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Abstract. An increasing number of studies have shown
the prowess of long short-term memory (LSTM) networks
for hydrological modelling and forecasting. One drawback
of these methods is the requirement for large amounts of
training data to properly reproduce streamflow events. For
maximum annual streamflow, this can be problematic since
they are by definition less common than middle or low
flows, leading to under-representation in the model’s train-
ing set. This study investigates six methods to improve the
peak-streamflow simulation skill of LSTM models used for
flood frequency analysis (FFA) in ungauged catchments.
These include adding meteorological data variables, provid-
ing streamflow simulations from a distributed hydrological
model, oversampling peak-streamflow events, adding multi-
head attention mechanisms, adding data from a large set of
“donor” catchments, and combining some of these elements
in a single model. Furthermore, results are compared to those
obtained by the distributed hydrological model HYDROTEL.
The study is performed on 88 catchments in the province of
Quebec using a leave-one-out cross-validation implementa-
tion, and an FFA is applied using observations, as well as
model simulations. Results show that LSTM-based models
are able to simulate peak streamflow as well as (for a sim-
ple LSTM model implementation) or better than (with hy-
brid LSTM–hydrological model implementations) the dis-
tributed hydrological model. Multiple pathways forward to
further improve the LSTM-based model’s ability to predict
peak streamflow are provided and discussed.

1 Introduction

In the context of increasing global awareness regarding the
impacts of climate change and urbanization, managing flood
risks has become more critical than ever (Martel et al., 2021).
Floodplain mapping and the design of hydraulic structures
such as bridges, culverts, dams, and sewer systems play a
vital role in mitigating flooding impacts (Apel et al., 2004).
These tasks demand precise estimates of flood events with
long return periods, such as the 20-year and the 100-year
flood events.

The cornerstone of obtaining these critical design values
lies in flood frequency analysis (FFA). FFA aims to esti-
mate the likelihood of flood events of various magnitudes
within a given time frame. This statistical analysis leverages
long-term records of streamflow data, utilizing various mod-
els to predict the probability of extreme flood events (Laio et
al., 2009). However, the reliability and accuracy of FFA are
heavily contingent upon the availability of extensive stream-
flow time series (England et al., 2019). Long-term data are
essential to reduce epistemic uncertainty and improve flood
frequency estimations. Such comprehensive datasets enable
a more accurate assessment of flood risks, which is critical in
designing infrastructure capable of withstanding these natu-
ral disasters.

Yet, a significant challenge in conducting FFA is the
scarcity of long-term hydrometric records. Many hydromet-
ric gauges possess relatively short observational records. For
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example, a study by Do et al. (2017) showed that, from
the Global Runoff Data Center database, only 3558 out of
9213 stations had more than 30 years of available streamflow
data, with only 1907 stations having more than 38 years of
data. This limitation can introduce substantial epistemic un-
certainty into the FFA, potentially compromising the accu-
racy of flood risk assessments. For example, Hu et al. (2020)
showed that the 100-year flood estimation had 50 % more
uncertainty when using 35 years of data instead of the full
70-year record.

To overcome this limitation, methods have been developed
to extend streamflow time series used to conduct FFAs. One
such method is hydrological models to transform known me-
teorological data into streamflow. Traditionally, two types of
hydrological models have been used for this task: lumped
models and distributed models. These models can be trained
over the study catchment (local or catchment models) or over
a region (regional models) to extend the time series. Local
models allow calibration of a model based on a single catch-
ment and then extension of the period with meteorological
data of the same catchment. Regional models, on the other
hand, are designed to reproduce streamflow for a larger num-
ber of catchments within a region and are built specifically
to be more robust over that sector. They can thus estimate
streamflow at both gauged and ungauged locations within the
region. Local models can also be used to simulate streamflow
in ungauged locations, albeit with less accuracy, using re-
gionalization methods (Arsenault et al., 2019; Arsenault and
Brissette, 2014; Tarek et al., 2021).

The advent of deep learning has marked a significant shift
in the approach to modelling hydrology. At the heart of this
revolution are artificial neural networks (ANNs), a form of
machine learning that mimics the way human brains op-
erate (ASCE Task Committee on Application of Artificial
Neural Networks in Hydrology, 2000). These networks con-
sist of layers of interconnected nodes or “neurons”, with
each layer being designed to recognize patterns of increas-
ing complexity. Deep learning refers to the use of neural net-
works with many layers, enabling the modelling of highly
complex patterns and relationships (LeCun et al., 2015).
Among the various architectures of neural networks, recur-
rent neural networks (RNNs) and, more specifically, long
short-term memory (LSTM; Hochreiter and Schmidhuber,
1997) networks, have shown particular promise in hydrolog-
ical applications. Unlike standard feed-forward neural net-
works (ANNs), RNNs maintain memory across input se-
quences. This ability is crucial for processing time series
data, where the relationship between sequential data points
is vital for accurate predictions. LSTM networks further en-
hance this capability by incorporating mechanisms to re-
member and forget information over long sequences, mak-
ing them ideally suited for modelling hydrological processes
that depend on long-term dependencies (Kratzert et al., 2018;
Shen and Lawson, 2021; Feng et al., 2020). Other machine
learning algorithms have been tested in hydrology to estimate

high flows. Convolutional neural networks (CNNs) com-
bined with LSTM networks (CNN-LSTM; Li et al., 2022)
improved high-flow simulations for a catchment in Germany.
Hao and Bai (2023) showed that LSTM models performed
better than support vector machines (SVMs) and extreme
gradient boosting (XGBoost) for high flows, although XG-
Boost performed better for low flows. Research into deep
learning methods in hydrology is ongoing, with novel meth-
ods such as temporal fusion transformers (TFTs) now show-
ing promise for peak-flow simulation due to their integrated-
attention mechanism (Rasiya Koya and Roy, 2024).

LSTM-based hydrological models have increasingly been
utilized due to their ability to accurately simulate stream-
flow at both gauged and ungauged locations. These mod-
els can learn complex non-linear relationships between var-
ious hydrological variables and predict streamflow more ac-
curately than conceptual or traditional hydrological models.
They are thus prime candidates for extending streamflow
time series. For instance, Kratzert et al. (2018) highlighted
the superior performance of LSTM models over traditional
models for simulating streamflow, while Shen and Lawson
(2021) showed similar results at multiple river catchments,
showcasing the model’s ability to capture different hydro-
logical conditions. Kratzert et al. (2019a) and Arsenault et
al. (2023a) showed that LSTM models outperformed tradi-
tional hydrological models in streamflow regionalization by
predicting streamflow at ungauged sites with more accuracy
over a wide spatial domain. Wilbrand et al. (2023) advo-
cated for using global datasets to improve streamflow predic-
tion using LSTM networks after showing the strong potential
over a large set of catchments worldwide. The strengths of
LSTM-based modelling are now established in the literature,
but some limitations still persist. A significant hurdle in the
application of deep learning models to FFA is the need for
extensive data to train them effectively. Given that extreme
flood events are, by nature, rare occurrences, the scarcity
of examples can limit the model’s ability to learn and pre-
dict these events accurately. To address this challenge, re-
searchers have explored various strategies, such as

1. incorporating additional variables such as climatic and
land use data to better detect patterns (Wilbrand et al.,
2023);

2. expanding the dataset to include more catchments, thus
increasing the number of extreme-event examples (Fang
et al., 2022);

3. artificial data augmentation by reintroducing copies of
infrequent extreme events into the training datasets –
this puts more weight on the optimization of model pa-
rameters by modifying the objective function’s gradient
(Snieder et al., 2021).

