as the base in both cases comprises eight
variables, each in eight bins. Instead, the values of (1), which
does not take into account any memory, cannot be directly
compared to those of (2) and (3), as the base includes only
four variables, each in eight bins (Table 5).

We computed the conditional entropy of the input data
with respect to the target variable discharge Q at 70 based on
the three predictor variables P, T, and PET without memory,
i.e. also at #0. Again, we looked at the three cases: (1) three
predictors, and no time aspect is considered at all; (2) three
predictors, and for each variable, also the value of the pre-
ceding day; (3) three predictors, and for each variable, also
the average value of the preceding week (Table 6). Here, for
all three cases, the conditional entropy values can be directly
compared with each other, as here the target (streamflow)
was binned into eight bins for each analysis. The maximum
entropy value for these cases is 3 (= 1og2(8)).

2.5.4 Experiment 4: do spatially distributed data
contain relevant, general information that goes
beyond lumped data?

To test the benefit of more spatial distribution in the input
data for model training, we used the HBV model and set it up
for each catchment in both a lumped and a semi-distributed
manner by using sub-catchments. Both model versions were
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trained using the same time periods and the consecutive ran-
dom sampling scheme, but the lumped model received catch-
ment areal averages of precipitation, temperature, and evap-
otranspiration, whereas the semi-distributed models received
these meteorological inputs averaged to the sub-catchments.

3 Results and discussion

3.1 Experiment 1: how well do different models learn
from limited discharge data, and, more specifically,
is there a dataset size beyond which data-driven
models outperform process-based models?

From this experiment, we were able to generate learning
curves for each model and each catchment. The learning
curves show how much a model has learnt with increasing
sample size during training. This means that if the condi-
tional entropy, H., decreases with increasing sample size,
the models are learning from more discharge data. The band
around the median learning curve indicates both the effect
of different replicated samples at each sample size and the
calibration uncertainty.

For all catchments, we found a grouping of the process-
based models and the data-driven models where the data-
driven models learn longer than the process-based models
but the process-based models start with lower conditional en-
tropy values than the data-driven models. However, this is ex-
pressed to different degrees for each of the three catchments.

The learning curve for the Iller catchment (Fig. 3, left
panel) shows that, for all models, the conditional entropy de-
creases with increasing sample size, H,, i.e. they learn with
increasing training sample size. This is true for all models,
both data-driven and process-based. The process-based mod-
els start with lower conditional entropy values (between 2.3
and 1.8) when provided with very small sample sizes than
the data-driven models (H. 2.1 to 2.6). The process-based
models learn with increasing sample size and reach a learn-
ing plateau at around 500 samples. The data-driven models
continue to learn with increasing sample size, and the LSTM
in particular outperforms all the process-based models. The
ANN also continues to learn and reaches performances that
are comparable to some of the process-based models. The
simple data-driven models (EDDIS and RTREE) have a steep
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learning curve at the beginning and, based on the conditional
entropy value, almost reach the performance of the process-
based model SWAT+. However, compared to the LSTM,
their learning is much slower after a sample size of 500.

For the Saale catchment (Fig. 3, middle panel), there is a
similar grouping of process-based versus data-driven models.
Again, the process-based models start their learning curve at
lower conditional entropy values than the data-driven mod-
els and soon reach a plateau with a relatively small sam-
ple size. The data-driven models have a very steep learn-
ing curve at the beginning and continue to learn slowly, but
they do not reach conditional entropy values as low as those
seen in the Iller catchment, nor do they reach the perfor-
mance of the process-based models. Three models of the
model groups stand out. Among the process-based models,
the SWAT+ model has a lower performance at the begin-
ning of the learning curve, i.e. when it is provided with a
small sample for training, and its performance remains be-
low that of the other process-based models until the end of
the learning curve, i.e. when it is provided with all the data
available for training. The ANN model starts with a rather
high performance compared to the other data-driven models
and stays in a similar arrangement to the learning curve of
the process-based models. The LSTM, as already seen for
the Iller catchment, has the steepest learning curve and con-
tinues to learn after all other models have finished. For the
Saale catchment, the learning curves are quite different from
those of the Iller catchment, and all models, process-based
and data-driven, except for the LSTM model, plateau after
a sample size of 500 to 1000. This catchment shows an in-
termediate data variability and an intermediate learnability
from the ranking of the joint entropy of the input data and
the ranking of the conditional entropy.

