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Abstract. Runoff signatures characterize a catchment’s re-
sponse and provide insight into the hydrological processes.
These signatures are governed by the co-evolution of catch-
ment properties and climate processes, making them use-
ful for understanding and explaining hydrological responses.
However, catchment behaviors can vary significantly across
different spatial scales, which complicates the identification
of key drivers of hydrologic response. This study represents
catchments as networks of variables linked by cause-and-
effect relationships. We examine whether the direct causes
of runoff signatures, representing independent causal mech-
anisms, can explain these catchment responses across differ-
ent environments. To achieve this goal, we train the models
using the causal parents of the runoff signatures and inves-
tigate whether it results in more robust, parsimonious, and
physically interpretable predictions compared to models that
do not use causal information. We compare predictive mod-
els that incorporate causal information derived from the re-
lationships between the catchment, climate, and runoff char-
acteristics. The Peter and Clark (PC) causal discovery algo-
rithm is applied separately for 11 runoff signatures to derive
causal relationships between catchment attributes, climate
indices, and corresponding runoff signatures. Three predic-
tion models – the Bayesian network (BN), generalized addi-
tive model (GAM), and random forest (RF) – are used for
predictions. The results indicate that among models, BN, a
linear model with a structure based on the causal network,
exhibits the smallest decline in accuracy between training
and test simulations compared to the other models. Across

nearly all environments and runoff signatures, using causal
parents enhances robustness and parsimony while maintain-
ing the accuracy of GAMs. While RF achieves the highest
overall performance, it also demonstrates the most signifi-
cant drop in accuracy between the training and test phases.
When the sample size for training is small, the accuracy of
the causal RF model, which uses causal parents as predic-
tors, is comparable to that of the non-causal RF model, which
uses all selected variables as predictors, particularly for low-
flow duration, high-flow duration, low flows, and high flows.
This study demonstrates the potential of causal inference
techniques for interpreting and enhancing the prediction of
catchment responses by effectively representing the inter-
connected processes in hydrological systems in a cause-and-
effect manner.

1 Introduction

Hydrological processes result from complex interactions be-
tween climate inputs and catchment characteristics (Siva-
palan, 2006). These processes manifest in the catchment re-
sponse at the catchment outlet. Therefore, catchments can be
conceptualized as a unit in which the cumulative effect of
all interacting processes defines their runoff behavior, com-
monly referred to as “runoff signatures”. Runoff signatures
encapsulate the key characteristics of the runoff process in a
catchment, including streamflow magnitude, frequency, and
timing. These signatures are essential for a wide range of en-
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gineering and scientific applications (Blöschl et al., 2013),
especially when causal interpretation or assessment is not
possible due to insufficient data. McMillan (2020) outlined
a wide range of applications for runoff signatures, such as
assessing the performance of hydrological models (Clark
et al., 2011; Todorovic et al., 2024), selecting appropri-
ate model structures (Hrachowitz et al., 2014; Spieler and
Schuetze, 2024), and estimating parameters (Pokhrel et al.,
2012; Pizarro and Jorquera, 2024). They are also instrumen-
tal in streamflow prediction in ungauged basins (Yadav et al.,
2007; Zhang et al., 2014; Matos and Silva, 2024) and in un-
derstanding catchment runoff responses at different spatial
and temporal scales (Ficchi et al., 2019).

Although all processes in a catchment contribute to its
runoff response, each runoff property (or signature) is di-
rectly influenced by a distinct set of climatic and catchment-
specific characteristics. As an example, Chagas et al. (2024)
studied the regional patterns of low flows across 1400 river
gauges in Brazil. These authors showed that catchment char-
acteristics, especially geological properties, have a signifi-
cantly greater influence on low flows than climate attributes.
Guzha et al. (2018) investigated the effects of changes in for-
est cover on annual mean flow, high flow, and low flow in 37
catchments of different climatic and physiographic proper-
ties in East Africa, concluding that not all catchments exhibit
a significant response to forest loss. Therefore, it is necessary
to identify a set of variables or covariates that is causally as-
sociated with a specific runoff signature and can reliably ex-
plain it under various environmental conditions. Understand-
ing these variables allows one to explain the signature of in-
terest across environments with different climatic and physi-
ological conditions.

The main drivers of runoff signatures are commonly in-
vestigated using classification and regression methods. These
techniques are applied to identify the main drivers influenc-
ing catchment response and to assess their spatial dependen-
cies. Classification criteria often include runoff properties
(Ley et al., 2011; Sawicz et al., 2011; Kuentz et al., 2017),
climate, and catchment similarities (Olden et al., 2012; Singh
et al., 2016; Yang and Olivera, 2023; Ciulla and Varad-
harajan, 2024). Additionally, machine learning and statistical
methods are widely used for the same purpose. For exam-
ple, Addor et al. (2018) used RF to predict 15 runoff signa-
tures across 600 catchments in the USA. They showed that
climatic attributes are among the most influential predictors
of runoff signatures. McMillan et al. (2022) investigated the
dominant process by linking climate and catchment attributes
to hydrological signatures over large sets of catchments in the
USA, the UK, and Brazil. They found that although some
signatures, such as runoff ratio and baseflow index, were
among the most robust metrics for characterizing processes,
in some cases, the correlation found between variables and
signatures in a country may not always generalize to others.
These authors noted that these diverging correlations could

result from statistical associations rather than true causal re-
lationships.

We postulate that investigating the relationship between
hydrological variables and cause-and-effect perspectives
might solve the problem of diverging correlations reported
by McMillan et al. (2022). A variable X is considered the
cause of a variable Y if the value of Y depends on or is in-
fluenced by X in any given circumstances (Pearl et al., 2016;
Pearl, 2009). Therefore, the probability of a target variable,
such as a runoff signature, given its causes, should be the
same under different conditions or across different environ-
ments. Broadly, there are two widely used frameworks for
discovering causal relationships and estimating causal effects
from observational data, including structural causal model-
ing (Pearl, 2009) and the potential outcome framework (Ru-
bin, 1974). The methods used to discover causality and to
quantify causal effects and their strength are broadly referred
to as causal inference methods (CIMs).

One application of CIMs is to complement machine
learning approaches by addressing the problems of trans-
fer and generalization (Schölkopf et al., 2021; Ombadi,
2021) by identifying dependencies and confounding fac-
tors using multivariate analyses (Runge et al., 2019a). In
an under-investigated cause-and-effect relationship, a con-
founding variable is an unknown or unmeasured variable that
influences both the supposed effect and the supposed cause
(Pearl et al., 2016). Identifying confounders and unraveling
causal effects make CIMs a valuable tool for enhancing the
interpretability of Earth system models (Reichstein et al.,
2019). CIMs are established based on a robust mathematical
framework that identifies conditional dependencies in obser-
vational data (Pearl, 2009). This process often involves de-
riving a causal graph based on our understanding of the con-
ditional dependencies among processes using methods such
as the Bayesian network (BN) or Bayesian belief network
(Verma and Pearl, 1990).

In the last decade, significant efforts have been made to
investigate and develop applications for CIMs in the field
of Earth system modeling. These studies, primarily focused
on uncovering causal relationships from time series, cover a
broad range of topics including climate science (Runge et al.,
2019b; Kretschmer et al., 2016), remote sensing (Perez-Suay
and Camps-Valls, 2019), soil moisture–precipitation feed-
back detection (Wang et al., 2018), runoff behavior (Zazo
et al., 2020), the causal discovery of summer and winter
evapotranspiration drivers (Ombadi et al., 2020), and the
study of hydrological connectivity (Sendrowski and Pas-
salacqua, 2017; Rinderera et al., 2018; Delforge et al., 2022).
However, the causal relationships between catchment at-
tributes, climate characteristics, and runoff signatures have
yet to be thoroughly investigated. A catchment can be repre-
sented as a probabilistic network of interconnected processes
leading to a runoff signature. To achieve this, catchments
can be conceptualized as BNs, where variables are causally
linked. BNs, part of the family of probabilistic graphical
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models, consist of nodes representing variables and directed
edges indicating causal directions (Koller and Friedman,
2009). The structure of BNs is usually identified through
causal discovery methods and expert knowledge (Runge
et al., 2019a). Methods for causal discovery, also known
as structural learning or causal search, can be categorized
into constraint-based, score-based, and asymmetry-based ap-
proaches (Runge et al., 2023). Constraint-based methods use
conditional independence tests to identify the causal graph,
while score-based methods evaluate multiple causal graphs
using a scoring function, selecting the highest-scoring one.
Asymmetry-based methods are used to infer causal direction
in bivariate relationships (Runge et al., 2023).

One of the most widely used causal discovery algorithms
is PC, named after its authors, Peter Spirtes and Clark Gly-
mour (Spirtes et al., 2001). The PC algorithm is a constraint-
based method for causal discovery, which means it infers
causal relationships by testing for conditional independen-
cies in the data. It operates under the assumption of causal
sufficiency; that is, all relevant variables are measured, and
there are no unobserved confounders. Given this assumption
and a sufficiently large sample size, the algorithm guaran-
tees asymptotically correct results (Glymour et al., 2019).
Although this method is used for discovering directed acyclic
graphs (DAGs), its results do not fully identify the true causal
structure; instead, it outputs a Markov equivalence class, a set
of causal graphs that encodes the same conditional indepen-
dencies. These equivalence classes are typically represented
using completed partially directed acyclic graphs (CPDAGs)
(Peters et al., 2017). Due to its simplicity, computational
efficiency, and strong performance, the PC algorithm has
been widely adopted across various fields, such as climate
science (Ebert-Uphoff and Deng, 2012; Deng and Ebert-
Uphoff, 2014), medicine (Sanchez-Romero et al., 2023), and
epidemiology (Petersen et al., 2021).

The information about the causal relationships between
catchment variables can be incorporated into prediction mod-
els to predict runoff signatures. Predictions using BNs are
primarily designed for discrete datasets that can model com-
plex interactions between variables. The rigorous probabilis-
tic theories involved in BNs make them popular for environ-
mental modeling (Aguilera et al., 2011). However, Nojavan
et al. (2017) and Qian and Miltner (2015) showed that the
results of BNs are influenced by the discretization choice of
continuous variables. Inference with BN for continuous vari-
ables is still a challenging task (Li and Mahadevan, 2018).
Gaussian BN is a widely used method for modeling continu-
ous variables. It assumes that the relationships between vari-
ables are linear and that variables follow a Gaussian distri-
bution (Marcot and Penman, 2019). To relax these assump-
tions, non-parametric continuous BNs have been developed
(e.g., Qian and Miltner, 2015). However, Gaussian BNs re-
main a robust and widely used framework, supported by vari-
ous software packages (Geiger and Heckerman, 1994). Gaus-
sian BNs have been successfully applied in environmental

modeling, particularly for water quality studies, for example,
Jackson-Blake et al. (2022) and Deng et al. (2023).

Given the success of Gaussian BNs in other fields, in this
study, we adopt Gaussian BNs to predict runoff signatures.
The links between variables of BN are derived from the
PC causal discovery algorithm. Additionally, two non-linear
models – the generalized additive model (GAM) and random
forest (RF) – are used in this study. GAM is an extension
of the generalized linear model (GLM), which models non-
linear relationships between explanatory and response vari-
ables using sums of arbitrary functions of the explanatory
variables (Hastie et al., 2009). GAMs have been widely used
for hydrological studies, including flood frequency analysis
(Ouali et al., 2017), low-flow frequency analysis (Ouarda et
al., 2018), flood peak prediction (Dubos et al., 2022), anal-
ysis of nuisance flooding (Vandenberg-Rodes et al., 2016),
spatial analysis of extremes (Love et al., 2020), and climate–
crop yield relationships (Zachariah et al., 2021). RFs, first
developed by Breiman (2001), are non-linear non-parametric
models used extensively for regression, classification, pre-
diction, and variable selection. RF-based models have also
been used in the field of environmental modeling, includ-
ing for flow frequency analysis (Desai and Ouarda, 2021),
runoff signature prediction (Addor et al., 2018), water level
forecasting (Nguyen et al., 2015), downscaling (Arshad et
al., 2024), and understanding drivers of hazards (Seydi et al.,
2024).

This study introduces a novel approach for predicting
runoff signatures by integrating causal information into pre-
dictive models. To the best of our knowledge, causal infer-
ence techniques have not yet been applied for this purpose.
Unlike previous studies that primarily rely on correlated-
based features for predicting a specific catchment response,
we take a step beyond mere correlation by focusing on
causally relevant variables, specifically causal parents. By in-
tegrating causal information into predictive models (GAM
and RF), we aim to investigate whether this can enhance
the prediction models’ robustness, interpretability, and par-
simony compared to models that do not utilize causal in-
sights. We assume that a specific characteristic of catch-
ment response is directly influenced by a subset of corre-
lated variables, known as causal parents, rather than by all
correlated variables. These causal parents, together with the
runoff signature, form a causal mechanism that is theoreti-
cally independent of other variables and can explain the vari-
ations in the signature. In this context, our objective is to test
whether this fundamental concept applies to complex real-
world hydrological systems. To achieve our objectives, we
follow these steps: (1) identify causal relationships between
catchment attributes, climate characteristics, and runoff sig-
natures (network structure) using the PC causal discovery
algorithm (Spirtes et al., 2001), (2) execute models using
both the causal parents (causal models) and all selected vari-
ables (non-causal models) for entire catchments and subset
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of catchments, and (3) evaluate the robustness of the causal
and non-causal models.

2 Data

The Catchment Attributes and MEteorology for Large-
sample Studies (CAMELS) dataset is used in this study
(Newman et al., 2015; Addor et al., 2017). It includes time
series of streamflow and hydrometeorological variables, cli-
matic indices (derived from hydrometeorological time se-
ries), catchment attributes, and runoff signatures (derived
from streamflow time series) for 671 catchments spanning
the contiguous USA. The attributes in the CAMELS dataset
are divided into five categories: climate, geology, soil, to-
pography, and vegetation (land cover). CAMELS also in-
cludes comprehensive explanations of the techniques em-
ployed to derive catchment attributes and a discussion of
potential limitations in the data sources. The variables used
in this study include catchment characteristics, climate at-
tributes, and runoff signatures, which are outlined in Tables 1
and 2. The streamflow and hydrometeorological time series
are not included in this study.