The main objective of this study is to determine whether
LSTM-based hydrological models can generate accurate
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peak-streamflow predictions essential for effective flood risk
management. By achieving this, more accurate and reliable
FFA can be conducted in ungauged catchments.

2 Methods

2.1 Study area

The study area is composed of 88 catchments in south-
ern Quebec, Canada. These catchments are important to the
province for various reasons, including hydropower gener-
ation and agriculture. In the province of Quebec, floods
are caused by three distinct processes. First, snowmelt is
the main mechanism causing floods, especially over larger
catchments (>1000 km2). This typically happens between
the months of March and June, leading to one major flood
event per year. Second are synoptic extreme rainfall events,
which occur mostly in medium- to large-sized catchments
(between 100 and 1000 km2), leading to similar or larger
runoff volumes. These events can happen multiple times per
year, but they can also not occur for multiple years. The third
process is convective extreme rainfall events, which occur
only in very small catchments or urbanized areas. The 88
selected catchments therefore mirror a representative set of
Quebec rivers. Figure 1 presents the catchment locations, and
Table 1 presents the main properties of these 88 catchments.

2.2 Data

Multiple datasets were required for this project: meteorolog-
ical data for model calibration and simulation, hydrometric
data as the target of the modelling objectives, and catchment
descriptors to provide regional information to the deep learn-
ing models to inform streamflow predictions.

2.2.1 Meteorological data

Two types of meteorological data were used in this study
and are summarized in Table 1. First, we use an in-house
gridded precipitation and air temperature dataset developed
by the Quebec government using station observations (Berg-
eron, 2016). This product covers the period 1979–2017 and
provides daily data at a 0.1° resolution. It was used to cali-
brate and perform simulations with the distributed hydrolog-
ical model HYDROTEL. The HYDROTEL model was used
as the benchmark against which to evaluate the LSTM net-
works, and its outputs were also used as an input into certain
LSTM models, as described later.

The second type of meteorological data were from the
ERA5 reanalysis product (Hersbach et al., 2020), which
is provided by the European Centre for Medium-Range
Weather Forecasts through their Climate Data Store (CDS).
These data cover the entirety of the surface of the Earth at a
resolution of 0.25° at an hourly timescale and were shown
to be good proxies for observation stations for hydrologi-

cal modelling (Tarek et al., 2020). Using ERA5 has the ad-
vantage of providing meteorological forcings without any
missing data. This ensures a continuous spatial pattern for
every day as opposed to the previous gridded dataset that
must interpolate to fill in any missing data. ERA5 also pro-
vides more meteorological data than typical weather obser-
vation stations. Since LSTM models can ingest any number
of variables as inputs, a set of hydrologically relevant vari-
ables were selected as potential predictors of streamflow. The
list of variables is presented in Table 1. All variables were
downloaded for the period 1979–2023 and processed to cover
the same temporal domain as the observed streamflow at the
88 gauges of interest. Furthermore, the data were corrected
for UTC offsets and aggregated at the daily time step to al-
low modelling at the same temporal resolution as HYDRO-
TEL and the observed streamflow dataset. Finally, data were
spatially averaged at the catchment scale to ensure that all
catchments had the same number of input features for LSTM
model training, enabling the use of regional LSTM model
training, which has been repeatedly shown to be the best way
forward for LSTM-based hydrological models (Arsenault et
al., 2023a; Kratzert et al., 2024; Kratzert et al., 2019a, b).

2.2.2 Hydrometric data

Hydrometric data were provided by the government of the
province of Quebec, namely the water resources expertise
directorate. These data are the official archives of the 88 sta-
tions containing daily average streamflow for each site. De-
pending on data availability, time ranges of station data cover
the period 1979–2017. For this study, only stations with at
least 10 years of available streamflow data were preserved
to ensure sufficient data for training, validating, and testing
the LSTM models, as well as providing a lower bound on
the number of available years of extreme events for the FFA.
Studies have shown that 15 years of data is the lower bound
for LSTM-based modelling (Kratzert et al., 2018), but some
strategies are implemented to mitigate this limitation. The
catchments as depicted in Fig. 1 are colour-coded to indicate
the number of available years of streamflow data for each
station. The observed hydrometric data are also the target of
the objective function for the LSTM and HYDROTEL model
training and the basis against which the LSTM models are
compared in this study.

2.2.3 Catchment descriptors

This study required a large set of catchment descriptors to
help the LSTM models learn and build the relationships be-
tween meteorological time series and streamflow. To this end,
24 catchment descriptors were extracted using the PAVICS-
Hydro platform (Arsenault et al., 2023b) for each catchment.
A summary of these catchment descriptors is presented in
Table S1 of the Supplement. Overall, there are eight descrip-
tors related to the catchment shape and geographic proper-
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Figure 1. Study site of the 88 catchments in the province of Quebec. The colours represent the number of available years of observed
streamflow for each catchment, and white circles represent the location of the catchment outlets. The four catchments with the red borders
were selected for the FFA conducted in Sect. 3.2.

Table 1. Summary of hydrometeorological variables used as inputs into the LSTM models in this study.

Data variable Source Spatial resolution

Maximum air temperature [°C] ERA5 reanalysis 0.25°× 0.25°
Minimum air temperature [°C] ERA5 reanalysis 0.25°× 0.25°
Total precipitation [mm] ERA5 reanalysis 0.25°× 0.25°
Rainfall [mm] ERA5 reanalysis 0.25°× 0.25°
Snowfall [mm] ERA5 reanalysis 0.25°× 0.25°
Snowmelt [mm] ERA5 reanalysis 0.25°× 0.25°
Snow water equivalent [mm] ERA5 reanalysis 0.25°× 0.25°
Dew point temperature [°C] ERA5 reanalysis 0.25°× 0.25°
Wind velocity on east–west axis [m s−1] ERA5 reanalysis 0.25°× 0.25°
Wind velocity on north–south axis [m s−1] ERA5 reanalysis 0.25°× 0.25°
Wind speed [m s−1] ERA5 reanalysis 0.25°× 0.25°
Evaporation [mm] ERA5 reanalysis 0.25°× 0.25°
Downward surface solar radiation [J m−2] ERA5 reanalysis 0.25°× 0.25°
Surface pressure [hPa] ERA5 reanalysis 0.25°× 0.25°
Maximum air temperature [°C] DPEH gridded observations 0.1°× 0.1°
Minimum air temperature [°C] DPEH gridded observations 0.1°× 0.1°
Total precipitation [mm] DPEH gridded observations 0.1°× 0.1°
Simulated streamflow [m3 s−1] HYDROTEL hydrological model calibrated with DPEH dataset Catchment scale

ties (area, slope, elevation, aspect, Gravelius index, perime-
ter, centroid latitude, and centroid longitude), seven related
to land use (fraction of crops, forests, grass, shrubs, water,
wetlands, and urban), and nine related to hydrometeorology
(mean snow water equivalent (SWE), mean potential evap-
otranspiration (PET), mean precipitation (pr), aridity index,
fraction of precipitation falling as snow, frequency of high-
and low-precipitation days, and duration of consecutive high-
and low-precipitation days).

