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Abstract. Evapotranspiration is the dominant pathway by
which water returns from land surfaces and vegetation to the
atmosphere in many semiarid and subhumid regions. In this
study, we integrated satellite-based estimates of evapotran-
spiration with climate, runoff, and woody-vegetation data to
evaluate how changes in precipitation, air temperature, and
canopy cover jointly influence water loss in a temperate sa-
vanna that spans both semiarid and subhumid climates. Our
validation at the subbasin scale showed that modeled evapo-
transpiration agreed moderately well with water-balance es-
timates (coefficient of determination ≈ 0.65, bias −7 mm
per water year, and root mean square error 103 mm per wa-
ter year). Across the region, annual evapotranspiration totals
generally reached about 90 % of precipitation, indicating an
ecosystem strongly driven by atmospheric water demand. In
dry years, water loss occasionally exceeded rainfall, high-
lighting a heightened sensitivity to soil moisture shortages
and extreme heat. Areas with high woody-canopy cover con-
sistently exhibited higher evapotranspiration and lower net
water surplus. Notably, where canopy cover exceeded 80 %
in the driest portions of the study area, the soil water sur-
plus turned negative over multiple years. These findings un-
derscore the potential for expanding woody cover to limit
groundwater recharge and reduce overall water availability,
especially under warming and more variable precipitation
regimes. Future work could explore fine-scale, long-term
impacts of woody plant density and targeted management
strategies that optimize trade-offs among vegetation growth,
ecosystem health, and water resources.

1 Introduction

Evapotranspiration (ET) is the principal flux returning water
from the Earth’s surface to the atmosphere, with estimates
suggesting that 62 000–75 000 km3 of water cycles back an-
nually (Abbott et al., 2019). This process accounts for more
than 60 % of global precipitation (Oki and Kanae, 2006).
Because the difference between precipitation (P ) and ET is
commonly used to evaluate water availability at catchment
and basin scales (Falkenmark et al., 1989), accurately quanti-
fying ET and identifying its key drivers are critical for effec-
tive water resource management and ecosystem protection.

Climatic factors – air temperature (Ta) and precipitation –
are typically regarded as the main drivers of ET (Dai et al.,
2018). Rising air temperatures have increased atmospheric
moisture demand worldwide, manifesting as upward trends
in potential evapotranspiration (PET) – the theoretical maxi-
mum ET assuming no water limitation (Feng and Fu, 2013;
Fu et al., 2022; Scheff and Frierson, 2014; Zhao and Dai,
2015; Dai et al., 2018). Unlike PET, which ignores water
constraints, measured ET is closely coupled with P , gener-
ally displaying a positive correlation (Stocker et al., 2013).
However, the strength of this coupling varies across regions,
climates, and timescales. In contrast, Ta and ET exhibit a
weaker relationship overall. Although they are more strongly
correlated in humid areas, they may decouple and even show
negative correlation under arid conditions during extreme
heat events (Yuan et al., 2019; Alessi et al., 2022; Berg and
Sheffield, 2018).

In addition to climatic factors, ecosystem structure – par-
ticularly changes in woody vegetation – can significantly al-
ter ET rates. Numerous studies in the United States document
how woody plant encroachment (WPE), defined as the ex-
pansion of native trees and shrubs into grass-dominated sys-
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tems such as grasslands and open-canopy savannas (Acharya
et al., 2018), modifies ET. In Texas, Dugas et al. (1998) and
Afinowicz et al. (2005) observed ET decreases of 31.9 and
110 mm yr−1, respectively, following the removal of Junipe-
rus ashei. Dugas et al. (1998) further noted that these de-
creases persisted for only 2 years, after which the effect di-
minished. By contrast, in Oklahoma, Wang et al. (2018) re-
ported a 45 % increase in mean annual ET in a former grass-
land region after its conversion to Juniperus spp.-dominated
woodlands, and Qiao et al. (2015) showed that average ET
rates in Juniperus virginiana woodlands were 100 mm yr−1

higher than those in neighboring grasslands. Similar pat-
terns appear farther west, in a riparian area in Arizona,
where Prosopis velutina woodlands exhibited an ET rate of
692 mm yr−1, compared with 548 mm yr−1 for an adjacent
grassland (Scott et al., 2014).

The Post Oak Savannah ecoregion of east-central Texas
presents a particularly compelling set of conditions for a case
study examining how climate and woody vegetation jointly
influence ET. Over the past 150 years, anthropogenic reshap-
ing of this landscape has resulted in a mosaic of grasslands,
savannas, and densely wooded thickets (Campbell, 1925;
Tharp, 1926; McBride, 1933; Parmalee, 1955; Garza and
Blackburn, 1985; Midwood et al., 1998; Griffith et al., 2007;
Stambaugh et al., 2014). Recent remote sensing studies by
Olariu et al. (2024) revealed that between 1996 and 2022, ca.
9.7 % (5338 km2) of the Post Oak Savannah underwent WPE,
converting grassland and open-canopy savanna into wood-
land, while another ca. 6.8 % (4504 km2) experienced “thick-
etization”, marked by proliferating sub-canopy woody plants
in established woodlands. At the same time, some 5.7 %
showed the opposite trend, transitioning from woodlands to
more open savanna or grasslands. Superimposed on these
rapid land-cover changes are pronounced east–west gradi-
ents in precipitation (850–1250 mm yr−1) and air tempera-
ture (18–22 °C), with drier, hotter conditions in the southwest
and cooler, wetter conditions in the northeast (Schmidly,
2002). These dynamic biophysical conditions underscore the
importance of studying how changing vegetation structure
and climate interact to shape ET across this region.

Shifts in ecology and biodiversity associated with thicke-
tization in oak savanna systems have been thoroughly exam-
ined (Brudvig and Asbjornsen, 2009; Brudvig, 2010; Zirbel
et al., 2017). However, the hydrological implications of WPE
in these water-limited ecosystems remain comparatively un-
derstudied. Because ET is generally the dominant component
of the water budget (Condon et al., 2020; Reitz et al., 2017;
Seager and Vecchi, 2010), an increase in woody cover could
substantially alter water cycling. Indeed, a recent study in the
Post Oak Savannah by Basant et al. (2023) found that thicke-
tization markedly reduced deep drainage and, in some cases,
halted groundwater recharge altogether. Meanwhile, wood-
lands that had not undergone thicketization still experienced
recharge, but at much lower rates than non-thicketized areas.
Although these findings strongly suggest that ET increases

in response to woody plant proliferation, this hypothesis re-
mains unquantified – creating a clear knowledge gap regard-
ing how WPE affects water resources in oak savanna ecosys-
tems.