For the Selke catchment (Fig. 3, right panel), there is a
relatively wide spread between the learning curves of the
process-based models, with the simplest models GR4J and
HBV starting and reaching the highest performance, al-
though the overall learning curve is rather flat. The SWAT+
model starts with a similar performance but essentially shows
no learning as sample sizes increase above 500. The per-
formance of the simple data-driven models (EDDIS and
RTREE) and ANN is very similar to that of the SWAT+
model. The simple data-driven models start their learning
curve with very low performance, learn quickly with in-
creasing sample size, and stop learning at a sample size of
1000. The ANN model continues to learn but with a very
flat learning curve. The LSTM, like for the other two catch-
ments, knows very little at the beginning, then has a steep
learning curve and continues to learn. Unlike for the Iller
and Saale catchments, the LSTM does not outperform the
process-based models HBV and GR4]J.

If we compare only the relative learning (Fig. 4), i.e. how
much a model learns without considering the initial perfor-
mance, but only compare the performance at the beginning
and at the end of the learning curve, then we see that the data-
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driven models learn the most, with the LSTM model clearly
outperforming all other models. The LSTM model may out-
perform the other data-driven models due to its ability to
flexibly capture short- and long-term dependencies, which
are essential for modelling hydrological processes. For this
consecutive sampling scheme, the HBV model also shows
a learning capability comparable to the ANN and RTREE.
However, it should be noted that it does so mainly in the first
sample size increase and then plateaus (Fig. 3). For our com-
parison, the SWAT+ model has a lower learning capability,
and for the GR4J model, the learning capability varies with
the catchment in which it has to learn.

It is well known that discharge is much easier to model
in some catchments than in others, either because of a pro-
nounced seasonality in discharge, expressed as spring flood,
summer low flow, or the like, or because the catchment re-
sponse is very similar to the precipitation that falls on the
area — or even because there may be errors both in the forc-
ing meteorological data and in the data used for evaluation —
in our case, discharge. These errors can be so large that, as a
consequence, the preservation of mass (inscribed in process-
based models but not for data-driven models) is violated, and
the water balance is not closed. What is interesting, how-
ever, is how differently the process-based models we used
in our study were able to simulate and learn the discharge
with the same input data. For example, the Iller catchment,
which had high variability but also high learnability from the
data alone, has a high spread of the learning curves of the
individual models, indicating that the model architecture of
some of the process-based models is somehow more advanta-
geous than the model architecture of others for the training of
this catchment. The Iller catchment could be modelled well
and learnt well (up to the learning plateau) by the rather sim-
ple process-based models GR4J and HBV, but with generally
worse model performance for the spatially higher-resolved
SWAT+ model.

The strongest learning performance was observed for all
data-driven models, with the LSTM showing the steepest
learning curve and ultimately achieving the highest predic-
tive accuracy once a sample size of 2000 was reached. Un-
like simpler data-driven models (e.g. EDDIS and RTREE),
both the ANN and LSTM models used semi-distributed in-
put data. It is likely that the LSTM benefited from this input
by discovering complex relationships that the simpler mod-
els could not. While the discretization of the input data does
not explain why the LSTM continues to learn when the ANN
stops, this behaviour can be attributed to the model archi-
tecture itself. The LSTM, similar to a classical hydrological
model, essentially operates as a state space model. We re-
fer to this inherent architectural advantage as an inductive
bias: unlike standard ANNs, which lack memory cells and
intrinsic recurrence, the design of the LSTM (De la Fuente
et al., 2024) allows it to continuously integrate new infor-
mation over time, enabling persistent learning and improved
performance.
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Figure 3. Learning curve using the continuous random sampling strategy for the different models and catchments, showing the changes in
the conditional entropy Hc with increasing sample size. The lower the values of Hc, the more the model could learn from the data (i.e. the
better the discharge simulations are). The band of the learning curves represents the 25th to 75th percentile of the ensemble of 30 repetitions,
and the line is the median. The dashed line shows the maximum possible entropy, which can be used as a benchmark, in a similar way to how
the mean discharge prediction is used in the Nash—Sutcliffe efficiency. Note that for visibility reasons, we applied a different y-axis scaling
for each catchment. The samples are independent from each other, and the lines are there only for visualization.
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Figure 4. Relative learning of the different models using the contin-
uous random sampling scheme. Relative learning is defined as the
difference between the beginning and the end of the learning curve
(Eq. 3).

