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Abstract. The seasonal streamflow forecast (SSF) is a crucial
decision-making, planning and management tool for disas-
ter prevention, navigation, agriculture and hydropower gen-
eration. This study demonstrates for the first time the ca-
pacity of a fully coupled operational global forecast system
to directly provide skilful seasonal streamflow predictions
through a physically consistent and convenient single-step
workflow for forecast production. We assess the skill of the
SSF derived from the operational Météo France forecast sys-
tem SYS8, based on the in-house fully coupled atmosphere-
-ocean–land general circulation model of the sixth genera-
tion, CNRM-CM6-1. An advanced river routing model in-
teracts with the land and atmosphere via surface and/or sub-
surface runoff, aquifer exchange, and open-water evapora-
tion to predict river streamflow. The actual skill is evaluated
against streamflow observations, with the ensemble stream-
flow prediction (ESP) approach being used as a benchmark.
Results show that the online coupled forecast system is over-
all more skilful than ESP in predicting streamflow for the
summer and winter seasons. This improvement is particu-
larly notable with enhanced land water storage initial con-
ditions, especially in summer and in large basins where the
low-flow response is influenced by soil water storage. Pre-
dicting climate anomalies is crucial in winter forecasting,
and results consistently suggest that the atmospheric fore-
cast of the fully coupled CNRM-CM6-1 model contributes
to better seasonal streamflow forecasts than the climatology-
based ESP benchmark. This study showcases the capacity of
an operational seasonal forecast system based on a general
circulation model to deliver relevant streamflow predictions.
Additionally, the positive response to enhanced initial hydro-
logical conditions pinpoints the efforts still needed to further

improve land initialization strategies, possibly through land
data assimilation systems.

1 Introduction

The seasonal streamflow forecast (SSF) is an essential
decision-making and planning tool for disaster prevention
(e.g. floods and droughts), navigation and water manage-
ment applied to water supply, agriculture and hydropower
generation (Clark et al., 2001; Hamlet et al., 2002; Chiew
et al., 2003; Wood and Lettenmaier, 2006; Regonda et al.,
2006; Luo and Wood, 2007; Kwon et al., 2009; Cherry
et al., 2005; Viel et al., 2016). However, many regions lack
operational forecast systems and dense streamflow and/or
weather monitoring networks. To address this shortcoming,
continental and global SSFs provide worldwide coverage
of prediction information that is of potential value to users
(e.g. Crochemore et al., 2020; Emerton et al., 2018; Cando-
gan Yossef et al., 2017; Pappenberger et al., 2013; Van Dijk
et al., 2013).

Troin et al. (2021) propose a comprehensive classification
of streamflow forecast systems into three groups based on the
origin of the forcing: statistics-based streamflow prediction
systems (SBSP), climatology-based ensemble streamflow
prediction systems (ESP) and numerical weather prediction-
based hydrological ensemble prediction systems (NWPB).
SBSP approaches use historical streamflow or weather (or
both) data to train a data-driven hydrological model, which,
due to the absence of physics to constrain it, requires long
and continuous observational time series that are not always
available (Troin et al., 2021). Despite statistical methods be-
ing the more widely developed and reliable of methods in
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current operational forecast systems, their applicability can
be limited because of the lack of physical description and
robustness to represent future quick or long-term anthro-
pogenic and climate changes (Candogan Yossef et al., 2017).

ESP approaches (Day, 1985) use an ensemble of histor-
ical climate observations or (pseudo-)observations (such as
satellite, radar and reanalysis of past weather data) to force
one or more hydrological models (HMs). Most ESP multi-
model studies employ dynamical process-driven HMs rather
than statistical data-driven HMs (Troin et al., 2021). Unlike
SBSP, ESP can include physics representation in the HM,
while past weather data only represents the climatology of
the atmosphere without a link to the current initial state of
the land or the atmosphere itself at the beginning of the fore-
cast. Efforts to enhance the skill of the classical ESP include
conditional weighting of the ESP ensemble members based
on the El Niño–Southern Oscillation signal (Werner et al.,
2004). While modified versions of ESP can improve stream-
flow predictions for shorter lead times, their skill decreases
faster over time compared to NWPB systems (Trambauer
et al., 2015). To overcome this issue, model-based NWPB ap-
proaches propose using numerical weather prediction (NWP)
systems or atmospheric predictions derived from global cir-
culation models (GCMs) to yield ensemble atmospheric fore-
casts as inputs into the HM (e.g. Crochemore et al., 2017;
Mendoza et al., 2017; Rosenberg et al., 2011).

Seasonal streamflow forecast skill is derived from the
accuracy of the initial hydrological conditions (IHCs; soil
moisture, groundwater, snowpack and the current stream-
flow) and the future seasonal climate anomalies (FSCs; tem-
perature and precipitation) (Wood et al., 2016; Arnal et al.,
2017; Yuan et al., 2015). As time progresses, the predictabil-
ity of seasonal streamflow decreases, primarily due to the
loss of memory in the IHCs and the increasing uncertainty in
FSC predictions. The persistence of IHCs, depending on the
season, catchment climate zone and physiography, can ex-
tend from 1 to 6 months. Notably, the contribution of IHCs
to predictability is more pronounced in arid and snowmelt-
dominated hydroclimates (Yuan et al., 2015; Shukla et al.,
2013). Conversely, in regions dominated by rainfall, FSCs
tend to significantly influence the predictability of seasonal
streamflow (Wood et al., 2016). Forecasts entirely derived
from the climatology of observed streamflow do not contain
information on IHC and FSC since they are not initialized or
atmospherically driven. Although atmospheric forcing in the
ESP framework is climatology-based, introducing a hydro-
logical model with IHCs constrains the forecast system and
thus reduces the range of uncertainty. In NWPB approaches,
FSC is simulated by a climate model, which adds physics-
based constraints to the system but may contribute additional
uncertainty in regions where it lacks skill. Therefore, it may
be more straightforward to predict streamflow in large river
basins with long-lasting IHCs (low IHC uncertainty) and in
regions with arid climates (lower rainfall FSC uncertainty)
(Wood and Lettenmaier, 2008; Shukla et al., 2013; Van Dijk

et al., 2013; Yuan et al., 2015). In such cases, NWPB offers a
more narrow ensemble than ESP methods (Wood et al., 2016;
Li et al., 2009). ESP is considered to be more reliable for
long-range forecasting in regions where FSC dominates the
other sources of uncertainty, and NWPB fails to be skilful
with respect to the long-term climatology (Demargne et al.,
2014).