Table 1 includes 41 catchment and climate attributes, in-
cluding both categorical and continuous variables. In this
study, we perform clustering, causal discovery, and predic-
tion, each of which relies on specific assumptions that must
be satisfied when applied to our data. Ensuring these assump-
tions hold is essential for the validity and reliability of the
results. All 41 attributes were used in the clustering analy-
sis. However, for the causal discovery and prediction tasks,
we used a subset of 22 continuous variables that are most
relevant to all runoff signatures. We performed three types
of correlation analyses – Pearson, Kendall, and Spearman –
to examine the relationships between catchment and climate
attributes and runoff signatures. To further assess the predic-
tive power of these attributes, we used the RF algorithm to
evaluate feature importance. Variable importance was ranked
using the out-of-bag (OOB) approach, based on the mean de-
crease in accuracy (IncMSE) score. This metric quantifies
the increase in prediction error when a variable is excluded
from the model, thereby indicating its relative contribution
to predicting runoff signatures. The RF algorithm was im-
plemented using the randomForest package in R (Breiman
et al., 2024). The results of this analysis are provided in the
Supplement.

It is important to note that when constructing a causal
graph (directed acyclic graph, or DAG) and performing pre-
dictions using BN methods, which are part of the probabilis-
tic graphical model framework, the selected variables (nodes)
must not be deterministic functions of one another, as this
would violate the conditional independence assumptions un-
derlying the DAG structure (Koller and Friedman, 2009). For
this reason, the aridity index, which is the ratio of precipi-
tation to potential evapotranspiration, is excluded from the

analysis. The issue of determinism also arises when variables
are complementary, such as soil texture components, which
are represented as percentages of sand, silt, clay, water, or-
ganic matter, and other contents that together sum to 100 %.
To ensure valid causal discovery and prediction, we use only
a subset of these variables, specifically sand, silt, and clay, in
our analysis.

3 Methods

The methodology integrates clustering, causal discovery, and
prediction. Figure 1 shows the methodological procedure
used in this study. In Fig. 1, causal models refer to the mod-
els that use causal parents, and non-causal models use all 22
variables as predictors (the variables shown in bold text in
Table 1). Environments are defined as subsets of the dataset
obtained through clustering algorithms. Therefore, the word
“environment” refers to the clusters or subsets of data. The
whole dataset itself is also an environment; however, in this
study, we primarily refer to clusters when discussing envi-
ronments. Baseline models refer to the models that use the
whole dataset (i.e., all 671 catchments) for training and test-
ing, and sub-models use subsets of the dataset for this pur-
pose. GAM∼Par and RF∼Par are causal GAM and RF mod-
els that employ causal parents for prediction. GAM∼All and
RF∼All are non-causal GAM and RF models that use all the
selected variables as predictors. A robust model is defined
as one that maintains its accuracy across different environ-
ments.

In this study, we explore the concept of independent mech-
anisms in the context of modeling runoff signatures. The in-
dependent mechanism assumption suggests that the causal
generative process of a system’s variables is made up of
self-contained modules that operate independently, without
influencing or providing information to one another, and
these mechanisms stay stable even when the data distribution
changes (Schölkopf et al., 2012; Peters et al., 2017). Using
the directed acyclic graph (DAG) obtained from causal dis-
covery, we identified the causal parents of the target runoff
signature, which represent the independent causal mecha-
nism generating this variable. Independent mechanisms, as
modular components, can be trained separately across differ-
ent environments and tend to be more adaptable and reusable,
a quality we refer to as robustness in this study (Parascandolo
et al., 2018). They may also be easier to interpret and pro-
vide more insight since these causal mechanisms correspond
to physical mechanisms. To evaluate the real-world applica-
bility of this mechanism, we used the identified causal par-
ents as predictors to train RF and GAM. This approach tests
whether the independent mechanism derived from the DAG
can effectively explain and predict the target variable, sup-
porting the idea that these causal conditions serve as robust
and interpretable modules in the prediction of runoff signa-
tures.
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Table 1. Catchment and climate attributes used for clustering as well as for causal discovery and prediction of all runoff signatures. Variables
shown in bold are those selected for causal discovery and prediction. The variables were calculated over the period from 1 October 1989 to
30 September 2009 (Table 2 in Addor et al., 2018).

Category No Attribute Description Unit

1 p_mean Mean daily precipitation mm d−1

2 pet_mean Mean daily PET (Priestley–Taylor) mm d−1

3 p_seasonality Seasonality and timing of precipitation –
4 frac_snow Fraction of precipitation as snow –
5 aridity pet_mean/p_mean –

Climate 6 high_prec_freq Frequency of high precipitation days d yr−1

7 high_prec_dur Average duration of high precipitation events (precipitation> 5× p_mean) days
8 low_prec_freq Frequency of high precipitation events (precipitation> 5× p_mean) d yr−1

9 low_prec_dur Average duration of dry periods (precipitation< 1 mm) days
10 high_prec_timing Season during which most high precipitation days occur (precipitation> 5× p_mean) season
11 low_prec_timing Season during which most dry days occur (precipitation< 1 mm) season

1 gauge_lat Gauge latitude ° north
2 gauge_lon Gauge longitude ° east

Topography 3 elev_mean Mean elevation of catchment m
4 slope_mean Mean slope of catchment m km−1

5 area_gages2 Area of catchment km2

1 geol_1st_class Most common geological class in the catchment –
2 geol_2nd_class Second most common geological class in the catchment –
3 glim_1st_class_frac Fraction of most common geological class –

Geology 4 glim_2nd_class_frac Fraction of second most common geological class –
5 carbonate_rocks_frac Fraction of carbonate rock –
6 geol_porosity Subsurface porosity –
7 geol_permeability Subsurface permeability m2

1 soil_depth_pelletier Depth to bedrock (< 50 m) m
2 soil_depth_statsgo Soil depth (< 1.5 m) m
3 soil_porosity Volumetric soil porosity (averaged over the top 1.5 m of soil) –
4 soil_conductivity Saturated hydraulic conductivity (harmonic mean over the top 1.5 m of soil) cm h−1

5 max_water_content Maximum water content (averaged over the top 1.5 m of soil) m
Soil 6 sand_frac Sand fraction (averaged over the top 1.5 m of soil) %

7 silt_frac Silt fraction (averaged over the top 1.5 m of soil) %
8 clay_frac Clay fraction (averaged over the top 1.5 m of soil) %
9 water_frac Fraction of water in 1.5 m of topsoil %

10 organic_frac Fraction of the soil depth marked as organic material (fraction of soil_depth_statsgo) %
11 other_frac Fraction of other components (fraction of soil_depth_statsgo) %

1 frac_forest Forest fraction of catchment –
2 lai_max Maximum monthly leaf area index –
3 lai_diff Difference between maximum and minimum leaf area index –

Vegetation 4 gvf_max Maximum monthly green vegetation fraction –
5 gvf_diff Difference between maximum and minimum green vegetation fraction –
6 dom_land_cover Dominant land cover type –
7 dom_land_cover_frac Fraction of dominant land cover –

To achieve this, we use the whole dataset for the prediction
in baseline models and subsets of the dataset in sub-models,
both with and without utilizing causal information, corre-
sponding to causal and non-causal models, respectively. If
the causal models perform comparably to or better than non-
causal models across different environments, it indicates that
causal parents are adequate in explaining the target variable.
In this situation, we can also conclude that the causal discov-
ery is able to recover the direct causes of the runoff signature.
In cases where causal models outperform non-causal ones, it

suggests that some covariates in the non-causal models may
represent spurious correlations, negatively impacting perfor-
mance in that specific environment. Furthermore, the robust-
ness of the models is assessed by comparing their accuracy
in training and test settings and checking whether the differ-
ence between causal and non-causal models is statistically
significant in both settings. The methods used to calculate
statistical significance tests comparing causal and non-causal
models are presented in the Supplement.

The steps are explained in the following sections.
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Table 2. Runoff signatures (target variables) in the CAMELS dataset, calculated over the period from 1 October 1989 to 30 September 2009.

No Signature Description Unit Reference

1 baseflow_index The ratio of mean daily baseflow to mean daily discharge – Ladson et al. (2013),
Table 2 in Addor et al. (2018)

2 high_q_dur The average duration of high-flow events (successive days of d Clausen and Biggs (2000),
flow events> 9× median daily flow) Table 2 in Addor et al. (2018)

3 high_q_freq Frequency of high-flow days (flow d yr−1 Clausen and Biggs (2000),
events> 9× median daily flow) Table 2 in Addor et al. (2018)

4 low_q_dur The average duration of low-flow events (successive days of d Olden and Poff (2003),
flow events< 0.2× mean daily discharge (q_mean)) Table 2 in Addor et al. (2018)

5 low_q_freq Frequency of low-flow days (flow events< 0.2× mean d yr−1 Olden and Poff (2003),
daily discharge (q_mean)) Table 2 in Addor et al. (2018)

6 q_mean Mean daily discharge mm d−1 Table 2 in Addor et al. (2018)

7 Q5 Low flow: 5 % flow quantile (95 % exceedance probability) mm d−1 Table 2 in Addor et al. (2018)

8 Q95 High flow: 95 % flow quantile (5 % exceedance probability) mm d−1 Table 2 in Addor et al. (2018)

9 runoff_ratio Mean daily discharge to mean daily precipitation – Sawicz et al. (2011),
Table 2 in Addor et al. (2018)

10 slope_FDC The slope of flow duration curve – Sawicz et al. (2011),
Table 2 in Addor et al. (2018)

11 stream_elast Streamflow elasticity (sensitivity of annual streamflow to – Sankarasubramanian et al. (2001),
variations in precipitation) Table 2 in Addor et al. (2018)

3.1 Clustering

The CAMELS dataset provides five categories of catchment
and climate attributes for each catchment (Table 1). Cluster-
ing catchments based on each category of attributes is as-
sumed to provide groups of catchments with homogeneous
characteristics (Blöschl et al., 2013). Clustering is used to
group the CAMELS catchments into different categories
based on specific attributes. Any given catchment will be-
long to one climate attribute cluster, one soil attribute cluster,
one topographic attribute cluster, one geological cluster, and
one vegetation cluster (i.e., each catchment is “assigned” five
cluster values – one for each attribute). The whole process of
training and testing the models is now (also) done on sepa-
rate attribute clusters only, so basically, it is only done on a
subset of the available data but using data that share certain
characteristics. The causal parents and selected variables are,
however, the same whether we use clustering or not.

We investigate the performance of the sub-models within
each cluster of catchments. Each cluster is considered a new
environment with certain properties that are used to investi-
gate the robustness of models with and without causal par-
ents. The selected covariates remain the same across all en-
vironments for each runoff signature. Within each cluster or
environment, covariate properties are assumed to be homoge-
neous with respect to specific attributes, allowing us to train
and test models using variables with consistent properties.

Defining environments as subsets of data is inspired by Pe-
ters et al. (2016). Here, we use a clustering analysis to define
these subsets, resulting in environments with specific proper-
ties. Therefore, clusters can be considered as subsets of data
where the distribution of covariates shifts from one cluster to
another. This variation across clusters provides a framework
for exploring the underlying independent causal mechanisms
of each runoff signature.

The causal independent mechanism (the target variable
and its parents) for each signature remains unchanged if there
is a change in the distribution of parents (Woodward, 2008).
Therefore, causal models (models with causal parents as ex-
planatory variables) are expected to perform with consistent
accuracy across different environments. This concept is influ-
enced by the covariate shift assumption (Quionero-Candela
et al., 2009). Covariate shift states that if variable Y is to be
predicted from a set of variables X, and X is the cause of
Y , the properties of conditional probability P(Y |X) remains
unchanged across all environments if the distribution of X
changes. This information will help to investigate the perfor-
mance of the causal compared to the non-causal models.

Two clustering methods are employed to group the catch-
ment attributes in the CAMELS dataset. The K-medoids
or partitioning around medoids (PAM) clustering algorithm
(Kaufman and Rousseeuw, 1990) is used for categories of
attributes with continuous variables, namely soil and topog-
raphy. PAM is a more robust method for handling outliers
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Figure 1. Flowchart depicting the steps followed in this study. Gray boxes indicate the procedures, mustard yellow boxes present the results
of these procedures, blue text highlights where information about causality is utilized, and the red text and arrows highlight the cluster
analysis and indicate where the clustering results are applied. PC refers to Peter and Clark’s causal discovery algorithm, PAM stands for
partition around the medoids clustering algorithm, and DAGs refers to directed acyclic graphs. BN refers to the Bayesian network, GAM
refers to the generalized additive model, and RF refers to random forest. GAM∼Par and RF∼Par are causal models (GAM and RF) using
only causal parent variables for prediction, while GAM∼All and RF∼All are non-causal models that use all selected variables as predictors.
Baseline models refer to models that use the entire dataset (all 671 catchments) for training and testing, while sub-models use only subsets
of the dataset or clusters.

and noise than the K-means method. The Gower distance
(Gower, 1971) is used for mixed variables. This method
is developed for datasets containing continuous, binary, or
multi-attribute variables (Hennig and Liao, 2013). The elbow
and silhouette methods are used to find the optimum number
of clusters.

3.2 Causal discovery

Causal discovery is used to partially or fully infer the causal
structure from observational data or distribution under cer-
tain assumptions (Heinze-Deml et al., 2018a). Here, we try

to find causal structures from the observational data without
specifying the underlying physical equations using a causal
discovery method. Causal discovery is applied to each runoff
signature along with 22 variables from the CAMELS dataset
in order to identify the causal graph associated with each
runoff signature.

3.2.1 PC causal discovery algorithm

In this study, the constraint-based PC causal discovery al-
gorithm (Spirtes et al., 2001), named after its authors, Peter
Spirtes and Clark Glymour, is used. The PC algorithm re-
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covers the causal graph from observed data by testing which
variables are conditionally independent of each other. These
independencies are seen as constraints to satisfy the true
data-generating process. The PC algorithm outputs a com-
pleted partially directed acyclic graph (CPDAG), which rep-
resents a Markov equivalence class of causal structures. This
means that instead of identifying a single unique directed
acyclic graph (DAG) that fully describes the causal rela-
tionships among variables, the PC algorithm returns a set
of DAGs that are indistinguishable based on observed sta-
tistical dependencies alone. These DAGs all share the same
conditional independence; that is, the probability distribution
of the variables satisfies the Markov property with respect to
each of them. The CPDAG captures this equivalence class by
showing which edges are directed and which are only known
to exist but not in which direction (undirected edges).