3.2 Experiment 2: how does the choice of training data,
i.e. the information content in a given dataset,
affect training for a specific problem?

The different sampling strategies have been investigated only
for the HBV model. Here, the learning curves for the Iller
catchment (Fig. 5) show how different sampling composi-
tions affect learning. We have a band around the consecu-
tive random and the fully random sampling because we did
30 repetitions of the random sampling but only one line for
the learning curve of the Douglas—Peucker sampling because
this algorithm gave us only the most interesting points, pre-
sumably the optimal sampling. Notably, the learning curves
of the random and consecutive random sampling strategies
look very similar. For these two, the HBV model learns more
for the Iller and Saale catchments than for the Selke catch-
ment: when expressing learning as the difference in condi-
tional entropy between the smallest and the largest sample di-
vided by the conditional entropy of the smallest sample, then
learning reduced the conditional entropy by 10.3 % for the
Iller, by 16.6 % for the Saale, and by only 9.1 % for the Selke
catchments (values are averages of the random and consecu-
tive random approach). The Douglas—Peucker learning curve
appears to be much jumpier than the learning curves of the
full random and the consecutive random learning curves. It
should be noted that the learning curves for both random
sampling schemes show the median of 30 replicates and the
25th and 75th percentiles, smoothing out the behaviour of
the individual lines used to calculate these statistics. Each of
these individual repetition lines could (and some do) have
jumpy behaviour similar to the Douglas—Peucker curve.
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The learning curve using the Douglas—Peucker sampling
starts with the highest conditional entropy for the Iller catch-
ment but the lowest conditional entropy for the Saale and
Selke catchments compared to the other two sampling strate-
gies. The largest samples show exactly the same entropy
value in the learning curves, starting for the Iller catchment
with a sample size of 1000, for the Saale catchment with
a sample size of 500, and for the Selke catchment with a
sample size of 2000. These same entropy values are derived
from the selection of exactly the same model for these sam-
ple sizes, i.e. there is no further learning with the additional
points that increase the sample size.

When using the consecutive random sampling scheme, the
HBYV model learns approximately up to a sample size of 1000
and then reaches the plateau of the learning curve. The fully
random sampling scheme gave the best performance, i.e. the
lowest conditional entropy, compared to the others at the
beginning of the learning curve and also plateaus around a
sample size of 500. The learning curves for Iller and Saale
look very similar at the end for all sampling schemes, and
there is no significant difference visible in model perfor-
mance in terms of conditional entropy. For the Selke catch-
ment, the conditional entropy of the Douglas—Peucker sam-
pling is higher than for the two random sampling strategies,
which can be explained by the additional points in the larger
samples provided for training. These additional points come
from turning points before the rising limb and contain more
low flow values. Optimization focusing both on low and high
flow (first selected by the algorithm) then attempts to opti-
mize for both flow aspects, and the overall model perfor-
mance is reduced. Using a different training setup that in-
creases the sample size of the LHS, or using a different train-
ing algorithm such as the dynamically dimensioned search
(Tolson et al., 2009), could help avoid this worsening in the
learning curve (Fig. S1). Using the KGE instead of the con-
ditional entropy for the learning curve does not yield such a
decrease to lower performance in the Selke catchment and
shows smoother learning (Fig. S1). Because we included
only the HBV model in this side experiment to test differ-
ent sampling schemes, we cannot make a general statement.
However, with relatively small sample sizes between 500 and
1000 d, the model has already learnt to its maximum. Similar
ranges were also found in Brath et al. (2004), Melsen et al.
(2014), and Sun et al. (2017). For the catchments we used in
this study, all of which are in a humid climate, it does not
seem to matter whether the sample is made up of a continu-
ous time series of discharge or a random sample over many
years, suggesting that these sample sizes sufficiently repre-
sent the natural variability in flows and hydrologically active
periods.

With the resulting learning curves when using random
consecutive sampling, we can infer how long such a measure-
ment campaign should last in a given catchment to capture
enough information for the model to learn. This is different
for each catchment but somewhere between 500 and 2000
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Figure 5. Learning curve using the different sampling schemes for the HBV model, showing the changes in the conditional entropy H¢ with
increasing sample size. The lower the values of H., the more the model could learn from the data (i.e. the better the discharge simulations
are). The band of the learning curves represents the 25th to 75th percentile of the ensemble of 30 repetitions, and the line is the median. The
samples are independent from each other, and the lines are there only for visualization.

points, and comparing the variability inherent in the data that
we could quantify using the joint entropy, the conditional en-
tropy of the discharge using these variables as predictors, and
the learning curves themselves can provide useful guidance.