Shortcomings inherent to land surface hydrological pa-
rameterizations and land surface initialization of coupled
GCMs have discouraged the direct use of streamflow (or
runoff) forecast products from these systems (Yuan et al.,
2015). For this reason, previous global-scale studies based on
dynamical methods rely on stand-alone hydrological mod-
els driven by bias-corrected atmospheric forecasts from a
GCM (Candogan Yossef et al., 2017; Emerton et al., 2018),
in which explicit two-way mass and energy feedback be-
tween the land and atmosphere is not represented. However,
coupled GCMs with consistent IHCs can produce improved
atmospheric seasonal forecasts in regions prone to a strong
land–atmosphere coupling (Koster et al., 2004; Ardilouze
et al., 2017).

On a global scale, Candogan Yossef et al. (2017) suggest
that the performance of the stand-alone approach, using the
meteorological forecasts of ECMWF S3, is close to that of
the ESP forecasts. On a continental scale, Petry et al. (2023)
found that ESP is hard to beat for ECMWF S5 in several
South American rivers after the 2-month lead times, partic-
ularly in regions with high seasonality and high dependence
on initial conditions. However, for a regional application in
the Limpopo River basin in southern Africa, Trambauer et al.
(2015) observed that meteorological forecasts of ECMWF
S4 show potential for seasonal hydrological drought fore-
casting. Such results, together with the recent evolution and
improvement of GCMs in terms of resolution, processes rep-
resentation, hydrological parameterization and land surface
initialization, motivate the use of GCMs with embedded so-
phisticated river routing models (e.g. Decharme et al., 2019)
to direct the production of seasonal streamflow forecasts.

We propose a global assessment of the SSF delivered by
the Météo France operational forecast system SYS8, based
on CNRM-CM6-1 (Voldoire et al., 2019), an atmosphere–
ocean general circulation model (AOGCM), embedding
an advanced river routing scheme coupled to the land–
surface and atmosphere components, namely ISBA-CTRIP
(Decharme et al., 2019). To the best of our knowledge,
the hydrological output of CNRM-CM6-1, initially devel-
oped by the Centre National de Recherches Météorologiques
(CNRM) and Cerfacs for the sixth phase of the Coupled
Model Intercomparison Project 6 (CMIP6, Eyring et al.,
2016), has never been evaluated in a forecasting configura-
tion. The standard method to initialize the CNRM-CM6-1
seasonal forecast operational system is more advanced for
ocean and atmosphere initial conditions than for land initial
conditions, given that the primary sources of seasonal pre-
dictability at the global scale originate from the ocean (e.g.
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El Niño–Southern Oscillation). For this reason, we proceed
to a two-tier assessment of the impact of (i) using an on-
line coupled AOGCM–river rather than an uncoupled ESP
and (ii) improving IHCs in the land–river components of the
AOGCM. Here, the IHC improvement is based on enhancing
the representation of soil water content variability through
the nudging to a soil moisture reanalysis specially developed
for this study.

The following section presents an overview of the forecast
systems and experimental design, as well as the observational
global streamflow database and forecast evaluation metrics.
In the subsequent two sections, we address the impact of
the IHCs and the atmosphere–land–river coupling from the
global to basin scale to demonstrate the potential benefits
of our approach. Finally, we conclude with future scientific
challenges and some final remarks.

2 Data and methods

2.1 Global forecast system

The Météo France seasonal prediction system SYS8 (MF
system 8; Batté et al., 2021) is based on the high-resolution
version of the coupled CNRM-CM6-1 global climate model
(Voldoire et al., 2019, 2017) used for CMIP6 (Eyring et al.,
2016). It contributes to the seasonal forecast component of
the Copernicus Climate Change Services (C3S).

The streamflow forecast is derived from the interaction
between the atmosphere component, ARPEGE-Climat 6.3
(Roehrig et al., 2020); the land surface component (ISBA),
which simulates the runoff; and the advanced river rout-
ing (CTRIP), which simulates the streamflow river dis-
charges (Decharme et al., 2019). In ISBA, the soil is dis-
cretized in 14 vertical layers, accounting for the soil hy-
draulic and thermal properties, while the multi-layer snow
model simulates water and energy budgets separately in the
soil and the snowpack. ISBA in one grid cell is tiled into
12 patches of soil and vegetation, which aggregates 500 land
cover units at 1 km resolution present in the ECOCLIMAP-
II database (Faroux et al., 2013), where mean seasonal
cycles of snow-free albedo and leaf area index are pre-
scribed from Moderate Resolution Imaging Spectroradiome-
ter (MODIS) products at 1 km spatial resolution and the
normalized difference vegetation index product from the
SPOT/Vegetation. The soil textural properties (clay, sand and
soil organic carbon content) are given by the Harmonized
World Soil Database (http://webarchive.iiasa.ac.at/Research/
LUC/External-World-soil-database/HTML/, last access: 17
September 2025) at a 1 km resolution. Topography is de-
rived from the 1 km Global Multi-resolution Terrain Eleva-
tion Data 2010 (https://topotools.cr.usgs.gov/gmted_viewer/
index.html, last access: 17 September 2025). Heterogeneities
in precipitation, soil infiltration capacity, topography and
vegetation are considered through a comprehensive sub-

grid hydrology scheme (Decharme and Douville, 2006;
Decharme, 2007). In CTRIP, the result of rainfall excess, ef-
fective river aquifer exchange, open-water evaporation and
inflow from the upstream cell is routed by a river model
in which the streamflow velocity is solved dynamically via
Manning’s formula (kinematic approach) and assuming a
rectangular river cross-section in a grid resolution of 0.5o

(Decharme et al., 2010).
CNRM-CM6-1 incorporates an explicit two-way coupling

between ISBA and CTRIP via the SURFEX and OASIS-
MCT interface (Voldoire et al., 2017). The coupling allows
us to consider (i) the dynamic river flooding in which flood-
plains interact with the soil and the atmosphere through in-
filtration, open-water evaporation and precipitation intercep-
tion (Decharme et al., 2012) and (ii) the fact that a two-
dimensional diffusive groundwater scheme represents un-
confined aquifers and upward capillarity fluxes into the su-
perficial soil (Vergnes et al., 2014). The latter contributes to
capturing active groundwater–river connections that are cru-
cial in representing groundwater-sustained baseflow during
dry seasons (Xie et al., 2024). More details on the model pa-
rameterization and structure can be found in Decharme et al.
(2019) and Voldoire et al. (2019).