To address this knowledge gap, the present study inte-
grates remote sensing and hydrological modeling approaches
to characterize ET dynamics across the Post Oak Savannah
between 2008 and 2023. We employ MOD16A2GF C6.1,
hereafter referred to as MOD16 – the gap-filled, 8 d net
ET dataset – along with water-balance estimates to validate
and refine ET measurements at multiple temporal scales. By
combining these satellite-derived products with spatially ex-
plicit woody plant metrics and climate data, we aim to de-
termine how variations in vegetation structure and environ-
mental conditions influence ET. Accordingly, this study pur-
sues four primary objectives: (1) evaluate MOD16 in the
Post Oak Savannah by comparing satellite-derived ET data
against water-balance estimates, thereby establishing the ac-
curacy of MOD16 for regional-scale analyses; (2) exam-
ine monthly and seasonal variations in ET, gaining insight
into short-term and interannual changes; (3) analyze the re-
lationship between woody plant metrics (canopy cover and
canopy height), climatic factors (precipitation and air tem-
perature), and ET at the water-year (wyr) scale – using both
linear regression and generalized additive models (GAM) –
to quantify how shifts in vegetation composition and climatic
drivers affect ET rates; and (4) evaluate evapotranspiration–
precipitation ratios (ET / P ) and calculate excess water (pre-
cipitation minus evapotranspiration, P –ET) across the region
at the water-year scale to provide a broader assessment of wa-
ter availability under varying woody cover and climatic con-
ditions. By integrating a robust remote sensing framework
with field-based validation and detailed ecological data, this
study aims to enhance our understanding of how climate and
WPE jointly influence water cycling in the Post Oak Savan-
nah.

2 Materials and methods

2.1 Study site

The Post Oak Savannah ecoregion in east-central Texas cov-
ers over 55 000 km2 and spans 31 counties, with its west-
ern boundary encompassing much of the Carrizo–Wilcox
Aquifer (Fig. 1A). Historically, this region supported an
open-canopy savanna characterized by diverse grasses and
forbs interspersed with stands of post oak (Quercus stellata)
and blackjack oak (Quercus marilandica) (Wasowski and
Wasowski, 1988). Positioned between the East Texas Piney
Woods – dominated by dense evergreen forests – and the
Central Texas Blackland Prairie – characterized by black,
calcareous, alkaline, clay-rich soils – this landscape func-
tions as an ecological transition zone (Diggs et al., 1999;
Schmidly, 2002).

Hydrol. Earth Syst. Sci., 29, 4825–4846, 2025 https://doi.org/10.5194/hess-29-4825-2025



H. G. Olariu et al.: Linking woody plants, climate, and evapotranspiration 4827

During the study period (2008–2023), both precipitation
and air temperature displayed pronounced spatial variabil-
ity, with annual precipitation ranging from approximately
1400 mm in the northeastern portion of the ecoregion to
about 600 mm in the southwest (Fig. 1b). Mean annual air
temperature exhibited a similar gradient, decreasing from
roughly 22 °C in the northeast to 17 °C in the southwest
(Fig. 1d). Canopy cover over this interval showed substan-
tial fragmentation, with densely wooded stands interspersed
among open, grass-dominated areas (Fig. 1e). In contrast,
the southern portion exhibited a more continuous mosaic of
cover types, with less abrupt transitions between wooded and
non-wooded patches (Fig. 1e).

2.2 Data and preprocessing

2.2.1 Evapotranspiration data

In this study, we used the MOD16 Collection 6.1 terres-
trial ecosystem ET dataset (Running et al., 2021), which is
based on a modified Penman–Monteith formulation (Mu et
al., 2007; Mu et al., 2011). It provides 8 d cumulative ET
estimates for the global land surface at a 500 m spatial res-
olution (units: mm). This ET product has been widely em-
ployed in global ET modeling (Kim et al., 2012; Ershadi
et al., 2015; Ramoelo et al., 2014; Trambauer et al., 2014;
Velpuri et al., 2013), showing variable performance upon
validation but generally stronger accuracy in North Amer-
ica (Velpuri et al., 2013; Zhang et al., 2019). Developed us-
ing meteorological data from NASA’s Global Modeling and
Assimilation Office (GMAO) and various MODIS-based in-
puts (e.g., LAI, FPAR, albedo) (Mu et al., 2011), Version
6.1 offers notable improvements in areas affected by clouds
and/or aerosol contamination. Specifically, it employs a year-
end gap-filling technique in which 8 d intervals lacking re-
liable FPAR/LAI data are replaced with the average of the
best available FPAR/LAI for that vegetation pixel over the
preceding 5 years.

A quality control workflow was implemented to exclude
bad pixels from the analysis. Pixels produced solely by the
MOD16 backup algorithm were masked and removed. Addi-
tionally, because MODIS employs its own confidence qual-
ity score assessment, only pixels with scores of 0 and 1 –
indicating good and usable data – were retained, while all
others were discarded. Finally, we used the MCD12Q1.061
MODIS Land Cover Type Yearly Global 500 m Land Cover
Type 1: Annual IGBP classification system to mask pixels
classified as Water Bodies, Barren, Cropland, or Cropland/-
Natural Vegetation Mosaic. These were excluded from the
analysis because of the lack of natural vegetation and the in-
fluence of artificial watering on the results.

2.2.2 Air temperature and precipitation data

The air temperature and precipitation products used in this
study were obtained from the Daymet V4 model, devel-
oped by Oak Ridge National Laboratory and supported by
NASA through the Earth Science Data and Information Sys-
tem (Thornton et al., 2022a). Daymet provides long-term,
continuous, gridded estimates of daily climate variables at
a 1 km resolution by interpolating and extrapolating ground-
based observations via statistical modeling techniques. It has
been widely utilized in ecological, hydrological, and agricul-
tural studies (Akinsanola et al., 2024; Dey et al., 2024; Bhat
et al., 2024; Zahura et al., 2024; Bennemann et al., 2023).
Because Daymet provides daily minimum and maximum air
temperatures, we calculated the simple mean for each day to
derive the average daily air temperature.

2.2.3 Woody plant metric data

Two primary metrics were used to characterize woody veg-
etation in this study: canopy cover and canopy height. The
canopy cover data originated from Version 3 of the Range-
land Analysis Platform (RAP) (Allred et al., 2020), devel-
oped by the University of Montana in partnership with the
U.S. Department of Agriculture (USDA). This dataset com-
bines tree and shrub cover to capture the full spectrum of
woody plants influencing ET (Allred et al., 2021). The RAP
cover estimates integrate information from 75 000 field plots
and the historical Landsat record. Through cloud computing
and temporal convolutional networks, annual predictions are
generated at a 30 m resolution across the United States. Val-
idation against approximately 7500 field plots yielded mean
absolute errors (MAEs) of ± 6.2 % and ± 2.6 % for shrubs
and trees, respectively, and root mean square errors (RMSEs)
of ± 8.8 % and ± 6.7 % for shrubs and trees, respectively.
While RAP has primarily been applied in agricultural con-
texts (Hudson et al., 2021; Morford et al., 2022; Subhashree
et al., 2023; Retallack et al., 2023), it has also demonstrated
utility in ecological studies (Olariu et al., 2024).