The other two sampling schemes we tested are the fully
random scheme and the optimal scheme using the Douglas—
Peucker algorithm. These sampling strategies are more com-
monly used in practice during event-based sampling cam-
paigns or when there are large datasets and only a represen-
tative or essential information is sampled to reduce computa-
tional efforts for model training. We found that fully random
sampling slightly outperformed Douglas—Peucker sampling,
despite the idea that this algorithm would provide the model
with optimal sampling points for training. This was partic-
ularly true for the Selke catchment, where the learning, ex-
pressed as a reduction in conditional entropy, was reversed
because additional points in the sample realigned the model
focus away from mainly floods to also low flows, and the
parameter search ended in exactly the same model for all
samples larger than a catchment-specific sample size. A ma-
jor advantage of random sampling over optimal sampling is
the ability to repeat the sampling, which ultimately provides
learning curves from statistics that can be used as a guide,
rather than overthinking why one increase in sample size did
not produce the expected learning while the next did.
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3.3 Experiment 3: is there a relationship between the
information contained in the data and the shape of
the learning curve for different models that allows
predicting the achievable model performance?

In this experiment, we focused on the information content of
the input data about the target (streamflow) by measuring the
entropy of the conditional distribution of the target given the
input data. This is equivalent to the EDDIS model, which
essentially constitutes a purely data-driven model with al-
most no added model structure or model training. We also in-
cluded memory effects by providing aggregating input vari-
ables over time.

If no memory is included in the predictors but only precip-
itation, P, temperature, 7', and potential evapotranspiration,
PET, at time step ¢0, then the ranking is exactly the same
as what we found for the joint entropy of the meteorologi-
cal variables and discharge (Table 5): the highest conditional
entropy for the Iller catchment (1.74), and the lowest for the
Selke catchment (1.39), suggesting that there is the highest
variability in the Iller, less in the Saale, and the lowest in the
Selke catchment.

However, if we add the preceding day as information, then
the entropy for all catchments decreases, indicating learning,
and the ranking of the catchments changes: now, the Iller
catchment has the lowest entropy (0.81), the Selke catch-
ment has the highest entropy (0.94), and the conditional en-
tropy for the Saale catchment is in between the other two
(0.92). Adding the information of 1 week before 0 instead
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of 1d again decreases the conditional entropy values for all
the catchments, and in this case, the Iller catchment again has
the lowest entropy, Selke the highest, and Saale in between.
If we look at the learnability, then we see that the entropy
reduction is greatest for the Iller catchment, even though it
has the highest joint entropy values. The lowest reduction is
found for the Selke catchment, indicating that there may not
be so much gain in including a rather short memory tempo-
ral aspect to model discharge for the Selke as is found for the
Iller and the Saale catchments.

The Selke catchment appears to not be very learnable de-
spite the rather low data variability. It may be that the Selke
catchment could be more learnable if the processes relevant
to the catchment response were covered with adequate data.
However, it appears that the meteorological data as well as
the time dependencies are not sufficient for any of the tested
models. It would be interesting for the Selke catchment to test
both with a longer-term memory and with different input data
and constraints on different variables rather than just runoff,
which could be useful in describing these processes (Wagner
et al., 2025).

The joint entropy of the input data for each catchment can
be used to describe the variability that needs to be captured
by the models, but the link from the joint entropy to the learn-
ing of the data-driven and process-based models could not
be made directly. Instead, the results indicated that the catch-
ment with the highest joint entropy was, in fact, the one that
had the best learnability, with the models learning the most
by increasing the sample size. On the contrary, the catchment
with the lowest joint entropy also showed the worst learn-
ability. As we could already see with the conditional entropy
of the input data to the discharge (Table 6), an advantage
to learning is the ability to intelligently incorporate mem-
ory. This is not surprising, as there have been many studies
showing that data-driven machine learning approaches had
a hard time simulating the runoff adequately until they in-
cluded some kind of memory that would handle the tempo-
ral dependencies, i.e. the catchment antecedent conditions,
and thereby increase the model performance tremendously
(Kratzert et al., 2018; Shen, 2018; Fan et al., 2020). Never-
theless, from these conditional entropy values, we can see
that by including more memory to condition Q, we open up
new ways of learning from the data for all catchments. Thus,
if we use a model that can intelligently take into account the
information that is inherent in the time component, we expect
better learnability despite a potentially very large entropy in
the data.