2.2 Experimental design

2.2.1 Generation of land and river initial conditions

SYS8 derives land initial hydrologic conditions (IHCs) from
a historical initialization run, named the ICL here, where the
land–river component is unconstrained, whereas the ocean
and atmosphere are nudged towards the GLORYS12V1 (Lel-
louche et al., 2021) and the ERA5 (Hersbach et al., 2020) re-
analyses, respectively. We propose an enhanced initialization
run (ICLnud) by nudging soil moisture (Wsoil) to fields ob-
tained from a current Wsoil reconstruction. The soil moisture
reconstruction was yielded through an offline land simula-
tion (i.e. forcing the land–river components with ERA5 his-
torical climate sequences). Then, the Wsoil of the historical
initialization run is nudged to the Wsoil from this reconstruc-
tion. The proposed IHC accounts for an enhanced represen-
tation of soil moisture variability through (pseudo-)observed
atmospheric forcing aiming to improve the forecast in basins
where the initial soil water storage dominates the streamflow
seasonal response.

The IHCs generated by the ICL are applied to the bench-
mark forecast (Offline_ICL) and the online coupled SYS8
forecast (Online_ICL). The land–river component in the on-
line system is also initialized with ICLnud to evaluate the im-
pact on streamflow forecasting. Details of the model config-
urations and forcing are presented in Sect. 2.2.2.
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Figure 1. Schematic of offline and online forecast system config-
urations and corresponding land–river initializations. ICL: initial
condition from the historical run with the online system; ICLnud:
initial conditions from a historical run with soil moisture nudged to
fields reconstructed from the offline land simulation SMR. As illus-
trated by the grey-filled arrows, the design of the experiment allows
for the evaluation of the coupling effect, the initialization effect or
both.

2.2.2 Forecast experiments

Seasonal hindcast experiments were conducted for the three
model configurations described below (see Table 1 and
Fig. 1).

– Offline_ICL is the benchmark hindcast configured as
the ESP classical approach. It is a land–river offline sim-
ulation initialized by the conventional initialization run
of the ICL.

– Online_ICL is produced by the online coupled system
with conventional initialization of the ICL.

– Online_ICLnud is produced by the online coupled sys-
tem with enhanced initialization ICLnud based on a soil
moisture reconstruction (SMR).

For each of the three forecast system configurations, we
have generated two sets of hindcasts composed of 25 ensem-
ble members, each one of them yielding a global 4-month
streamflow daily time series. The two sets were initialized on
1 May (JJA predictions) and 1 November (DJF predictions)
between 1993 and 2017. The system Online_ICL is identical
to the operational SYS8 hindcast, except for the fact that, for
the latter, the ensemble is partly generated via a lagged ini-
tialization method (e.g. Hoffman and Kalnay, 1983), while
the ensemble of Online_ICL (and Online_ICLnud) stems
from a burst initialization; that is, all members have the same
initialization date.

To generate the benchmark hindcast Offline_ICL, the
land–river model ISBA-CTRIP is forced by ERA5 histori-
cal climate (Fig. 1) so that each year produces 1 of the 25
atmospheric forecast members. We use the leave-3-years-out
cross-validation (L3OCV) to select the forcing. In L3OCV,

the year of the climate forcing cannot match the hindcast
year or the preceding year and the two following years to
avoid artificially inflating the skill due to large-scale climate–
streamflow dependence, with influences lasting from seasons
to years, like the North Atlantic Oscillation (Dunstone et al.,
2016). For example, to apply the L3OCV selection method
to the hindcast of 1993, forcing of the years 1991 and 1996–
2019 ensures 25 members. For the hindcast of 2000, forcing
from 1991 to 1998 and from 2003 to 2019 is used.

Before computing the forecast performance scores, the
daily streamflow is averaged on a 3-month basis to represent
the seasonal mean. The 3-month streamflow mean (JJA and
DJF) is assessed across a global dataset of gauged basins with
the observational streamflow data described in Sect. 2.3. To
localize the gauging stations in the correct grid pixel of the
model river network, we applied an in-house methodology
based on a distance and drainage area station-to-pixel com-
parison (see Munier and Decharme, 2022, for more details
and applications).

2.3 Streamflow observational database

Most previous works evaluate the “potential” streamflow pre-
dictability of a forecast system by adopting the perfect-model
assumption, in which the streamflow forecast is compared
to simulated streamflow (from a model driven by meteoro-
logical observations) instead of observed streamflow. Here,
we compare the forecasts against observations because, in
addition to the IHC and FSC, these incorporate the uncer-
tainty associated with model error (due to structure, physics,
and parameter uncertainty) and provides actual (as opposed
to potential) streamflow predictability, which is more valu-
able for end-users or the development of climate services. A
database of 1755 flow gauge stations has been created, com-
piling the global streamflow open-access datasets presented
in Table 2. We have filtered the full dataset to remove sta-
tions with relatively small drainage areas poorly represented
by the model resolution and those stations with more than
25% of missing streamflow records in the season of concern.

We conducted a correlation analysis to select the mini-
mum drainage area considered in the study. For basins with
an area higher than a certain threshold (Athreshold), Fig. 2
shows the correlation between the basin area (Abasin) and
the area estimated for the CTRIP routing model (ACTRIP).
With increasing Athreshold, the correlation increases, but the
number of available basins is reduced. The threshold is set
to 6× 103 km2 (about two CTRIP cells per basin in mid-
latitudes) to maintain a balance between the number of basins
analysed and their geometrical representation and to avoid
considering basins inside the spurious oscillating correlation
curve (Fig. 2). There are 1451 gauged basins with Abasin ≥

Athreshold, with an Abasin|ACTRIP correlation of 0.9886.
From the 1451 streamflow stations, we only consider those

with less missing data than 25% of the total data in the anal-
ysed season. Figure S1 in the Supplement shows the distri-
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Table 1. Experiments configurations for land initial conditions and hindcast production (see Fig. 1).

