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Abstract. Climate change is projected to lead to changes
in rainfall patterns, which, when coupled with increasing
evapotranspiration, have the potential to exacerbate future
droughts. This study investigates the impacts of climate
change on meteorological droughts in Australia using down-
scaled high-resolution CMIP6 climate models under three
Shared Socioeconomic Pathway (SSP) scenarios. The Stan-
dardised Precipitation Index (SPI) and the Standardised Pre-
cipitation Evapotranspiration Index (SPEI) were used to as-
sess changes to the frequency, duration, percent time, and
spatial extent of droughts. There were consistent increases in
droughts projected for southwest Western Australia, south-
ern Victoria, southern South Australia, and western Tasma-
nia using SPI and SPEI. There were significantly larger in-
creases for SPEI-derived droughts, with consistent increases
projected for most of the country. Increases in drought ap-
pear to have mostly come at the expense of “normal” cli-
matic conditions, with similar or increased time spent under
extreme wet conditions, indicating an overall shift towards
more extreme climatic conditions. The largest increases oc-
curred at the end of the century and under the high-emissions
scenario (SSP370), demonstrating the influence of emissions
on extreme droughts. For instance, if emissions reached high
levels by the end of the century, the area subject to ex-
treme drought in drought-prone Southern Australia would
be 2.8 times greater than if they were kept to low levels
using SPI and 4 times greater if assessed using SPEIL. The
insights generated from these results and supplementary tai-
lored datasets for Australian local government areas and river
basins are essential to better inform decision-making and

future adaptation strategies at national, regional, and local
scales.

1 Introduction

Droughts are among the costliest climate hazards in the
world, with significant ramifications for agriculture, society,
and the environment (Cook et al., 2018). Between 1998 and
2017, droughts were estimated to have cost USD 2.3 trillion,
affecting 1.5 billion people globally (United Nations, 2018).
Notable recent major drought events have occurred in Cal-
ifornia (He et al., 2017), the Mediterranean (Kelley et al.,
2015), and Australia (Van Dijk et al., 2013). The recent Aus-
tralian millennium drought, which lasted from 2001 to 2009
(Van Dijk et al., 2013), was estimated to have cost as much
as 1.6 % of the nation’s gross domestic product (Horridge
et al., 2005). Compared to other countries of similar popu-
lation, Australia is disproportionately impacted by drought;
it is ranked 5th for economic impacts of droughts and 15th
for the number of people affected between 1990 and 2014
(Gonzélez Téanago et al., 2016). A number of studies have
highlighted the importance of droughts in Australia, with
consequences for a range of other factors including bushfires
(Devanand et al., 2024), agriculture (Xiang et al., 2023), wa-
ter supply (Maier et al., 2013), dust storms (Leys et al., 2023),
and public health (Johnston et al., 2011).

In comparison to other natural hazards, determining the
onset and severity of a drought event is complex since they
are characterised by a gradual build-up, where the largest
impacts typically only emerge after many months or years
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(Kiem et al., 2016). The definition of drought varies accord-
ing to its application but can generally be split into meteoro-
logical, hydrological, and agricultural droughts (Zargar et al.,
2011). Meteorological droughts relate to prolonged deficits
in rainfall but may be exacerbated through high temperatures
and evaporation, hydrological droughts describe impacts on
streamflow and other water systems (e.g. reservoirs or lakes)
(Van Dijk et al., 2013), and agricultural drought primarily
focuses on soil moisture content (Zargar et al., 2011).