Canopy height data were drawn from two sources:
Potapov et al. (2021a), which provides 2019 estimates, and
Malambo and Popescu (2024a), which supplies 2020 es-
timates. Potapov et al. (2021a) produced a 30 m canopy
height model (CHM) by extrapolating canopy height mea-
surements from Global Ecosystem Dynamics Investigation
(GEDI) footprints to analysis-ready Landsat data, using a
bagged regression tree ensemble method (Breiman, 2001).
When validated against airborne lidar, the CHM displayed
an RMSE of 9.07 m, an MAE of 6.36 m, and an R2 of
0.61, performing particularly well for taller trees (≥ 10 m).
This dataset has largely been employed to quantify stock-
ing rates and biomass for ecological research (Ali and Rah-
man, 2025; Potapov et al., 2021a; Hawker et al., 2022). In
contrast, Malambo and Popescu (2024a) integrated ICESat-
2 (Ice, Cloud, and Land Elevation Satellite-2) with ancillary
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Figure 1. Overview of the Post Oak Savannah ecoregion in east-central Texas. Panel (a) places the ecoregion within the conterminous United
States, highlights Texas and the Carrizo–Wilcox Aquifer, and overlays a 2023 true-color Landsat 8 OLI mosaic. Panels (b) and (c) draw on
the 2008–2023 Daymet V4 daily precipitation record: panel (b) maps mean annual precipitation (MAP, mm yr−1), calculated as the multi-
year average of the annual sums of daily totals, and panel (c) reclassifies that MAP surface into four precipitation zones (600–800, 801–1000,
1001–1200, and ≥ 1201 mm). Panel (d) depicts mean annual air temperature (MAT, °C) for the same period, derived from Daymet V4 by
averaging daily maximum and minimum air temperatures [(Tmax+Tmin)/2] and then averaging those daily means across 2008–2023. Panel
(e) presents fractional canopy cover (%) at 30 m resolution from the Rangeland Analysis Platform V4, averaged over the identical 2008–2023
window. Specifying these data sources, periods, and processing steps allows the caption to be interpreted independently of the main text.

Landsat, LANDFIRE, and topographic variables to produce
a 30 m canopy height product. Validation against airborne li-
dar (R2

= 0.72, MAE= 3.9 m) revealed higher accuracy in
densely forested environments – such as mangroves, conifer-
ous forests, or mixed broadleaf forests – than in sparsely veg-
etated regions like deserts and chaparral. Although relatively
new, this product has already been applied to hurricane-
impact studies in mangrove ecosystems (Roy et al., 2025)
and other remote sensing research (Guo et al., 2024; Guen-
ther et al., 2024).

2.2.4 Runoff data

The runoff data used for the water-balance ET (WBET)
calculations were obtained from USGS WaterWatch (http:
//waterwatch.usgs.gov, last access: 12 February 2025;
U.S. Geological Survey, 2025), a platform that provides
streamgage-based maps for over 3000 long-term (30 years
or more) USGS streamgages. Runoff was calculated at the
water-year scale for each HUC8 subbasin by dividing the av-
erage daily flow for the water year by the drainage basin area,
and it was assumed to be uniform across the entire basin.

2.2.5 Stacking and aggregation

All projection, resampling, and aggregation for this study
were performed on the Google Earth Engine (GEE) platform
(Gorelick et al., 2017). To align the various datasets, each
was projected to the EPSG:3857 (Spherical/Web Mercator)
coordinate system, clipped to the Post Oak Savannah bound-
ary (US EPA Level-3 ecoregion), and resampled using the
500 m MOD16 grid (Omernik and Griffith, 2014).

To maintain consistency with the ET product, both
canopy-cover and canopy-height datasets were resampled
from 30 to 500 m via mean resampling, which preserved the
continuous nature of the data (Blan and Butler, 1999). By
contrast, Daymet data were resampled from 1 km to 500 m
using the nearest-neighbor method to retain the original val-
ues (Brandsma and Können, 2006).

Once aligned and resampled, the datasets were aggre-
gated to monthly scales, water-year scales (1 October to
30 September), and overall averages for the entire study
period. For instance, Water 2009 encompasses data from
1 October 2008 through 30 September 2009. This water-
year approach was chosen in lieu of the standard calen-
dar year (1 January to 31 December) to better capture the
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lagged effects of the region’s precipitation patterns – rainier
fall and spring seasons and drier summers – on vegetation
and water balance (Null and Viers, 2013; He et al., 2021;
Papacharalampous and Tyralis, 2020). Specifically, the 8 d,
500 m MOD16 ET product was aggregated to monthly (Jan-
uary 2008–December 2023) and water-year (2009–2023)
scales. Pixels that had been masked during any portion of
a particular month or water year were given a null value
and excluded from analysis. The daily, 500 m Daymet V4
precipitation dataset was aggregated to both monthly and
water-year intervals, whereas air temperature was aggregated
only to the water-year scale. Precipitation data were further
averaged across the entire study period and then grouped
into 200 mm precipitation zones (600–800, 801–1000, 1001–
1200, and ≥ 1201 mm) to assess the influence of varying
aridity (Fig. 1c). To align the annual canopy cover and
canopy height metrics with the ET data, each year’s canopy
values were matched to the corresponding water year’s ET
(e.g., canopy cover for 2012 was compared with ET from wa-
ter year 2012), ensuring that 9 of the 12 months overlapped.
Lastly, the canopy cover dataset was also aggregated into an
overall average spanning the study period for use in monthly
analyses and the excess water analysis.

Finally, to enhance our understanding of water use and cy-
cling in areas of increasing woody vegetation density, canopy
cover was stratified into six classes: 0 %–10 %, 11 %–20 %,
21 %–40 %, 41 %–60 %, 61 %–80 %, and ≥ 81 %. These dis-
tinctions were informed by an extensive literature review en-
compassing a wide range of ecological and hydrological con-
siderations. Numerous studies identify 10 % canopy cover
as the upper threshold for grasslands in temperate climates
(Dixon et al., 2014; Plappert et al., 2024; Hu, 2024). By con-
trast, savanna systems typically exhibit between 10 % and
60 % canopy cover (Loewensteiner et al., 2021; Anchang et
al., 2020), with higher percentages generally characterizing
tropical savannas, where woodlands are denser than in tem-
perate zones. Accordingly, the 10 %–60 % range was subdi-
vided into three strata: 10 %–20 % cover, representing tran-
sitional grassland–open-canopy savannas; 21 %–40 % cover,
representing open-canopy savannas; and 41 %–60 % cover,
representing savanna–woodland transition zones. The 41 %–
60 % range is more prevalent in the northern Post Oak Sa-
vannah, where higher precipitation supports greater woody
density. The highest cover categories (61 %–80 % cover and
≥ 81 %) were then designated as woodlands and thicketized
woodlands, respectively.