To recover a valid CPDAG using the PC algorithm, certain
assumptions must be satisfied to ensure the causal structure is
identifiable from the data. These include the causal Markov
condition, which links the graph structure to statistical in-
dependencies; the faithfulness condition, which ensures that
all observed independencies are due to the graph structure or
that the distribution is faithful to DAG (Peters et al., 2017);
and causal sufficiency, which assumes there are no unmea-
sured confounders.

To construct the causal graph, PC begins with the assump-
tion that every variable is potentially connected to every other
variable, forming a fully connected undirected graph. Then,
the algorithm starts removing edges between variables based
on statistical tests of conditional independence. The key idea
is that if two variables are conditionally independent given
some set of other variables, then there is no direct causal link
between them, so the edge connecting them can be removed.
By checking different sets of conditioning variables and re-
moving the edges accordingly, the PC algorithm recovers the
underlying skeleton of the graph; that is, the undirected struc-
ture that shows which variables might have a direct relation-
ship.

Once the skeleton is established, the PC algorithm pro-
ceeds to orient the edges using specific rules based on the re-
sults of the conditional independence tests. A key orientation
rule involves identifying v-structures or unshielded colliders.
If variables A and B are both connected to a third variable C
(i.e., A–C–B), variables A and B are not connected to each
other, and variable C was not in the conditioning set that ren-
dered A and B independent, then the structure is oriented as a
collider (A→C←B). After identifying all the v-structures,
the PC algorithm applies a set of logical rules to orient the
edges throughout the graph while avoiding cycles and intro-
ducing new v-structures. However, some edges remain undi-
rected when the available conditional independence informa-
tion is insufficient to determine a unique orientation without
introducing ambiguity or inconsistency with the test results.
These undirected edges represent causal relationships whose

direction cannot be resolved from the data alone without fur-
ther assumptions (Meek, 1995; Spirtes et al., 2001).

The results of the PC causal discovery algorithm depend
on the alpha value (also called the significance level or
threshold). The alpha value is used during conditional inde-
pendence tests to decide if an edge should be removed. If the
p value of a test exceeds the alpha threshold, the algorithm
considers the variables to be conditionally independent and
removes the edge. Therefore, the value of alpha directly af-
fects the sparsity and structure of the resulting causal graph.
The variation in alpha value affects the skeleton and orien-
tation of the graph produced by the PC algorithm (Kalisch
et al., 2012). Furthermore, the sample size affects the results
of PC, as the algorithm relies on statistical tests of condi-
tional independence to determine the graph structure. As the
sample size increases, the accuracy of these tests improves,
making it more likely for the algorithm to recover the correct
causal structure, or more precisely, the correct Markov equiv-
alence class. Identifying the correct structure of a BN, which
relies on independence testing similar to that derived from
the PC algorithm, requires substantially more data than ap-
proximating the underlying distribution. Underfitting, where
true edges are missed, is especially likely when sample sizes
are small, as shown in Zuk et al. (2012). Thus, considering
these issues, we aim to address the choice of alpha values and
sample sizes in the following sections.

3.2.2 Background knowledge and edge assumptions

Background knowledge can significantly enhance causal dis-
covery by reducing ambiguity in the orientation of edges and
narrowing the space of plausible causal graphs. According
to Perković et al. (2017), incorporating background knowl-
edge, such as known edge directions or variable orderings,
into a CPDAG results in a CPDAG that they refer to as a
maximally oriented partially directed acyclic graph (maxi-
mal PDAG). A maximal PDAG often contains fewer undi-
rected edges and thus represents a smaller Markov equiva-
lence class. This improves the identifiability of causal rela-
tionships and allows for a more accurate estimation of causal
effects. Similarly, Bang and Didelez (2025) demonstrate that
tiered background knowledge, derived from temporal or hier-
archical structures, can be encoded as forbidden edge direc-
tions to guide constraint-based algorithms. Their algorithms
show that such knowledge not only improves the clarity but
also reduces the number of independence tests and possi-
ble equivalence classes, enhancing both computational effi-
ciency and discovery accuracy. To obtain a maximal PDAG
and avoid implausible edge orientations, we define some
edge assumptions by excluding the implausible edges before
running the PC algorithm. The edge assumptions are as fol-
lows:

– Climate variables cannot cause topography variables.

– Soil variables cannot cause climate variables.
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– Geological variables cannot cause climate variables.

– Climate variables cannot cause geological variables.

– Vegetation variables cannot cause climate variables, ex-
cept for potential evapotranspiration.

– Vegetation variables cannot cause topographic vari-
ables.

– Vegetation variables cannot cause geological variables.

– Soil variables cannot cause topographic variables.

– Runoff signatures cannot have child nodes.

It is important to note that many of these causally implau-
sible links, such as climate-influencing topography, may be-
come plausible when considered over geological timescales.
The final assumption, which treats the runoff signature (the
target variable) as a sink node by preventing it from caus-
ing other variables, implies that its causal parents correspond
to its Markov and stable blankets. The Markov blanket of a
node consists of its parents, its children, and the parents of
its children. Conditioning on the Markov blanket of a node
makes the node independent of the rest of the DAG (Pearl,
1988). This setting also makes the target variable’s causal
parents equivalent to its stable blanket for regression. This is
because the causal parents form a subset of the Markov blan-
ket, and interventions on non-parent nodes do not affect the
functional relationships underlying the causal mechanism of
the target variable (Pfister et al., 2021).

3.2.3 Implementation and evaluation of the PC
algorithm’s results

The PC algorithm assumes that the variables are normally
distributed. Therefore, the Box–Cox transformation is ap-
plied to the data (Dutta and Maity, 2020). Since the results of
the PC algorithm can depend on the order of the input vari-
ables, we use the PC-stable variant (Colombo and Maathuis,
2014), which addresses this issue by ensuring order-invariant
outputs. The bnlearn R package (Scutari, 2010) is used to
apply the PC algorithm. Mutual information with the James–
Stein estimator (Hausser and Strimmer, 2009) is chosen as
the conditional independence test.

In this study, we run the PC algorithm for 22 variables
along with a runoff signature. We do this for 11 runoff signa-
tures. The sample size for each variable is roughly 670 data
points. Since the result of the PC algorithm is sensitive to the
sample size and significance threshold (alpha value), we set
the significance threshold to 0.2 to allow for a more inclu-
sive initial edge selection. The high significance level helps
to reduce the risk of a type I error, that is, missing true causal
edges. However, it increases the risk of type II errors, which
is the appearance of false-positive edges. The edge assump-
tions, defined as a denial list, help to prevent the occurrence

of a large number of false-positive edges. We evaluate the re-
sulting CPDAG following the approach proposed by Petersen
et al. (2021). First, we assess the stability of the discovered
edges by performing 1000 bootstrap resamples (Scutari and
Nagarajan, 2013) of the data and applying the PC algorithm
to each resample, using a stricter significance threshold of
0.05 for conditional independence tests. We then measure the
strength of each edge based on its frequency across the boot-
strap iterations. The resulting edge strength estimates, which
represent the proportion of bootstrap samples in which each
edge appears, are then mapped onto the initial CPDAG ob-
tained from the PC algorithm. This approach enabled us to
evaluate the stability and sparsity level of the causal links if
we had a dataset with a larger sample size. Then, we use
regression modeling with cubic splines as a heuristic test
for conditional independence, assessing the statistical sig-
nificance of each edge present in the CPDAG produced by
the PC algorithm. We fit cubic spline regression models for
each pair of variables (Xi,Xj ), using the conditioning set
Z={X1, . . .,Xm} εXr

{
Xi,Xj

}
. We regress Xi once on Z

and once on
{
Xj
}
∪Z (forward direction). To account for

potential asymmetry in the relationships, we repeat the same
procedure by regressing Xj on Z and on {Xi}∪Z (backward
direction). In total, we fit four models for each pair of adja-
cent variables in the CPDAG, which are as follows:

M0a : g(Xi)=
m∑
k=1

sk(Zk)

M1a : g(Xi)= s0(Xj )+
m∑
k=1

sk(Zk)

M0b : g̃(Xj )=
m∑
k=1

s̃k(Zk)

M1b : g̃(Xj )= s̃0(Xi)+
m∑
k=1

s̃k(Zk),

where g and g̃ are identity functions and s and s̃ are cubic
splines. The likelihood ratio tests are applied to compareM0a
and M1a as well as M0b and M1b to estimate the conditional
independence between pairs of adjacent nodes. We consider
variables (Xi,Xj ) adjacent if at least one of the following
null hypotheses is rejected:

H0a :M0a =M1a and H0b :M0b =M1b.

Since no distributional assumptions are made, this test es-
tablishes a necessary, but not sufficient, condition for con-
ditional independence between variables (Petersen et al.,
2021). Here, we report the p values obtained from the like-
lihood ratio test for each edge in the DAGs, without assum-
ing a specific alpha threshold. The alpha value can be set to
0.05 to be compared with the significance threshold used in
bootstrapping DAGs or to a value between 0.05 and 0.2 to
be compared with the edges identified in the initial PC al-
gorithm run. The p value provides insight into the trade-off
between statistical significance and edge strength.

https://doi.org/10.5194/hess-29-4761-2025 Hydrol. Earth Syst. Sci., 29, 4761–4790, 2025



4770 H. Abbasizadeh et al.: Causal discovery for robust prediction of runoff signatures

The DAG for each runoff signature is derived from the cor-
responding CPDAG by orienting the undirected edges. This
is done in a way that avoids introducing new unshielded col-
liders, structures in which two parent nodes point to a com-
mon child without being connected to each other. Introducing
such colliders would change the set of conditional indepen-
dencies encoded by the original CPDAG.

3.3 Prediction models

The obtained DAG structures are used to predict runoff sig-
natures using Bayesian network (BN) methods. Additionally,
generalized additive models (GAMs) and random forests
(RFs) are applied to predict runoff signatures: once using all
variables in the DAGs (non-causal models) and once using
only the causal parents of the target nodes (causal models).

3.3.1 Bayesian network (BN)

Having the graph structure from the causal discovery al-
gorithm, the data are fitted to the graph, and the parame-
ters are estimated. Gaussian BN is used for inference pur-
poses. Gaussian BN belongs to the family of continuous
BNs, meaning the nodes are continuous variables. The condi-
tional dependencies are linear and follow the joint Gaussian
distribution. The prediction is made using the averaging like-
lihood simulation with 500 random sampling numbers. The
averaging likelihood simulation is a particle-based approxi-
mate method for inference in probabilistic graphical models.
This method calculates the weight of samples according to
the likelihood of evidence, which is a specific value of the
signature of interest. It adds up these weights for each sample
(Koller and Friedman, 2009). Since Gaussian BN is limited
to capturing only linear relationships, other non-linear pre-
diction methods are also employed in this study, which are
explained in the following sections.

3.3.2 Generalized additive model (GAM)

The generalized additive model (GAM) (Hastie et al., 2009)
is also chosen to handle non-linear relationships between pre-
dictors and runoff signatures. GAMs are extensions of gen-
eralized linear models (GLMs), which can identify the linear
and non-linear relationship between response and explana-
tory variables. This method uses scatterplot smoothers (e.g.,
smoothing spline or kernel smoother) to fit the additive func-
tions. In this study, the penalized regression spline is used as
the smoother. This smoother prevents the model from overfit-
ting, where the coefficients of the penalized spline decrease
(Dubos et al., 2022). The calculation is done using the mgcv
R package (Wood, 2018). We used cubic regression splines
for the smooth terms. The outcome variable is continuous,
and we used the default identity link function with a Gaus-
sian error distribution. The GAMs were fitted using restricted
maximum likelihood to estimate the smoothing parameters.
The model predicts the signatures once with all variables de-

rived from the feature selection (non-causal model) and once
with only the causal parents of the signatures derived from
the causal discovery section (causal model).

3.3.3 Random forest (RF)

The last prediction model used in this study is RF. This
method estimates response variables using multiple regres-
sion trees. Besides its ability to identify non-linear patterns
in the data, the likelihood of overfitting in RF is low because
the model’s prediction is an ensemble of multiple predic-
tions. Therefore, it can deliver an accurate prediction with lit-
tle computational effort. These features in the RF model help
to identify the issues of linearity and overfitting in the BN
and GAM models, respectively. The randomForest R pack-
age (Breiman et al., 2024) is used, with the number of trees
set to 500 to stabilize the prediction (Addor et al., 2018).
Similar to GAM, RF is run twice: once using all the selected
variables as the predictors of the runoff signature (non-causal
model) and once using only the causal parents as predictors
(causal model).

For all models – BN, GAM, and RF – the environments are
divided into training and test sets, where 75 % of the catch-
ments are randomly selected for training, and the remain-
ing 25 % are used for testing. This process is repeated 500
times using bootstrapping to generate different combinations
of training and test sets. This approach provides a range of
model performances, and their average performance is used
for comparison. Importantly, the training and testing of mod-
els are conducted within the same environment, meaning that
models trained for a specific environment are tested within
that same environment. For example, if a model is trained on
catchments from a specific climate category cluster, it is also
tested on catchments within that same cluster. The models
are executed for the whole dataset (baseline models) and each
cluster of categories (sub-models). The models’ accuracy is
evaluated using root mean squared error (RMSE) and R-
squared metrics between predictions and observations. The
iteration provides 500 RMSE and R-squared for each run,
and the accuracy is reported as their mean value. The follow-
ing section discusses the obtained results of this study.

4 Results

4.1 Clustering results for each category

The clustering classifies the catchments according to the five
categories. Time series data are not used for clustering anal-
ysis, and only catchment attributes available in the CAMELS
dataset, as listed in Table 1, are utilized for this purpose. Ta-
ble 3 shows the methods used for clustering, the optimum
number of clusters according to the elbow and silhouette
scores, and the number of catchments in each cluster. Fig-
ure 2 illustrates each cluster’s spatial extent of catchments
along with two chosen variables. The obtained results from
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the cluster analysis for each category of attributes are as fol-
lows:

1. Climate attributes. Climate attributes in the CAMELS
dataset are derived from the area-weighted averaging
of meteorological forcing time series from 1 October
1989 to 30 September 2009. The cluster analysis shows
four distinct climate categories, which spread in the east
(cluster 1), the midwest (cluster 2), the west (cluster 3),
and the northwest (cluster 4) (Fig. 2a). The largest group
of catchments belongs to cluster number 1, with 334
members in the north and southeast of the USA (Ta-
ble 3). This cluster receives an average of 3.5 mm daily
precipitation and has 2.8 mm daily evapotranspiration.
Other clusters have the following average precipitation
and evapotranspiration levels: cluster 2 has 2.3 mm of
precipitation and 2.7 mm of evapotranspiration, clus-
ter 3 has 5.5 mm of precipitation and 2.4 mm of evap-
otranspiration, and cluster 4 has 2.0 mm of precipitation
and 3.3 mm of evapotranspiration.