2.3 HYDROTEL

HYDROTEL is a semi-distributed physically based hydro-
logical model with 27 parameters (Fortin et al., 2001b, a).
HYDROTEL uses a modular approach to represent the main
hydrological processes with various algorithms. Different
sub-models can be selected to simulate snow accumulation
and snowmelt, PET, channel routing, and the vertical wa-
ter budget (Fortin et al., 2001b). For this study, the Hydro-
Québec formulation (Fortin, 2000; Dallaire et al., 2021) was
chosen to simulate PET, as well as a modified degree day es-
timating the daily evolution of the snowpack (Fortin et al.,
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2001a). The vertical water balance and channel routing are
estimated with a three-layer soil model and a geomorpholog-
ical hydrograph using the kinematic wave approximation.

The model requires both hydrometeorological and geo-
morphological information. Hydrometeorological data can
be provided from observation sites or gridded datasets at
daily and sub-daily time steps. The modules selected for
this study require daily series of total precipitation, as well
as minimum and maximum temperatures. The geomorpho-
logical information of each catchment is first processed by
PHYSITEL (Rousseau et al., 2011), a GIS-based software
that prepares catchment information (e.g., topography, soil
type, land use). PHYSITEL divides the catchment into rel-
atively homogenous hydrological units (RHHUs), whereas
HYDROTEL estimates hydrological processes.

This hydrological model has been used in the study region
for diverse applications, including extreme flood simulations
(Lucas-Picher et al., 2015), climate change impact studies
(Castaneda-Gonzalez et al., 2023), and regionalization meth-
ods (Martel et al., 2023), and is currently applied in an oper-
ational context by the DPEH for climate change impact stud-
ies and daily hydrological forecasting in the province of Que-
bec (CEHQ, 2015).

A regional HYDROTEL model, pre-calibrated by the
DPEH, served as the baseline for local recalibration on each
of the selected 88 catchments. These locally calibrated mod-
els were then used in this study for comparison purposes and
as an input for the LSTM-based hydrological model struc-
tures.

2.3.1 Regional model

The HYDROTEL platform used in this study was set up by
the DPEH. The platform consists of 15 large regions cover-
ing 771 403 km2 in southern Quebec and (to a lesser extent)
the province of Ontario and the United States (CEHQ, 2015).
The DPEH provided a fully calibrated HYDROTEL plat-
form that includes 259 calibrated gauges. This pre-calibrated
HYDROTEL platform consists of two globally calibrated re-
gions. In other words, one set of parameters was obtained for
the gauges located on the northern shore of the St Lawrence
River, and another one was obtained for the regions located
on the southern shore.

2.3.2 Local recalibration

A local recalibration was performed on each of the 88 se-
lected catchments to ensure their best local performance.
From the 27 internal parameters of HYDROTEL, 11 pa-
rameters were recalibrated, and the remaining 16 were
fixed following the previous recommendations of Turcotte
et al. (2007) (see Table S2 of the Supplement). This re-
calibration was performed using the Dynamically Dimen-
sioned Search (DDS) algorithm (Huot et al., 2019; Tolson
and Shoemaker, 2007) and the Kling–Gupta efficiency crite-

rion (KGE; Gupta et al., 2009; Kling et al., 2012) as objec-
tive functions over the entire period of 1979–2017. The idea
behind using the entire period is that the models may ben-
efit from longer periods of data, especially with the limited
number of peak-streamflow events. This has been proposed
in recent studies that highlighted the importance of including
all available data in a final calibration to ensure a more robust
set of parameters (Arsenault et al., 2018; Mai, 2023; Shen et
al., 2022).

2.4 LSTM-based hydrological model structures

The different elements of the model structures are described
in the following subsections.

2.4.1 General LSTM structure

In this study, a series of deep learning models that leverage
LSTM networks were implemented to model hydrological
processes within catchments. The model architecture is de-
signed to process both dynamic and static inputs, reflecting
the temporal dynamics and invariant characteristics of the
catchments, respectively.

The dynamic component of the model ingests time series
data, specifically designed to handle 365 d input sequences
preceding the target day. Once constructed, this input is pro-
cessed through six parallel LSTM branches, each consisting
of two initial LSTM layers with 128 units, followed by con-
catenation and another LSTM layer to further refine the tem-
poral features. This design choice aims to capture a broad
range of temporal dependencies and patterns within the data.
Each branch incorporates a dropout layer with a rate of 0.2
to prevent overfitting. The outputs of all branches are then
concatenated and processed through a final LSTM layer to
synthesize the temporal information into a cohesive repre-
sentation.

In parallel, the static inputs are processed through a dense
layer with 256 units with a rectified linear unit (ReLU) ac-
tivation function to introduce non-linearity. A dropout rate
of 20 % is again applied. The processed dynamic and static
features are then concatenated to form a comprehensive rep-
resentation of the hydrological state. This combined feature
vector is then passed through a dense layer of 256 units
including a “Leaky-ReLU” activation function. Finally, the
outputs of this layer are passed to a single, ReLU-activated
dense layer with a single unit. The final output is the predic-
tion of the target variable, i.e., the streamflow value.

This general deep learning model was implemented in
multiple variants by adjusting certain inputs, structures, and
hyperparameters to evaluate their ability to improve peak-
flow simulation. The first variant, considered to be the ref-
erence LSTM model (referred to as “LSTM-Base” in this
study), used the structure described here and presented in
Fig. S1. It was driven using all catchment descriptors but only
the ERA5 meteorological data as dynamic features.
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2.4.2 Addition of dynamic datasets

The first test to improve upon the LSTM-Base model was to
increase the number of input variables by adding the daily
precipitation and minimum and maximum air temperature
from the DPEH dataset. While LSTM-Base already includes
the same variables from the ERA5 dataset, it was previously
shown that adding the same variables originating from dif-
ferent datasets (such as observations, gridded or interpolated
datasets, or reanalysis data) could help improve hydrologi-
cal model simulations in a multi-model, multi-input setting
(Arsenault et al., 2017). For example, Kratzert et al. (2021)
show that providing three different meteorological datasets
to an LSTM model improved performance compared to us-
ing the LSTM models trained on each individual dataset. In
this study, the model that integrates a supplementary dataset
is referred to as “LSTM-Meteo”, and it uses the same struc-
ture and hyperparameters as LSTM-Base.