2.3 Major steps

Consistent with the four objectives of this study, we (1) vali-
date the MOD16 ET product against water-balance estimates
(WBET) at the subbasin (HUC8) scale; (2) analyze monthly
and seasonal ET differences as they relate to canopy cover;
(3) use linear regression to examine the coupling and de-
coupling of woody plant metrics (canopy cover and canopy

height), climatic factors (precipitation and air temperature),
and ET within different precipitation zones; and (4) evaluate
excess water (P –ET) at the water-year scale – including an
ET / P analysis – to assess broader trends in water availabil-
ity over the study period (Fig. 2).

2.3.1 MOD16 ET evaluation

At the water-year scale, WBET for the HUC8 subbasins was
compared with MOD16 ET. The water-year WBET for these
HUC8 subbasins was computed as follows:

WBET= P −R− 1S, (1)

where P , R, and1S are water-year precipitation, runoff, and
storage changes at the HUC8 subbasins, respectively.

The independent WBET dataset we used to compare
against the MOD16 ET estimates was generated via a
water-balance approach at the HUC8 scale. The contermi-
nous United States is partitioned into hierarchical hydrologic
units, each assigned a unique hydrologic unit code (HUC)
consisting of two to eight digits (Seaber et al., 1987). The
largest unit is a region (HUC2), followed by a sub-region
(HUC4), a basin (HUC6), and ultimately a subbasin (HUC8).

Following established methods in the literature, we ap-
plied several filters to exclude HUC8 subbasins where the
water balance was unlikely to close (i.e., WBET 6= P −
R). First, we removed any HUC8s having a runoff-to-
precipitation ratio (R/P ) exceeding 0.40 to mitigate the in-
fluence of regional groundwater flow (Velpuri et al., 2013;
Senay et al., 2016). We also excluded HUC8s having a
WBET greater than PET and those having less than 60 % of
their area located within the Post Oak Savannah. These cri-
teria resulted in 11 HUC8s being retained (Fig. 3). Among
them, the percentage of area within the Post Oak Savannah
ranged from 61 % to 99 %, with an average of 76 %. In to-
tal, 154 pairwise comparisons (11 HUC8s× 14 water years)
were available, as the WaterWatch data extended only to the
2022 water year.

All 154 paired points were plotted, and the R2, bias, and
RMSE values were calculated. Furthermore, R2, bias, and
RMSE were calculated for each HUC8, as well as each water
year.

2.3.2 Monthly and seasonal analysis

Monthly MOD16 ET was averaged across the entire study
period (2008–2023) to obtain monthly mean values. These
monthly means were then extracted for each cover class and
precipitation zone. Finally, the 12 monthly means for each
class and zone were summed to calculate annual averages
and standard deviations.

2.3.3 Point data extraction and modeling

The 500 m water-year products, spanning 15 water years,
were compiled for each variable, with ET designated as the
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Figure 2. Overview of the data processing and analysis workflow used in this study. The gray panel outlines how monthly and water-year
ET from the MOD16 product is derived via quality control, cloud masking, and aggregation. The yellow panel (1) illustrates validation
of the MODIS-based ET product by deriving water-balance ET (WBET=P –R–1S) from precipitation (Daymet V4) and runoff (USGS
WaterWatch) at the subbasin scale. The blue panel (2) shows the analysis of monthly and seasonal ET in relation to canopy cover from the
Rangeland Analysis Platform and precipitation from Daymet V4. The green panel (3) shows the application of GAM and regression analyses
on precipitation, air temperature, canopy cover, and canopy height to assess how woody plant metrics and climate factors influence ET across
different precipitation zones. The pink panel (4) illustrates the evaluation of overall water availability by comparing ET with precipitation
(ET / P ) and calculating excess water (P–ET) at the water-year scale.

response variable and precipitation, air temperature, canopy
cover, and canopy height serving as predictors. Next, a ran-
dom stratified sampling approach was implemented to ex-
tract 1000 points per precipitation zone, yielding a total of
4000 points containing ET, precipitation, air temperature,
canopy cover, and canopy height for each water year. Points
with missing values for any product in any water year were
excluded from further analysis, resulting in 3550 points for
modeling.

Each predictor was then paired with its corresponding ET
value from the same water year (e.g., 2009 Canopy Cover
with 2009 ET) and plotted. For every precipitation zone,
we fitted ordinary least-squares regressions to obtain zone-
specific slopes and R2 values. We then repeated the regres-
sion on the pooled data and reported the aggregated equa-
tion andR2. To capture non-linear patterns that linear models

might miss, we additionally fitted a GAM with a cubic-spline
smooth to the full dataset and reported its pseudo-R2 values.

2.3.4 ET / P and excess water analysis

Over the entire study period, total ET and P values were ag-
gregated across the Post Oak Savannah. The ratio of ET to
P (ET / P ) was then computed to facilitate further analysis
of the fraction of precipitation lost to the atmosphere. Next,
the total ET was subtracted from the total P to quantify the
volume of excess water retained in the terrestrial system. Fi-
nally, these excess water values were averaged within each
cover class and precipitation zone.
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Figure 3. Map of the 11 retained HUC8 subbasins within the Post
Oak Savannah, color-coded by subbasin ID. The table lists the total
area (km2) of each subbasin within the ecoregion.

3 Results

3.1 MOD16 ET validation

Comparisons of the MOD16 product with WBET estimates
yielded an R2 of 0.65, a bias of−7 mm wyr−1 (−0.8 %), and
an RMSE of 103 mm wyr−1 (11.6 %) (Fig. 4). Among indi-
vidual HUC8s, R2 ranged from 0.11 to 0.70, bias spanned
−79 to 85 mm wyr−1, and RMSE varied between 63 and
104 mm wyr−1. Examined by water year, R2 ranged from
0.04 to 0.80, bias extended from−125 to 117 mm wyr−1, and
RMSE ranged from 57 to 127 mm wyr−1 (Fig. 4).

3.2 Monthly and seasonal analysis

Monthly ET increases from January to June, peaking at
133.6 mm (averaged across all canopy classes), before drop-
ping to 32.2 mm in December (Fig. 5). The highest sin-
gle ET value, 168.0 mm, occurs in June within the ≥ 81 %
canopy cover class, while the lowest single value, 30.5 mm,
is observed in December within the 0 %–10 % cover class.
The ≥ 81 % cover class exhibits the highest ET values for
6 months (April–September), whereas the 61 %–80 % cover
class dominates in the remaining months (Fig. 5).

ET exhibited a seasonal cycle, with average lows of
38.5 mm in winter (December–February), moderate levels
of 98.7 mm in spring (March–May), and peak levels of
112.1 mm in summer (June–August), before declining to
61.0 mm in fall (September–November) (Fig. 6). Notably, the
drought year 2011 showed substantially lower ET values rel-
ative to other years – averaging 78.7 mm in spring, 42.6 mm

in summer, and 36.1 mm in fall – coinciding with the low pre-
cipitation totals. Conversely, higher precipitation levels led to
greater distinction between seasonal ET averages (Fig. 6).