Simulation Initial condition Evolution

ID Description Atm. Ocean Land River Atm. Ocean Land River

Soil moisture reconstruction (SMR)

SMR Offline land simulation to re-
construct soil moisture

Disabled Disabled Spin-up Spin-up Prescribed
(ERA5)

Disabled Free Free

Historical initialization runs

ICL Online coupling with atm. and
ocean nudged to reanalysis

ERA5 Glorys Spin-up Spin-up Nudged
(ERA5)

Nudged
(Glo-
rys)

Free Free

ICLnud ICL nudged to own soil mois-
ture reconstruction (SMR)

ERA5 Glorys Spin-up Spin-up Nudged
(ERA5)

Nudged
(Glo-
rys)

Nudged
(SMR)

Free

Hindcasts

Offline_ICL ESP benchmark: offline with
land initialization from ICL

Disabled Disabled ICL ICL Prescribed∗

(ERA5)
Disabled Free Free

Online_ICL Online with land initialization
from ICL

ERA5 Glorys ICL ICL Free Free Free Free

Online_ICLnud Online with land initialization
from ICLnud

ERA5 Glorys ICLnud ICLnud Free Free Free Free

∗ The atmospheric ensemble forcing for the Offline_ICL hindcast is constructed from past climate years selected by a leave-3-years-out cross-validation procedure.

Table 2. Streamflow observed datasets.

Dataset∗ Region Reference

GRDC: Global Runoff Data Centre Global https://portal.grdc.bafg.de-AustralianBureauofMeteorology.
http://www.bom.gov.au/waterdata/s (last access: 17 September
2025)

USGS: United States Geological Survey United States http://waterdata.usgs.gov/nwis/sw (last access: 17 September
2025)

HYDAT: National Water Data Archive Canada https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/
(last access: 17 September 2025)

French Hydro database France http://www.eaufrance.fr (last access: 17 September 2025)
Spanish Hydro database Spain http://ceh-flumen64.cedex.es/anuarioaforos/default.asp (last

access: 17 September 2025)
HidroWeb Brazil http://www.snirh.gov.br/hidroweb/ (last access: 17 September

2025)
R-ArcticNet Northern High Latitudes http://www.r-arcticnet.sr.unh.edu/v4.0/AllData/index.html (last

access: 17 September 2025)
Australian Bureau of Meteorology Australia http://www.bom.gov.au/waterdata/s (last access: 17 September

2025)
China Hydrology Data Project China Henck et al. (2011)
HyBAm Amazon basin https://hybam.obs-mip.fr/ (last access: 17 September 2025)

∗ In the case of overlapping stations with the global GRDC dataset, priority is given to the national database.

bution, in terms of space and frequency, of the full database
and the selected stations. The final dataset has 1071 stations
in JJA and 1043 stations in DJF, distributed across North
America (≈ 82%), Europe (≈ 13%), South America (3.5%),
Africa (1.7%), Asia and Australia (0.4 %= 4 stations). In
Sect. 3.3, we remove 14 stations where the mean bias mag-

nitude exceeded the maximum machine number in double
precision. This can occur in basin outlets, where backflow or
strong regulation can lead to a near-zero mean or standard de-
viation of observed streamflow (in the denominator of bias,
the simulated-to-observed mean and standard deviation ra-
tios, as shown in Table 3).
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Figure 2. Correlation coefficient of Areal|ACTRIP and number of
basins with an area greater than a given Athreshold.

2.4 Streamflow bias correction

Typically, statistical post-processing methods are applied to
compensate for errors in model structure or initial conditions,
correct biases, and improve ensemble dispersion (Troin et al.,
2021). Such bias correction can be applied to atmospheric
forecasts (such as precipitation, temperature and evapora-
tion) and/or to hydrological forecasts like runoff and stream-
flow (e.g. Petry et al., 2023; Tiwari et al., 2022; Gubler et al.,
2020; Crochemore et al., 2016; Wood and Schaake, 2008).
Our study uses an online atmosphere–ocean–land–river cou-
pled model, for which bias correcting the atmospheric forc-
ing is irrelevant. Instead, we correct the streamflow forecast
bias for each flow gauge station using the empirical quantile
mapping (EQM) method. To ensure consistent comparisons,
we apply streamflow bias correction to both offline and on-
line forecasts.

Unlike adjusting parametric distributions, the EQM
method removes bias using empirical cumulative distribu-
tion functions (ECDFs) from observations and forecast per-
centiles. Roughly, the approach replaces the forecast val-
ues with observed values corresponding to the same non-
exceedance probability (i.e. it calibrates the forecast distri-
bution with the observed distribution by fitting the forecast
values). Analogous to Tiwari et al. (2022), the bias-corrected
streamflow Qc is calculated as follows:

Qc = F−1
o [Ff(Qf)] , (1)

where Ff and Fo are the ECDFs of forecast Qf and observa-
tion streamflow Qo, respectively.

2.5 Seasonal forecast assessment

Table 3 presents the deterministic and probabilistic scores
used to evaluate the new forecast system performance. The
thresholds for the Brier score computation are based on the
3-month average of observed streamflow exceeded 66 % (the
lower tercile Q66), 95 % (Q95) and 10 % (Q10) of the time.

These thresholds characterize low, very low and high flows
(Liu et al., 2021). The skill of the online approach is relative
to the performance of the Offline_ICL benchmark.

The significance of the precipitation correlation is calcu-
lated using the parametric Student’s t test. All other signif-
icance tests and confidence interval computations use the
bootstrap approach, where 1000 random sub-samples are
created from the full sample to establish the probability
distribution of the statistical estimator being analysed (e.g.
the anomaly correlation coefficient or the Kling–Gupta effi-
ciency (KGE) score). An estimator is considered to be sig-
nificant if the p value is less than or equal to 0.05.

3 Results

The first two sub-sections explore the performance of the two
primary factors of hydrologic predictability, namely the ini-
tial hydrologic conditions (Sect. 3.1) and the future climate
seasonal anomalies (Sect. 3.2). Section 3.3 presents the eval-
uation of the seasonal prediction skill to highlight the joint
and separate impacts of the coupling and the enhanced land
initialization.

3.1 Initial hydrologic conditions

We assess the global performance of the river streamflow
simulated by the initialization runs (ICL and ICLnud) against
historical streamflow observations. For this purpose, we
compare the initial-month mean streamflow (May for JJA
and November for DJF) against the observed streamflow over
the 1993–2017 period.

Figure 3 presents three performance metrics of the com-
parison (bias, root mean square error and anomaly correla-
tion coefficient). Note that only stations with less than 25 %
of missing data during the corresponding month are consid-
ered in the following analysis.