3.4 Experiment 4: do spatially distributed input data
carry relevant information and thus enhance
learning without compromising the generality of
what has been learnt?

The results of our experiment wherein we changed the spa-
tial discretization of the model input data for the HBV model
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Table S. Joint entropy of the data considering memory and not con-
sidering memory. Note that the values of the joint entropy are not
directly comparable to the values of the conditional entropy in Ta-
ble 6.

Variables Iller Saale Selke
P,T, PET, Q 8.41 7.90 7.32
P,T,PET, Q,t—1 11.18 10.79 10.21

P,T,PET, Q,t —1throught -6 11.78 11.56 11.20

Table 6. Conditional entropy of the input data regarding discharge,
with and without the consideration of memory. Note that the values
of the conditional entropy are not directly comparable to the values
of the joint entropy in Table 5.

Predictor variables Iller Saale Selke
P, T, PET 1.74  1.59 1.39
P, T,PET, t—1 0.81 0.92 0.94

P,T,PET,t —1throught—6 055 0.63 0.69

(Fig. 6) show that for the Iller and Selke catchments, the
model performance is generally, i.e. for all training sample
sizes, much better when the model input is semi-distributed
rather than lumped. For the Saale catchment, there is also
a slight performance improvement when using the semi-
distributed model input, but the benefit is more pronounced
for smaller training sample sizes and disappears for the larger
sample sizes.

For the Saale catchment, there was essentially no improve-
ment when using the semi-distributed input compared to the
lumped input. Here, the sub-basins are more similar, in terms
of catchment characteristics such as topography and geology
but also in terms of precipitation inputs, to each other than
in the Iller and Selke catchments. Therefore, the use of the
lumped catchment average does not imply a great loss of in-
formation regarding the input data P, T, and PET.

For the Iller catchment, there was an offset in the perfor-
mances of the HBV model when provided with both semi-
distributed and lumped input data. This offset can be ex-
plained by the different sub-basins of the Iller catchment,
which cover different elevation zones. This implies that also
the variability of precipitation, which is related to the alti-
tude, is significantly different from the lumped input. The
same is true for temperature, which in the semi-distributed
input is more likely to simulate more realistic snow accumu-
lation and melt and seems to have a positive effect on the
model performance. For the Selke catchment, there is one
sub-basin that is higher than the rest of the catchment and re-
ceives more precipitation than the other two sub-basins, and
resolving this more closely in the semi-distributed input may
explain the gain in model performance when using the semi-
distributed input rather than a lumped catchment average.
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Figure 6. Learning curve using different spatial discretizations of the forcing data for the HBV model, showing the changes in the conditional
entropy H, with increasing sample size. The lower the values of H, the more the model could learn from the data (i.e. the better the discharge
simulations are). The band of the learning curves represents the 25th to 75th percentile of the ensemble of 30 repetitions, and the line is the
median. The samples are independent from each other, and the lines are there only for visualization.

While the shapes of the learning curves for the Iller catch-
ment are similar, the shapes of the semi-distributed versus the
lumped HBV model inputs for the Selke catchment are not.
Here, it appears that not only the performance improves but
also there is an improved learning both for the small sample
sizes and still for the larger sample sizes. The learning curves
of the HBV model in the Selke catchment are again with
better performance throughout and show this slight learning
advantage when using the semi-distributed input. There is a
sub-basin that is very different from the rest in terms of eleva-
tion, and accounting for this in the input might help the model
to better capture the dynamics. The better learning compared
to the lumped input suggests that specifically accounting for
this sub-basin and its variability provides useful information
in the additional data with increasing sample size that would
be smoothed out for the lumped input.

The benefit of a more spatially explicit input to the HBV
model has been previously investigated for other regions.
Lopez and Seibert (2016) found improved model perfor-
mance (Nash—Sutcliffe efficiency), but as we also found, the
improvement was site-specific and very variable for a pre-
Alpine region with a strong climatic gradient in Switzerland.
Huang et al. (2019) looked at four catchments in Baden-
Wiirttemberg, Germany, and found only marginal model im-
provement with higher spatial discretization of the input data,
but in their study, the higher spatial discretization came from
resolving elevation zones rather than sub-catchments.
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3.5 Limitations of the study design

There are several limitations in the study design, mainly due
to choices made explicitly for the experiment but also due to
model-specific constraints and feasibility.