3.3 Regression and GAM analyses

The two climatic variables P and Ta exhibited notably dif-
ferent relationships with ET. Precipitation showed a moder-
ate positive correlation, with R2 values ranging from 0.23
(1001–1200 mm) to 0.61 (600–800 mm) and slopes from
0.29 (1001–1200 mm) to 0.55 (≥ 1201 mm) (Fig. 7). By con-
trast, air temperature demonstrated a weak negative rela-
tionship with ET, with R2 values varying from 0.09 (801–
1000 mm) to 0.27 (600–800 mm) and slopes between−82.02
(600–800 mm) and −45.72 (801–1000 mm) (Fig. 7).

In comparison, the two woody-vegetation metrics showed
more consistent positive relationships with ET than the cli-
matic variables. Canopy height exhibited a moderate posi-
tive correlation, with R2 values between 0.48 (600–800 mm
and ≥ 1201 mm) and 0.54 (801–1000 mm) and slopes rang-
ing from 35.05 (1001–1200 mm) to 38.66 (801–1000 mm)
(Fig. 7). Similarly, canopy cover displayed a weaker but still
positive association, with R2 values ranging from 0.12 (600–
800 mm) to 0.20 (1001–1200 mm) and slopes between 3.61
(600–800 mm) and 4.32 (1001–1200 mm) (Fig. 7).

The generalized additive model (GAM) results – shown
by the magenta curves in Fig. 7 – largely confirmed the lin-
ear patterns but captured subtle non-linearities, especially at
the extremes of the predictor ranges. GAM pseudo-R2 val-
ues were highest for canopy height (0.51) and precipitation
(0.49), modestly exceeding the corresponding aggregated
linear R2 values (0.50 and 0.43, respectively). For canopy
cover and air temperature, the pseudo-R2 values were low
(0.15 and 0.13), mirroring the weak to moderate linear asso-
ciations.

3.4 ET / P ratios and excess water analysis

The ratio of ET to P (ET / P ) was generally stable, averag-
ing 90 % and falling between 70 % and 100 % in most years
(Fig. 8); the only exceptions were the drought years 2011 and
2022, when ET / P rose slightly above 100 %. Both years
were characterized by above-average air temperatures and
below-average precipitation (Fig. 8).

Areas exhibiting ET / P ratios above 100 % in the Post
Oak Savannah predominantly coincided with low-elevation,
forested river basins and their tributaries (Fig. 9). Notable ex-
amples include the Sabine, Trinity, Navasota, Guadalupe, and
San Antonio River basins, where forested riparian zones con-
sistently displayed ET / P values exceeding 100 % (Fig. 9).

Total excess water varied substantially across the Post Oak
Savannah ecoregion, with most values ranging from −5000
to 7500 mm (Fig. 10a). Over the entire study period (2009–
2023), the mean excess water was 2422 mm, or 161 mm yr−1

(Fig. 10b). Temporally, excess water ranged from a low
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Figure 4. Comparison of water-balance evapotranspiration (WBET) and MOD16 ET at the HUC8 subbasin and annual scales (2009–2022).
(a) Scatterplot of WBET (x axis) versus MODIS-estimated ET (y axis); the solid black line represents the 1 : 1 line, and the red line is the
linear regression fit. The inset box summarizes the sample size (N ), coefficient of determination (R2), bias (mm wyr−1 and %), and root
mean square error (RMSE in mm wyr−1 and %). (b) Tables showing R2, bias, and RMSE for each HUC8 subbasin (top) and each water year
(bottom).

Figure 5. Monthly average ET and corresponding precipitation by canopy-cover class (2008–2023).

of −22 394 455 mm in 2022 to a high of 167 853 812 mm
in 2016 (Fig. 10c). On average, the ecoregion totaled
47 971 635 mm of excess water per year. Only two years ex-
hibited negative excess water: 2011 (−21 968 413 mm) and
2022 (−22 394 455 mm) (Fig. 10c).

These contrasting totals reflect different hydrometeoro-
logical conditions. In 2011, precipitation was relatively
low at 137 953 517 mm, whereas in 2022, it reached
221 613 882 mm (Fig. 10c). Conversely, evapotranspiration

(ET) in 2011 was also low, returning only 158 624 385 mm
of water to the atmosphere compared with 242 295 663 mm
in 2022 (Fig. 10c).

When integrating both woody vegetation cover and over-
all aridity into the analysis, increases in woody cover consis-
tently reduced excess water totals across every precipitation
zone (Fig. 11). The highest annual excess water (414.87 mm)
occurs in areas with 0 %–10 % woody cover that receive
≥ 1200 mm of precipitation (Fig. 11). In contrast, the low-
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Figure 6. Time series of monthly ET and precipitation from 2008–2023. Panel (a) shows monthly ET (black line) alongside seasonal average
lines. Panel (b) displays monthly precipitation (black bars), with the two horizontal lines indicating overall average monthly ET for 2010–
2014 and 2015–2021.

est annual excess water (−122.87 mm) occurs in areas with
≥ 80 % woody cover in the 600–800 mm precipitation zone
(Fig. 11). Notably, none of the 0 %–10 %, 11 %–20 %, 21 %–
40 %, or 41 %–60 % woody cover classes exhibited negative
excess water values (Fig. 11). Conversely, in the 61 %–80 %
and ≥ 80 % woody cover categories, all precipitation zones
had negative values except the ≥ 1200 mm zone, which re-
mained positive (Fig. 11).

4 Discussion

4.1 MOD16 accuracy

The MOD16 ET model used in this study showed moderate-
to-strong agreement with WBET measurements at the HUC8
scale, with an overall RMSE of 103 mm wyr−1 and an R2

of 0.65 (Fig. 4). The bias of −7 mm wyr−1 indicates that
the model generally neither overestimates nor underesti-
mates ET. These findings align with other validations of the
MOD16 ET product, performing better in some cases and
worse in others (Aguilar et al., 2018; Nadzri and Hashim,

2014; Du and Song, 2018; Ruhoff et al., 2013; Miranda
et al., 2017). Because the WBET evaluation itself contains
error, we note four key sources of uncertainty: (1) gauge-
based precipitation grids can be biased by under-catch and
sparse station density; (2) not all of the subbasins were
within the Post Oak Savannah’s boundary, so lateral in-
flows/outflows can distort basin averages, (3) long-term soil-
and groundwater-storage changes are assumed negligible, yet
seasonal drought–recharge cycles can shift storage by several
cm; and (4) small reservoirs and irrigation withdrawals re-
main the streamflow record, potentially inflating inferred ET
during dry years.