For May, the streamflow bias of the ICL tends to be pos-
itive in the driest regions (Fig. 3a), particularly in the west
of North America, northeastern Brazil, southern Africa, the
Iberian Peninsula and Australia. The higher concentration
of red markers in Fig. 3b suggests a reduction in bias from
the ICL to ICLnud. This reduction is more pronounced for
negative bias, as indicated by the shift of the negative peak
towards zero bias in the frequency distribution shown in
Fig. 3c. Besides this, the RMSE is generally smaller with
ICLnud, particularly over regions with large RMSEs in the
ICL (Fig. 3d–f). In seasonal forecasts, the temporal cor-
relation between the forecasted and the observed anoma-
lies is crucial since it indicates the capability of capturing
the interannual variability of streamflow departures from the
mean value. The spatial distribution of the difference in the
anomaly correlation coefficient |ACCICL−1|−|ACCICLnud−

1| in Fig. 3h shows that the soil moisture nudging improves
the temporal dynamics of the simulated streamflow in May
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Table 3. Performance scores used to assess and compare seasonal streamflow forecasting approaches.

Notation Name Equation Description

Deterministic scores

Bias Percent mean bias 100×
∑

(fi−oi )∑
oi

Range (−∞,∞). Represents the aver-
age tendency of the forecast to underes-
timate or overestimate the observations,
with 0 indicating that there is no bias.

RMSE Root mean square error
√

1
n

∑
(fi − oi)

2 Range [0,∞). Measures the average
difference between the forecast and the
observation. Lower values indicate bet-
ter performance.

ACC Anomaly correlation
coefficient

∑
(fi−f )(oi−o)√∑

(fi−f )2 ∑
(oi−o)2

Range [−1,1], with a perfect score of
1. Measures the linear association be-
tween forecasts and observations (or
pseudo-observations).

KGE Kling–Gupta efficiency
score

1−
√

(ACC− 1)2+ (DQR− 1)2+ (QR− 1)2 Range (−∞,1], with 1 being the opti-
mal value. Considers correlation, bias,
and variability error.

Probabilistic scores

BS Brier score 1
N

∑N
i=1((1−Ff (Qthr))−H′(oi −Qthr))

2 Range [0,1], where lower values indi-
cate better and sharper forecasts. Mea-
sures the accuracy of probabilistic pre-
dictions and the bias in the probability
space.

CRPS Continuous ranked
probability score

1
N

∑N
i=1

∫
∞

−∞
(Ff(fi)−H(oi − fi))

2dfi Range [0,∞]. Quadratic difference be-
tween the cumulative distribution func-
tion (CDF) of an ensemble forecast
and the empirical CDF of the observa-
tion. Lower values indicate better per-
formance.

Generic skill score

ABS Absolute skill score |Scoreoffline−Scoreperfect| − |Scoreonline−
Scoreperfect|

ABS ranges (−∞,1] and RES ranges
(−∞,∞). It compares the current
online system forecast against the
offline reference forecast. Perfect skill:
RES= 1 (ABS= |Scoff−Scperf|).
No skill: RES= 0 (ABS= 0). Skill
degradation:RES < 0 (ABS < 0).

RES Relative skill score 1−
Scoreonline−Scoreperfect
Scoreoffline−Scoreperfect

Note that any deterministic or proba-
bilistic score can be used. ABS/RES is
the magnitude/fraction of the score im-
provement (or degradation for negative
values).

N denotes the total number of forecasts, fi denotes the forecast 3-month ensemble mean for year i, oi denotes the observation 3-month mean for year i, f denotes the

temporal average over forecast ensemble means, o denotes the temporal average of observations, DQR= Sf
So

denotes the forecast-to-observation standard deviation ratio,

QR =
f
o

denotes the forecast-to-observation mean ratio, Qthr is a threshold that represents the occurrence of a hydrological event, the step function H′(oi −Qthr) is zero if
oi ≤Qthr and is 1 otherwise, Ff(fi ) denotes the cumulative distribution function of the ensemble forecast, the Heaviside step function H(oi − fi ) is zero if fi < oi or 1 if
fi ≥ oi , Scoreoffline denotes the score of the Offline_ICL benchmark reference forecast, and Scoreperfect is the score of a perfect forecast.
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over most of the 1067 gauging stations. The result is veri-
fied in Fig. 3i, which reports up to 20 % more stations with
ACC > (0.4− 0.6).

The performance of the river initialization in November
(used for DJF forecasts) is presented in Fig. S3. ICLnud tends
to reduce the mean bias of stations displaying a high posi-
tive bias in the ICL (Fig. S3a–b). The global distribution of
bias in Fig. S3c confirms a reduction in high positive bias,
favouring the concentration of bias values closer to zero than
in the ICL. However, unlike in JJA, in DJF, ICLnud enhances
the number of basins with higher RMSE and lower ACC. In
Sect. 3.3, we show and discuss the impact of the initial hydro-
logic condition (IHC) degradation on the hindcasts in boreal
winter.

3.2 Precipitation and temperature skill

One way to bring out the influence of the land–atmosphere
coupling is to assess the impact of different land IHCs on the
atmospheric forecast. The performance of the atmospheric
seasonal forecast is presented in Figs. 4 and 5, particularly
for two of the most important water cycle drivers: precipita-
tion and near-surface temperature. Precipitation is compared
against the Multi-Source Weighted-Ensemble Precipitation
(MSWEP v2, Beck et al., 2019), and the temperature is com-
pared against the Climatic Research Unit gridded Time Se-
ries (CRU TS v4.05, Harris et al., 2020).

A global view does not reveal marked changes in terms of
ACC for the atmospheric predictions. However, from a conti-
nental to regional scale, differences are noticeable. In boreal
summer (Fig. 4), enhanced initialization ICLnud tends to in-
crease precipitation correlation in the middle region of South
America, including the Paraná River basin and the southern
Amazon basin (red box), with degradation in the northeast
of Brazil, Australia, and some areas of North America and
Asia north of 40 ° N (cyan boxes). Notably, Europe expe-
riences improved precipitation predictions. Temperature pre-
dictions are less sensitive to the land initialization in summer,
but degradation is concentrated in higher latitudes (north of
40° N and south of 20° S). In winter, regions with reduced
performance for both precipitation and temperature predic-
tions are primarily found in North Africa, Europe and Asia
(Fig. 5).