Another similar test was performed in which the simula-
tions generated by the calibrated HYDROTEL hydrological
model were added to the LSTM-Base model as a dynamic
input. These hydrographs can be used as inputs to introduce
“expert” knowledge into the model. Indeed, this can be used
by the LSTM model as a starting point to converge toward a
reasonable solution, using the ERA5 time series data to de-
termine corrections or to detect other patterns to further im-
prove upon the HYDROTEL simulations. This process has
been performed before for general hydrological modelling
and has shown better performance than process-based mod-
els or LSTM models individually (e.g., Liu et al., 2022; Wei
et al., 2024; Nearing et al., 2020). The resulting model is re-
ferred to as “LSTM-HYDROTEL” in this study.

2.4.3 Multi-head attention

Multi-head attention mechanisms, when integrated with
LSTM models, enhance the model’s ability to process and in-
terpret sequential data by allowing the model to focus on dif-
ferent parts of the input sequence simultaneously (Vaswani
et al., 2017). LSTM networks are inherently designed to re-
member information for long periods, and the addition of
multi-head attention enhances this capability by providing a
more nuanced understanding of the sequence. This is par-
ticularly beneficial in tasks that involve complex dependen-
cies over long sequences, which are common in hydrologi-
cal modelling (Wang et al., 2023). Examples include snow
accumulation and snowmelt and baseflow contributions to
streamflow depending on precipitation and evapotranspira-
tion in the previous weeks and months.

The essence of a multi-head attention mechanism is its ca-
pability to generate multiple attention “heads”. Each head
learns to attend to different parts of the input sequence, cap-
turing various aspects of the sequence’s contextual relation-
ships. This is achieved by parallelizing the attention process,
enabling the model to aggregate information from different

representational subspaces at different positions within the
sequence. In this study, four heads of 32 nodes each were im-
plemented in the model, referred to as the LSTM-Multi-head.
This mechanism was implemented in four of the six parallel
branches of the LSTM-Base model, such that two parallel
branches remain without the attention mechanism, to pre-
serve some direct link to the previous models of LSTM-Base,
LSTM-Meteo, and LSTM-HYDROTEL. The structure of the
multi-head attention model can be found in Fig. S2.

2.4.4 Oversampling

In addressing the challenge of accurately modelling peak-
streamflow events, a data augmentation strategy, namely
oversampling, was implemented. The rationale is to ensure
that more extreme values are used during the optimization
process, forcing the weights of the model to account for these
events more heavily during training (Snieder et al., 2021).
This artificial enhancement of the representation of peak-
streamflow events addresses the inherent imbalance in the
dataset, where such events are vastly outnumbered by more
common, lower-magnitude streamflow conditions.

The initial step was the identification of peak-streamflow
events within the observed streamflow data. Peak-streamflow
events are defined as those observations that fall within the
top 1 % of all streamflow values recorded in the dataset.
This criterion ensures that only the most extreme stream-
flow conditions are selected for augmentation, focusing the
model’s learning capacity on these critical events. Then,
each selected peak-streamflow event is replicated and rein-
jected into the training dataset. Specifically, each event is
copied and randomly inserted into the training data 10 times.
This approach significantly increases the presence of peak-
streamflow events in the training set, thereby providing the
model with more examples of these extreme conditions to
learn from during mini-batch gradient descent and weight
optimization.

This version of the LSTM model, referred to as “LSTM-
Oversampling”, uses only the ERA5 meteorological data as
dynamic features, along with the full set of static features. It
also uses the same structure and hyperparameters as the mod-
els LSTM-Base, LSTM-Meteo, and LSTM-HYDROTEL.

2.4.5 Additional donors

To enhance the robustness and generalizability of our LSTM
model, the training dataset was expanded beyond the ini-
tial 88 catchments by incorporating data from an additional
500 catchments. These catchments were taken from the HY-
SETS database, a dataset containing hydrometeorological
data and catchment descriptors for over 14 000 catchments
in North America (Arsenault et al., 2020a; 2020b). Catch-
ments were selected from the HYSETS database according
to the following criteria:
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– located near the region of interest, bounded by a latitude
of [37°; 59°] and a longitude of [−51°; −90°];

– shows a drainage area between 50 and 50 000 km2;

– has a minimum of 20 years of observed streamflow data
available.

From these catchments, 500 were randomly selected, pro-
viding a wider range of data for the LSTM model. The added
variability from the supplementary donors should thus pro-
vide more diverse training data, allowing the LSTM models
to better learn the relationships between meteorological and
hydrometric time series, as shown in Fang et al. (2022). This
“LSTM-Donors” model uses the same setup as LSTM-Base
but with data from 588 catchments instead of 88.

2.4.6 Combined model

The final LSTM model variant combines the structure of the
LSTM-Multi-head model with the extra meteorological data
from LSTM-Meteo and the HYDROTEL-simulated stream-
flow from LSTM-HYDROTEL. Oversampling was tested but
was shown to worsen results, leading to it being discarded
from this combined model. Furthermore, it was also not pos-
sible to add the 500 extra donors into this model as HYDRO-
TEL had not been implemented at those catchments. This
combined model is referred to as the “LSTM-Combined”
model in this study. Table 2 presents a summary of the
seven LSTM model variants for convenience.

2.5 LSTM model training

The seven variants of the LSTM models were developed to
minimize the standardized Nash–Sutcliffe efficiency (NSE;
Nash and Sutcliffe, 1970) loss function. This objective func-
tion was chosen due to its effectiveness in quantifying the
predictive accuracy of hydrological models, where a higher
NSE value indicates better model performance. However,
given that multiple catchments are processed at the same
time, streamflow was standardized by the size of the catch-
ment to prevent larger catchments with higher streamflow
from dominating the NSE. This method was first imple-
mented for LSTM models and was successfully applied in a
previous streamflow regionalization study using LSTM mod-
els (Arsenault et al., 2023a).

Prior to training, all variables were normalized using a
standard scaler. This step is crucial for ensuring that the
LSTM models could efficiently learn from the data as it mit-
igates the issue of different scales among the input features,
which can significantly affect the convergence speed and sta-
bility of the training process. The models were then trained
using the “AdamW” optimizer, an extension of the Adam op-
timization algorithm that includes weight decay to prevent
overfitting (Loshchilov and Hutter, 2017, 2018). The train-
ing process was conducted over 300 epochs, with an early
stopping mechanism. Specifically, the training would halt if

there was no improvement in the validation loss for a pa-
tience period of 25 epochs. This approach ensures that the
model does not overfit to the training data and can generalize
well to unseen data. To further enhance the training process,
a “reduce learning rate on plateau” strategy was employed.
This technique dynamically adjusts the learning rate when
the validation loss stops improving for better convergence.
In this study, the plateau duration was set to 8 epochs with a
factor of 0.5, reducing the learning rate by 50 % three times
before the 25-epoch patience is attained.