We chose a consistent LHS for all models (see details in
Supplementary Material) regardless of the number of param-
eters. However, if the LHS is too small for the parameter
space spanned by the parameters of a (hydrological) model,
this can lead to significant limitations. A small sample size
may not adequately capture the variability and complexity of
the input parameters, resulting in biased or incomplete repre-
sentations of the model’s behaviour. This can generally lead
to underestimation of uncertainties and also impact the in-
terpretation of the learning curves. Therefore, the interpre-
tation of the model learning, especially for models with a
larger number of parameters, needs to be done carefully. An-
other approach would be to derive learning curves from the
parameter samples drawn by a gradient-based optimization
algorithm (e.g. shuffled-complex evolution). This approach
would have the challenge of needing to be consistently ap-
plied to all investigated methods.

The data are not exactly the same for all models, although
we have tried to make them as similar as possible in this
framework. Part of the difference in the learning abilities of
the models could be explained by the different discretizations
used to form the actual model forcing from the exact same
gridded meteorological data provided as input for all models.
However, the question of which model was the best learner —
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apart from LSTM, which clearly stood out — could not be an-
swered directly from the discretization used for each model.
Instead, we found that this was different for the three study
catchments. In this study, we have relied on daily data only
and have therefore not been able to include an assessment of
faster processes on a sub-daily scale. Particularly when using
models for specific purposes such as flood forecasting, where
these faster processes are relevant, it would be important to
include higher-resolution data.

We argued that the additional data used by some models,
such as the soil types and land use types used in SWAT+ but
not in the simpler process-based models and not in the data-
driven models, are part of the model itself and could therefore
be considered as the model architecture itself. It may be that
these additional data are beneficial to model performance,
but this was not evident from our results.

It should also be noted that there is uncertainty in the data
and that measurement or interpolation errors have not been
explicitly investigated in this study. Certain types of mod-
els can deal with this in the sense that they would adapt to
the data provided to them. For example, data-driven models
would still find a statistical relationship between meteorolog-
ical input and discharge, even though parts of the data may
contain substantial errors. For the process-based models, the
model structure does not allow such a high degree of flexi-
bility, and this may be reflected in poor model performance.
Within the family of process-based models, the less complex
models that were designed to focus on runoff prediction, such
as HBV or GR4]J, can still provide a rather flexible way of at-
tempting to model the input-response relationship through
the choice of model parameters, whereas the more complex
process-based models with higher spatial resolution, focus-
ing on different hydrological processes within the catchment
and using runoff as a means of evaluating the model, have
much less flexibility. This means that they will not perform
well if the data used to force and evaluate the model are error-
prone.

We have studied only three catchments in Germany. These
catchments are different from each other, but more in terms
of topography and local climatology than in terms of differ-
ent climate zones. We chose these example catchments in
order to be able to find some explanations for the different
learning of the models, the different data variability, and the
learnability. The influence of the elevation included in the
model and also the processes that most influence the catch-
ment response are probably represented using these three
catchments, at least for the catchments in Central Europe, i.e.
high-elevation catchments with snow influence, hilly mid-
mountain catchments, and catchments with some lowland
coverage. Some of the results are probably site-specific and
not transferable to other catchments. For example, the Selke
catchment has a very distinct sub-basin with a steep topog-
raphy, and the semi-distributed data may not help learning
compared to a lumped data input to the HBV model. The
methodology could be applied to a larger set of models, fo-

Hydrol. Earth Syst. Sci., 29, 5005-5029, 2025

M. Staudinger et al.: Learning from limited data

cusing, from a large sample point of view, on how much vari-
ability correlates with learnability. However, using the three
catchments allowed a more detailed look at each of them.

The choice of our study catchments, all in a humid envi-
ronment, makes it difficult to draw more general conclusions
about the transferability of our results. While model perfor-
mance tends to decrease when moving from humid to semi-
arid or arid regions, we can only speculate about the effects
on the learnability of the different models in other regions of
the world. For example, in a semi-arid or arid environment,
the process-based models may lose some of their advantage
in the early stages of learning, as the data pool available for
calibration of the storage changes in representativeness. The
extent to which the learning curves of the different model
types would simply follow a consistent decline in perfor-
mance from the beginning to the end of the learning curve, or
whether this would actually result in different slopes of the
curves, is an interesting question for future research.

