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Abstract. Precipitation (P) and soil moisture (SM) are criti-
cal components of the global water, energy, and biogeochem-
ical cycles, yet their patterns and interrelations in the Arctic
are poorly understood. Due to the sparse in situ measurement
network, satellites are the only way to observe P and SM in
high-latitude regions. This study uses NASA’s SMAP satel-
lite to analyze the relationship between SM and P, assess
the feasibility of estimating P from SM, and examine SM
drydown patterns in Finland from April to September over
2018-2019. The analysis reveals a notable spatial and tem-
poral variability in SM, with a weaker correlation between
P and SM in spring due to snowmelt and a stronger rela-
tionship in summer and fall. Water bodies complicate the
SM retrieval causing the SM retrievals to saturate. Using the
SM2RAIN algorithm, we estimated P from SM data. The al-
gorithm shows promising results, detecting the area of rain-
fall accurately in most cases but estimating the intensity of
the rainfall is more challenging, particularly for light and
very heavy rain. We analyzed SM drydown patterns by fit-
ting an exponential model to each SM drydown period, from
which we estimated the exponential decay time scale (7) and
the lower bound of SM (SMpin). T does not show much spa-
tial or temporal variability. The distribution of t is positively
skewed, with a mode of 1.6d and a median of 4.0d, con-
sistent with other studies. The distribution of SMy;, is also
positively skewed, with a mode of 0.14 m> m—> and a me-
dian of 0.17 m® m—3. SMnj, exhibits another lower peak at
0.02m3 m~3, the lower limit of SMAP SM retrievals, pos-
sibly causing an artifact in the results. SMp,;, shows spa-
tial variability, with the lower bound being slightly higher
near water bodies but also showing a more prominent peak
at 0.02m> m~3. Grid cells with dense vegetation and low

vegetation agree better with each other, indicating that water
bodies particularly affect and complicate SM retrieval. The
promising results suggest that the method could be applied
across the entire Arctic region.

1 Introduction

Precipitation (P) and soil moisture (SM) are critical com-
ponents of the climate system (Trenberth and Asrar, 2014),
both categorized as Essential Climate Variables (ECV) by the
Global Climate Observing System (GCOS; Bojinski et al.,
2014). P and SM are tightly linked and play vital roles in the
global water, energy, and biogeochemical cycles (McColl et
al., 2017a; Seneviratne et al., 2010). They affect surface en-
ergy fluxes, the carbon cycle, vegetation growth, and land-
atmosphere interactions, and greatly influence the develop-
ment of various natural hazards, such as droughts, floods, and
heat waves (D’Odorico et al., 2003; Entekhabi et al., 1992;
Mao et al., 2015; McColl et al., 2017a; Lorenz et al., 2010;
Schwingshackl et al., 2017; Trenberth and Asrar, 2014). Ac-
curate estimates of P and SM are essential for climate stud-
ies, weather forecasting, and various climatological and hy-
drological applications (Herold et al., 2016; Wake, 2013; Fo-
rootan et al., 2019; Abera et al., 2017). Furthermore, key vari-
ables related to SM drydown patterns, including the exponen-
tial decay time scale and the lower bound of SM, are crucial
inputs for climate models (McColl et al., 2017b; Sellers et
al., 1997).

In the Arctic, precipitation occurs in both solid and liquid
forms, with distinct seasonal patterns. During winter season,
snowfall accounts for over 80 % of total precipitation, while
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rainfall dominates during summer, accounting for more than
70 % of the seasonal total (McCrystall et al., 2021). However,
due to global warming, a significant decline in the snow-
fall ratio has already been observed, and projections indi-
cate a continued decrease. By the end of the 21st century,
the Arctic is expected to transition from a snow-dominated
to a rain-dominated precipitation regime (McCrystall et al.,
2021). Additionally, research indicates that total precipita-
tion in the Arctic has increased by 9 % during 1971-2019,
primarily driven by a 25 % rise in rainfall (AMAP, 2021). Fu-
ture climate projections suggest that precipitation rates will
continue to increase (Bintanja and Selten, 2014; McCrystall
et al., 2021; Vihma et al., 2016; AMAP, 2021), and research
indicates that increased evaporation may substantially con-
tribute to the anticipated rise in P in the Arctic (Bintanja and
Selten, 2014).

Despite their importance, P and SM drydown patterns in
the Arctic remain poorly understood. Previous satellite-based
studies exploring the relationship between P and SM and
drydown patterns have often excluded the Arctic region due
to the presence of dense forests, water bodies, and seasonally
frozen ground, which complicate the SM retrieval (McColl et
al., 2017b; Akbar et al., 2018; Sehler et al., 2019). Further-
more, existing P data products exhibit notable variability in
the magnitude, frequency, and phase of precipitation in the
Arctic (Barrett et al., 2020; Behrangi et al., 2016; Boisvert et
al., 2018; Sun et al., 2018). Therefore, it is essential to im-
prove our understanding of the patterns of P and SM in the
Arctic, as well as the complex relationship between these two
variables.

Due to the sparse in situ measurement network, satellites
are usually the only way to observe P and SM in high-
latitude regions. Currently, direct satellite-based P estimates
lack consistency and sufficient spatiotemporal coverage (Hou
et al., 2014; Brocca et al., 2019). However, P can be esti-
mated indirectly using satellite-based SM data (Brocca et al.,
2013): SM increases during rainfall and decreases during dry
periods. The satellite-based SM measurements provide good
spatiotemporal coverage, and unlike direct rainfall measure-
ments, SM data also provide insights into the relationship
between SM and P, as well as the dynamics of water after
it reaches the ground. The indirect approach has been exam-
ined in several global and regional studies using a range of
satellite-based SM datasets (e.g., Brocca et al., 2014; Cia-
batta et al., 2018; Koster et al., 2016; Mosaffa et al., 2023;
Miao et al., 2023a). While these studies highlight the poten-
tial of this approach, they often exclude the Arctic region
due to the challenges associated with SM retrieval (Ciabatta
et al., 2018; Koster et al., 2016; Zhang et al., 2019). Brocca et
al. (2019) included the Arctic in their SM2RAIN analysis us-
ing data from the Advanced Scatterometer (ASCAT). How-
ever, research has shown that the Soil Moisture Active Pas-
sive (SMAP) mission outperforms ASCAT in high-latitude
environments (Chen et al., 2018; Zhang et al., 2021), high-
lighting the importance of evaluating whether SMAP can
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yield more accurate P estimates in these regions. Moreover,
satellite-based research on drydown patterns has generally
lacked coverage of the Arctic, creating a need to include this
region in future studies.