We have found that the ICLnud initialization can have a
detrimental effect on the accuracy of precipitation and tem-
perature seasonal forecasts. This is due to soil moisture nudg-
ing, a technique intended to enhance the variability of soil
water content and to improve the forecast of river stream-
flows. However, it can also lead to adverse effects on the
land–atmosphere coupling simulated by the model. The ini-
tial soil moisture conditions introduced by the offline nudg-
ing technique may shift the coupled system away from its
equilibrium state. When the forecast integration begins, the
nudging constraint is deactivated, and the model is adjusted
to its equilibrium, potentially generating misleading heat and

water fluxes at the land–atmosphere interface. This could ul-
timately disrupt the atmospheric circulation and reduce the
accuracy of the temperature and precipitation forecasts.

We have shown evidence of the impact of land IHC on
the performance of seasonal atmospheric forecasts as proof
of the importance of land–atmosphere feedback. In the fol-
lowing section, we will explore the sensitivity of the SSF to
enhanced IHCs in a fully coupled global forecast system.

3.3 Impact of initialization and coupling on streamflow
forecast skill

The hindcast performance of the ESP benchmark (Of-
fline_ICL) is compared against the hindcasts of the fully
coupled configurations with two different land initializations
(Online_ICL and Online_ICLnud) to determine the contribu-
tions of initialization and land–atmosphere coupling. Unlike
online configurations, where the model forecasts the atmo-
sphere, in Offline_ICL, the atmosphere forcing is based on
climatology without land–atmosphere feedback. More de-
tails on the three configurations can be found in Sect. 2.2.2.

3.3.1 Global view

In boreal summer, the spatial distribution of the anomaly cor-
relation coefficient of the hindcasts compared to the bench-
mark Offline_ICL reveals a limited effect of the coupling On-
line_ICL (Fig. 6a–b). However, a substantial improvement in
the JJA streamflow forecast is achieved with the enhanced
initialization Online_ICLnud (Fig. 6c), also drawn by the cu-
mulative distribution in Fig. 6d.

For winter, in the second column of Fig. 6, the coupled
hindcasts with both land initializations yield a remarkable
increase in stations with intermediate and high correlation.
The cumulative distribution of the ACC, in Fig. 6d, confirms
that the number of stations with an ACC greater than 0.5
(0.7) increases to more than 25 % (7 %). In addition, from
Online_ICL to Online_ICLnud, the ACC is slightly reduced,
especially for basin outlets to the north of 40° N. This sug-
gests that soil moisture nudging in ICLnud tends to reduce
the ability of the system to predict winter streamflow dynam-
ics in basins with strong ice influence. It should be pointed
out that a monthly analysis of the performance at different
lead times, presented in Fig. S5, shows the same conclusions
as the 3-month mean analysis in Fig. 6d–h.

A global view of the impact of bias correction, coupling
and enhanced initialization is presented in Fig. 7. For the
three models set up, the cumulative distributions of ACC and
KGE are computed for the raw and bias-corrected hindcasts
for the boreal summer (JJA) and winter (DJF) seasons. Be-
fore and after bias correction, both online hindcasts outper-
formed the offline configuration. Furthermore, both metrics
confirm that the hindcast skill with the enhanced initial con-
dition ICLnud is improved compared to Online_ICL in sum-
mer but worsened slightly in winter. As expected, the ACC
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Figure 3. Comparison between May streamflow mean of initialization run against the observed streamflow over 1993–2017. Left column:
ICL bias (a), root mean square error (mm d−1) (d) and anomaly correlation (g). Middle column: difference with the ICLnud enhanced
land initialization bias (b), root mean square error (mm d−1) (e) and anomaly correlation (h). Right column: distribution of bias for each
experiment (c), accumulated distributions of the root mean square (f) and anomaly correlation (i).

was weakly modified after bias correction (Fig. 7a against b),
while the number of stations with positive KGE values in-
creased up to 20%, except the Offline_ICL, which was less
sensitive to the bias correction in DJF (Fig. 7c against d).
This means that the biggest contribution of bias correction
comes from the forecasted-to-observed streamflow mean and
standard deviation ratio.

Figure 8 displays the deterministic and probabilistic scores
as a function of the basin area. For all JJA streamflow predic-
tions, the KGE (and its component scores in Fig. 8a) and the
CRPS (continuous ranked probability score) (Fig. 8b) reveal
an improvement with increasing drainage area, while low,
mean and high flow predictions (BS95, BS66 and BS10) re-
port weak basin area dependence. The figure confirms that
Online_ICLnud outperforms Online_ICL for both determin-
istic and probabilistic metrics. Unlike Offline_ICL, the me-
dian scores of coupled systems show weak to null depen-
dence on basin area in winter, while the amplitude of the vari-
ation decreases with the area (Fig. 8c and d). Besides, in win-
ter, the Offline_ICL produces poor-quality forecasts in most
gauge stations, as reported by the low median KGE and ACC

values. However, for basins with a drainage area ≥ 106 km2,
the Offline_ICL is close to Online_ICL and Online_ICLnud.
It should be noted that Online_ICLnud has a negative impact
in winter, reducing the mean forecast performance for the
basin area ranges in terms of variability (ACC in Fig. 6) and
oscillation amplitude ( Sf

So
: forecast-to-observation deviation

ratio in Fig. 8c).
The density, quantity and distribution of the flow gauge

stations vary significantly between continents. As shown in
Fig. 6d, the distribution of the scores in the frequency space
tends to reflect the continent with more gauge stations, such
as North America, in this case. Therefore, in the next sec-
tion, we will assess the forecast performance on a continental
scale.

3.3.2 Continental scale

Figures 9 and 10 present the KGE spatial and frequency
distribution for summer and winter in North America, Eu-
rope, South America and Africa. In summer, on the sea-
sonal timescale, the river discharge tends to be driven by
water released from the basin water storage. Consequently,
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Figure 4. Comparison of Online_ICL and Online_ICLnud atmospheric forecasts for the anomaly correlation coefficient of the JJA 3-month
mean precipitation (a, b) and temperature (c, d). Red (cyan) boxes highlight regions with a noticeable ACC increase (decrease).