Performance varied markedly among years. In 2009–2010,
annual rainfall totals were near the long-term mean, but
precipitation was concentrated in northern catchments and
deficient in the south, creating north–south gradients that
the basin-wide WBET captured but MOD16 ET did not,
thereby showing increased RMSE values. During the ex-
treme droughts of 2011 and 2022, MOD16 overestimated
by 77 and 117 mm (Fig. 4), respectively, exposing a known
weakness in the algorithm in representing soil-moisture
stress when stomatal conductance is modeled from meteorol-
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Figure 7. Scatterplots illustrating the linear relationships between MODIS ET (y axis) and four predictors – precipitation, air temperature,
canopy cover and canopy height (x axes) – for different precipitation zones (600–800, 801–1000, 1001–1200, and ≥ 1201 mm). The four
precipitation zones are represented by color-coded lines showing the best fit regression for each, and the corresponding slope, intercept, and
R2 values are shown in the insets. Canopy height data were available only for 2019 and 2020.

ogy alone (Hu et al., 2015; Miralles et al., 2016; Majozi et al.,
2017). Therefore, although our semiarid basins showed com-
paratively higher values, the literature shows that MOD16
often struggles in arid and semiarid environments because it
lacks an explicit soil-moisture constraint – making overpre-
diction likely when soils are critically dry even within other-
wise well-performing regions. By contrast, biases in wetter
years – such as 2015 and 2016 (−62 and −80 mm, respec-
tively; Fig. 4) – were modest but still larger than those in
average-precipitation years. These residual errors may reflect
reduced available energy under persistent cloud cover and/or

enhanced flood-plain evaporation that raised actual ET be-
yond what MOD16 captured.

Spatial patterns echoed these temporal contrasts. The hu-
mid northeastern basins (HUC8s 1–4) exhibited the lowest
accuracy (R2

= 0.11–0.39; RMSE= 92–104 mm; Fig. 4) be-
cause a dense matrix of small wetlands and ponds leaves
many 500 m MODIS pixels as mixed water–vegetation sur-
faces – even after masking open-water and wetland pixels –
thereby inflating MOD16 ET relative to WBET. Conversely,
the semiarid central and southwestern basins (HUC8s 7–11)
showed the best agreement (R2

= 0.54–0.70; RMSE= 63–
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Figure 8. (a) Annual ET / P ratios derived from MODIS ET estimates, with the interquartile range (IQR) shown in gray and the overall
mean ratio (90 %) by the dashed red line. (b) Corresponding water-year precipitation and air temperature, with dashed lines denoting average
precipitation and air temperature over the study period.

79 mm; Fig. 4), consistent with earlier findings that MOD16
may perform relatively well where soils are thin and veg-
etation sparse (Du and Song, 2018; Velpuri et al., 2013) –
provided soil moisture is not fully depleted.

Finally, our aggregated statistics (RMSE= 103 mm yr−1;
R2
= 0.65; Fig. 4) fall between the high accuracy reported

for Brazil’s Caatinga (≈ 59 mm yr−1; R2
= 0.82; Miranda

et al., 2017) and the lower accuracy in the Brazilian Cer-
rado (RMSE= 168 mm yr−1; bias=+19 %; Ruhoff et al.,
2013). Results from northwest Mexico (R2

= 0.46–0.86;
RMSE= 142–168 mm; Aguilar et al., 2018) bracket our val-
ues and underscore a consistent limitation: MOD16 normal-
izes extremes – overestimating ET when soils are parched
and underestimating in complex, water-rich mosaics – high-
lighting the need for soil-moisture constraints in future ver-
sions.

4.2 Monthly and seasonal trends

We observed peak precipitation in May and October, which
aligns with the expected wet (spring and fall) and dry (sum-
mer) seasons characteristic of a humid subtropical climate
(Fig. 5). Correspondingly, each canopy cover class showed
its highest ET rates in June (Fig. 5). This peak likely results
from a combination of actively growing vegetation, abundant
soil moisture following increased May rainfall, and warm air
temperatures that raise the vapor pressure deficit (VPD) and
therefore the atmosphere’s capacity to hold water vapor (Liu
et al., 2017; Sun et al., 2023). In addition, because our study
area lies in the Northern Hemisphere, the summer solstice
occurs in June, providing heightened solar radiation, which
further increases PET (Aschonitis et al., 2017).

Despite July and August being the warmest months, ET
declines substantially during this period (Fig. 5). We at-
tribute this decrease to reduced soil moisture storage, which
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Figure 9. Spatial distribution of ET / P ratios and elevation across the Post Oak Savannah ecoregion. Areas with ET / P>100 % are high-
lighted in red, while grayscale shading indicates elevation. Insets show detailed views of selected river basins, illustrating the prevalence of
high ET / P in forested, low-elevation regions (NASA, SRTM).

is rapidly depleted via high-VPD-induced transpiration and
evaporation (Mondal et al., 2024; Yang et al., 2023; Anav et
al., 2018). This trend persists into the cooler months, when
air temperatures begin to drop and rainfall increases, such
that ET begins to rise again only in February as air tempera-
tures rebound.

Interestingly, the ≥ 81 % canopy cover class does not ex-
hibit the highest ET in every month but only from April to
September (Fig. 5). One explanation is that heavily thicke-
tized (≥ 81 %) woodlands may have a more complex vertical
structure – comprising both deciduous and evergreen species
– such that the overlapping foliage layers produce a more
closed canopy during the warmer months (Whitehurst et al.,
2013; Arumäe and Lang, 2018; Scott et al., 2014; Jucker et

al., 2015). Many thicketized Post Oak Savannah stands con-
sist of oak overstory combined with an understory of ever-
green species such as Juniperus virginiana and Ilex vomitoria
(Olariu et al., 2024; Basant et al., 2023). In contrast, wood-
lands with 61 %–80 % canopy cover are generally dominated
by evergreen species (Pourrahmati et al., 2023; Arumäe and
Lang, 2018; Stephens et al., 2015), which remain active dur-
ing cooler months – potentially explaining their higher ET
from October through March. For instance, extensive Pinus
taeda stands are found in the eastern Post Oak Savannah, ad-
jacent to the Piney Woods ecoregion. Owing to their needle-
shaped leaves, Pinus taeda woodlands typically range from
60 %–80 % canopy cover, the higher percentages associated
with mid-aged stands that include a mix of younger and older
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Figure 10. (a) Spatial distribution of total excess water (mm) across the Post Oak Savannah ecoregion from 2009 to 2023. The amounts range
from −5000 to 7500 mm. (b) Frequency distribution of total excess water across the ecoregion, with red and blue dashed lines indicating 0
total excess water and the mean, respectively. (c) Annual summary of ET, P , and resulting excess water (mm). Negative values in the table
(highlighted) indicate water years having net water deficits.

Figure 11. Mean annual excess water (mm m−2) as a function of woody cover (%) and precipitation zone. The black trend line indicates the
overall decrease in excess water with rising woody cover. Positive values represent net surpluses, whereas negative values denote net deficits.

trees, eventually forming gaps in older stands (Song et al.,
2009; Zeide and Stephens, 2010; Johnson et al., 2021).