Soil moisture can be observed using passive microwave
satellites operating at low frequencies (Kerr et al., 2010; En-
tekhabi et al., 2014). At these low frequencies (< 5 GHz),
there is a substantial difference in the dielectric constant be-
tween water and dry soil, which affects the microwave emis-
sions (thermal electromagnetic radiation) from the ground.
This difference makes the method sensitive to soil water
content (Njoku and Entekhabi, 1996). Additionally, at low
frequencies, the influence of the atmosphere and vegetation
is reduced compared to higher frequencies, such as C- and
X-bands, which operate at 6 and 11 GHz (e.g., Schmugge
et al., 1986). Typically, the low-frequency satellites operate
on L-band (1.4 GHz), making them highly sensitive to the
SM in the top layer (0-5 cm) of the surface (Njoku and En-
tekhabi, 1996). In recent years, several satellites have been
monitoring surface SM, including the National Aeronautics
and Space Administration’s (NASA) SMAP satellite, and the
European Space Agency’s (ESA) Soil Moisture and Ocean
Salinity (SMOS) satellite (Entekhabi et al., 2014; Kerr et al.,
2010).

These satellites perform well and provide generally accu-
rate estimates of surface SM (e.g., Colliander et al., 2022,
2023; Chan et al., 2016; Chen et al., 2018). However,
satellite-based SM retrieval also faces challenges. Firstly, the
spatial resolution is relatively coarse (~40km), making it
difficult to detect small-scale phenomena. Additionally, the
revisit time of SMAP over a specific area typically ranges be-
tween 1 to 3 d (Entekhabi et al., 2014), depending on the lati-
tude, which may complicate the detection of rapid changes in
SM (e.g., McColl et al., 2017b). Since rainfall events can be
both small-scale and move rapidly, this may lead to inaccu-
racies in capturing P from SM. For high-latitude areas inves-
tigated in this study, the revisit time is about one day, which
helps to capture most of the SM minimums and maximums.
Figure 1 illustrates a schematic example of the relationship
between P and SM along with satellite-based SM retrievals.
SM increases during a rainfall event and decreases exponen-
tially during dry periods. Satellites are limited to detecting
only part of this temporal variability due to their revisit times.
However, despite the difficulties posed by the Arctic envi-
ronment, the coarse resolution, and non-ideal revisit times,
satellites are essential for estimating P and SM in the Arctic
due to the lack of in situ measurements.

Due to the reasons described above, it is essential to bet-
ter understand the relationship between P and SM and to
improve our understanding of P and SM patterns across the
Arctic. Therefore, this study aims to (1) analyze the relation-
ship between SM and P, (2) investigate whether satellite-
based SM data can be used to estimate P rates, and (3) exam-
ine SM drydown patterns across Finland. This study is based
on SM data from NASA’s SMAP satellite and uses ground-
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Figure 1. Schematic example of the relationship between P and SM
and satellite-based SM retrievals.

based weather radar data and in situ SM and P measurements
as reference data. While this study focuses on Finland, the
method aims to be applied across the entire Arctic region.

2 Data and Methods

The data of this study consist of satellite-based SM data,
ground-based weather radar data, and in situ measurements.
Table 1 lists the used datasets, and the following sections de-
scribe them in more detail.

2.1 SMAP SM data

NASA’s SMAP satellite has been measuring SM since 2015
(Chan et al., 2016; Entekhabi et al., 2014; Das et al., 2018).
The satellite uses an L-band frequency (1.41 GHz), which
makes it highly sensitive to the SM in the top layer (0-5 cm)
of the surface (Schmugge et al., 1986; Njoku and Entekhabi,
1996). SMAP provides global SM measurements every 2 to
3d. However, due to Finland’s northern location between 60
and 70°N, SM is measured at least daily in northern Fin-
land and every 1 to 2d in southern Finland (Entekhabi et al.,
2014).

We used the enhanced Level 3 (L3) SM product (Ver-
sion 6) in Polar grid (O’Neill et al., 2021a). Currently, the
dual-channel algorithm (DCA) is the baseline algorithm,
while earlier versions used the Single Channel Algorithm-
Vertical Polarization (SCA-V) as the baseline (e.g., Chan et
al., 2018). Our analysis primarily relied on the DCA data,
but we also included some additional insights from SCA-
V and the Single Channel Algorithm-Horizontal Polarization
(SCA-H). We only used the descending, i.e. the 06:00 a.m.,
SM observations. This increases stability, consistency, and
retrieval quality due to minor but systematic biases between
the ascending and descending retrievals (Colliander et al.,
2022). In addition to SM data, we also used information on
surface conditions provided in the product, including quality
retrieval flags and surface flags. The SMAP SM retrievals are
relatively little affected by rain (Colliander et al., 2020a), so
no additional screening was done for retrievals obtained dur-
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ing rain detected with the weather radar or in situ measure-
ments. SMAP has an effective field of view of 39 km x 47 km
(Entekhabi et al., 2014). The Level 3 soil moisture products
are gridded to a 36 km fixed Earth grid and oversampled into
a9 km grid (Entekhabi et al., 2014; O’Neill et al., 2021a). We
did not perform any spatial processing to the SMAP data.

2.2 Radar data

The Finnish Meteorological Institute (FMI) radar net-
work consists of twelve dual-polarization C-band Doppler
radars covering almost the entire country (FMI, 2024a;
Saltikoff et al., 2010). In this study, we used radar compos-
ite data from eleven of these radars (Fig. 2a), as the most
recent radar was installed after the completion of this anal-
ysis. The radar composite data have undergone signal pro-
cessing to remove stationary objects, filter out weak signals,
and adjust for non-meteorological echoes (Saltikoff et al.,
2010). The post-processing also included distance correction
for rain measurements and the conversion of radar reflectivity
to rainfall intensity. We used hourly P rate data to calculate
24h P rates based on the SMAP overpass times. The data
have a native spatial resolution of 250 m, and we averaged
the data to match the effective SMAP footprint size.