Figure 5. Comparison of Online_ICL and Online_ICLnud atmospheric forecasts for the anomaly correlation coefficient of the DJF 3-month
mean precipitation (a, b) and temperature (c, d). Red (cyan) boxes highlight regions with a noticeable ACC increase (decrease).
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Figure 6. Anomaly correlation coefficients (ACCs) of bias-corrected streamflow hindcasts computed against observations in JJA (first col-
umn) and DJF (second column). Offline_ICL benchmark (first row) and the online coupled configurations with conventional initialization
(second row) and improved initialization (third row). Cumulative distribution of the anomaly correlation coefficient of the corresponding
season (last row). Markers with transparency represent stations with a statistically non-significant ACC at the 95 % confidence level.
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Figure 7. Cumulative global distributions of anomaly correlation coefficient (a, b) and Kling–Gupta efficiency score (c, d) of raw (a, c) and
bias-corrected (b, d) forecasts.

the initialization of the soil water content (soil moisture) of
the land component plays a major role in streamflow pre-
diction. This applies to North America and Europe, where
enhanced land initialization has a more positive impact than
atmospheric coupling with conventional initialization. Mean-
while, in winter, streamflow is primarily driven by precip-
itation. This means that rainfall forecasts matter more than
water content and land initialization quality. The cumulative
KGE distribution of Fig. 9 confirms that, independently of
the initialization, the atmospheric forecast coupled with land
yields improved predictions with respect to the Offline_ICL.

The greatest improvement in South American rivers for
both seasons comes from the dynamic atmospheric forecast
incorporated into the coupled systems. Due to the few gauge
stations in Africa, the cumulative distribution does not pro-
vide robust information. As a result, the different levels of
coupling and initialization do not show evidence of the im-
pact on the seasonal prediction of streamflow in the 15–17
gauging stations evaluated in Africa. Besides, most of the
(few) gauges in Africa are in the southern part of the conti-
nent, where JJA is the dry season, while DJF is positioned in
the (monsoonal) wet season. Under this data availability con-
text for Africa, all the model setups provide satisfactory pre-
dictions in the dry season (JJA), while they perform poorly
during the wetter monsoonal summer season (DJF).

Before advancing in the skill analysis, we have identi-
fied basins exhibiting pertinent accuracy for the hindcasts,
whereby at least one of the three hindcast configurations
yields a significant positive anomaly correlation coefficient
(indicated by the lower 95% confidence bound of the ACC
being negative). This screening retains 650 stations in JJA
and 620 in DJF (Fig. S2), presenting a distribution of
drainage areas, as depicted in the initial data (Fig. S1), pre-

dominantly skewed towards values below 2× 105 km2, with
a substantial number of basins exceeding 106 km2 in area.

In addition to the ACCs for the comprehensive dataset
in Fig. 6, Fig. S4 presents the ACC map of the benchmark
alongside the absolute skill score of online configurations af-
ter the exclusion of stations exhibiting negative correlation
hindcasts across all configurations.

The correlation relative skill of online approaches with dif-
ferent initializations compared to the Offline_ICL, defined as
1− (ACConline−1)/(ACCOffline_ICL−1), is presented in the
maps and cumulative distributions of Fig. 11. During sum-
mer, in North America (Fig. 11a–b), the enhanced initializa-
tion provides about 25% additional skill (Fig. 11c). However,
in winter, it degrades the forecast, mainly at latitudes > 60° N
(Fig. 11d–e), by about 9% (Fig. 11f). In South America, the
ACC skill increases in summer by about 15% because of the
initialization, while, in winter, it yields a slight degradation
close to 1%.

To summarize the SYS8 assessment, the relative skill of
online approaches is presented for three deterministic and
four probabilistic scores in Fig. 12. A positive relative skill
score indicates an improvement with respect to Offline_ICL,
where 1 corresponds to the perfect score. For example, in the
North American winter season, the median ACC is 45% (for
Online_ICL) and 38% (for Online_ICLnud) closer to the per-
fect correlation than Offline_ICL. For boreal summer (top
row of Fig. 12), all skill metrics confirm the added value
of enhanced land initialization ICLnud in improving stream-
flow forecasts. However, over South America and Africa,
the probabilistic metrics show more elusive improvement (or
degradation). For boreal winter (bottom row of Fig. 12), fore-
casts show higher performance than the benchmark in gen-
eral but suggest a minor impact of improved land initial con-
ditions. The deterministic scores also reveal that the skill
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Figure 8. Performance of the hindcast 3-month mean streamflow as a function of the basin area for summer (two left columns) and winter
(two right columns). Scores computed in all gauging stations of the global database are visualized in boxplots of deterministic (a, c) and
probabilistic (b, d) scores. Four basin area classes are defined, with 131, 670, 215 and 41 stations for JJA and 123, 656, 210 and 40 stations
for DJF. The colour of the box represents the model configuration: blue denotes Offline_ICL, red denotes Online_ICL, and black denotes
Online_ICLnud. The horizontal dashed black lines delimit the optimal value of the corresponding metric. The continuous line in the box is
the median, while the dashed green line indicates the mean value.

gain for online approaches is sharper for ACC than RMSE
and KGE, which denotes a better ability of coupled forecast
systems to capture the interannual variability of river stream-
flows. In JJA and DJF, the reduction in RMSE, if any, remains
limited for most continents. Additionally, the Brier skill score
for high flows (BS10) is generally lower than BS66 and BS95
for mean and low flows. This result suggests either that the
forecast systems anticipate better seasonal droughts than ex-
cessive cumulated precipitation or that dry initial conditions,
associated with low flows, are more persistent than the wet
counterpart.

3.4 When, where and why the SYS8 is skilful

The enhanced land–river initialization was designed to cap-
ture the spatial and temporal dynamics of soil moisture and

thus improve water storage variation. For this purpose, soil
moisture is nudged to reconstructed fields of a reanalysis
based on a surface model driven by ERA5 atmospheric forc-
ing.

In boreal summer, enhanced land initialization is more
critical than using a fully coupled GCM-derived forecast sys-
tem since only the former approach led to improved fore-
casts. For this season, the highest impact of initialization
on forecast skill occurs in large basins of the driest regions,
where streamflow is strongly sustained by the water storage
naturally released during low flows (i.e. baseflow).