All LSTM models were trained regionally, using the
datasets from the 88 catchments, providing a comprehen-
sive and diverse range of hydrological behaviours for the
LSTM models to learn from. The temporal data from each
catchment were divided into three subsets: training, valida-
tion, and testing. The first 60 % of the available data for each
catchment were used for training, the subsequent 20 % were
used for validation, and the final 20 % were used for test-
ing. This division ensures that the models are trained on a
substantial portion of the data while still being validated and
tested on distinct sets to evaluate their generalization perfor-
mance accurately.

2.6 Evaluation of peak-streamflow representation

To assess the performance of the LSTM models in hydrolog-
ical modelling of catchments and, in particular, peak stream-
flow, two metrics were employed. These are the Kling–Gupta
efficiency (KGE) and the normalized root mean square error
(NRMSE) of the Qx1day index. Both metrics were evaluated
based on the 88 individual catchments after model training,
comparing the LSTM-simulated streamflow to the observed
streamflow. As a reference, results obtained using the HY-
DROTEL model (which was used in the calibration) are also
evaluated using these same metrics.

The Kling–Gupta efficiency (KGE; Gupta et al., 2009;
Kling et al., 2012) is a widely used metric in hydrology that
evaluates the overall performance of hydrological models by
comparing simulated and observed values in terms of corre-
lation, bias, and variability. It is defined as

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (1)

where r is the Pearson correlation coefficient between ob-
served and simulated streamflow, α is the ratio of the stan-
dard deviation of simulated streamflow to that of observed
streamflow, and β is the ratio of the mean of simulated
streamflow to that of observed streamflow. A KGE value of 1
indicates perfect agreement between simulated and observed
data, while a value that is closer to 0 or negative indicates
poor model performance.

For evaluating the model’s accuracy in predicting ex-
treme streamflow events, we utilize the normalized root mean
square error (NRMSE), specifically applied to the Qx1day
metric. The Qx1day metric represents the maximum simu-
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Table 2. Variants of the LSTM-based hydrological models used in this study.

Model name Differences compared to the LSTM-1 model

LSTM-Base –
LSTM-Meteo DPEH meteorological data added as input
LSTM-HYDROTEL HYDROTEL simulations added as input
LSTM-Multi-head Multi-head attention added to the structure
LSTM-Oversampling Peak-streamflow oversampling added to the training data
LSTM-Donors Addition of 500 donors during model training
LSTM-Combined Combination of the best models (LSTM-Meteo, LSTM-HYDROTEL, and LSTM-Multi-head)

lated and observed 1 d streamflow event for each year, focus-
ing on the model’s ability to capture extreme hydrological
phenomena. The NRMSE for Qx1day is calculated as fol-
lows:

NRMSE of Qx1day=

√
1
n

∑n
i=1

(
Q1 d

obs,i −Q
1 d
sim,i

)2

σQ1 d
obs

. (2)

Here, Q1 d
obs,i and Q1 d

sim,i denote the observed and simulated
maximum 1 d streamflow events, respectively; n is the total
number of such events considered; and σQ1 d

obs
is the standard

deviation of the observed 1 d streamflow events. This met-
ric specifically addresses the model’s precision in forecasting
the magnitude of peak-streamflow events, with lower values
indicating higher accuracy.

2.7 Flood frequency analyses

To assess the suitability of the annual maximum series
(AMS) for flood frequency analysis (FFA), analyses were
carried out on a selection of catchments using extreme-value
theory to estimate peak-flow quantiles associated with var-
ious return periods. The GEV (generalized extreme value)
distribution, derived from the block maxima method, was
used as it is specifically designed to model the behaviour of
annual extremes (Coles et al., 2001). Within the GEV family,
the Gumbel distribution – also known as the extreme-value
type-I distribution (EV-I) – represents a special case where
the shape parameter is fixed at zero, reducing the distribution
from a three-parameter form to a two-parameter form.

Although the GEV distribution generally offers greater
flexibility and a better fit to extreme-value data, the estima-
tion of its shape parameter can be unreliable when the AMS
record is short. This limitation is common in streamflow time
series. To address this, both the GEV and Gumbel distribu-
tion parameters were estimated using the maximum likeli-
hood method (MLM), and their performance was compared
using the likelihood ratio test (LRT). The LRT, appropriate
for nested models such as the GEV and Gumbel, assesses
whether the inclusion of the shape parameter in the GEV
leads to a statistically significant improvement in model fit.

To construct empirical frequency plots, the Cunnane plot-
ting position was applied to estimate the non-exceedance
probability associated with each annual maximum value
(Cunnane, 1978). The Cunnane formula is given by

P =
m− 0.4
n+ 0.2

, (3)

where P is the non-exceedance probability, m is the rank
(withm= 1 being the smallest value), and n is the total num-
ber of observations. This method provides an approximately
unbiased estimate of extreme quantiles and is widely used in
hydrological frequency analyses, including those conducted
by Environment and Climate Change Canada (ECCC). While
the Gringorten plotting position is theoretically better suited
for the Gumbel distribution (In-na and Nyuyen, 1989), the
Cunnane formula was adopted uniformly in this study to en-
sure methodological consistency across all cases, especially
given that model selection was based on statistical testing
rather than a priori preference.

3 Results

3.1 Training, validation, and testing period results

The first results presented are those related to the model train-
ing, validation, and testing of the LSTM models. The results
of the HYDROTEL model are also presented as a reference.
Figure 2 presents the KGE and NRMSE Qx1day (which will
be shortened to “NRMSE” in the text for clarity) results for
each of the three periods. The periods vary from catchment
to catchment, and the training, validation, and testing phases
represent 60 %, 20 %, and 20 % of the overall available data
for each catchment, respectively.

From Fig. 2, it can be seen that the HYDROTEL model
performance is relatively stable for both metrics across all
three periods. This reflects the fact that HYDROTEL was cal-
ibrated based on the entire period. On the other hand, LSTM
models are completely blind to the testing period data. The
LSTM models all display better KGE results than HYDRO-
TEL, showing the strong capacity of regional LSTM mod-
els to simulate streamflow for individual catchments and also
confirming that the LSTM-based models were not subject to
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Figure 2. KGE and NRMSE of Qx1day for the 88 catchments when modelled with the HYDROTEL hydrological model and seven LSTM
model variants. Results are presented according to the training, validation, and testing periods.

overfitting. Results also differ significantly within the LSTM
model variants. First, simply adding the three meteorological
variables (maximum and minimum temperature and precip-
itation, which were already represented in the ERA5 data)
improves results, as was the case in Arsenault et al. (2017)
for multi-model averaging implementations. Then, it can be
seen that simply adding the HYDROTEL model simulations
as inputs dramatically increases the KGE, meaning that the
LSTM is able to use the simulated streamflow as inputs
but can correct them similarly to a post-processing imple-
mentation. The multi-head implementation had mixed re-
sults depending on the catchment, but the oversampling strat-
egy led to worse results than the LSTM-Base model. The
LSTM-Donors model led to very promising results similar to
those of LSTM-Meteo. Finally, the LSTM-Combined model
showed the best performance, indicating that adding more
information and giving the model more flexibility within its
structure is an advantageous strategy. Results for NRMSE
show similar trends but with less dominance over HYDRO-
TEL. This could be related to the limited number of peak-
streamflow events for training the LSTM models, which is
one of their shortcomings. Nonetheless, the LSTM-Meteo,
LSTM-HYDROTEL, and LSTM-Combined models provide
notably better NRMSE results than the calibrated HYDRO-
TEL model.