Learning in our study setup is limited to constraining and
evaluating discharge and does not consider other variables
such as evapotranspiration or the groundwater table. The re-
sults presented may change using other and additional vari-
ables to evaluate the learning. We would not expect a huge
change in the general learning behaviour when comparing
data-driven and process-based models but a change in the
shape of the learning curve with a general slowing down of
the learning rate. How the ranking of the different process-
based models would be affected cannot be answered here but
would be interesting to investigate in the future.

3.6 Information theoretical measures in hydrological
studies

Information theory can be a powerful tool to address hydro-
logical problems. One advantage is the dimensionless evalu-
ation of probabilities connected to data rather than the evalu-
ation of their original values. This allows the variability of all
data used for modelling to be estimated in the single metric
“joint entropy”’. The study catchments and their data could be
compared with the joint entropy, showing that, in our case,
the highest variability was found in the Iller catchment and
the lowest in the Selke catchment. In order to investigate the
relation of the variability of the data and learnability of a
predictive model thereof, we compared the unconditional en-
tropy of the dataset with the conditional entropy of discharge
given all other variables. Here, the order of the catchments
was reversed: the Iller catchment, despite the highest data
variability, also showed the smallest conditional entropy of
discharge, i.e. had the highest learnability. The Selke catch-
ment, on the contrary, had the lowest unconditional joint en-
tropy of the catchment variables, but also the highest condi-
tional entropy, i.e. lowest learnability of the data.
Comparing the ranking of the different models when eval-
vating the performance using the information theory metric
“conditional entropy” and the more commonly used hydro-
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logical metric “KGE”, only small differences were found.
However, using the information theory metric allowed a
more direct comparison with the conditional entropy we cal-
culated to express the learnability of the catchments.

Comparing the learning curves of different models is also
very useful in terms of how much of a learner the model it-
self is, despite the model’s starting or ending performance
and ranking in performance. What is more interesting is the
learning from start to finish and when the models stop learn-
ing.

There are issues when comparing catchments with clas-
sic hydrological performance metrics, because even though
standardized or normalized in their scale, these metrics do
not provide an indication of how the model performs in ab-
solute terms (Schaefli and Gupta, 2007). Some authors hence
strongly advocate for benchmarks in hydrology that consider
the catchment’s complexity and the difficulty to simulate hy-
drological processes in a region (Seibert, 2001; Schaefli and
Gupta, 2007; Pappenberger et al., 2015; Seibert et al., 2018;
Knoben, 2024). Using information measures throughout the
entire workflow of data analysis, model training, and model
evaluation in hydrology could help mitigate this issue but
is currently rarely done. Whereas in very few studies (Jiang
et al., 2022, 2024b), information measures are used for spe-
cific parts, for final model evaluation, usually well-known
metrics such as KGE and Nash-Sutcliffe efficiency are used
for easier interpretation by the readers.

4 Conclusions

In this study, we investigated how different models can make
use of the information in discharge data and what kind of
data is most useful for models. To do this, we carried out
four experiments: the main experiment, experiment 1, was
designed to assess the differences in the learning capabili-
ties of different models, four of them data-driven and four
process-based, with varying degrees of complexity. Exper-
iments 2 and 4 were designed to answer related questions
about learning with different sampling schemes and spatial
discretization of the input data. We also investigated how
much this varies for different catchment types in a humid
climate, including the transition zone from the Harz to the
central German lowlands, the mid-range mountains, and the
Alpine region of Germany. In experiment 3, we investigated
whether it is possible to predict how well models can deal
with a given dataset. For this experiment, we used informa-
tion theory to describe both the variability in all the data used
by the model and the learnability, in the sense of how much
information in the data could actually be useful for a model
predicting discharge, using joint and conditional entropy.
There is a difference between how variable the dataset of
a particular catchment is (in this study, measured by joint
entropy) and how easy it is to learn from it (in this study,
measured by the conditional entropy of discharge given the
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input data). The perhaps intuitive notion that the more vari-
able the data for a given catchment, the more difficult it is
to learn from it, does not hold. We also found that different
models are different learners and that this varies also for the
catchment for which they are set up. That means the different
learners are not performing equally well for all catchments,
and the ranking of which was the best learner varies.