2. Soil attributes. The soil property data, derived from the
State Soil Geographic Database (STATSGO), provides
information about the top 2.5 m of soil. However, the
CAMELS dataset only includes soil data for the top
1.5 m. Soil texture is represented in 16 classes, of which
there are 12 classes based on the United States Depart-
ment of Agriculture (USDA) and four non-soil classes.
The saturated hydraulic conductivity and soil porosity
are calculated based on the sand and clay fractions using
a multiple regression analysis. A cluster analysis iden-
tifies six groups of catchments. There is no distinctive
spatial pattern among the soil clusters. However, clus-
ters 2 and 3 are mostly spread across the east and west
coastlines (Fig. 2b). The maximum water content and
porosity values are influenced by soil texture, which de-
fines the proportion of sand, clay, silt, and other materi-
als. For example, cluster 6 shows the highest soil poros-
ity and maximum water content (Fig. 2b). This cluster
has the highest percentage of clay (26 %) and silt (47 %)
fractions among all clusters.

3. Topographic attributes. The topographic information
of catchments, namely catchments’ contours, is de-
termined using geospatial fabric (Viger and Bock,
2014) and Geospatial Attributes of Gages for Evaluat-
ing Streamflow (GAGES II) methods (Falcone, 2011).
These methods are used to determine the area, and the
digital elevation model (DEM) is clipped for each catch-
ment. This category is divided into four distinctive clus-
ters. Cluster 1 contains catchments located in the north-
east, which are catchments with a low elevation and
slope (Fig. 2c). Cluster 2 consists of catchments along
the west coast, spread from the west to the northwest.
The catchments with the lowest elevation and slope are
in cluster 3, located in the southeast. Cluster 4 contains

the highest elevation catchments in the Rocky Moun-
tains (Fig. 2c).

4. Geological attributes. The geological variables in the
CAMELS datasets are derived from the Global Litho-
logical Map (GLiM) (Hartmann and Moosdorf, 2012)
and the Global HYdrogeology MaPS (GLHYMAPS)
(Gleeson et al., 2014). From the GLiM dataset, 16
lithological classes are identified, and their propor-
tional areas are calculated for each catchment. The GL-
HYMAPS dataset is used to estimate subsurface per-
meability and porosity (Addor et al., 2017). This cat-
egory is divided into seven groups. Unlike the climate
and topography categories, this category does not show
a distinguishable spatial pattern (Fig. 2d). However,
the catchments with the highest geological porosity are
mainly concentrated in the southeast, and those with the
lowest are located in the west (Fig. 2d).

5. Vegetation attributes. Vegetation is represented using
two indicators: vertical density, measured by the leaf
area index (LAI), and horizontal density, measured by
the green vegetation fraction (GVF). These measure-
ments are derived from a 1 km resolution product of
the Moderate Resolution Imaging Spectroradiometer
(MODIS). The vegetation or land cover category is di-
vided into six different groups (Fig. 2e). The spatial pat-
tern of the vegetation is influenced by the climate and
topographic categories. According to Fig. 2e, the catch-
ments with the highest forest fractions have the highest
maximum LAI and are located in the northeast and east
of the study area. This area has high precipitation and
low evapotranspiration (Fig. 2a). The lowest vegetation
cover belongs to the central and southern parts of the
USA, which are in clusters 4 and 6.

These clusters are subsets of the CAMELS dataset, with
specific properties and different numbers of catchments to be
used for runoff signature prediction. They help to evaluate
the models’ performance in different environments, analyze
the effect of causal parents as predictors, and assess how the
number of data points impacts the training and test simula-
tions.

4.2 Identification of causal links

The PC algorithm results identify the causal links between all
variables. The output of the PC algorithm is a completed par-
tially directed acyclic graph (CPDAG), which may contain
undirected edges. In all CPDAGs obtained in this study, the
connection between mean elevation and mean slope remains
undirected. To derive a fully directed acyclic graph (DAG)
from the CPDAG, we orient this edge from mean elevation
to mean slope. As shown in Fig. 3b, this orientation does
not introduce any unshielded colliders or cycles in the graph.
Therefore, we ensure that the resulting DAG belongs to the
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Table 3. Attribute categories, clustering methods, number of clusters, and catchments per cluster.

No Category Method No. of clusters No. of catchments

1 Climate Gower 4 334, 144, 87, 103
2 Soil PAM 6 154, 123, 138, 88, 95, 70
3 Topography PAM 4 282, 119, 117, 90
4 Geology Gower 7 149, 53, 123, 116, 64, 104, 42
5 Vegetation Gower 6 89, 131, 149, 69, 105, 128

Figure 2. The spatial pattern of clusters (right column) and the density of two variables of its corresponding category (left column). The
plots show spatial patterns of (a) climate attributes, (b) soil attributes, (c) topographic attributes, (d) geological attributes, and (e) vegetation
or land cover attributes.
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same Markov equivalence class as the CPDAG produced by
the PC algorithm.

Figure 3a shows the obtained DAG for the baseflow in-
dex. The signature (red node) has four direct causes or par-
ents (yellow nodes). Figure 3c shows the nodes that form
the independent causal mechanism for the baseflow index,
shown by the green line. The identified causal parents of the
baseflow index include variables related to catchment stor-
age, such as groundwater and snow storage, which are physi-
cally meaningful. For each recovered edge, we report both
the edge strength and the p value from the likelihood ra-
tio test, as shown in Fig. 3a. The causal models, ∼Par, are
trained in the causal mechanism to predict the baseflow index
(Fig. 3b). The causal parents in the independent mechanisms
also form the Markov and stable blankets for the baseflow
index. The structure and variables of the DAG remain un-
changed across all environments; only the values of the vari-
ables change across environments. DAGs can show the order
in which the variables are connected. For instance, the cli-
mate and vegetation variables in Fig. 3a are controlled by
topographic attributes, which are gauge latitude, mean el-
evation, and mean slope. These variables are independent
of other categories in the DAG since they do not have any
parents belonging to the other categories. Furthermore, the
causal parents of the signatures, which are identified by the
PC algorithm, are not necessarily the most influential vari-
ables derived from the correlation and variable importance
analysis (see Sect. S1 in the Supplement).

Table 4 shows the causal parents, the p value of the like-
lihood ratio test, and the edge strength for each runoff signa-
ture. The number of parents varies from 2 to 5 variables. We
compared the performance of the models using only parents
(causal models) to the models using all the selected variables
as explanatory variables (non-causal models). The models
are executed for the 671 catchments as baseline models and
for each cluster as sub-models. The results reveal the mod-
els’ behaviors in different environments (clusters) compared
to the baseline models.

The obtained DAGs, presented in the Supplement, re-
veal consistent causal relationships between catchment and
climate attributes across all runoff signatures, although the
strength and significance of the edges vary. In all cases, topo-
graphic variables directly influence climate, vegetation, soil,
and geological attributes. Climate variables influence vegeta-
tion and all runoff signatures (Table 4). Only two edges con-
nect climate and soil variables specifically, from high precip-
itation frequency and the fraction of snow to the clay frac-
tion. Across all DAGs, these edges consistently exhibit high
strength and statistical significance. Soil variables influence
vegetation, specifically the fraction of forest, as well as geo-
logical variables. However, these variables act as causal par-
ents for only two runoff signatures, namely low-flow dura-
tion and streamflow elasticity. Vegetation attributes do not
drive other catchment attributes. They are influenced by cli-
mate, topography, and soil variables. However, they directly

affect six runoff signatures, including baseflow index, high-
flow duration, low-flow frequency, mean flow, high flow,
and streamflow elasticity (Table 4). The geological variables
are influenced by topography and soil. They are among the
causal parents of baseflow index, high-flow frequency, low-
flow frequency, mean flow, low flow, and runoff ratio (Ta-
ble 4). The edges in the obtained DAGs are generally charac-
terized by high strength and statistical significance. However,
the link between low precipitation frequency and maximum
leaf area index stands out as the weakest, with a strength
of less than 1 % and a marginal significance level (p value
slightly below 0.1). Notably, this link is absent in the DAGs
corresponding to high-flow duration, high-flow frequency,
low-flow frequency, and the slope of the flow duration curve.

4.3 Performance of the baseline models (prediction
using the whole dataset)

The models’ performance is evaluated according to the value
of RMSE, R-squared between observation and prediction,
and the differences between the training and test results. The
obtained results for each signature are shown in Fig. 4, Ta-
ble A1, and Fig. 5. The results are derived from the simula-
tion using the whole dataset (671 catchments), which we call
the baseline. Baseline models are considered the most accu-
rate models, in which 75 % of the whole dataset is used for
training and 25 % for test simulation. The training and test
sets are randomly sampled 500 times, and models are exe-
cuted after each sampling. The gray dots in Fig. 4 indicate
the simulation results for each model’s execution. The simu-
lation for GAM and RF models is done twice, once using all
the predictors, which are shown by GAM∼All and RF∼All
(non-causal models), and once using only causal parents as
predictors, GAM∼Par and RF∼Par (causal models).

Figure 4 and Table A1 show that reducing the number of
predictors decreases the models’ accuracy. Among all mod-
els, RF models are the most accurate despite showing the
most significant drop in accuracy between training and test-
ing simulations (Fig. 5). The R-squared values from the non-
causal RF model (RF∼All), in which all selected variables
are used as predictors, are compatible with the results ob-
tained from the study of Addor et al. (2018). Using causal
parents for RF simulations (RF∼Par) leads to a greater dis-
tance between training and test results compared to using
RF∼All for some signatures. These signatures are baseflow
index, runoff ratio, and the slope of the flow duration curve
with 38 %, 53 %, and 25 % increases in distance, respec-
tively, caused by using the causal model (Fig. 5). The causal
model slightly reduces the gap between training and test re-
sults for low-flow duration, low-flow frequency, and high-
flow magnitude, with improvements of 7 %, 6 %, and 1 %,
respectively. Similar to the RF model, the accuracy of GAMs
is decreased by reducing the number of predictors from all
selected variables to parent variables (Table 4 and Fig. 5).
However, unlike RF, the distance between the training and
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Figure 3. (a) Directed acyclic graph (DAG) for the baseflow index. Arrows indicate the causal links between variables. The dashed green
arrow represents an oriented edge that was originally undirected in the CPDAG, derived from the PC algorithm. The red node denotes
the target variable (runoff signature), and the yellow nodes represent its causal parents. The red numbers at the beginning of each arrow
correspond to the p values from the likelihood ratio tests, and the gray (or black for the target variable) numbers indicate the edge strengths
derived from 1000 bootstrap resamples. The node variables are explained in Table 1. (b) The part of the CPDAG that contains an undirected
edge. Orienting this edge does not introduce any new unshielded colliders. (c) The independent causal mechanism for the baseflow index,
which is represented by the red and yellow nodes.

test accuracy in R-squared versus RMSE space significantly
decreases by using the causal model for GAM (Fig. 5). This
distance decreases from 41 % for the slope of flow duration
curve to 87 % for the high-flow frequency (Fig. 5). Finally,
BN is the least accurate model in capturing the variance since
it is a linear model; however, it shows almost the same R-
squared and RMSE values in training and testing simula-
tions. As seen in Fig. 5, BN has the shortest distance between
training and testing compared to the other two models.

We see that when the training set is large, the accuracy of
the non-causal models is higher (GAM∼All and RF∼All).
However, this pattern might not be the same if the size of
the training set is reduced. Testing the models in different
environments with different properties and sizes can help us
to understand how these models perform. In this study, en-
vironments are clusters of catchments, defined according to
each category of attributes (Table 3) that result in homoge-
neous hydrological properties. The selected variables for the
DAG structure and analysis are assumed to be the same, both
with and without clusters. However, in the analysis based on
clusters, the model’s parameterization and predictions are de-
rived from a smaller subset of data compared to the baseline

models. The direct causes of signatures are assumed to be
the same across all clusters. Therefore, causal models are
assumed to result in robust prediction in different environ-
ments. This idea is investigated in the following sections.

4.4 The performance of models across different
clusters (sub-models)

The results of this simulation indicate different models’ be-
haviors across clusters, which are shown in Fig. 7, Tables 5,
A1, A2, and A3, and Sects. S2 and S3. According to the re-
sults, GAM∼All shows high accuracy during training across
most clusters but performs poorly during testing. The dis-
tance between training and testing for GAM∼Par is lower
than for GAM∼All in all clusters. This may be due to over-
fitting in GAM∼All when the sample size is small, resulting
in its performance being statistically insignificant from, or in
most cases lower than, GAM∼Par across all environments in
the test mode. On the other hand, RF∼All shows the high-
est performance in most cases in both training and testing
modes. However, in many cases, RF∼Par performs compa-
rably to RF∼All, despite using significantly fewer predic-
tors. In the case of the BN model, which is linear, it gener-
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Table 4. Causal parents of the runoff signatures derived from the PC algorithm. P values are obtained from the likelihood ratio test, and the
edge strengths are derived from the frequency of edges that appear in 1000 bootstrap resamples.