To further evaluate the relative performance of each
model, results were compared on a per-catchment basis. Fig-

ure 3 presents a summary of the testing period results for
KGE and NRMSE (Fig. 3a and b, respectively), as well as a
map of the best-performing models for each metric (Fig. 3c
and d) and, finally, a comparison between the HYDRO-
TEL model and the LSTM-Combined model (Fig. 3e and f),
which displays the best performance.

Figure 3 shows that the LSTM-Combined model is the
best-performing model according to the KGE metric, ow-
ing to its strong general streamflow simulation skill. For the
NRMSE, the picture is more nuanced, with the eight mod-
els sharing the top rank for the 88 catchments, with no
clear spatial pattern that would allow for the prediction of
a “best model” based on catchment location. The LSTM-
Combined model was selected in 38.6 % (Fig. 3c) and 28.4 %
(Fig. 3d) of the catchments for the KGE and NRMSE, respec-
tively, compared to 0 % and 18.2 % for HYDROTEL. When
only the HYDROTEL and LSTM-Combined model are com-
pared, the latter shows better performance in terms of KGE
evaluation (95.5 %; Fig. 3e) and outperforms HYDROTEL in
a majority of catchments for the NRMSE (72.7 %; Fig. 3f),
although the results are, again, more nuanced.

Figure 4 (NRMSE Qx1day) and Fig. S3 (KGE) present
the results of a supplementary analysis done to evaluate the
performance of the models as a function of catchment size
to determine if it could help predict model skill. Similarly,
Fig. S4 (NRMSE Qx1day) and Fig. S5 (KGE) present the
comparison between the performance of models as a function
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Figure 3. Results over the testing period for the 88 catchments for the KGE (a, c, e) and NRMSE of Qx1day (b, d, f). Rows present the
overall performance for the eight models (HYDROTEL and seven LSTM variants; a, b), maps representing the best-performing model for
each of the 88 catchments (c, d), and maps presenting the best model – between HYDROTEL and LSTM-Combined – for each catchment
(e, f). The pie charts represent the distribution of the best model.

of the number of available years. Note that only Fig. 4 is
shown in the text; Figs. S3, S4, and S5 are presented in the
Supplement.

As can be seen in Figs. 4 and S3, the drainage area of
the catchments on a logarithmic scale does not seem to im-
pact the LSTM model variants. Indeed, the scatterplots ob-
tained suggest that no correlation would be found from fit-
ting a linear regression. Only two models were found to be
statistically significant with relatively small Pearson’s lin-
ear correlation coefficients: LSTM-Multi-head (KGE= 0.31
and NRMSE=−0.28) and LSTM-Donors (KGE= 0.30 and
NRMSE=−0.25).

The analysis revealed no significant correlations between
the number of available years and the model performance
(both KGE and NRMSE Qx1day) for either hydrological
model. This suggests that model performance is not directly
influenced by the length of the observational record.

3.2 Detailed evaluation on four selected catchments

The next results show the peak streamflow for each year in
the datasets of four selected catchments with almost full ob-
servational records (catchment nos. 061022 and 023303 are
missing 1984 and 1980, respectively), including for the train-
ing, validation, and testing periods. These catchments were
selected to represent a relatively small catchment and a large
catchment in both northern (3756 and 490 km2) and south-
ern (1152 and 769 km2) regions (see Fig. 1). They are also
the same as those that are analyzed in detail in Martel et
al. (2023). Results of this analysis are presented in Fig. 5.

Results in Fig. 5 show multiple interesting elements that
can help understand the strengths and limitations of the HY-
DROTEL and LSTM-Combined models. First, the training
period clearly demonstrates that the LSTM-Combined model
is able to fit the data with surprising accuracy on most oc-
casions, except for some extreme events in the observations
(either low or high, such as for the years 1980 and 1998 in
catchment no. 061022, Fig. 5b). The validation period, which
serves as the stopping criteria evaluation for the LSTM train-
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Figure 4. NRMSE of Qx1day scores for each of the eight models based on the 88 catchments as a function of the catchment drainage area.

ing process, is not directly used in training but is still used
to determine the best parameter set, meaning that it is not
independent. This can be seen in Fig. 6 where the LSTM-
Combined validation period Qx1day values are more simi-
lar to the observations compared to the HYDROTEL simula-
tions. However, the more interesting case is for the testing pe-
riod. Overall, the LSTM-Combined model outperforms HY-
DROTEL again; however, HYDROTEL performs best for the
large catchment in southern Quebec (Fig. 5c). It can also be
seen that, overall, the performance during the testing period
is worse than during the training and validation periods for
the LSTM-Combined model. However, HYDROTEL shows
similar errors across all periods, again due to the fact that it
was calibrated based on the entire period and therefore pre-
served similar skill during all three periods.

Finally, results for the FFA are presented in Fig. 6 for the
four selected catchments. Results of the LRT indicated that
the Gumbel distribution provided an adequate and more par-
simonious fit for all four catchments examined (see Fig. 6),
with no significant gain from using the full GEV formula-
tion. Consequently, the Gumbel distribution was selected as
the preferred model for FFA and was fit to the observations,
as well as to the HYDROTEL and LSTM-combined model
AMS.

It can be seen in Fig. 6 that the LSTM-Combined and HY-
DROTEL model FFAs fall within the uncertainty bounds of
the observations. However, it is interesting to note that the
LSTM model seems to either match or underestimate the ob-
served distribution, while HYDROTEL shows both overesti-
mation and underestimation.

4 Discussion

4.1 Strengths and weaknesses of each model in
streamflow simulation

In this paper, LSTM-based deep learning models are
compared to a distributed hydrological model for peak-
streamflow simulation. The HYDROTEL hydrological
model was calibrated over the entire period, whereas the
LSTM-based models were trained and evaluated based on
distinct periods, leading to a less favourable outcome for the
LSTM models. Nonetheless, when the results are compared
for the LSTM validation period, it can be seen that the LSTM
models outperform the HYDROTEL model in most cases for
overall streamflow simulation (KGE metric) and are at least
as good in terms of peak streamflow (NRMSE Qx1day met-
ric) depending on the LSTM modelling strategy, as displayed
in Figs. 2 and 3.