In general, however, the process-based models used in our
study initially know more than the data-driven models due to
their model architecture, which includes some memory ca-
pabilities and thus the ability to account for memory. While
this fixed model architecture appears to be advantageous at
the beginning of the learning, i.e when only few data points
are provided for training, process-based models stop learning
relatively soon and plateau at a certain model performance,
i.e. after a certain amount of data has been included. On the
contrary, the data-driven LSTM model had very poor perfor-
mance at the beginning of the learning curve and then learnt
quickly and steadily as more data were provided for train-
ing. The LSTM continued to learn after all the process-based
models stopped learning and is very useful as a benchmark
learner.

The LSTM model’s ability to learn through its flexible ap-
proach, combined with the fixed structural architecture that
gives process-based models an advantage in data-poor set-
tings, raises the compelling — though as yet unresolved —
question of whether hybrid architectures could effectively in-
tegrate these complementary strengths.

Applying three different sampling schemes to provide the
same sample size for training showed that a fully random
sampling provides the best basis for learning, consecutive
random sampling — as it would be realistic from different
sampling campaigns over a period — reached a similar per-
formance for a large sample size, and, surprisingly, the op-
timal sampling using the Douglas—Peucker algorithm did
not outperform the two random sampling schemes in the
tested catchments. A possible explanation for the poorer-
than-expected results of the Douglas—Peucker method could
be that the hydrological catchment response is a function
of the interplay of short-, intermediate- and long-term stor-
age, which requires adequate parameterization of the related
storage functions in the model. Random sampling selects a
time-proportional share of low flow, intermediate flow, and
high flow situations, which gives the model the opportunity
to learn the correct parameterization of baseflow, interflow,
and fast runoff processes. Douglas—Peucker sampling selects
the main “turning points” in a time series, which occur at
the onset and peak of high-flow events, and may thus leave
the model little opportunity to learn about long-term pro-
cesses. We hypothesize that a hybrid combination of ran-
domly selected points with Douglas—Peucker selected points
may yield the best results. We leave this for future investiga-
tions.

Regarding the spatial discretization of the input data from
sub-catchment to lumped, we found that reducing the spa-
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tial discretization of the meteorological input to the model
resulted in an overall decrease in performance, the extent of
which, not surprisingly, depends on the homogeneity of the
catchment and, in our cases, to a large extent on the forc-
ing data in the different sub-catchments. We have considered
only the effect of meteorological forcing at different reso-
lutions, but other data may be relevant for this catchment,
which showed the least improvement.

Joint entropy is a simple yet powerful way of estimating
the variability of the data associated with a catchment, as it
can handle data that come with different dimensions. Con-
ditional entropy tells us how these data can be used to pre-
dict discharge. When no memory is taken into account, the
conditional entropy is large, but as soon as some memory is
introduced in the form of aggregations of variables over the
current and past day or past week, the conditional entropy
becomes smaller, indicating that memory is a very impor-
tant component of the data and that capturing it improves
the model performance. This was particularly evident in the
catchment from the low mountain ranges and the Alpine re-
gion.
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Table A1l. Properties of information-based compared to value-based distance measures between model simulations and corresponding ob-

servations.
Characteristics Information measures Value-based measures
Examples Conditional entropy (CE) Mean squared error (MSE)

Kullback—Leibler divergence (KLD)

Nash—Sutcliffe efficiency (NSE)
Kling—Gupta efficiency (KGE)

Distance calculated on

the probabilities of the data values

the data values

Distance measured in units of

bits (if logs are calculated on base 2)

MSE: squared units of the data
NSE, KGE: [-]

Extension to multivariate cases straightforward

for NSE and KGE: straightforward
for MSE: requires (subjective) choice of
weights for the different variates

Existence of bounds
KLD: [0, Inf]

CE: [0, Unconditional Entropy]

MSE: [0, Inf]
NSE: [—Inf, 1]
KGE: [—Inf, 1]

Mainly sensitive to offsets of

the most frequent events

large values far from the mean

Can be applied to data types

categorical, numerical

numerical

Code availability. The code to calculate the conditional entropy
from the model simulations, input data, and discharge data is pro-
vided through a GitHub repository at https://github.com/MariStau/
IMPRO_infotheory_Data_Code (last access: 27 July 2025) and via
Zenodo at https://doi.org/10.5281/zenodo.14938050 (Staudinger
and Ehret, 2025).

Data availability. This publication has been prepared us-
ing the FEuropean Union’s Copernicus Land Monitoring
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evation models of the catchments were retrieved from
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access: 27 July 2025) (Yamazaki et al., 2019). The model
input data and results are provided through a GitHub repos-
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