Signature Detected causal parent by PC (p value; edge strength)

baseflow_index geol_permeability (4.2× 10−7; 0.40), frac_snow (5.0× 10−3, 0.97), frac_forest (6.0× 10−2, 0.44),
geol_porosity (7.8× 10−3, 0.57)

high_q_dur p_mean (3.7× 10−8, 0.56), lai_diff (5.6× 10−4, 0.95)

high_q_freq low_prec_freq (2.4× 10−1, 0.79), geol_porosity (6.8× 10−2, 0.52)

low_q_dur low_prec_dur (3.0× 10−8 >, 0.74), max_water_content (2.1× 10−3, 0.76), frac_snow (2.9× 10−4, 0.88)

low_q_freq frac_snow (2.7× 10−6, 0.97), low_prec_freq (1.6× 10−2, 0.45), frac_forest (1, 0.71),
geol_porosity (8.0× 10−1, 0.66), geol_permeability (2.5× 10−6, 0.27)

q_mean p_mean (5.3× 10−160, 1.0), p_seasonality (3.2× 10−3, 0.85), area_gages2 (4.8× 10−2, 1.0),
frac_forest (6.2× 10−2, 0.63), geol_porosity (1.0× 10−6, 0.79)

Q5 p_mean (4.3× 10−18, 0.77), low_prec_freq (2.7× 10−10, 0.67), slope_mean (6.8× 10−2, 0.82),
geol_porosity (1.6× 10−1, 0.57), geol_permeability (3.9× 10−5, 0.26)

Q95 p_mean (7.6× 10−96, 1.00), p_seasonality (1.5× 10−1, 0.98), low_prec_freq (1.4× 10−3, 0.81),
area_gages2 (6.3× 10−2, 0.35), frac_forest (1.3× 10−1, 0.57)

runoff_ratio p_mean (1.0× 10−34, 0.83), p_seasonality (6.8× 10−5, 0.97), area_gages2 (2.6× 10−1, 1.00),
geol_porosity (4.8× 10−6, 0.97)

slope_FDC p_mean (3.7× 10−7, 0.92), pet_mean (4.1× 10−9,0.40), low_prec_freq (3.7× 10−6, 0.39)

stream_elast pet_mean (7.1× 10−2, 0.32), clay_frac (2.5× 10−1, 0.41), frac_snow (1.6× 10−2, 0.79),
frac_forest (4.7× 10−5, 0.81), area_gages2 (1.4× 10−1, 0.41)

Figure 4. Performance of the models: R-squared vs. RMSE. Each colored circle and cross represent the centroid of a set of 500 data points
(gray dots) generated from the models’ execution. Circles indicate the training results, and crosses indicate the test results. In the legend,
“All” refers to using all variables as predictors (non-causal model), and “Par” refers to using only parent variables as predictors (causal
model). BN refers to the Bayesian network, GAM refers to the generalized additive model, and RF refers to random forest.

https://doi.org/10.5194/hess-29-4761-2025 Hydrol. Earth Syst. Sci., 29, 4761–4790, 2025



4776 H. Abbasizadeh et al.: Causal discovery for robust prediction of runoff signatures

Figure 5. The Euclidean distance between the centroid points of training and test simulations in Fig. 4. In the legend, “All” refers to using
all variables as predictors, and “Par” refers to using only parent variables as predictors. BN refers to the Bayesian network, GAM refers to
the generalized additive model, and RF refers to random forest.

ally exhibits the lowest accuracy compared to GAM and RF.
However, it also shows the smallest drop in accuracy between
training and testing simulations (see Sect. S2 and Tables S1
and S2). The simulation results for each runoff signature are
discussed in the following sections.

4.4.1 Baseflow index

The four parents of this signature belong to the climate,
vegetation, and geology categories (Table 4). The identified
causal parents exhibit both high statistical significance and
strong edge strength (Table 4 and Fig. S23). The models in
the climate, topography, and some clusters of soil groups
perform well compared to the baseline (Fig. 6). Although
RF∼All demonstrates the best performance, in most cases,
the difference between the accuracy of RF∼All and RF∼Par
in the test set is negligible, for example, in the soil cate-
gory clusters 3, 4, and 5, or geology clusters 2 and 7 (Fig. 6
and Table S2). BN has the shortest distance between train-
ing and testing (Fig. 7). The decrease in R-squared made
by GAM∼Par is improved through a −24 % drop for the
baseline model to +9 % for geology, +27 % for soil, and
+4 % for the vegetation categories in the sub-models (Ta-
ble 5). For the climate and topography categories, the ac-
curacy drop caused by using GAM∼Par is 6 % and 4 %
smaller in the sub-models compared to the baseline model.
The use of causal RF (RF∼Pa) results in a 25 % drop in ac-
curacy in the baseline model. This reduction becomes more
pronounced in the sub-models, except for the soil category,
where the accuracy drop is 2 % smaller than in the baseline.

4.4.2 High-flow duration

This signature has two causal parents belonging to the cli-
mate and vegetation categories (Table 4). The two causal
parents of the high-flow duration exhibit both high statistical
significance and strong edge strength (Table 4 and Fig. S25).
The models perform well across some clusters of the soil
and geology categories compared to the baseline (Fig. S26).
GAM∼All shows very high accuracy in the training sets,
in some cases higher than RF, and a significant drop in ac-
curacy in the test sets (Fig. S26). In addition, the distance
between training and the test is higher than GAM∼Par in
all cases (Fig. 7). The causal GAMs show robust perfor-
mance for all environments (Table S1). The distance between
training and test simulations in RF∼Par is mainly smaller
than RF∼All (Fig. 7). In many cases, the difference between
causal and non-causal RF models is negligible (Table S2 and
Fig. S26). Although BN shows less accuracy compared to
GAM and RF, it outperforms these models in some soil and
geology clusters. In addition, in geology cluster 5, BN and
GAM∼Par perform better than RF∼All. The accuracy dif-
ference between causal and non-causal sub-models is signif-
icantly smaller than that of baseline models (Table 5). The
use of causal parents as predictors leads to a 26 % and 40 %
drop in R-squared in the GAM and RF simulations, respec-
tively. Although the causal models use only two predictors
compared to 22 in the non-causal models, the inclusion of
causal parents increases the accuracy of GAM by up to 50 %
in the geology, soil, topography, and vegetation categories.
Additionally, they help to reduce the accuracy drop of RF in
the sub-models relative to the baseline model.
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Table 5. Comparison of R-squared values between causal and non-causal models presented as percentages. Negative values indicate a
decrease in R-squared when using causal models compared to non-causal models. The R-squared values for each category are calculated
using the weighted mean, with weights based on the proportion of catchments in each cluster relative to the total number of catchments. The
values of R-squared can be found in Tables A2 and A3.

Percentage of change in R-squared made by using causal parents

Baseline Climate Geology Soil Topography Vegetation

Signature GAM RF GAM RF GAM RF GAM RF GAM RF GAM RF

baseflow_index −24.44 −28.57 −17.65 −38.00 8.7 −35.71 26.92 −26.90 −20 −32.00 4.00 −38.1
high_q_dur −25.64 −39.58 −15.15 −30.23 50.00 −19.57 26.92 −23.81 15.38 −32.50 17.39 −28.95
high_q_freq −20.00 −50.00 −25.93 −62.79 65.00 −30.77 21.74 −41.03 5.88 −31.11 15.88 −50.00
low_q_dur −11.11 −10.87 11.54 −17.65 85.00 −7.89 7.41 −14.71 0.00 −14.29 18.18 −23.53
low_q_freq −9.52 −12.96 0.00 −27.27 42.86 −10.86 33.33 −14.63 −9.78 −12.00 25.00 −26.32
q_mean −3.23 −5.43 −11.84 −15.79 12.33 −8.75 7.50 −4.71 4.88 −10.71 1.37 −12.00
Q5 −8.20 −11.76 12.90 −11.11 34.37 −11.54 41.18 −3.85 −5.26 −15.09 30.77 −13.64
Q95 −5.68 −4.60 −9.23 −12.50 28.33 −1.37 14.29 −2.47 −9.23 −12.50 4.76 −10.45
unoff_ratio −20.48 −15.85 −38.33 −35.38 13.46 −23.19 1.61 −17.33 0.00 −17.11 −9.09 −23.81
slope_FDC −11.86 −18.57 −12.50 −33.96 42.42 −12.96 25.00 −15.00 −4.44 −23.21 33.33 −22.73
stream_elast 0.00 −15.22 16.67 −24.14 75.00 −16.67 14.29 −15.62 −3.70 −27.03 15.00 −23.33

Figure 6. Performance of the models for baseflow index: R-squared vs. RMSE. Each colored circle and cross represent the centroid of 500
data points (gray dots) generated from the models’ execution. Circles indicate the training results, and crosses indicate the test results. In
the legend, “All” refers to using all variables as predictors (non-causal model), and “Par” refers to using only parent variables as predictors
(causal model). BN refers to the Bayesian network, GAM refers to the generalized additive model, and RF refers to random forest. The
results for other signatures are provided in the Supplement.

4.4.3 High-flow frequency

This signature has two parents belonging to the climate and
geology categories (Table 4). Unlike high-flow duration, the
causal parents of the high-flow frequency does not show high
statistical significance, with a p value of 0.24 and 0.06 for
low precipitation frequency and geological porosity, respec-

tively; however, they show acceptable edge strength, with
79 % for the former and 52 % for the latter (Table 4 and
Fig. S27). Models perform well across some clusters of the
climate, soil, and geology categories. However, there is no
single category within which all models outperform the oth-
ers (Fig. S28). For instance, the models perform well in
vegetation cluster 5 (Fig. S28), which are catchments with
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Figure 7. The Euclidean distance between the training and test simulations for runoff signatures across different environments for each
sub-model. In the legend, “All” refers to using all variables as predictors (non-causal model), and “Par” refers to using only parent variables
as predictors (causal model). BN refers to the Bayesian network, GAM refers to the generalized additive model, and RF refers to random
forest. On the x axis, Baseline means simulation without any clustering and is done for all 671 catchments. Clim stands for climate, Geol for
geology, Topo for topography, and Vege for vegetation. The numbers in front of these names on the x axis represent the clusters’ numbers.

a high percentage of vegetation cover (Fig. 2). In general,
GAM∼All does not show acceptable performance in the test
set, and its accuracy in many cases is lower than linear BN
(Fig. S28). However, GAM∼Par demonstrates a better per-
formance by reducing the distance between training and test
simulations (Fig. 7) and increasing accuracy compared to
GAM∼All across all clusters (Fig. S28 and Table S1). Sim-
ilarly, RF∼Par decreases the distance between the training
and testing across most of the clusters, although for the base-
line models, this distance is smaller for RF∼All than for
RF∼Par (Fig. 7). However, the difference between RF∼All
and RF∼Par is negligible in only three environments, namely
geology 5 and 7 and soil 5. For the rest of the environments,
RF∼All is more accurate (Table S2). In most cases, the accu-
racy of GAM∼Par is higher than RF∼Par. Using causal par-
ents leads to a decrease in R-squared in the baseline model

for both GAM and RF by −20 % and −50%, respectively.
While this behavior remains for RF across sub-models, the
causal parents increase the accuracy of GAM by up to 65 %
(Table 5).

4.4.4 Low-flow duration

This signature has three parents belonging to the climate and
soil categories (Table 4). All causal parents of the low-flow
duration exhibit both high statistical significance and strong
edge strength (Table 4 and Fig. S29). Training and test sim-
ulations performed well across all topographic clusters ex-
cept for cluster number 4, where catchments have high ele-
vations (Figs. 2 and S30). The signature also shows high pre-
dictability in clusters with high precipitation intensity (cli-
mate cluster 3) and clusters with low soil porosity (soil clus-
ter 2) or clusters with low maximum water content (soil clus-
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ter 3). GAM∼Par performs better in different clusters than
GAM∼All by reducing the distance between training and test
simulations and increasing the model’s accuracy (Table S1).
This distance is almost the same across clusters for RF∼Par
and RF∼All and, in some cases, smaller for RF∼Par. In most
environments, the difference between RF∼Par and RF∼All
is not significant (Table S2). Using causal parents results in a
decrease in the R-squared values of approximately 10 % for
both GAM and RF. However, causal parents improve the ac-
curacy of GAM across all categories by up to 85 %, whereas
for RF the pattern is reversed, with accuracies dropping by
up to 15 %.

4.4.5 Low-flow frequency

This signature has five parents: two belonging to climate,
one to vegetation, and two to geological categories (Table 4).
Three out of the five causal parents of low-flow frequency
exhibit both high statistical significance and strong edge
strength. However, despite the relatively high edge strengths
– 71 % for forest fraction and 66 % for geological porosity –
the p values from the likelihood ratio test are large (Table 4
and Fig. S31). Models perform well across most clusters of
the climate and topography categories (Fig. S30). In most
cases, GAM∼All performs poorly compared to GAM∼Par
(Table S1). The difference between training and testing is
significantly reduced in GAM∼Par. This distance is also re-
duced in RF∼Par and, in many cases, the performance of BN,
GAM∼Par, RF∼Par, and RF∼All are comparable across
most clusters (Fig. S32). Causal parents lead to a drop in R-
squared of both GAM and RF models. This pattern is the
same for RF across the sub-models; however, it leads to im-
proving the accuracy of GAM by up to 33 % (Table 5).

4.4.6 Mean daily runoff

The five parents of the mean daily runoff belong to the cli-
mate, topography, vegetation, and geology categories (Ta-
ble 4 and Fig. S33). All five causal parents of mean daily
flow exhibit both high statistical significance and strong edge
strength, except for forest fraction, which has a p value of
0.06 in the likelihood ratio test (Table 4 and Fig. S33). This
signature is the most predictable runoff signature. All models
perform well across all clusters; however, unlike other sig-
natures, the BN and GAM models outperform RF in most
cases, for example, geology cluster 2 (Fig. S34). In most
cases, the difference between training and test simulations
is smaller when using parents, which shows the benefits of
using causal parents. In addition, the difference in model ac-
curacy between simulations using only causal parent (∼Par)
and those using all variables (∼All) is negligible across al-
most all clusters, especially for GAM (Table S1). For mean
daily flow, the reduction in R-squared resulting from using
causal parents as predictors is minimal, even in the base-
line models, approximately −8 % for GAM and −5 % for

RF. While the accuracy drop in RF increases to as much as
−15 %, using causal parents improves GAM accuracy by up
to 12 %.

4.4.7 Low flow (Q5)

The five parents of low flow belong to the climate, geology,
and topography categories (Table 4 and Fig. S35). Among
the causal parents of low flow, which generally exhibit both
high statistical significance and strong edge strength, mean
slope and geological porosity have higher p values in the
likelihood ratio test compared to the other parents, although
their edge strengths remain high (Table 4 and Fig. S35). The
models’ test results are comparable to the baseline models in
geology clusters 2 and 4 and soil clusters 2 and 4 (Fig. S36).
GAM∼All is outperformed by GAM∼Par and other mod-
els in test simulations (Fig. S36 and Table S1). As shown in
Fig. S36, models perform well across the topographic cate-
gory. The difference between training and test simulations is
improved in GAM∼Par compared to GAM∼All. This dis-
tance for RF∼Par is smaller than for RF∼All across half of
the clusters (Fig. 7), and the difference between causal and
non-causal RF models is negligible for most environments
(Table S2). BN has the smallest difference between training
and testing, and its performance is comparable to GAM and
RF in most cases. Using parents as predictors increases the
accuracy of GAM in the climate, geology, soil, and vegeta-
tion categories by 13 %, 34 %, 41 %, and 31 %, respectively
(Table 5). For RF, the drop in accuracy remains consistent
across baseline and sub-models by around −10 % to −15 %
(Table 5).