As for the peak streamflow specifically, the two best mod-
els are those that include HYDROTEL simulations. This
is a clear signal that the LSTM models are able to learn
from the first estimation of hydrological models and improve
them further using exogenous data. The other LSTM models
tested provided mixed results depending on the catchments
(Fig. 3b, d, and f) even though they outperformed HYDRO-
TEL in terms of the KGE metric. This clearly displays the
limitations of LSTM models regarding peak streamflow. In-
deed, while the attention mechanism, the oversampling, and
the addition of other meteorological data improved the over-
all simulation performance, the inherent lack of rare events in
the training dataset limits the LSTM model’s ability to gen-
erate these important streamflows.
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Figure 5. Qx1day of each year in the training, validation, and testing periods for four representative catchments for HYDROTEL, LSTM-
Combined, and the observed streamflow. The four catchments represent a large northern (a), small northern (b), large southern (c), and small
southern (d) catchment. The NRMSE values of the Qx1day for HYDROTEL and the LSTM-Combined model during the testing period are
shown in each figure’s title.

The addition of meteorological data to the LSTM-base im-
proved results, indicating that there is additional information
that is not present in the original dataset and that LSTM mod-
els can extract this added information. For example, it is pos-
sible that the datasets reflect slight differences in meteorolog-
ical statistics based on their generation method, which could
lead to biases. The LSTM could use these as a multi-input
method to correct biases, as in Arsenault et al. (2017). These
results mirror those of Kratzert et al. (2021).

The multi-head attention LSTM was unable to improve re-
sults in an appreciable manner compared to the LSTM-Base
model. This could lead to overfitting and could be evaluated
in another study with smaller model structures. For this case,
results suggest that the LSTM-Base model had sufficient
complexity to maximize the performance from the available
data, limiting the potential of the multi-head implementa-
tion. The attention mechanism, similarly, did not provide the
desired increase in weights based on the peak streamflow,
again, probably due to the few cases in the training period.

The LSTM-Oversampling model was the worst-
performing model in this study in terms of peak streamflow,
with worse results than the HYDROTEL model. However,
this failed, still providing better KGE values than HYDRO-
TEL but worsening the NRMSE Qx1day estimation. This
implementation was rather rudimentary, and recent research
has shown that some oversampling or undersampling meth-
ods could perform better, including generating synthetic data
from regressions between under-represented datasets (i.e.,
Synthetic Minority Over-sampling Technique; Maldonado et
al., 2019; Wu et al., 2020).

Finally, the LSTM-Donors model provided interesting re-
sults given the fact that it used the same data types as the
LSTM-Base model and performed better in terms of both the
KGE and NRMSE Qx1day metrics. Using more catchments
ensures that more peak-streamflow events are seen during
training.
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Figure 6. Flood frequency analysis for the four selected catchments: northern–large (a), northern–small (b), southern–large (c), and southern–
small (d). Results are shown for the HYDROTEL model and for the LSTM-combined model.

4.2 On the effect of adding hydrological model
simulations to the inputs of an LSTM network

The addition of the HYDROTEL simulations to the LSTM
network was done to guide the LSTM network in terms of
physics that the LSTM network alone cannot implement. For
example, deep learning networks lack the ability to ensure
that mass balance is respected and have no mechanism to
do so unless directly specified in the model objective func-
tion or by implementing custom mechanisms (such as the
Mass-Conserving LSTM or MC-LSTM; Frame et al., 2023).
Physics-guided LSTM models, on the other hand, ingest data
from an external source that respects these constraints. Since
HYDROTEL is already able to provide adequate streamflow,
this leads the LSTM model to recognize that it is a use-
ful input and then uses all the other inputs to condition the
HYDROTEL simulations as a form of post-processing. This
method was already implemented in other studies with suc-
cess, and it was anticipated that the implementation of HY-
DROTEL would indeed increase the overall performance.

However, one element that was not known is how this
would improve annual maximum streamflow. In theory,
hydrological models are better suited to simulating peak
streamflow than LSTM models due to their better extrapola-
tion ability when applied to single catchments. Since extreme
events are rare by definition, few examples appear in the
training datasets, making these models less accurate. How-
ever, adding hydrological model simulations helps anchor the
LSTM network to a known quantity, whereby the impacts of
data extrapolation are reduced. The results presented in Fig. 2

show that adding HYDROTEL simulations is the single most
impactful addition from the tested methods in terms of both
the KGE (overall streamflow simulation) and the NRMSE of
the Qx1day indicator (for peak streamflow exclusively). It is
therefore of interest for future research to evaluate the poten-
tial gains in performance that could be reaped by including
other hydrological model simulations as inputs or, alterna-
tively, other models that are designed and calibrated to better
simulate peak streamflow. This would allow more degrees of
freedom for the LSTM and would allow it to learn from the
strengths and weaknesses of each model.

4.3 On the data availability requirements for flood
frequency analysis

It is undeniable that having longer observational records
helps reduce epistemic uncertainty related to the FFA, espe-
cially for more extreme events (Hu et al., 2020). Methods to
extend streamflow records all have strengths and weaknesses,
and LSTM-based methods are no exception. The main argu-
ment against using LSTM-based methods to extend stream-
flow series for FFA is that they require large amounts of data
in order to ensure proper training. This means that models
such as the LSTM-Base will provide the least benefit to FFA
implementations as there will already be a long data record.
Nonetheless, there is still value to these methods. For exam-
ple, Ayzel and Heistermann (2021) showed that simulation
skills from LSTM models and gated recurrent units (GRUs;
another type of RNN) were comparable to those of the GR4H
conceptual hydrological model when using 14 years of data,
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and Kratzert et al. (2018) showed similar results, setting a
lower bound at 15 years of data. Therefore, a minimum of 15
years of data should be available at the target site to maxi-
mize the usefulness of the single-catchment LSTM models.
It is unclear, however, how adding a simulation from a hy-
drological model (which requires less data to provide useful
simulations, as per Ayzel and Heistermann, 2021) to the in-
puts, as was done with the LSTM-HYDROTEL model, might
lower this bound. This should be investigated in future re-
search. Nonetheless, previous research has shown that there
are important gains to be made in reducing epistemic uncer-
tainty for FFA by increasing the record length. As mentioned
in Hu et al. (2020), increasing the dataset length from 20 to
70 years of data reduced uncertainty by 50 %, and increasing
from 35 to 70 years reduced it by 33 % for the 100-year flood
event. Any lengthening of the dataset has a positive impact
on the FFA results.