2.3 In situ measurements

We used in situ measurements of SM and P from five lo-
cations (Fig. 2a). The uneven distribution of these locations
results from the limited availability of in situ SM measure-
ments. FMI conducts SM measurements in Sodankyld and
Saariselkd (Ikonen et al., 2016, 2018), located in North-
ern Finland. The measurement network in Sodankyld in-
cludes 14 measurements within a single SMAP grid cell,
while Saariselki has 4 measurements, also within one SMAP
grid cell. We used a weighted average of the in situ mea-
surements for both locations. The Station for Measuring
Ecosystem-Atmosphere Relations (SMEAR) network (Hari
and Kulmala, 2005) provides SM measurements in Hyytidlad
(SMEAR 1II) and Virrio (SMEAR I). In Hyytidld, SM is mea-
sured at two sites — one in a forest and the other in a fen.
The fifth location for SM measurements is in Kenttdrova in
Northern Finland (Nousu et al., 2024a). In addition to SM
data, we included P in situ measurements in our analysis for
these five locations where SM data were available. The P
data are provided by FMI (FMI, 2024b), and we selected the
nearest P measurement location for each SM measurement
site.

2.4 Soil properties

To study the influence of soil properties on SM dynamics,
we used data from the SoilGrids 2.0 dataset (Poggio et al.,
2021), which also serves as an input for SMAP SM retrievals
(O’Neill et al., 2021b). The dataset employs advanced ma-
chine learning techniques to model global soil properties at a
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Table 1. Datasets used in this study.

Dataset Variable Resolution/location Reference
SMAP SM 9km x 9km, 1 to 3d O’Neill et al. (2021a)
Ground-based weather P 250 m x 250 m, hourly  Saltikoff et al. (2010)
radar
In situ SM Sodankyld, hourly Ikonen et al. (2016, 2018)
Saariselkd, hourly
Kenttérova, hourly Nousu et al. (2024a)
Virrid, hourly SmartSMEAR (2024)
Hyytidla, hourly
P Sodankyld, hourly FMI (2024b)
Saariselkd, hourly
Kenttidrova, hourly
Virrid, hourly
Hyytidla, hourly
SoilGrids 2.0 Clay fraction 250 m Poggio et al. (2021)
Silt fraction
Sand fraction
Soil organic carbon
content
Bulk density
(a) Study area (b) Recommended quality (c) Surface flags

yes (24%)

@ Radar location
@ Insitu measurement > 70°N

LI, .

7 X

Y

water and
dense
vegetation
(n=2705, 39%)

dense
vegetation
(n=1718, 25%)

water
(n=786, 11%)

low vegetation
(n=1650, 24%)

Figure 2. (a) The study area and the locations of the ground-based weather radars and in situ measurements. (b) The quality retrieval flags
for SMAP. (¢) The surface flags for SMAP. The percentages indicate the fraction of grid cells included in the category.

250 m spatial resolution, based on approximately 240 000 in
situ soil measurements and over 400 environmental covari-
ates. From this dataset, we used key soil texture variables,
including sand, silt, and clay fractions, as well as soil or-
ganic carbon content and bulk density. Additionally, we de-
rived soil porosity using the standard relationship:

bulk density

2.65 M

soil porosity =1 —

Hydrol. Earth Syst. Sci., 29, 4791-4810, 2025

where 2.65 gcm™3 is the assumed particle density of mineral
soil. The spatial distributions of the used variables are shown
in Fig. S1 in the Supplement.
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2.5 Methods
2.5.1 Study area and study period

The study area was determined by the coverage of the FMI
radar network (Fig. 2a). In the Finnish climate, radar can de-
tect summer precipitation up to a distance of 250km (FMI,
2024a). As a result, the study area encompasses nearly all of
Finland and parts of neighboring countries. Finland is a chal-
lenging region for satellite-based SM retrieval, as large areas
of the study region are covered with either water, dense veg-
etation, or both (Chan et al., 2018). As a result, only 24 %
of the grid cells in the study area have the recommended
quality (Fig. 2b). However, despite the quality concerns, we
chose to include all grid cells in our analysis, regardless of
the quality retrieval flags, to evaluate how well the methods
used in this study perform under suboptimal SM retrieval
conditions. Since the surface conditions affect the SM re-
trieval, we identified areas covered by water or dense vege-
tation using the SMAP surface and quality retrieval flags and
divided the study area into four classes (Fig. 2c). A grid cell
is marked with dense vegetation, if the vegetation water con-
tent (VWC) exceeds 5.0kgm~2 and the retrieval is skipped
if VWC exceeds 30.0kg m~2 (O’Neill et al., 2021a). Simi-
larly, a grid cell is marked with water if the water fraction ex-
ceeds 5 % based on Moderate Resolution Imaging Spectrora-
diometer (MODIS) MOD44W v006 product (O’Neill et al.,
2021a). If the water fraction exceeds 50 %, the SM retrieval
is skipped. Finland is characterized by an abundance of lakes,
but Finnish lakes are often small and vary in shape and size.
Consequently, even though many grid cells are flagged for
high water fraction, SM is still retrieved in most of them be-
cause the water fraction does not exceed 50 %.

Finland experiences both maritime and continental cli-
mates and is predominantly covered by boreal forests. The
mean annual P in Finland ranges mostly between 500 and
650 mm (Jokinen et al., 2021). The highest P rates are typi-
cally found in Southern and Eastern Finland, while Northern
Finland is the driest region. March is the driest month, with
precipitation gradually increasing through the summer and
peaking in the fall, before declining again afterward. Rain-
fall is typically irregular, and during the summer, it often oc-
curs as small-scale, localized showers. The first snowfall typ-
ically occurs in October or November, depending on the loca-
tion, and most of Finland remains snow-covered until the end
of March. Southern and Central Finland generally become
snow-free by the end of April, while in Northern Finland,
snow typically melts completely by the end of May (Joki-
nen et al., 2021). Consequently, the selected study period is
from April to September over two consecutive years (2018
and 2019), when the region is predominantly snow-free, but
still allowing for the examination of snowmelt’s impact on
SM.

The year 2018 was characterized by anomalously warm
and dry conditions relative to the long-term average (1991—
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2020). Notably, May and June exhibited monthly mean tem-
peratures 3—5 °C above normal, and precipitation levels ap-
proximately 50 % below the typical rates. In contrast, 2019
experienced more typical temperatures, with only minor spa-
tial and temporal variations. However, precipitation patterns
in 2019 were more variable: April and July recorded only
20 %—-40 % the usual rainfall, while May was notably wet-
ter, with precipitation levels reaching up to twice the normal
amount.