4.4.8 High flow (Q95)

High flows are among the most identifiable signatures. Ac-
cording to the obtained DAG, high flow is controlled by
five causal parents belonging to the vegetation (land cover),
climate, and topography categories (Table 4 and Fig. S37).
Among all the causal parents of high flow, precipitation sea-
sonality has the highest p value (0.15), despite its strong edge
strength (98 %). On the other hand, the catchment area shows
the lowest edge strength (35 %) and a relatively high p value
(0.06). The rest of the causal parents of this runoff signature
exhibit high statistical significance and high edge strength
(Table 4 and Fig. S37). The models showed high accuracy
across most clusters. Unlike other signatures, the accuracy
of RF∼All and RF∼Par models, which are the most accu-
rate overall, is comparable to GAM and BN in certain cases
(Fig. S37). The difference between training and test simu-
lations is improved in all clusters when using parents for
GAM, except for climate clusters 1 and 2, as well as topog-
raphy cluster 1 (Table S1). The drop in the models’ accuracy,
caused by using the causal parents, is smaller compared to
the other signatures. R-squared is improved among the ge-
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ology, soil, and vegetation categories for GAM models (Ta-
ble 5).

4.4.9 Runoff ratio

Runoff ratio has four parents belonging to the climate, geol-
ogy, and topography categories (Table 4 and Fig. S39). Al-
though the catchment area has a high p value as a causal
parent of stream elasticity, its edge strength is 100 %. All
other causal parents of the runoff ratio exhibit both high sta-
tistical significance and strong edge strength (Table 4 and
Fig. S39). The models perform well across the topographic
and soil clusters, and models are more robust across those
environments (Fig. S39). Causal models show a negligible
difference between training and test simulations for almost
all clusters for GAM but not for RF (Fig. 5 and Table S2).
The difference between the R-squared values is significantly
lower across categories than the baseline models, especially
in the geology and soil categories (Table 5).

4.4.10 Slope of flow duration curve

All three parents of the slope of flow duration curve be-
long to the climate category (Table 4 and Fig. S41). All
causal parents of the slope of flow duration curve exhibit
both high statistical significance and relatively strong edge
strength (Table 4 and Fig. S41). Models in topographic clus-
ters performed well except for cluster 4, where there are
catchments with a high elevation and steep slopes. RF∼Par
and GAM∼Par perform almost the same across most of the
clusters. In most cases, GAM∼Par reduced the difference be-
tween training and test simulations compared to GAM∼All
(Table S1). The difference between RF∼Par and RF∼All is
statistically significant except for two clusters, namely ge-
ology cluster 4 and vegetation cluster 1 (Fig. S42 and Ta-
ble S2). Using causal parents as predictors for the slope of
flow duration curve increases the accuracy of the sub-models
GAMs by 42 %, 25 %, and 33 % for the geology, soil, and
vegetation categories, respectively; however, for the causal
RFs, models lead to a decrease in R-squared compared to the
non-causal RFs (Table 5).

4.4.11 Stream precipitation elasticity

The five parents of this signature belong to the climate, soil,
topography, and vegetation categories (Table 4 and Fig. S43).
Among the causal parents, snow fraction and forest fraction
exhibit both high statistical significance and relatively strong
edge strength. In contrast, the remaining causal parents have
either relatively low edge strength or high p values in the
likelihood ratio test (Table 4 and Fig. S43). In most cases,
the performance of the RF∼All and RF∼Par models in the
test mode is comparable (Fig. S44), especially in the geology
clusters 2, 3, 5, and 7 (Table S2). The same as with other sig-
natures, GAM∼All performs well only in the training sim-
ulation. The difference between causal and non-causal mod-

els is not statistically significant for GAMs (Table S1). The
distance between training and test simulations in GAM∼Par
is smaller than for GAM∼All. This pattern can be seen in
only one-third of the clusters for RF models (Fig. 7). Ac-
cording to Table 5, the causal parents lead to an increase in
accuracy of GAM of 17 %, 75 %, 14 %, and 15 % for the cli-
mate, geology, soil, and vegetation categories, respectively.
The performance of RF∼All, RF∼Par, and GAM∼Par are
close and comparable in the test simulation (Fig. S43 and
Tables 5 and S2).

Figure 8 displays the rankings of the overall performance
of models across different environments for all signatures.
RF∼All achieved the highest overall accuracy in the base-
line mode, where the whole dataset is used. In contrast, BN
in the baseline mode ranks 11th, which is the lowest among
all models in this mode. This suggests that BN is either not
sensitive or only weakly sensitive to sample size. For the
other models, the baseline mode consistently ranks among
the top 10 in terms of performance. Examining the top 10
rankings of the models across all environments reveals dis-
tinct patterns. For BN, the top-performing clusters include
two from the climate category, three from geology, two from
soil, and one from topography. For GAM∼Par, the top 10
includes the baseline, one cluster each from climate and to-
pography, two from geology and vegetation, and three from
the soil category. For GAM∼All, the top ranks comprise the
baseline, three clusters from climate, and two clusters each
from soil, topography, and vegetation, with none from geol-
ogy. In the case of RF∼Par, the top 10 includes one clus-
ter each from the baseline, climate, topography, and vege-
tation, two from geology, and four from the soil category.
Lastly, for RF∼All, the top-performing clusters include one
from the baseline, one cluster each from geology and topog-
raphy, two from climate and vegetation, and three from the
soil category. Overall, across the top 10 rankings of all mod-
els, clusters associated with the soil category appear most
frequently, with 15 occurrences. This is followed by the cli-
mate category with nine occurrences, geology and vegetation
with eight each, and topography with six. Among all environ-
ments, climate 4, followed by vegetation 6, are the catchment
groups where all models consistently achieve high rankings.
Catchments in both climate 4 and vegetation 6 are charac-
terized by relatively low precipitation, high evapotranspira-
tion, and low maximum leaf area index (LAI). On the other
hand, vegetation 4, followed by topography 4, are the envi-
ronments where catchments consistently exhibit the lowest
model performance. Catchments in vegetation 4, which are
mostly located in the southern and southeastern USA, show
high variability in forest fraction and maximum LAI. In con-
trast, catchments in topography 4 are primarily situated in
the Rocky Mountains and are characterized by high eleva-
tion and steep slopes.
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Figure 8. Rankings of model performance based on the R-squared values obtained from evaluating their accuracy in predicting all signatures
within each cluster. On the x axis, Clim stands for climate, Geol for geology, Topo for topography, and Vege for vegetation.

5 Discussion

The aims of this study are to (1) recover the causal graph,
represented as a directed acyclic graph (DAG), from catch-
ment attributes, climate characteristics, and runoff signa-
tures; (2) predict runoff signatures using their causal parents
as well as all variables in the DAGs; and (3) compare the
predictive performance of models using only causal parents
(which is an independent causal mechanism) vs. those using
all available variables.

A PC-stable algorithm (Colombo and Maathuis, 2014) is
used to uncover the underlying causal relationships between
runoff signatures, catchment attributes, and climate charac-
teristics. To improve the plausibility of the resulting graph,
background knowledge is applied before running PC. Ap-
plying background knowledge reduces the risk of spurious
or false-positive edges, decreases the number of equivalence
classes, and improves the stability of the learned causal graph
(Meek, 1995; Spirtes et al., 2001; Perković et al., 2017; Bang
and Didelez, 2025). The background knowledge is applied
by blocking the implausible edges. In hydrological systems,
many causal directions are well understood from process-
based reasoning and can be used to restrict the search space
of the algorithm. By enforcing these structural constraints
(e.g., forbidding reverse causality from runoff to climate),
the stability of the learned causal graph is improved, and it
allows us to derive a complex causal graph for the catchment
area.

To mitigate the rate of false positives and negatives (type I
and II errors) in the PC algorithm due to our limited sam-
ple size (Li and Wang, 2009), we start the causal discovery
analyses by applying a relatively lenient significance thresh-
old (Kalisch and Bühlman, 2007). This threshold increases

the risk of false-positive edges. Therefore, to evaluate the
quality of the fit, we assess the significance levels of de-
pendencies between adjacent nodes and their corresponding
strengths (Petersen et al., 2021). We perform a heuristic eval-
uation using cubic spline regression and the likelihood ra-
tio test, which allows us to examine non-linear dependencies
between adjacent nodes, particularly given that real-world
hydrological systems often exhibit non-linear relationships
(Kirchner, 2024). To further assess the strength and stabil-
ity of the inferred links, we perform bootstrap resampling
and learn the network structure 1000 times by the PC algo-
rithm using a more stringent significance level (Scutari and
Nagarajan, 2013). This approach helps us to investigate po-
tential false-positive edges (type I errors) in the DAG ob-
tained using the lenient significance threshold. Among all
the inferred edges in the resulting DAGs, the link between
low precipitation frequency and maximum LAI exhibits sig-
nificantly low strength.

The causal parents identified by the PC algorithm align
with the underlying physical processes for most of the signa-
tures. For example, according to the PC results, snow fraction
drives the baseflow index, consistent with runoff-generating
mechanisms during spring and summer (Gentile et al., 2023).
In addition, vegetation and geological variables, which con-
tribute to infiltration and groundwater flow, are causal parents
of the baseflow index (Gnann et al., 2019). For high flows
(Q95), drivers include precipitation characteristics (mean,
seasonality, and frequency), vegetation cover, and catchment
area. This suggests that precipitation intensity, often driven
by seasonality, influences runoff-generating mechanisms like
the infiltration excess process (Nanda et al., 2019). Area
and vegetation cover also affect the time concentration and
the magnitude of high flows in the catchment area (Sultan
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et al., 2022). In regions with high mean precipitation and
low seasonality, saturation excess runoff mechanisms dom-
inate high flows. Additionally, the PC results for low flows
(Q5) include two variables that belong to the geology cat-
egory, along with two climate variables and one topogra-
phy variable. Low flows are strongly governed by geological
variables in addition to climate and topography (Laaha and
Bloeschl, 2006; Giuntoli et al., 2013). However, the causal
parents identified by the PC method for the slope of flow du-
ration curve include only climate variables. While this flow
signature is strongly influenced by catchment storage, shaped
by geology, topography, and land cover (Dey et al., 2024),
the method failed to capture these non-climatic influences.
The identified causal parents of high-flow frequency include
high frequency and geological porosity. However, land cover
is also recognized as a key driver of this flow signature (Za-
baleta et al., 2018), although it was not captured by the causal
discovery method. Therefore, while the PC algorithm identi-
fies physically meaningful causal parents for most signatures,
it occasionally fails to capture expected parent variables from
certain categories that are known to influence those signa-
tures. Furthermore, the derived causal parents by the PC al-
gorithm are not necessarily the highest correlated variables
with the runoff signatures. This highlights the fact that there
can be strong causal relationships between variables even
when their statistical associations are weak (Gao et al., 2023).

The obtained DAGs indicate that topographic variables
drive the climate, vegetation, geological, and soil variables
of hydrological systems at the catchment scale. Also, they
show that climate attributes influence all runoff signatures, a
finding supported by various studies (e.g., Jehn et al., 2020;
McMillan et al., 2022). Models perform well across soil and
climate clusters for most signatures, with consistently high
accuracy rankings (Fig. 8). However, in vegetation cluster 4
and topography cluster 4, all models struggle to predict sig-
natures accurately. In the catchments of vegetation cluster 4,
the forest fraction varies almost uniformly between 0 and 1,
and, as a result, the maximum LAI exhibits a similar pattern
(Fig. 2). This high variability, combined with the small sam-
ple size of 69 catchments, leads to poor model performance
(Table 3). On the other hand, catchments in topography clus-
ter 4 are characterized by high elevation and low precipita-
tion. The low prediction accuracy in this cluster aligns with
Viglione et al. (2013), who observed a decline in prediction
model performance in arid catchments. Signatures prove to
be more predictable in clusters characterized by high precip-
itation and low elevation, such as those in climates 1 and 3.
This indicates that even in catchments with low precipitation,
the transfer of information from precipitation to runoff re-
mains the predominant driver compared to other mechanisms
(Neri et al., 2022). According to Fig. 8, models achieve high
accuracy scores in regions with high precipitation, such as
topography 1 and soil 5. The prediction results indicate that
independent variables derived from causal discovery, such

as topographic variables, can serve as effective criteria for
catchment classification.

The causal GAM, GAM∼Par, outperforms the non-causal
GAM∼All in most environments during testing, despite
the latter exhibiting higher accuracy in the training mode.
GAM∼All achieves its best performance in the baseline
mode, where the entire dataset is used for simulation. How-
ever, even in these baseline cases, its performance remains
comparable to that of GAM∼Par. In the case of RF models,
RF∼All achieves the highest accuracy across most environ-
ments compared to the other models; however, the perfor-
mance of RF∼Par is still comparable to RF∼All. The dif-
ference in performance between RF∼All and RF∼Par is sta-
tistically significant in most cases, as determined by a non-
parametric permutation test (see Sect. S3). However, this sig-
nificance does not merely represent the magnitude of differ-
ences between the models. The results of the test also depend
on the spread of results across the R-squared and RMSE
space. For example, two models might differ in average ac-
curacy, and if their performance varies widely during boot-
strapped training and testing, the difference may not be statis-
tically significant. Conversely, even a small difference in ac-
curacy can be statistically significant if the performances of
the models are consistently stable. Despite BN having lower
accuracy than GAM and RF, it shows the smallest difference
between training and test results across all cases. This consis-
tency may be due to the BN structure, which relies on con-
ditional dependencies derived from the causal relationships
between variables, although further investigation is needed.
The difference between causal and non-causal RF models is
mostly statistically significant across clusters of the baseflow
index, high-flow frequency, low-flow frequency, mean daily
flow, runoff ratio, slope of flow duration curve, and stream
precipitation elasticity. For signatures where the difference is
insignificant, using causal parents can enhance model parsi-
mony by reducing the number of predictors, improving ro-
bustness by maintaining accuracy across environments com-
parable to non-causal models, and minimizing accuracy re-
duction between the training and testing phases. This pattern
holds for GAM∼Par across most clusters and for RF∼Par
across the majority of clusters related to low-flow duration,
high-flow duration, low flows, and high flows.