However, the LSTM-based models can also make use
of donor catchments to estimate streamflow even at un-
gauged catchments (Arsenault et al., 2023a; Feng et al.,
2023; Kratzert et al., 2019a), reducing or even eliminating
the need for data. In this study, data from the target catchment
were still preserved to improve accuracy at the target site, but
it would be possible to exclude the target catchment from the
training set and to evaluate the FFA results in a leave-one-
out cross-validation framework. Comparing these results to
those of a regionally calibrated (or regionalized) hydrologi-
cal model would shed more light on the usefulness and abil-
ity of LSTM-based models to provide streamflow for FFA
analysis. In all cases, the problem with peak-streamflow rep-
resentation is key and would need to be investigated further.
It therefore seems that data availability is not as much of an
issue and might even allow for better performance than using
conceptual hydrological models when few (or no) streamflow
records exist. This would, however, strongly depend on the
characteristics of the donor catchments and how well they
encompass those of the target catchment to allow the LSTM
models to interpolate correctly at the ungauged site.

4.4 Should LSTM models be used for peak-streamflow
simulations?

Deep neural networks, including the LSTM-based models
used in this study, have always had the drawback of requir-
ing many training samples to allow them to reproduce pat-
terns correctly. In the case of maximum annual streamflow,
these are less common by definition. Strategies must be im-
plemented to increase the representation of peak streamflow
in the training dataset. The various methods used herein (us-
ing hydrological model simulations as inputs, peaks over-
sampling, attention mechanisms, extra donor sets) provided
a heterogeneous response. The addition of the hydrological
model provided the best results individually, while combin-
ing this approach into a multi-input and multi-head attention
mechanism was even better, strongly outperforming the HY-

DROTEL model simulation. This seems to provide an an-
swer to the following question: should LSTM models be used
for peak-streamflow simulations? Using LSTM-based mod-
els can improve peak-streamflow representations, but results
indicate that they perform best when using them in a hy-
brid and/or post-processing manner in tandem with classi-
cal hydrological models. Doing so maximized the skill of
each approach in this study and should be strongly consid-
ered for similar studies. However, while one direct oversam-
pling method was implemented in this study, there is an in-
creasingly large body of literature dedicated to generating
synthetic data (such as CoSMoS-2s; Papalexiou, 2022) and
creating ensembles of data that could be used instead of the
relatively simple method. Doing so could unlock more poten-
tial from the implemented methods and could lead to better
predictions of peak flows.

The four catchments tested for the FFA were also used in
another study that compared multi-model averaging meth-
ods and statistical post-processing of streamflow for ex-
treme flood events (Martel et al., 2023). The statistical in-
terpolation technique improved streamflow overall, includ-
ing stream peak flows, but led the FFA for extreme return
periods to extend beyond the confidence interval in some
cases (Fig. 12 in Martel et al., 2023). Multi-model averaging
of simulations of multiple variants of HYDROTEL showed
similar results. This indicates that using multiple hydrologi-
cal models or post-processing can provide less reliable FFA
results than combining hydrological models with LSTMs or
other deep learning models, increasing confidence in this ap-
proach.

A potentially more robust and skilful approach would be
to train hydrological models on large sets of catchments such
as those in the donor set and to build an LSTM-Donor model
that also includes hydrological model simulations as inputs.
This would allow for the best of both worlds as long as there
are sufficient data to calibrate the hydrological model at the
target site. These future research prospects should be inves-
tigated to provide a clearer picture of the ability of LSTM-
based models (and other deep learning model architectures)
to simulate peak streamflow for FFA and other simulation
purposes. This would also aid in reducing the risk of overfit-
ting, which was not necessary in this study (as seen in Fig. 2)
but could alleviate such risks in regions with fewer available
data.

Another point of note is that the Gumbel and GEV dis-
tributions were used for the FFA. These methods have been
shown to generate larger amounts of uncertainty in the dis-
tribution when fewer numbers of years are used (Hu et al.,
2020). However, for AMS, it was shown that the choice of
a distribution did not contribute to the overall uncertainty
when more than 20 years of data were provided, with all
tested methods converging to similar levels of uncertainty.
This is another advantage of extending time series for FFA.
Furthermore, it can be seen that both the HYDROTEL and
LSTM-based model FFAs fit within the uncertainty bounds
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as derived from the observations in Fig. 6, indicating that
both methods are able to simulate extreme flood events ade-
quately. Using catchments with longer time series and using
them as test cases for shorter or longer periods of data avail-
ability could help identify cases where conceptual hydrolog-
ical models or LSTM-based models perform better.

5 Conclusions

In this study, seven LSTM-based hydrological models were
presented and compared in terms of their ability to simu-
late maximum annual streamflow in 88 catchments in the
province of Quebec, Canada. The models were also com-
pared to a distributed hydrological model. Results showed
that LSTM-based models are, indeed, able to extend stream-
flow observation time series for FFA and do so with equiv-
alent skill compared to the distributed hydrological model.
However, combining both types of models into a physics-
guided LSTM model by providing the HYDROTEL simula-
tions as inputs showed the best results. LSTM-based models’
ability to simulate peak streamflow necessarily involves in-
creasing their representation in the training dataset, and mul-
tiple pathways forward are provided.

Oversampling approaches and multi-head attention mech-
anisms were shown to provided limited benefits. They could,
however, become much more important if applied to different
models or sets of conditions. One could argue that increas-
ing the number of donor catchments and including more hy-
drological model simulations could provide synergetic gains,
leading to a complex, post-processed, multi-model averaging
mechanism using hundreds or thousands of catchments. The
attention mechanism could then prove to be more impact-
ful by selecting which models to prioritize, depending on the
reigning hydrometeorological conditions, as a dynamic and
automatic model selection algorithm. Furthermore, adding
datasets, donors, and model simulations would then allow for
an increase in the LSTM model complexity, which was kept
intact. This would further increase the model’s abilities to
focus on peak streamflow and could, in the right conditions,
become the new standard.

This study shows that LSTM models can already chal-
lenge hydrological models when it comes to simulating peak
streamflow, yet some limitations persist and should be eval-
uated and overcome in future research. First, this study was
performed over a set of catchments in the province of Que-
bec, Canada, whose streamflow signatures are strongly dom-
inated by snowmelt. This, in turn, means that the models’
abilities to simulate peak streamflow are essentially tied to
their ability to simulate snow accumulation and snowmelt.
Application to smaller catchments and to rainfall-dominated
catchments could lead to different results, depending on the
ability of the models to simulate the underlying processes.
Second, the LSTM models tested herein all shared the same
structure and complexity, except for the multi-head attention

version, limiting the gains made by integrating new and in-
creased datasets. Accounting for this increase by increasing
the model complexity in parallel could help assess the poten-
tial gains more accurately at the expense of comparability.

Overall, this study shows that LSTM-based models are not
only able to match hydrological model performance but have
the ability to surpass it through pathways. However, since
hydrological model simulations seem to be a key input into
the LSTM models, they are likely to still play an important
role in the process, and, as such, continued development of
hydrological models is encouraged despite the recent trends
toward replacing them with deep learning alternatives. Future
research should explore the potential of LSTM-based models
to extend historical streamflow records, particularly in catch-
ments with limited observational data. This would support
more robust flood frequency analyses by reducing epistemic
uncertainty through longer and more complete datasets.
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