Seasonal ET trends closely followed seasonal precipitation
(Fig. 6). From 2011 to 2014, monthly precipitation averaged
60 mm, resulting in minimal seasonal variation in ET. Be-
tween 2015 and 2021, however, monthly precipitation rose
to an average of 86 mm – a 26 mm increase – which widened

the seasonal stratification in ET. This increased stratification
is attributable to higher transpiration rates during spring and
summer, driven by the ample water supply that maintained
elevated soil moisture (Fu et al., 2022; Koehler et al., 2023).

Notably, the severe drought of 2011 (Nielsen-Gammon,
2012; Chen et al., 2021) caused summer and fall ET to
drop to winter-like levels (Fig. 6). Although spring ET re-
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mained near average, this was likely a residual effect of the
relatively wet conditions in 2009 and the average precipita-
tion in 2010. The 2011 drought caused an estimated mor-
tality of 65.6 (± 7.3) million trees in East Texas alone –
encompassing common Post Oak Savannah species such as
Quercus stellata, Quercus falcata, Ulmus alata, and Pinus
taeda (Klockow et al., 2018). Additionally, the difference
between precipitation and PET in 2011 reached −1206 mm
(Schwantes et al., 2017). Widespread wildfires consumed
nearly 4 million acres across Texas – 31 453 individual fires
– representing 47.3 % of all acreage burned by wildfire in
the United States that year (Nielsen-Gammon, 2012; Texas
A&M Forest Service, 2011).

4.3 Bioclimatic–ET coupling

Evapotranspiration in the Post Oak Savannah showed a mod-
erate positive relationship with precipitation and a weak neg-
ative relationship with air temperature (Fig. 7). This P–ET
coupling is consistent with global research findings, which
highlight the tight linkage between these two fluxes across
diverse ecosystems (Mondal and Mishra, 2024; Mondal et
al., 2024; Xi et al., 2023; Zeng et al., 2010). The GAM anal-
ysis supports this pattern: precipitation explained nearly half
of the variance in ET (pseudo-R2

≈ 0.49) and followed a
gently saturating curve, reinforcing the strength of the lin-
ear fit. Notably, the correlation was stronger in the more
arid regions of the Post Oak Savannah (600–1000 mm vs.
≥ 1001 mm), where limited water availability acts as the pri-
mary constraint instead of energy inputs (e.g., radiation and
air temperature) (Nagler et al., 2007; Yu et al., 2021). Con-
sequently, in these drier areas, ET begins soon after precip-
itation events: soils rapidly absorb incoming rainfall, vege-
tation responds by increasing transpiration, and overall ET
rises (Nielsen-Gammon, 2012).

In contrast, the negative relationship between ET and air
temperature may appear counterintuitive. However, many
plants operate within an optimal air temperature window for
photosynthesis and transpiration (commonly 20–30 °C) (Ya-
masaki et al., 2002; McGowan et al., 2020; Crous et al.,
2022). In the Post Oak Savannah, severe summer heat and
lower precipitation often drive plants to close their stom-
ata, thereby reducing transpiration despite high VPD. This
negative relationship is particularly strong in the most arid
(600–800 mm) and most humid (≥ 1200 mm) areas, whereas
it is weaker in the intermediate (801–1200 mm) zone. In the
arid region, limited soil moisture readily explains stomatal
closure and reduced transpiration. In more humid areas, fac-
tors such as persistent cloud cover or higher relative humid-
ity may restrict the vertical movement of water vapor from
plant surfaces to the atmosphere (Wang et al., 2018; Dai et
al., 1999).

GAM fits (magenta curves in Fig. 7) revealed a non-linear,
dome-shaped response of annual ET to mean air tempera-
ture. ET climbed steadily to a peak at≈ 22–24 °C, plateaued,

and then declined above ∼ 25 °C; the GAM pseudo-R2 was
0.13, only marginally higher than the aggregated linear R2

(0.11), but it captured the threshold beyond which stomatal
regulation suppresses transpiration. This pattern is consistent
with the divergent thermal strategies of the region’s dominant
woody species. The evergreen loblolly pine (Pinus taeda)
begins to reduce stomatal conductance at leaf temperatures
near 32 °C, whereas drought-deciduous post oak (Quercus
stellata) and blackjack oak (Q. marilandica) maintain higher
conductance until≈ 35 °C before closing their stomata (Oren
et al., 1999; Novick et al., 2016). Because summer days in
the Post Oak Savannah frequently exceed these thresholds,
particularly during drought years, elevated mean annual tem-
peratures integrate numerous midday periods of stomatal clo-
sure, driving down yearly ET despite higher vapor-pressure
deficits.

Both canopy cover and canopy height displayed pos-
itive relationships with ET, but canopy height was the
stronger predictor (Fig. 7). The GAM analysis confirms
this contrast: canopy height achieved the highest pseudo-R2

(0.51), whereas canopy cover accounted for far less vari-
ance (pseudo-R2

= 0.15). The canopy-height GAM curve is
nearly linear across the sampled range, indicating that taller
stands consistently increase ET. By contrast, the canopy
cover GAM rises sharply up to ∼ 80 % cover and then
plateaus, suggesting diminishing returns once the over-
story approaches complete closure. Because height integrates
above-ground biomass, LAI, and vertical leaf stratification –
all key determinants of transpiration (Bonan, 2008; Baldoc-
chi, 2003) – these relationships remain stable across precip-
itation zones. Taller canopy structures also increase surface
roughness, reducing aerodynamic resistance and enhancing
turbulent exchange, thereby promoting more efficient trans-
fer of water vapor from the canopy to the atmosphere.
Furthermore, taller trees also develop deeper, more exten-
sive root systems that tap subsurface water during droughts,
which are common in the summer in the Post Oak Savan-
nah, sustaining transpiration when upper soil layers are dry.
Hydraulic lift, where deep-rooted trees redistribute moisture
upward (Norton and Hart, 1998), and the complex root archi-
tecture of tall individuals (Jackson et al., 2020) together help
maintain a dense canopy and elevated ET.

4.4 ET / P and excess water

Over the study period, the average ET / P ratio in the Post
Oak Savannah was 90 % (Fig. 8). Globally, the mean ET / P
ratio over land surfaces is approximately 65 %, varying by
continent. For instance, North America averages around
70 %, whereas Australia – which more closely resembles the
Post Oak Savannah’s overall conditions – exhibits a higher
ratio of 87 % (Reitz et al., 2017; McDonald, 1961). An
ET / P ratio of 90 % is therefore plausible when compared
with other semiarid or arid regions, where studies have re-
ported ratios between 80 % and 93 % (Fleischmann et al.,
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2023; Irmak, 2017). Moreover, Althoff and Destouni (2023)
suggest that ET / P will continue to rise as agricultural and
forestry activities expand, increasing the prevalence of trees –
a pattern already observed in the Post Oak Savannah (Olariu
et al., 2024). This high ratio also indicates an ET-driven sys-
tem, with evapotranspiration as the dominant water-budget
component (Condon et al., 2020; Reitz et al., 2017), confirm-
ing the assumption made by Basant et al. (2023).