Finally, our results show that causal discovery enhances
the representation of physical systems, making models more
interpretable and parsimonious, as emphasized by Runge et
al. (2019a) and Reichstein et al. (2019). However, there is
still room for further investigation, as the causal graphs ob-
tained using the proposed methods require deeper analysis.
In this study, we used the PC algorithm to identify the causal
parents of runoff signatures. Other methods are specifically
designed to target causal parents of a given variable, such
as invariant causal prediction (ICP), and could offer addi-
tional insights (see Peters et al., 2016; Heinze-Deml et al.,
2018b; Kook et al., 2024). The insights gained from causal
discovery cannot only improve the understanding of hydro-
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logical systems at the catchment scale but also lead to more
informed modeling practice (Slater et al., 2024). However,
we still need theoretical developments to quantify the stabil-
ity and robustness of the uncertainty of such a model, par-
ticularly when combined with machine learning and classi-
fication algorithms (Herman et al., 2015; Singh et al., 2015;
AghaKouchak et al., 2022).

6 Conclusions

This study investigates the application of causal discovery
to represent the causal interconnections between variables
in hydrological systems. The PC algorithm is used to iden-
tify the causal links between catchment attributes, climate in-
dices, and 11 runoff signatures, producing a directed acyclic
graph (DAG) for each signature. DAGs reveal the connec-
tions between variables, including the direct causes (par-
ents) of the target signatures. Three prediction models –
BN, GAM, and RF – in five different settings, namely BN,
GAM∼Par, GAM∼All, RF∼Par, and RF∼All, are used to
predict runoff signatures. These models are executed on the
entire dataset as well as 27 clusters, with each configuration
undergoing 500 random samplings of training and test sets,
resulting in a total of 140 000 model executions. BN directly
utilizes the DAG structure for prediction, while GAM and RF
predict the target variable by using both all the variables in
the DAG and only the causal parents (the variables that, to-
gether with the target variables, form the independent causal
mechanism). Each model is run 500 times with random sam-
pling of training and tests for each run. The dataset is then
grouped into different clusters based on attribute categories.
The clusters serve as new environments to train and test the
models, allowing for an assessment of model performance
when using causal parents as the explanatory variables. The
major outcomes of this research are as follows:

– The causal parents of the signatures identified by the
PC algorithm do not always align with the most influ-
ential variables determined by correlation and variable
importance analysis. This suggests that strong correla-
tions may result from confounding variables, and causal
relationships do not always coincide with high variable
importance. This point can impact the robustness of pre-
diction models, especially when the same set of predic-
tor variables is used across diverse environments with
varying characteristics.

– BN shows the smallest decrease in accuracy between
the training and test samples, demonstrating high trans-
ferability. The accuracy of the models is not sensitive
to the training sample size and shift in the distribution
of predictors. This indicates that P(Effect | Cause) re-
mains consistent across environments. Although BN’s
overall accuracy is lower than that of the non-linear
GAM and RF models, it outperforms RF in predicting

mean daily runoff and high flows across different envi-
ronments (clusters).

– Using causal parents helps to mitigate the overfitting
problem and improve the robustness in prediction mod-
els, particularly in GAM, when the size of the training
set is small.

– The high accuracy of non-causal models, GAM∼All,
in the baseline scenarios may be attributed to overfit-
ting or spurious relationships. This is supported by their
reduced accuracy in environments with smaller train-
ing sets, highlighting a lack of robustness compared to
causal models, which maintain higher reliability under
such conditions.

– Signatures are most predictable when causal and non-
causal models are trained on catchments with homoge-
neous soil properties.

– Independent variables identified through causal discov-
ery can determine groups of catchments where pre-
diction models exhibit consistent performance. For in-
stance, topographic variables are among the indepen-
dent variables in this context since all models perform
consistently well in clusters 1, 2, and 3, and less ef-
fectively in cluster 4. This is also the case for the soil
and climate categories, where their variables are mostly
independent of the other categories. This information
helps to identify environments where training mod-
els achieve higher accuracy, reduced uncertainty, and
greater robustness.

– Causal inference methods contribute to improving pre-
diction models’ parsimony, interoperability, and robust-
ness in hydrological systems.

In conclusion, causal models maintain acceptable accu-
racy across environments with varying distributions of ex-
planatory variables (covariates). The DAGs obtained from
causal discovery enhance the interpretability of prediction
models and offer more informed clustering criteria, which
is valuable for regionalization purposes. This study focuses
on investigating the direct causes of runoff signatures and
their effects on prediction accuracy, but other criteria for se-
lecting predictors from the DAG variables could be explored,
for example, investigating the effect of variables with differ-
ent topological ordering on the target variable, such as root
nodes, ancestors of the target variables, etc. In addition, dif-
ferent causal discovery methods may yield alternative DAG
structures, which merit further investigation. This work of-
fers insight into the application of causal inference methods
in understanding runoff-generating mechanisms in hydrolog-
ical systems.

While causal inference analysis has been extensively ex-
plored in fields such as computer science and medicine, its
applications in hydrology are still in their infancy. There is
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a broad range of potential uses for causal models in hydrol-
ogy, from identifying the drivers of hydrological anomalies
(Tárraga et al., 2024) to linking extreme events with their
cascading societal impacts (AghaKouchak et al., 2023). As
research in this area progresses, the application of causal in-
ference methods is likely to lead to more accurate and ro-
bust predictive models, offering valuable insights into com-
plex hydrological variability.

Appendix A: The values of R-squared and RMSE for
the baseline models and R-squared values for
sub-models

A1 R-squared and RMSE values for test simulations of
baseline models in Fig. 4

Table A1. R-squared and RMSE values for test simulations of baseline models. The values are an average of 500 executions of each model.

Signature R-squared (test set) RMSE (test set)

BN GAM∼All GAM∼Par RF∼All RF∼Par BN GAM∼All GAM∼Par RF∼All RF∼Par

baseflow_index 0.30 0.45 0.34 0.63 0.45 0.14 0.12 0.13 0.10 0.12
high_q_dur 0.27 0.39 0.29 0.48 0.29 8.67 8.08 8.57 7.40 8.69
high_q_freq 0.27 0.40 0.32 0.52 0.26 25.01 22.76 24.22 20.33 25.48
low_q_dur 0.28 0.36 0.32 0.46 0.41 18.39 17.50 17.88 15.94 16.66
low_q_freq 0.30 0.38 0.42 0.54 0.47 69.02 63.31 65.40 56.62 60.50
q_mean 0.82 0.93 0.90 0.92 0.87 0.65 0.40 0.49 0.46 0.59
Q5 0.50 0.61 0.56 0.68 0.60 0.19 0.17 0.18 0.15 0.17
Q95 0.79 0.88 0.83 0.87 0.83 2.25 1.68 2.00 1.79 2.03
runoff_ratio 0.62 0.83 0.66 0.82 0.69 0.14 0.10 0.13 0.10 0.13
slope_FDC 0.44 0.59 0.52 0.70 0.57 0.38 0.33 0.35 0.28 0.33
stream_elast 0.33 0.32 0.32 0.46 0.39 0.64 0.65 0.64 0.57 0.61
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A2 R-squared values used to calculate values in Table 5

Table A2. The R-squared values of causal models for each category, which are calculated using the weighted mean. The weights are the ratio
of the catchments in each cluster to the total number of catchments.

Signature R-squared values for causal models

Climate Geology Soil Topography Vegetation

BN GAM RF BN GAM RF BN GAM RF BN GAM RF BN GAM RF

baseflow_index 0.24 0.28 0.31 0.25 0.25 0.27 0.30 0.33 0.34 0.25 0.28 0.34 0.22 0.24 0.26
high_q_dur 0.24 0.28 0.30 0.35 0.39 0.37 0.33 0.33 0.32 0.26 0.30 0.27 0.23 0.27 0.27
high_q_freq 0.17 0.20 0.16 0.30 0.33 0.27 0.26 0.28 0.23 0.30 0.36 0.31 0.19 0.22 0.18
low_q_dur 0.24 0.29 0.28 0.40 0.37 0.35 0.30 0.29 0.29 0.43 0.41 0.42 0.23 0.26 0.26
low_q_freq 0.25 0.28 0.32 0.32 0.30 0.35 0.30 0.32 0.35 0.33 0.37 0.44 0.23 0.25 0.28
q_mean 0.61 0.67 0.64 0.80 0.82 0.73 0.83 0.86 0.81 0.83 0.86 0.75 0.72 0.74 0.66
Q5 0.31 0.35 0.40 0.40 0.43 0.46 0.45 0.48 0.50 0.35 0.36 0.45 0.34 0.34 0.38
Q95 0.58 0.59 0.56 0.75 0.77 0.72 0.77 0.80 0.79 0.58 0.59 0.56 0.65 0.66 0.60
runoff_ratio 0.30 0.37 0.42 0.58 0.59 0.53 0.62 0.63 0.62 0.66 0.68 0.63 0.46 0.50 0.48
slope_FDC 0.26 0.35 0.35 0.42 0.47 0.47 0.44 0.50 0.51 0.37 0.43 0.43 0.25 0.32 0.34
stream_elast 0.22 0.21 0.22 0.28 0.28 0.30 0.25 0.24 0.27 0.25 0.26 0.27 0.23 0.23 0.23

Table A3. The R-squared values of non-causal models for each category, which are calculated using the weighted mean. The weights are the
ratio of the catchments in each cluster to the total number of catchments.

Signature R-squared values for non-causal models

Climate Geology Soil Topography Vegetation

GAM RF GAM RF GAM RF GAM RF GAM RF

baseflow_index 0.34 0.50 0.23 0.42 0.26 0.46 0.35 0.50 0.25 0.42
high_q_dur 0.33 0.43 0.26 0.46 0.26 0.42 0.26 0.40 0.23 0.38
high_q_freq 0.27 0.43 0.20 0.39 0.23 0.39 0.34 0.45 0.19 0.36
low_q_dur 0.26 0.34 0.20 0.38 0.27 0.34 0.41 0.49 0.22 0.34
low_q_freq 0.28 0.44 0.21 0.39 0.24 0.41 0.41 0.50 0.20 0.38
q_mean 0.76 0.76 0.73 0.80 0.80 0.85 0.82 0.84 0.73 0.75
Q5 0.31 0.45 0.32 0.52 0.34 0.52 0.38 0.53 0.26 0.44
Q95 0.65 0.64 0.60 0.73 0.70 0.81 0.65 0.64 0.63 0.67
runoff_ratio 0.60 0.65 0.52 0.69 0.62 0.75 0.68 0.76 0.55 0.63
slope_FDC 0.40 0.53 0.33 0.54 0.40 0.60 0.45 0.56 0.24 0.44
stream_elast 0.18 0.29 0.16 0.36 0.21 0.32 0.27 0.37 0.20 0.30

Code and data availability. The codes are avail-
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Perković, E., Kalisch, M., and Maathuis, M. H.: Interpreting and
using CPDAGs with background knowledge, arXiv [preprint],
https://doi.org/10.48550/arXiv.1707.02171, 7 July 2017.

Peters, J., Buhlmann, P., and Meinshausen, N.: Causal infer-
ence by using invariant prediction: identification and con-
fidence intervals, J. Roy. Stat. Soc. B, 78, 947–1012,
https://doi.org/10.1111/rssb.12167, 2016.

Peters, J., Janzing, D., and Schölkopf, B.: Elements of causal in-
ference: foundations and learning algorithms, MIT Press, ISBN
9780262037310, 2017.

Hydrol. Earth Syst. Sci., 29, 4761–4790, 2025 https://doi.org/10.5194/hess-29-4761-2025

https://doi.org/10.7158/13241583.2013.11465417
https://doi.org/10.5194/hess-15-2947-2011
https://doi.org/10.1016/j.ress.2017.08.017
https://doi.org/10.3390/w12082211
https://doi.org/10.1016/j.envsoft.2018.09.016
https://doi.org/10.1016/j.jhydrol.2024.131554
https://doi.org/10.1002/hyp.13632
https://doi.org/10.1029/2021WR031751
https://doi.org/10.48550/arXiv.1302.4972
https://doi.org/10.1016/j.jhydrol.2019.124146
https://doi.org/10.1016/j.jhydrol.2022.128555
https://doi.org/10.5194/hess-19-209-2015
https://doi.org/10.5065/D6MW2F4D
https://doi.org/10.1109/KSE.2015.53
https://doi.org/10.1016/j.envsoft.2016.10.007
https://doi.org/10.1002/rra.700
https://doi.org/10.1002/eco.251
https://doi.org/10.1029/2020WR027251
https://doi.org/10.1002/2016MS000830
https://doi.org/10.1016/j.envsoft.2018.08.031
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1109/TGRS.2018.2867002
https://doi.org/10.48550/arXiv.1707.02171
https://doi.org/10.1111/rssb.12167


H. Abbasizadeh et al.: Causal discovery for robust prediction of runoff signatures 4789

Petersen, A. H., Osler, M., and Ekstrom, C. T.: Data-Driven Model
Building for Life-Course Epidemiology, Am. J. Epidemiol., 190,
1898–1907, https://doi.org/10.1093/aje/kwab087, 2021.

Pfister, N., Williams, E. G., Peters, J., Aebersold, R., and Bühlmann,
P.: Stabilizing variable selection and regression, Ann. Appl. Stat.,
15, 1220–1246, 2021.

Pizarro, A. and Jorquera, J.: Advancing objective functions
in hydrological modelling: Integrating knowable moments
for improved simulation accuracy, J. Hydrol., 634, 131071,
https://doi.org/10.1016/j.jhydrol.2024.131071, 2024.

Pokhrel, P., Yilmaz, K. K., and Gupta, H. V.: Multiple-criteria
calibration of a distributed watershed model using spatial reg-
ularization and response signatures, J. Hydrol., 418, 49–60,
https://doi.org/10.1016/j.jhydrol.2008.12.004, 2012.