2.5.2 SM2RAIN algorithm

We used the SM2RAIN algorithm to estimate P rates from
SM data. The main advantage of the SM2RAIN algorithm
is that it requires only SM information to estimate precipi-
tation. This feature is especially beneficial for estimating P
in remote Arctic regions, where observational data is often
scarce. In the SM2RAIN algorithm, the soil is assumed to
act as a natural rain gauge, and changes in SM can be used to
estimate rainfall. The algorithm is based on the inversion of
the soil water balance equation (Brocca et al., 2013):

7 ds(t)
dr

=P{t)—R(t)—E@®)—G(@), (2)

where Z is the soil water capacity, s(¢) is the relative SM, ¢
is the time, and P (¢), R(t), E(t), and G (¢) are the precipita-
tion, surface runoff, evapotranspiration, and drainage (deep
percolation and subsurface runoff) rates. Brocca et al. (2015)
studied the impact of various terms on P estimates derived
from the SM2RAIN algorithm. Their research demonstrated
that SM variations and the drainage term are the most signif-
icant contributors, accounting for over 90 % of the simulated
P estimates. The study concluded that neglecting evapotran-
spiration and surface runoff terms does not weaken the al-
gorithm’s performance. Additionally, the use of satellite data
with relatively coarse resolution further reduces the impact of
surface runoff. The portion that does not infiltrate, due to fac-
tors such as impervious land cover or soil, may re-infiltrate
downstream within the scale of a SMAP grid cell (Brocca
et al., 2015, 2019). Therefore, during rainfall events, evap-
otranspiration and surface runoff are assumed to be negligi-
ble (Brocca et al., 2014; Kirchner, 2009). The drainage rate
can be estimated using the following equation (Brocca et al.,
2013; Famiglietti and Wood, 1994):

G(t) = as(r)?, 3)

where a and b are two parameters expressing the nonlinearity
between drainage rate and soil saturation. When rearranging
the terms in Eq. (2) and using Eq. (3), we can estimate P
using the following equation:

ds ()
t

Pt)=Z 5 +as(r)?, “)

Using the equation above, we can estimate the P rate if we
know the relative SM, the changes in relative SM, and three
parameters (Z, a, and b).
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Before using SMAP SM observations as input for the al-
gorithm, the data needed to undergo a few preprocessing
steps. First, in case of missing SMAP data, linear interpo-
lation was used to generate daily values, with a maximum al-
lowable data gap of three days for interpolation. Second, the
SMAP data were rescaled between O and 1, as relative SM
is used as input in the SM2RAIN algorithm. Third, to ad-
dress high-frequency fluctuations in satellite-based SM ob-
servations caused by measurement and retrieval errors, the
SMAP data were temporally filtered using the exponential
filter approach (Wagner et al., 1999). After these preprocess-
ing steps, the SMAP data were ready to be applied to the
SM2RAIN algorithm. The parameters Z, a, and b were cal-
ibrated by minimizing the root-mean-square error between
the simulated and radar-based 5 d accumulated rainfall. We
used data from year 2018 for calibration and data from year
2019 for validation. Since snowmelt affects SM and may lead
to erroneous P estimates, we excluded the snowmelt season
by only including the months from June to September in the
SM2RAIN analysis.

2.5.3 Drydowns

Drydown periods occur when there is a consistent negative
change in SM over time. We identified these drydown peri-
ods separately for each SMAP grid cell. Figure 3 illustrates
an example of SMAP SM observations along with the identi-
fied drydowns in Kenttirova. Following the approach of Mc-
Coll et al. (2017b), we excluded positive increments of less
than 5 % of the observed SM range at the site, which helped
ensure that noise in the observations did not truncate the dry-
downs.

Drydown periods can be identified using either SM data
alone or by including P time series data. While McColl et
al. (2017b) relied solely on SM information, e.g. Akbar et
al. (2018) used both SM and P data, including only days with
less than I mmd~! of P in their analysis. In this study, we
employed both methods. We identified drydowns based on
SM data alone and also used radar-based P data with three
different thresholds: 0.3, 1, and 4.5 mmd . These thresh-
olds were selected according to FMI’s definitions for light,
moderate, and heavy rainfall (FMI, 2024c). We analyzed
whether including P data affects the identification of dry-
down periods.

After identifying the drydowns, we fitted an exponential
model (McColl et al., 2017b; Rondinelli et al., 2015; Shel-
lito et al., 2016) for each drydown that included at least four
SMAP observations:

SM (1) = ASM - ™% + SM* min, ()

where SM(t) is the soil moisture, ASM is the positive incre-
ment in SM preceding the drydown, 7 is the estimated dry-
down exponential decay time scale, i.e. the time constant, and
SM? . is the estimated lower bound of SM. Following Mc-

Coll et al. (2017b), we constrain SM . to be less than the
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lowest SM observed during the drydown, and greater than
or equal to the lowest SM observed over the entire observa-
tion period in that grid cell. Here, we note that SM} . refers
to the value estimated using Eq. (5), while SMy, refers to
the minimum values observed by SMAP. An example of the
exponential fits in Kenttédrova is illustrated in Fig. 3.

3 Results
3.1 SM Mean and Variability

Figure 4a—f show the monthly mean SM for April through
September in 2018. In April, large areas in Finland remain
covered in snow; therefore, no SMAP observations are avail-
able. SMAP does not retrieve soil moisture, if the snow
areal fraction within a SMAP grid cell exceeds 50 % based
on the National Oceanic and Atmospheric Administration
(NOAA) Interactive Multisensor Snow and Ice Mapping Sys-
tem (IMS) database (O’Neill et al., 2021a). In the south-
ern regions, snow has already melted, leading to very high
SM levels. Snow continues to melt in the northern areas dur-
ing May, and as a result, SM levels remain high throughout
the month. In June, July, and August, after decreasing from
the snow-melt levels, the mean SM remains relatively stable
but begins to increase again in September. In general, SM is
higher in the southern parts of Finland compared to the north.
This agrees well with the spatial distribution of annual P; the
soil contains more water in areas that get more precipitation.
Additionally, Fig. 4 indicates that SMAP SM retrieval tends
to saturate near water bodies, particularly in the southeastern
parts of the country.