The ET / P ratios exceeding 100 % in 2011 and 2022
likely reflect severe drought conditions that forced the
ecosystem to draw on limited soil-moisture reserves and, in
riparian areas, groundwater. Fleischmann et al. (2023) doc-
umented similar behavior in South American riparian zones,
consistent with our Post Oak Savannah observations (Fig. 9).
Ratios above 100 % may also stem from uncertainties in the
MOD16 product, which does not adequately represent plant
water stress; under the extreme stress of 2011 and 2022,
MOD 16 likely overestimated ET, producing values higher
than precipitation.

Excess water (P–ET) exhibited substantial spatial vari-
ability, ranging from −5000 mm to over 7500 mm, with
an average of ∼ 2500 mm across the entire study period
(Fig. 10). However, 2011 and 2022 both showed net nega-
tive excess water, explained by the same conditions that led
to ET / P ratios exceeding 100 %.

Of note, Fig. 11 illustrates a steep decline in excess water
with increasing woody cover. As tree and shrub cover ex-
pands, transpiration intensifies, lowering the net water sur-
plus. These findings align with those of Basant et al. (2023),
who found that understory shrub thicketization in the Post
Oak Savannah substantially reduces groundwater recharge.
Consequently, under continued WPE, the Post Oak Savan-
nah will likely experience greater reductions in excess water
– especially in its more arid regions, where soil moisture is
already limited. Such changes may alter local water availabil-
ity, affect aquifer recharge, and shift ecosystem functioning,
as woody plants increasingly outcompete herbaceous vege-
tation for scarce moisture.

5 Conclusions

This study demonstrates that ET in the Post Oak Savan-
nah is intricately linked to both climatic drivers and vege-
tation structure. Our analysis revealed a moderate positive
relationship between precipitation and ET, confirming that
water availability is a primary driver in this region. Con-
versely, air temperature exhibited a weak negative relation-
ship with ET – a finding that, while initially counterintuitive,
can be explained by plant physiological responses such as
stomatal closure during periods of extreme heat. In the con-
text of global warming, rising air temperatures coupled with
increasingly sporadic precipitation are likely to exacerbate
these dynamics. Higher air temperatures not only elevate the
atmospheric demand for water but also promote rapid soil

moisture depletion, leading to more pronounced instances of
water stress. This decoupling of energy and water fluxes ul-
timately underlines the importance of understanding the nu-
anced interplay between climate and hydrology in sustaining
regional water resources.

Quantifying how variations in canopy cover affect wa-
ter use and, thereby, regional hydrological processes is vi-
tal for evaluating the impacts of WPE and thicketization on
sustainable water management. Our findings indicate that as
woody cover increases, excess water decreases – especially
in arid regions – owing to enhanced transpiration. This re-
duction in net water surplus has significant implications for
groundwater recharge and ecosystem functioning, as increas-
ing woody vegetation competes with herbaceous species for
limited moisture. Consequently, these shifts in vegetation
structure demand adaptive management strategies to preserve
water availability under future climate scenarios.

While our study employs robust remote sensing and hy-
drological modeling techniques, several limitations must be
acknowledged. First, the absence of eddy covariance towers
precludes direct, in situ validation of the MOD16 ET product.
However, evaluation at the HUC8 scale via water-balance es-
timates remains acceptable for a large-scale analysis. Sec-
ond, the coarser spatial resolution of MOD16 (500 m) may
mask fine-scale hydrological processes, particularly in irri-
gated agricultural areas. Future research employing higher-
resolution ET datasets could improve the accuracy of these
assessments. Future work can also explore ET products that
incorporate thermal-infrared land surface temperature data
– such as Sentinel-2/3 fusion or two-/three-source energy-
balance models – which better diagnose plant water stress
in semiarid savannas (Guzinski et al., 2020; González-Dugo
et al., 2021; Burchard-Levine et al., 2022; Anderson et al.,
2024). Lastly, although the 15-year study period captures
critical periods of drought and high rainfall, even longer-
term observations would further enhance our understanding
of how continued global warming influences the interplay be-
tween air temperature, precipitation, and ET.

Overall, these results provide a critical foundation for un-
derstanding how climatic changes and woody vegetation dy-
namics jointly shape regional water cycles. By quantifying
the effects of canopy cover on ET and excess water across
different precipitation zones, this study informs land man-
agers and policymakers facing the challenges of sustaining
water resources under ongoing global warming and WPE –
not only in the Post Oak Savannah but also in similar ecosys-
tems worldwide.

Code availability. Woody coverage code: https://code.earthengine.
google.com/08f4a2fdce7672cb261f48fc658850e2 (Olariu, 2025a).
Subbasin ET and P code: https://code.earthengine.google.com/
c77b2aeb8fc4687677b33c1c141d16bc (Olariu, 2025b). ET / P
and excess water analysis code: https://code.earthengine.google.
com/80ef181f4002d7314a10ae391800189d (Olariu, 2025c).
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Water year aggregation code: https://code.earthengine.google.
com/8b4ee77f99b3e067bae38c8386e150ff (Olariu, 2025d).
Pointwise sampling code: https://code.earthengine.google.
com/1957d01209128479a368e655b5b75064 (Olariu, 2025e).
Monthly MODIS ET code: https://code.earthengine.google.
com/2c21005c469551d5646b1ee86812cfe9 (Olariu, 2025f).
Monthly P and Ta code: https://code.earthengine.google.com/
23bc61414ed99bb58892ea682a965b5e (Olariu, 2025g).

Data availability. MODIS ET product: https://lpdaac.usgs.
gov/products/mod16a2gfv061/ (last access: 25 January
2025) (https://doi.org/10.5067/MODIS/MOD16A2GF.061,
Running et al., 2021). Daymet V4 temperature product:
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=32 (last access:
25 January 2025) (https://doi.org/10.3334/ORNLDAAC/1840,
Thornton et al., 2022b). Canopy cover product:
https://rangelands.app/rap/?biomass_t=herbaceous&ll=36.5526,-
101.3460&z=4&landcover_t=tre (last access: 25 January 2025)
(Allred et al., 2020). Canopy height products: https://lasers.tamu.
edu/ice-cloudand-land-elevation-satellite-icesat-2-applications/
(Malambo and Popescu, 2024b) and https://glad.umd.edu/dataset/
gedi (last access: 25 January 2025) (Potapov et al., 2021b). Runoff
products: https://waterwatch.usgs.gov/index.php?id=romap3&sid=
w_download (last access: 25 January 2025) (U.S. Geological
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