Qian, S. S. and Miltner, R. J.: A continuous variable Bayesian
networks model for water quality modeling: A case study
of setting nitrogen criterion for small rivers and streams
in Ohio, USA, Environ. Modell. Softw., 69, 14–22,
https://doi.org/10.1016/j.envsoft.2015.03.001, 2015.

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and
D. Lawrence, N.: Dataset Shift in Machine Learning, MIT Press,
Cambridge, MA, ISBN 9780262170055, 2009.

Kaufman, L. and Rousseeuw, P.: Finding groups in data:
an introduction to cluster analysis. John Wiley & Sons,
https://doi.org/10.1002/9780470316801, 1990.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler,
J., Carvalhais, N., and Prabhat: Deep learning and process un-
derstanding for data-driven Earth system science, Nature, 566,
195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.

Rinderera, M., Ali, G., and Larsen, L. G.: Assessing struc-
tural, functional and effective hydrologic connectiv-
ity with brain neuroscience methods: State-of-the-art
and research directions, Earth-Sci. Rev., 178, 29–47,
https://doi.org/10.1016/j.earscirev.2018.01.009, 2018.

Rubin, D.: Estimating causal effects of treatments in randomized
and nonrandomized studies, J. Educ. Psychol., 66, 688–701,
https://doi.org/10.1037/h0037350, 1974.

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D.,
Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M. D.,
Munoz-Mari, J., van Nes, E. H., Peters, J., Quax, R., Reich-
stein, M., Scheffer, M., Schoelkopf, B., Spirtes, P., Sugihara, G.,
Sun, J., Zhang, K., and Zscheischler, J.: Inferring causation from
time series in Earth system sciences, Nat. Commun., 10, 2553,
https://doi.org/10.1038/s41467-019-10105-3, 2019a.

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Se-
jdinovic, D.: Detecting and quantifying causal associations in
large nonlinear time series datasets, Sci. Adv., 5, eaau4996,
https://doi.org/10.1126/sciadv.aau4996, 2019b.

Runge, J., Gerhardus, A., Varando, G., Eyring, V., and Camps-Valls,
G.: Causal inference for time series, Nature Reviews Earth &
Environment, 4, 487–505, https://doi.org/10.1038/s43017-023-
00431-y, 2023.

Sanchez-Romero, R., Ito, T., Mill, R. D., Hanson, S. J.,
and Cole, M. W.: Causally informed activity flow
models provide mechanistic insight into network-
generated cognitive activations, NeuroImage, 278, 120300,
https://doi.org/10.1016/j.neuroimage.2023.120300, 2023.

Sankarasubramanian, A., Vogel, R., and Limbrunner, J.: Climate
elasticity of streamflow in the United States, Water Resour. Res.,
37, 1771–1781, https://doi.org/10.1029/2000WR900330, 2001.

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and
Carrillo, G.: Catchment classification: empirical analysis of
hydrologic similarity based on catchment function in the
eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911,
https://doi.org/10.5194/hess-15-2895-2011, 2011.

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., and
Mooij, J.: On causal and anticausal learning, arXiv [preprint],
https://doi.org/10.48550/arXiv.1206.6471, 27 June 2012.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalch-
brenner, N., Goyal, A., and Bengio, Y.: Toward Causal
Representation Learning, P. IEEE, 109, 612–634,
https://doi.org/10.1109/JPROC.2021.3058954, 2021.

Scutari, M.: Learning Bayesian networks with the
bnlearn R package, J. Stat. Softw., 35, 1–22,
https://doi.org/10.18637/jss.v035.i03, 2010.

Scutari, M. and Nagarajan, R.: Identifying significant edges in
graphical models of molecular networks, Artif. Intell. Med., 57,
207–217, https://doi.org/10.1016/j.artmed.2012.12.006, 2013.

Sendrowski, A. and Passalacqua, P.: Process connectivity in a natu-
rally prograding river delta, Water Resour. Res., 53, 1841–1863,
https://doi.org/10.1002/2016WR019768, 2017.

Seydi, S. T., Abatzoglou, J. T., AghaKouchak, A., Pourmohamad,
Y., Mishra, A., and Sadegh, M.: Predictive understanding of
links between vegetation and soil burn severities using physics-
informed machine learning, Earth’s Future, 12, e2024EF004873,
https://doi.org/10.1029/2024EF004873, 2024.

Singh, R., Reed, P. M., and Keller, K.: Many-objective ro-
bust decision making for managing an ecosystem with a
deeply uncertain threshold response, Ecol. Soc., 20, 12,
https://doi.org/10.5751/ES-07687-200312, 2015.

Singh, S. K., McMillan, H., Bardossy, A., and Fateh,
C.: Nonparametric catchment clustering using the data
depth function, Hydrolog. Sci. J., 61, 2649–2667,
https://doi.org/10.1080/02626667.2016.1168927, 2016.

Sivapalan, M.: Pattern, process and function: elements of a uni-
fied theory of hydrology at the catchment scale, in: En-
cyclopedia of hydrological sciences, edited by: Anderson,
M. G. and McDonnell, J. J., John Wiley & Sons, Ltd,
https://doi.org/10.1002/0470848944.hsa012, 2006.

Slater, L., Blougouras, G., Deng, L., Deng, Q., Ford, E., Hoek van
Dijke, A., Huang, F., Jiang, S., Liu, Y., Moulds, S., Schepen, A.,
Yin, J., and Zhang, B.: Challenges and opportunities of ML and
explainable AI in large-sample hydrology, Philos. T. Roy. Soc. A,
383, 20240287, https://doi.org/10.1098/rsta.2024.0287, 2025.

Spieler, D. and Schuetze, N.: Investigating the Model Hypoth-
esis Space: Benchmarking Automatic Model Structure Identi-
fication With a Large Model Ensemble, Water Resour. Res.,
60, e2023WR036199, https://doi.org/10.1029/2023WR036199,
2024.

Spirtes, P., Glymour, C., and Scheines, R.: Cau-
sation, prediction, and search, MIT Press,
https://doi.org/10.7551/mitpress/1754.001.0001, 2001.

Sultan, D., Tsunekawa, A., Tsubo, M., Haregeweyn, N., Adgo,
E., Meshesha, D. T., Fenta, A. A., Ebabu, K., Berihun, M. L.,
and Setargie, T. A.: Evaluation of lag time and time of con-
centration estimation methods in small tropical watersheds in

https://doi.org/10.5194/hess-29-4761-2025 Hydrol. Earth Syst. Sci., 29, 4761–4790, 2025

https://doi.org/10.1093/aje/kwab087
https://doi.org/10.1016/j.jhydrol.2024.131071
https://doi.org/10.1016/j.jhydrol.2008.12.004
https://doi.org/10.1016/j.envsoft.2015.03.001
https://doi.org/10.1002/9780470316801
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1016/j.earscirev.2018.01.009
https://doi.org/10.1037/h0037350
https://doi.org/10.1038/s41467-019-10105-3
https://doi.org/10.1126/sciadv.aau4996
https://doi.org/10.1038/s43017-023-00431-y
https://doi.org/10.1038/s43017-023-00431-y
https://doi.org/10.1016/j.neuroimage.2023.120300
https://doi.org/10.1029/2000WR900330
https://doi.org/10.5194/hess-15-2895-2011
https://doi.org/10.48550/arXiv.1206.6471
https://doi.org/10.1109/JPROC.2021.3058954
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.1016/j.artmed.2012.12.006
https://doi.org/10.1002/2016WR019768
https://doi.org/10.1029/2024EF004873
https://doi.org/10.5751/ES-07687-200312
https://doi.org/10.1080/02626667.2016.1168927
https://doi.org/10.1002/0470848944.hsa012
https://doi.org/10.1098/rsta.2024.0287
https://doi.org/10.1029/2023WR036199
https://doi.org/10.7551/mitpress/1754.001.0001


4790 H. Abbasizadeh et al.: Causal discovery for robust prediction of runoff signatures

Ethiopia, Journal of Hydrology: Regional Studies, 40, 101025,
https://doi.org/10.1016/j.ejrh.2022.101025, 2022.

Tárraga, J. M., Sevillano-Marco, E., Muñoz-Marí, J., Piles, M.,
Sitokonstantinou, V., Ronco, M., Miranda, M. T., Cerdà, J.,
and Camps-Valls, G.: Causal discovery reveals complex pat-
terns of drought-induced displacement, iScience, 27, 110628,
https://doi.org/10.1016/j.isci.2024.110628, 2024.

Todorovic, A., Grabs, T., and Teutschbein, C.: Improving per-
formance of bucket-type hydrological models in high lat-
itudes with multi-model combination methods: Can we
wring water from a stone?, J. Hydrol., 632, 130829,
https://doi.org/10.1016/j.jhydrol.2024.130829, 2024.

Vandenberg-Rodes, A., Moftakhari, H. R., AghaKouchak, A., Shah-
baba, B., Sanders, B. F., and Matthew, R. A.: Projecting nuisance
flooding in a warming climate using generalized linear models
and Gaussian processes, J. Geophys. Res.-Oceans, 121, 8008–
8020, 2016.

Verma, T. and Pearl, J.: Causal networks: Semantics and expressive-
ness, Mach. Intell. Patt. Rec., 9, 69–76, 1990.

Viger, R. and Bock, A.: GIS features of the geospatial fabric
for national hydrologic modeling, US Geological Survey, 10,
F7542KMD, https://doi.org/10.5066/F7542KMD, 2014.

Viglione, A., Parajka, J., Rogger, M., Salinas, J. L., Laaha,
G., Sivapalan, M., and Blöschl, G.: Comparative assessment
of predictions in ungauged basins – Part 3: Runoff signa-
tures in Austria, Hydrol. Earth Syst. Sci., 17, 2263–2279,
https://doi.org/10.5194/hess-17-2263-2013, 2013.

Wang, Y., Yang, J., Chen, Y., De Maeyer, P., Li, Z., and Duan, W.:
Detecting the Causal Effect of Soil Moisture on Precipitation
Using Convergent Cross Mapping, Scientific Reports, 8, 12171,
https://doi.org/10.1038/s41598-018-30669-2, 2018.

Wood, S.: Mixed GAM computation vehicle with au-
tomatic smoothness estimation, R package version
1.8–12, Comprehensive R Archive Network (CRAN),
https://doi.org/10.1201/9781315370279, 2018.

Woodward, J.: Invariance, modularity, and all that: Cartwright on
causation, in: Nancy Cartwright’s philosophy of science, Rout-
ledge, 210–249, https://doi.org/10.4324/9780203895467, 2008.

Yadav, M., Wagener, T., and Gupta, H.: Regionalization of con-
straints on expected watershed response behavior for improved
predictions in ungauged basins, Adv. Water Resour., 30, 1756–
1774, https://doi.org/10.1016/j.advwatres.2007.01.005, 2007.

Yang, M. and Olivera, F.: Classification of watersheds in the
conterminous United States using shape-based time-series
clustering and Random Forests, J. Hydrol., 620, 129409,
https://doi.org/10.1016/j.jhydrol.2023.129409, 2023.

Zabaleta, A., Garmendia, E., Mariel, P., Tamayo, I., and
Antigüedad, I.: Land cover effects on hydrologic services under
a precipitation gradient, Hydrol. Earth Syst. Sci., 22, 5227–5241,
https://doi.org/10.5194/hess-22-5227-2018, 2018.

Zachariah, M., Mondal, A., and AghaKouchak, A.: Probabilistic
assessment of extreme heat stress on Indian wheat yields un-
der climate change, Geophys. Res. Lett., 48, e2021GL094702,
https://doi.org/10.1029/2021GL094702, 2021.

Zazo, S., Molina, J.-L., Ruiz-Ortiz, V., Vélez-Nicolás, M., and
García-López, S.: Modeling river runoff temporal behavior
through a hybrid causal–hydrological (HCH) method, Water, 12,
3137, https://doi.org/10.3390/w12113137, 2020.

Zhang, Y., Vaze, J., Chiew, F. H. S., Teng, J., and Li, M.:
Predicting hydrological signatures in ungauged catch-
ments using spatial interpolation, index model, and
rainfall-runoff modelling, J. Hydrol., 517, 936–948,
https://doi.org/10.1016/j.jhydrol.2014.06.032, 2014.

Zuk, O., Margel, S., and Domany, E.: On the number of samples
needed to learn the correct structure of a Bayesian network, arXiv
[preprint], https://doi.org/10.48550/arXiv.1206.6862, 27 June
2012.

Hydrol. Earth Syst. Sci., 29, 4761–4790, 2025 https://doi.org/10.5194/hess-29-4761-2025

https://doi.org/10.1016/j.ejrh.2022.101025
https://doi.org/10.1016/j.isci.2024.110628
https://doi.org/10.1016/j.jhydrol.2024.130829
https://doi.org/10.5066/F7542KMD
https://doi.org/10.5194/hess-17-2263-2013
https://doi.org/10.1038/s41598-018-30669-2
https://doi.org/10.1201/9781315370279
https://doi.org/10.4324/9780203895467
https://doi.org/10.1016/j.advwatres.2007.01.005
https://doi.org/10.1016/j.jhydrol.2023.129409
https://doi.org/10.5194/hess-22-5227-2018
https://doi.org/10.1029/2021GL094702
https://doi.org/10.3390/w12113137
https://doi.org/10.1016/j.jhydrol.2014.06.032
https://doi.org/10.48550/arXiv.1206.6862

	Abstract
	Introduction
	Data
	Methods
	Clustering
	Causal discovery
	PC causal discovery algorithm
	Background knowledge and edge assumptions
	Implementation and evaluation of the PC algorithm's results

	Prediction models
	Bayesian network (BN)
	Generalized additive model (GAM)
	Random forest (RF)


	Results
	Clustering results for each category
	Identification of causal links
	Performance of the baseline models (prediction using the whole dataset)
	The performance of models across different clusters (sub-models)
	Baseflow index
	High-flow duration
	High-flow frequency
	Low-flow duration
	Low-flow frequency
	Mean daily runoff
	Low flow (Q5)
	High flow (Q95)
	Runoff ratio
	Slope of flow duration curve
	Stream precipitation elasticity


	Discussion
	Conclusions
	Appendix A: The values of R-squared and RMSE for the baseline models and R-squared values for sub-models
	Appendix A1: R-squared and RMSE values for test simulations of baseline models in Fig. 4
	Appendix A2: R-squared values used to calculate values in Table 5

	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