The range of SM retrievals for each month, i.e. the dif-
ference between maximum and minimum SM values, fol-
lows a somewhat similar spatial distribution as the mean val-
ues (Fig. 4g-1). The smallest range is in northern Finland
and the range increases towards the south. The lake-filled
parts of southeastern Finland have a range of 0 because of
the saturated SM retrievals. We further analyzed how the
observed minimum (SMpin) and maximum (SMp.x) values
within each grid cell depend on soil properties (Fig. S2 in the
Supplementary material). SMp,;, shows little variation across
different soil textures. In contrast, SM.x tends to decrease
in sandier soil and increase with higher clay or silt content.
However, it is important to note that the variability in soil
texture across the study area is relatively limited (Fig. S1).

We examined how the monthly SM range in each grid cell
correlates with the monthly total P (Fig. 5a—c) and with the
maximum daily P throughout the month (Fig. 5d—f). In ad-
dition to analyzing these relationships over the entire study
period, we also analyzed them separately for April-May,
when snowmelt impacts SM, and for June—September. Dur-
ing April and May (Fig. 5b and Se), we found no correlation
between the SM range and either the total monthly P or the
maximum daily P. This finding aligns with what was illus-
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Figure 3. Timeseries of in situ SM and radar-based P measurements and identified drydowns in Kenttdrova.
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Figure 4. (a—f) Monthly mean SM and (g-1) monthly SM range in 2018.

trated in Fig. 4: the melting snow tends to raise SM levels, and in most grid cells, they do not exceed 20 mm. However,
consequently increasing the SM range. From June onwards there are specific grid cells where the monthly P can reach
(Fig. 5c and f), there is a detectable dependency between the nearly 100 mm, and in these areas, the SM range also exhibits
variables, with higher daily or monthly P leading to an in- higher values.

crease in SM range. Generally, the monthly P values are low,
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Figure 5. Density plots for monthly SM range against monthly P (a—c) and maximum daily P (d-f).

Figure 6 shows time series data of SMAP SM estimates
alongside in situ SM and P measurements and daily radar-
based P rates for Sodankyld and Hyytidld in 2018. The time-
series for Saariselkd, Kenttdrova, and Vérrio are in Fig. S3. In
Sodankyli, there is a general agreement between the SMAP
estimates and the in situ measurements averaged across the
SMAP footprint. In April and early May, only in situ SM
measurements are available, as snow covers over 50 % of
the grid cell. During the first half of April, the soil remains
frozen, which decreases the permittivity measured by the
sensor, thus leading to very low SM values. By mid-April,
the daily mean air temperature rises above 0 °C (FMI, 2024b)
consequently, causing the snow to begin melting. The soil
temperature rises above 0°C and with the combination of
melting snow and rainfall, SM values show a clear increase
during the last half of April. Snow completely melts by 13
May, which is also when SM reaches its maximum value.
During mid to late May, dry conditions prevail, resulting in a
decrease in SM, which both the SMAP and in situ measure-
ments similarly detect. The SCA-H-based SM estimates are
slightly lower, while the DCA and SCA-V-based values are
more consistent with each other. Later in the study period,
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in situ SM measurements exhibit slightly greater variability
compared to SMAP estimates.

In Hyytidld, the datasets show larger discrepancies. The
Hyytiéla grid cell is flagged with both water and dense veg-
etation, complicating satellite-based SM retrieval. There are
two in situ SM measurement sites within the grid cell, and
they show notable differences: the site located in the for-
est consistently detects low values throughout the study pe-
riod, while the site in the fen initially detects much higher
values, which decrease as summer progresses into fall. Ini-
tially, the SMAP retrievals fall between the two in situ mea-
surements, but they show higher values by the end of the
study period. Based on the in situ measurements, it is evi-
dent that the SM can vary notably within a relatively small
area (see also, e.g., Famiglietti et al., 1999, 2008). This also
considerably impacts satellite-based measurements and com-
plicates SM retrieval but also makes the comparison between
satellite-based and in situ SM measurements more challeng-
ing and possibly less reliable (e.g., Cosh et al., 2004; Chen
et al., 2019). Additionally, the timeseries occasionally show
a weak or unclear correlation between SM and P. Minor dis-
crepancies are also observed between radar-based and in situ
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Figure 6. Timeseries of SM and P in Sodankyld and Hyytidld in 2018. The green shaded area indicates the standard deviation of the averaged
SM measurements in Sodankyld, and the grey shaded area indicates the days when the soil temperature is below 0 °C.

P measurements, likely due to differences in spatial reso-
lution. In Finland, particularly during summer, precipitation
often occurs as localized showers. As a result, rainfall may
go unrecorded at the in situ measurement site despite occur-
ring elsewhere within the SMAP grid cell. Conversely, in-
tense rainfall at the in situ site may appear diminished when
averaged across the broader SMAP footprint, leading to dis-
crepancies between in situ and radar-based P estimates.

3.2 SM2RAIN

To estimate P from SM measurements, we employed the
SM2RAIN algorithm, which treats soil as a natural rain
gauge. SM2RAIN has been shown to reliably estimate rain-
fall at temporal resolutions four to six times coarser than that
of the input SM data (Brocca et al., 2013; Massari et al.,
2014). Given that we used daily SM data as input, we present
results for 6 d accumulated precipitation. Figure 7 shows 6d
accumulated P for three selected periods. During the first pe-
riod (Fig. 7a—d), two regions exhibit high rainfall rates: one
in the north and another one in the south. While SM2RAIN
generally identifies the correct rainfall locations, estimating
precipitation intensity accurately remains more challenging.
In the northern region, all the SM2RAIN algorithms (DCA,
SCA-V, and SCA-H) tend to underestimate rainfall, whereas
in the south, the algorithm more effectively captures the high-
est intensities. Additionally, all the SM2RAIN algorithms de-
tect rain near the northernmost edge of the study area, which
is not visible in the radar data. This discrepancy is likely due
to the long distance from the radar; when far away, the radar
has difficulty accurately detecting rain, making comparisons
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less reliable. In eastern and southeastern Finland, the pres-
ence of numerous lakes complicates SM retrieval, leading to
inaccuracies in rainfall detection. The SMAP single-channel
algorithms (Fig. 7c—d) perform better near water bodies, and
particularly the SCA-H-based SM2RAIN algorithm is able
to detect the southern rainfall area correctly.