In boreal winter, the new IHC negatively affected basins
at high latitudes, probably due to the potential disruption of
the energy, ice and liquid water budget in the soil induced by
the lack of nudging of soil temperature (e.g. Ardilouze and
Boone, 2024), which could lead to spurious model adjust-
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Figure 9. Comparison of seasonal streamflow hindcasts performance in boreal summer JJA. The maps display the station-wise KGEs for
the seasonal streamflow of the (a) Offline_ICL hindcast and the absolute skill score of (b) Online_ICL and (c) Online_ICLnud experiments.
Column (d) exhibits the three KGE cumulative distributions for the corresponding continent. Markers with transparency represent stations
where KGE is significantly negative, with a confidence of 95 %.

ment through excessive or reduced runoff. Confirming this
would deserve a dedicated evaluation beyond the scope of
this study. In South America, the coupling is beneficial (for
both IHCs) in JJA and DJF, which is consistent and directly
related to the strong ACC of precipitation and temperature

provided by the online systems in most of the basins anal-
ysed in South America (see Figs. 5 and 4). For Africa, no
robust conclusions can be drawn from the results due to the
reduced sample of stations. Still, predictions from all model
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Figure 10. KGEs for the streamflow in boreal winter of the (a) Offline_ICL hindcast and the absolute skill score of (b) Online_ICL and
(c) Online_ICLnud experiments. (d) KGE cumulative distributions for the corresponding continent. Markers with transparency represent
stations where KGE is significantly negative, with a confidence of 95 %.

configurations in DJF were poor, with fewer than 40 % of
stations exhibiting a positive KGE.

4 Conclusions

In this paper, we assess the Météo France global streamflow
seasonal forecast operational system (SYS8) based on the lat-

est version of the CNRM global climate model CNRM-CM6-
1. This model incorporates an advanced river routing model
that interacts with the land surface component via surface
and sub-surface runoff, unconfined aquifer water exchange
and saturated floodplain (re)infiltration and with the atmo-
sphere through free-water evaporation and precipitation in-
terception on floodplains. We thus employ SYS8 to produce
a 25-member ensemble of daily streamflow hindcasts extend-
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Figure 11. Comparison of online hindcasts with respect to the offline benchmark reference in North America (a–c) and South America (d–f).
The relative skill score RES of anomaly correlation is 1− (ACConline− 1)/(ACCoffline− 1). In each panel, the two left columns present the
RES map, and the right column presents its cumulative distribution for summer (first row) and winter (second row). The grey area between
cumulative distribution curves is the percentage of ACC skill added by the new initialization in relation to the conventional one (negative
values indicate skill degradation).
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Figure 12. Distribution of relative skill metrics of Online_ICL (red boxplots) and Online_ICLnud (grey boxplots) with respect to the bench-
mark Offline_ICL for each continent in JJA (top row) and DJF (bottom row). Coloured numbers indicate the mean values.

ing up to 4 months, with burst initialization on 1 May and 1
November, to predict, respectively, the boreal summer and
winter global seasonal streamflow from 1993 to 2017.

The seasonal streamflow anomalies are evaluated against
observations to assess the actual skill with respect to a classi-
cal ensemble streamflow prediction (ESP) offline approach,
used as a benchmark forecast. In addition to assessing the
skill of the coupled forecast system, we compare two differ-
ent land initialization strategies. We found that the seasonal
streamflow forecast (SSF) of SYS8 can be skilful during the
boreal summer and winter seasons.

The main novelty and conclusions of this work can be con-
densed into the key points listed below.

– Our results demonstrate, for the first time, the poten-
tial to utilize direct global streamflow forecasts issued
by a global climate model fully coupled with a river–
floodplain model. The convenient single-step workflow
natural to the coupled approach employed in SYS8
allows simultaneous production of atmospheric and
streamflow forecasts, while the online coupled model
ensures consistency in conservation laws at the initial-
ization and during the forecasting.

– In boreal summer, the water storage initialization has
the largest positive impact on the SSF quality. The im-

provement is sharper in the driest regions and for the
largest basins, where high storage capacity drives the
basin response during low-flow periods typical of sum-
mer.

– In boreal winter, the streamflow variability tends to
be mostly induced by seasonal precipitation anomalies,
thereby reducing the impact of the initialization on the
SSF performance. The atmospheric predictive capacity
of the coupled model, albeit relatively limited over mid-
latitude regions, leads to SSF being more accurate over-
all than the benchmark ESP offline forecast driven by
climatology-based atmospheric forcing.

Current efforts to extend the assessment of the actual skill
of SYS8 to other parts of the globe include augmenting
the observation database with discharge time series from re-
gional and local flow station datasets. In future work, we will
also evaluate the potential predictability of the system us-
ing the perfect model approach. In this framework, the river
streamflow historical time series derived from the initializa-
tion run is used as a verification dataset instead of actual ob-
servations. This approach allows us, first, to remove the influ-
ence on river discharges of human activity that is not parame-
terized in the model (dams, reservoirs, irrigation). Secondly,
the forecast evaluation can be performed at every location
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where the model simulates a streamflow. This allows us to
define a set of virtual stations equally distributed across the
globe and thereby also assess the predictions in regions that
are poorly instrumented.

Our study also provides insights for improving the forth-
coming generation of forecast systems for hydrological pre-
dictions, particularly regarding initialization methods.

In light of our results, we aim to explore other seasons
and to develop a novel and more robust land–river initializa-
tion with more realistic soil moisture conditions. This strat-
egy is currently being tested via the in-house land data as-
similation system LDAS-Monde (Albergel et al., 2020) in
the context of the Horizon Europe project CERISE (https:
//www.cerise-project.eu/, last access: 17 September 2025).
Finally, in the longer term, we expect forecast improvement
from better representation of the influence of human activity
on the terrestrial water cycle. In particular, we will evaluate
the activation of the novel irrigation scheme (Decharme et al.,
2025) within a higher-resolution version of CTRIP (Munier
and Decharme, 2022) in the CNRM-CM GCM of the next
generation for CMIP7, focusing on river streamflow seasonal
predictions.

Code availability. The CNRM-CM6-1 climate model source code
is not freely available, but a detailed description can be found at
https://www.umr-cnrm.fr/cmip6/spip.php?article11 (last access:
18 September 2025). The performance metrics were computed
using the software evalhyd (Hallouin et al., 2024), available
at https://archive.softwareheritage.org/browse/origin/directory/
?origin_url=https://github.com/hydroGR/evalhyd (last access:
18 September 2025).

Data availability. The results of models examined here are avail-
able at https://doi.org/10.5281/zenodo.17160431 (Narváez-Campo
and Ardilouze, 2025). The observed streamflow data sets used for
model evaluation are available via the links in Table 2.
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