During the second period (Fig. 7e-h), SM2RAIN algo-
rithms indicate the highest intensities around latitude 65° N
which is consistent with the radar data. However, the peak
intensities are slightly underestimated by the SM2RAIN al-
gorithm. Also, SM2RAIN detects light rainfall across a large
area of Finland, overestimating the spatial extent of light rain
compared to the radar data. The analysis for the third period
(Fig. 7i-1) shows results similar to the previous ones. Over-
all, while the SM2RAIN algorithms can usually identify ar-
eas of rainfall accurately in most cases, estimating the inten-
sity of P remains more challenging. Figure 8 illustrates the
bias for 6d accumulated P (SM2RAIN minus radar-based
P) for light, moderate, and heavy rainfall. For thresholds,
we used FMI’s definitions for light, moderate and heavy
rainfall multiplied by six. For light rain, the median bias is
positive (3.8 mm for DCA), indicating an overestimation by
SM2RAIN. In contrast, for heavy rainfall, the median bias is
markedly negative (—16.5 mm for DCA). These results fur-
ther highlight that the SM2RAIN algorithm tends to over-
estimate light rain and underestimate heavy rain, while for
moderate rain, the median bias is closer to zero (—0.7 mm
for DCA).

Hydrol. Earth Syst. Sci., 29, 4791-4810, 2025
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Figure 7. 6 d accumulated P based on radar data and SM2RAIN algorithm for three selected periods.

Hydrol. Earth Syst. Sci., 29, 4791-4810, 2025 https://doi.org/10.5194/hess-29-4791-2025



K. Kouki and A. Colliander: Characterizing precipitation and soil moisture drydowns in Finland

4801

20 Light rain Moderate rain Heavy rain
0 é‘ ] = T - T
£ 1 1 1 | B4 ==
£ -10
g —t ]
E _20 i .
_30 -
—40 A == -L A
DCA SCA-V SCA-H DCA SCA-V SCA-H DCA SCA-V SCA-H

Figure 8. Box plot of the biases for 6 d accumulated P (SM2RAIN minus radar-based P) for light, moderate, and heavy rainfall for the year

2019.

3.3 Drydowns

To identify drydowns, we first analyzed the impact of us-
ing different thresholds for daily P. The choice of threshold
notably influences both the number of identified drydowns
and their maximum length (Fig. S4). Specifically, using a
lower threshold results in a decrease in both the number and
length of drydowns. When applying the highest threshold
(4.5mmd~"), the number of drydowns identified is nearly
the same as when no threshold is used (Fig. S4a-b). A stricter
threshold leads to a noticeable decline in the number of
drydowns (Fig. S4c—d). In terms of the maximum drydown
length (Fig. S4e-h), the patterns are similar: the stricter the
threshold, the shorter the maximum drydown length is. This
was to be expected, as heavy rain would most likely result in
a clear increase in SM which would truncate the drydown re-
gardless of using P information. For lighter rain, the changes
in SM are less pronounced so using a very strict P threshold
can truncate drydown when no increase in SM is detected.
Since only drydowns lasting at least four days are considered,
using a very strict P threshold thus leads to fewer and shorter
drydowns. The spatial distributions for both variables follow
a consistent pattern, with the highest number of drydowns
and the longest drydowns occurring in the southern regions
and progressively becoming lower and shorter towards the
north (Fig. S4).

The time constant T remains relatively consistent across
different thresholds (Fig. 9). When applying the lowest
threshold (0.3 mm d~!), the median value is slightly higher in
certain areas compared to the higher thresholds; however, the
differences between the probability density functions (PDF)
are negligible. The lower bound of SM is also unaffected by
the selected P threshold. The values show spatial variabil-
ity, but the variability is similar regardless of the threshold
used. The PDFs for both variables also show similar results
for each threshold. The median 7 for all cases is 4.0d and
the median SM” . is 0.17 m> m~3, respectively. Our analysis
indicates that while the chosen threshold influences the num-
ber of identified drydowns and the maximum duration of a
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drydown, it does not affect t or the modeled lower bound
of SM. Consequently, we have proceeded with the following
analysis without applying any P threshold.

Figure 10 shows the number of drydowns and the maxi-
mum drydown duration in each grid cell for the entire study
period, as well as separately for each season: spring (April—
May), summer (June—August), and fall (September). The
number of identified drydowns shows seasonal variation,
which is expected due to the differing lengths of each sea-
son. Therefore, the summer season, being the longest, expe-
riences the highest number of drydowns. Overall, the number
of drydowns tends to be highest in the southwest region and
decreases towards the north. The maximum length of dry-
downs also varies by season (Fig. 9f-h), typically becoming
shorter as summer progresses into fall. Increased rainfall in
the fall likely affects the length of the drydown periods. The
spatial distribution of maximum drydown length follows a
somewhat similar distribution to the number of drydowns,
with the highest values found in the southwest and gradually
decreasing to the north. The median drydown length across
the entire study area ranges from 5 to 6 d, while the maxi-
mum length varies from 12 to 20 d depending on the season,
respectively.

Figure 11 shows the spatial distribution of the median of
T and the modeled lower bound of SM, and PDF for both
variables throughout the entire study period and separately
for the spring, summer, and fall seasons. T in each grid cell
varies mostly between 1 to 10d, with slightly higher val-
ues in spring and fall. The spatial distribution does not re-
veal any clear patterns in any of the seasons. The distri-
bution (Fig. 11e) is highly positively skewed with a heavy
tail. Across all seasons, the mode is 1.6d, while the me-
dian ranges from 3.6 to 4.5 d, depending on the season. Un-
like 7, the lower bound of SM exhibits some spatial vari-
ability: the values tend to increase slightly near water bod-
ies (Fig. 11f—i). However, near the water bodies, SMﬁlin can
occasionally present very low values, particularly in spring.
The PDF (Fig. 11j) demonstrates that the distribution of

SM?. displays a somewhat similar pattern across all sea-
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Figure 9. The median time constant and the median lower bound of SM using different P thresholds when identifying drydowns.

sons, with minor variations. The distribution of SM? . is pos-
itively skewed, with a mode of 0.14 m3m—3 and a median
ranging from 0.16 to 0.18 m3> m—3. Furthermore, SM?*.  ex-
hibits an additional lower peak at 0.02 m3 m~—3, which is most
pronounced in spring and decreases during summer and fall.
The SMAP SM retrievals have a lower limit of 0.02 m? m—3
(O’Neill et al., 2021a), which may cause an artifact in the
results.

Figure 11 indicates that SM?. is particularly influenced
by surface classification, as its spatial variability closely re-
sembles those shown in the surface flag map (Fig. 2c). There-
fore, we analyzed the distribution of both 7 and SM,.  sepa-
rately for each surface class defined in Fig. 2c. As expected, ©
does not vary considerably across the classes (Fig. 12a). The
peak is slightly higher for the low vegetation class; however,
overall, T displays a similar distribution in all classes. In con-
trast, SM? . , varies notably across the classes (Fig. 12b). The
low vegetation class exhibits the highest peak, with no de-
tectable lower peak. The dense vegetation class also exhibits
a single peak, which is slightly lower than that of the low
vegetation class. The other two classes, “water” and “water
and dense vegetation”, show a mode at 0.02 m3m3, along
with a lower and less distinct peak at higher values. Since
0.02m3m™3 is the lower limit of SMAP SM retrievals, it
may introduce an artifact in the results. Figure 12b indicates

that water bodies particularly complicate the SM retrieval.

Hydrol. Earth Syst. Sci., 29, 4791-4810, 2025

While dense vegetation alone does not pose as much of a
challenge, its combination with water makes SM retrieval
more difficult.

In addition to surface classification, we examined the in-
fluence of soil properties on the parameters SM}. and .
Specifically, we investigated whether sand, silt, and clay frac-
tions, as well as bulk density and soil porosity, have any ef-
fect on these variables, and whether seasonal variability plays
arole. The analysis showed no clear impact of soil properties
on SM? . or 7, and no significant seasonal variation was ob-
served (Figs. S5-S6). However, it is important to note that
soil texture within the study area exhibits limited variability
(Fig. S1). A broader study area with greater heterogeneity in
soil characteristics may reveal more pronounced effects. This

possibility could be explored in future research.

4 Discussion

We have analyzed the relationship between SM and P and
investigated whether satellite-based SM data can be used to
estimate P rates by employing the SM2RAIN algorithm. Ad-
ditionally, we examined the patterns of SM drydowns across
Finland.

The results indicate a generally strong correlation between
SM and P, with SM levels rising during rainfall events and
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Figure 10. The number of drydowns and the maximum drydown length for the entire study period and for spring, summer, and fall.

decreasing during dry periods. However, during April and
May, snowmelt increases the SM levels across the study area
(Fig. 4a-b), resulting in a less clear relationship between SM
and P (Fig. 5b and e). Despite low overall rainfall rates in
spring, the monthly range of SM remains relatively high.
From June onward, a stronger relationship between SM and
P emerges (Fig. 5c and f).

Using the SM2RAIN algorithm, we evaluated the poten-
tial of estimating P from satellite-based SM data. Previous
studies indicate that SMAP data typically perform well as
input for the SM2RAIN algorithm (Koster et al., 2016; Miao
et al., 2023a), although forested areas complicate retrievals
(Lai et al., 2022). Our analysis shows that while the algo-
rithm accurately identifies the spatial extent of P, it struggles
with intensity detection (Fig. 7). Specifically, the SM2RAIN
algorithm tends to overestimate light rain and underestimate
heavy rain (Fig. 8), aligning with findings from prior research
(Koster et al., 2016; Tarpanelli et al., 2017). Additionally, as
Fig. 5b and e showed, the relationship between P and SM is
more complex during snowmelt season. In spring, soil wet-
ting due to snowmelt can complicate the algorithm’s accu-
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racy, as it can misinterpret increased SM from snowmelt as
rainfall, leading to inaccuracies in P estimates. Therefore,
we restricted our analysis to the period from June onwards to
exclude the month affected by snowmelt. Nonetheless, future
research could more thoroughly examine the dynamics be-
tween P and SM during the melt season to analyze whether
it is possible to estimate P from SM during melt season. This
approach could also benefit from using additional satellite-
based information on melt onset and timing (e.g. Anttila et
al., 2018; Wang et al., 2013).

In this study, we have used a simple form of the SM2RAIN
algorithm, which includes only SM variations and the
drainage term. Previous research has demonstrated that this
simplified formulation is generally sufficient, as neglecting
evapotranspiration and surface runoff terms does not weaken
the algorithm’s performance (Brocca et al., 2015). However,
future studies may benefit from including these additional
terms to potentially enhance the accuracy of P estimates.

The coarse spatial and temporal resolution of SMAP
presents challenges in detecting small-scale phenomena. The
original resolution of the radar data is considerably finer,

Hydrol. Earth Syst. Sci., 29, 4791-4810, 2025
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which can lead to inaccuracies in comparisons, even after
averaging the radar data to match the SMAP resolution. The
spatial resolution of SMAP does not capture the systematic
small-scale SM patterns. Figure 6b showed that SM can have
systematically very different SM conditions within a single
grid cell, making it challenging to relate the area-averaged
SM measured by SMAP to the local SM conditions. Fur-
thermore, the temporal resolution, ranging from one to two
days, complicates the detection of rapidly moving rainfall ar-
eas. As Fig. 1 illustrated, the satellite-based SM data cannot
capture all the variability in SM. Therefore, detecting small-
scale precipitation events, which are common in Finland dur-
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in each class defined in Fig. 2c.

ing summer, is challenging with the SMAP data. Addition-
ally, the presence of water bodies introduces artifacts in SM
retrieval, affecting the accuracy of P estimates. Despite these
challenges, the results are promising, and our findings high-
light the potential of satellite-based SM data for estimating
P rates. This has considerable implications for improving
rainfall estimation in regions with sparse ground-based ob-
servations, enhancing weather forecasting, and contributing
to climate models.

We analyzed SM drydown patterns by fitting an exponen-
tial model to each SM drydown period, from which we es-
timated the exponential decay time scale () and the lower
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bound of SM (SM} . ). We tested three specific P thresh-
olds and studied whether they had an impact on the dry-
downs. The results showed that the threshold affected both
the number of drydowns and the maximum length of a dry-
down. However, they did not influence 7 or SM;‘nin, which is
why we conducted most of the analysis without using any P
threshold.

Our findings indicate that t exhibits minimal spatial or
temporal variability (Fig. 11). The distribution of 7 is pos-
itively skewed, with a mode of 1.6d and a median of 4.0d.
The median agrees well with in situ measurements, which
report a median value of 4-6d (Shellito et al., 2016; Raoult
et al., 2021). In contrast, SMznn shows more notable spatial
variability. When we analyzed the distribution across differ-
ent surface classes (as defined in Fig. 2c), we observed dis-
tinct differences (Fig. 12). Grid cells containing water bod-
ies (classified as “water” and “water and dense vegetation™)
show a mode in SM?. ~at 0.02 m3 m~3, alongside a lower
and less distinct peak at higher values. Since 0.02m? m~3 is
the lower limit for SMAP SM retrievals, this may introduce
an artifact in the results. Conversely, grid cells without wa-
ter bodies (“low vegetation” and “dense vegetation™) display
more consistent distributions, each with a single peak around
0.13m3m~3. These differences in distribution suggest that
surface conditions significantly influence the SMAP SM re-
trievals. Specifically, this result indicates that water bodies
complicate SM retrieval, while dense vegetation alone does
not pose as much of a challenge. This conclusion is further
supported by previous findings demonstrating SMAP’s ca-
pability to detect SM beneath vegetation cover (Ayres et al.,
2021; Colliander et al., 2020b).

In this study, we have used the exponential decay model
to define SM” . and 7, following the methodology from Mc-
Coll et al. (2017b). While this approach has been widely used
(e.g. McColl et al., 2017b; Rondinelli et al., 2015; Shellito
et al., 2016), future research could explore alternative decay
models. Considering alternative functions could potentially
lead to even more accurate characterization of SM dynamics
during drydown events.

The datasets used in the analysis generally perform well,
but they may cause minor inaccuracies in the analysis. The
radar-based P data used as reference are overall accurate
(Saltikoff et al., 2010) and agree well with in situ mea-
surements. However, radar accuracy diminishes toward the
edges of the study area due to beam curvature (Saltikoff et
al., 2010), leading to slight uncertainties in these regions.
These uncertainties are minimal, as the study area was de-
fined based on radar distance (Fig. 2a). SMAP has also been
found to perform generally well, often exceeding the accu-
racy of SM estimates based on SMOS and ASCAT (Collian-
der et al., 2023; Chen et al., 2018). However, some differ-
ences exist between the satellites, and further studies using
different satellite datasets could assess and potentially refine
our findings.
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Based on the analysis, water bodies complicate satellite-
based SM estimates. In northern Finland, SM is measured
in specific areas during April (Fig. 4a), even though much
of the region remains covered in snow at that time. These
areas correspond closely with areas identified as water bod-
ies (Fig. 2c¢), indicating that the water fraction within those
grid cells ranges from 5 % to 50 %. Furthermore, these ar-
eas show a noticeable variation in monthly SM in April and
May (Fig. 4g-h). In spring, many lakes in Finland remain
frozen which likely influences the anomalous SM measure-
ments in these regions. In summer, SMAP SM retrievals in
turn tend to saturate near water bodies, particularly in south-
eastern parts of Finland (Fig. 4). The analysis also shows
that the single-channel algorithm performs better near wa-
ter bodies. Recent studies on SMAP performance in forests
show that SMAP is able to detect SM variability under the
canopy (Colliander et al., 2020b). This analysis is consis-
tent with our findings: the analysis shows that water bodies
complicate SM retrieval, while dense forests do not pose a
similar challenge. This finding also suggests that the meth-
ods used in this study could be applied across the Arctic, as
water bodies cover only about 6 % of the Arctic land sur-
face (Paltan et al., 2015). However, another factor that may
complicate SM retrievals in the Arctic, and consequently af-
fect the performance of the SM2RAIN algorithm, is the ex-
tensive permafrost coverage across the region (Aalto et al.,
2018). Thawing permafrost can introduce notable uncertain-
ties in P estimates derived from SM2RAIN (Miao et al.,
2023b). This interaction between permafrost dynamics and
SM2RAIN performance represents a valuable topic for fu-
ture research, particularly in the context of a warming Arctic.

Although this study primarily examined how P affects
SM, it is important to note that the relationship can also work
in the opposite direction. Specifically, SM influences heat
fluxes from the ground thus impacting the atmospheric hu-
midity and temperature profiles, which in turn can affect P
rates (Seneviratne et al., 2010; Tuttle and Salvucci, 2016).
While this was not the focus of the current study, it could be
an area of interest for future research.

5 Conclusions

We have analyzed the relationship between SM and P, as-
sessed the feasibility of estimating P from SM, and ex-
amined SM drydown patterns across Finland from April
to September 2018-2019. This study was based on SM
data from NASA’s SMAP satellite and used ground-based
weather radar data and in situ SM and P measurements as
reference data. The main findings of this study are as follows:

— There is generally a good agreement between SM and
P, with SM levels rising during rainfall events and de-
creasing during dry periods. However, in April and May,
the correlation is weaker due to snowmelt, which in-
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creases SM levels. From June onward, a stronger rela-
tionship between SM and P emerges.

— Using the SM2RAIN algorithm, we evaluated the po-
tential of estimating P from satellite-based SM data.
Overall, the analysis indicates that the algorithm de-
tects the area of rainfall accurately, but estimating the
intensity of P remains more challenging. Specifically,
the algorithm tends to overestimate light rain (median
bias 3.8 mm for 6 d accumulated P) and underestimate
heavy rain (median bias —16.5 mm for 6 d accumulated
P), which is consistent with prior research.

— We analyzed SM drydown patterns by fitting an expo-
nential model to each SM drydown period, from which
we estimated the exponential decay time scale (7) and
the lower bound of SM (SMy . ). Our findings indi-
cate that T exhibits minimal spatial or temporal vari-
ability. The distribution of t is positively skewed, with
a mode of 1.6d and a median of 4.0d, consistent with
other studies. The distribution of SM7 . is also posi-
tively skewed, with a mode of 0.14m m~3 and a me-
dian of 0.17 m3 m=3.

— The analysis also shows that surface conditions signif-
icantly influence the SMAP SM retrievals. Specifically,
our findings indicate that water bodies complicate SM
retrieval, while dense vegetation alone does not pose
as much of a challenge. This result suggests that the
method used in this study could be applied across the
Arctic because only a small fraction of the Arctic land
surface is covered by water bodies.

Data availability. The SMAP  data are available at
https://doi.org/10.5067/M200XIZHY3RJ  (O’Neill et al,
2021a). The radar data and in situ P measurements are avail-
able at https://en.ilmatieteenlaitos.fi/open-data (last access: 26
June 2024). The in situ SM measurements are available at
https://ismn.earth/en/dataviewer/ (last access: 21 May 2024) (So-
dankyld and Saariselkd), https://doi.org/10.5281/zenodo.10820563
(Nousu et al., 2024b) (Kenttdrova), and https://smear.avaa.csc.fi/
(11 May 2024) (Hyytidld and Virrio). The SoilGrids 2.0 data are
available at https://soilgrids.org/ (last access: 26 September 2024).
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