Droughts are usually monitored and assessed through in-
dicators and indices (Svoboda and Fuchs, 2016). Two of the
most commonly applied indices for meteorological droughts
are the Standardised Precipitation Index (SPI; McKee et al.,
1993) and the Standardised Precipitation Evapotranspiration
Index (SPEI; Vicente-Serrano et al., 2010). SPI is a rainfall-
based index derived from accumulated monthly rainfall val-
ues and can be used to describe droughts at a range of
timescales and across different locations. When assessed at
shorter timescales ( ~ 3 months), SPI has been shown to be
closely related to soil moisture and agricultural droughts,
while at longer timescales SPI (> 12 months), it is more
closely related to hydrological droughts (e.g. reservoirs and
streams) (Zargar et al., 2011). SPEI is an extension of SPI,
calculated as the difference between precipitation and poten-
tial evapotranspiration (P —PET), and as such it better re-
flects changes to the overall water deficit by considering the
impacts of both the atmospheric supply and evaporative de-
mand on the water budget. SPEI has also been shown to be
more closely related to agricultural impacts than SPI (Labu-
dova et al., 2017; Xiang et al., 2023). The main advantage of
the SPI and SPEI over other drought indices is that they pro-
vide multi-scalar results that are directly comparable across
different regions and climate zones (e.g. arid vs. humid re-
gions).

Under climate change, there is potential for more frequent
and severe drought events as a result of temperature increases
and changed precipitation patterns, particularly in already
drought-prone regions (Huang et al., 2016; Zhao and Dai,
2015). Several studies have evaluated the impacts of climate
change on droughts using global climate models (GCMs),
which have pointed towards increased drought risk over the
21st century for many regions, including Australia (Cook et
al., 2018, 2020; IPCC, 2021; Spinoni et al., 2020). Increased
meteorological droughts have been projected for much of
Australia (Ukkola et al., 2020; Vicente-Serrano et al., 2022)
despite the uncertainties in precipitation (Trancoso et al.,
2024). These studies are, however, based on GCMs with
coarse resolutions (~ 200 km), which have difficulty repre-
senting precipitation patterns over complex terrain (Reder et
al., 2020) and, as such, are not always suitable for provid-
ing reliable information to support adaptation and mitigation
policy as well as decision-making at regional scales. Addi-
tionally, some studies have been reliant on a limited num-
ber of climate models that can have large inter-model and
metric-dependent discrepancies, leading to uncertain results
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(Ukkola et al., 2018). There is therefore a need to consider
multiple climate simulations as well as high-resolution mod-
els to account for inter-model uncertainties while simulating
regional climate granularity.

In order to better represent small-scale features and pro-
cesses, regional climate models (RCMs) have been employed
for drought projection studies across different regions (Gao
et al., 2017; Secci et al., 2021; Spinoni et al., 2018), includ-
ing for regions within Australia (Herold et al., 2021; Syktus
et al., 2020). RCMs have been shown to have improved skill
in representing patterns of local precipitation and the impacts
of topography, coasts, and land-use changes compared to
GCMs (Boé and Terray, 2014; Chapman et al., 2023; Grose
et al., 2019; Tian et al., 2013) and may therefore be better
suited to studying droughts at regional scales. These models
(GCMs and RCMs) are the best physically based approaches
currently available to understand future drought processes,
characteristics, and impacts.

Several studies have considered the impacts of climate
change on droughts across Australia (Kirono et al., 2011,
2020; Kirono and Kent, 2011; Mpelasoka et al., 2008) or
within a sub-section of the continent (Feng et al., 2019;
Herold et al., 2021; Shi et al., 2020). Mpelasoka et al. (2008)
estimated that soil-moisture-based drought frequency would
increase by 20 %—40 % over most of Australia by the 2030s
compared to 1975-2004. Similar increases in drought ex-
tent were projected for most regions by Kirono et al. (2011)
and Kirono and Kent (2011). More recently, Kirono et al.
(2020) applied SPI and the Standardised Soil Moisture Index
(SSMI) to calculate projected future droughts using an en-
semble of 37 raw Coupled Model Intercomparison Project
Phase 5 (CMIPS5) GCMs. They projected significant in-
creases in drought hazard metrics, except for frequency, with
greater increases for the SSMI compared to SPI. Herold et
al. (2021) used SPI derived from 3 months of accumulated
rainfall to investigate changes to 1-in-20-year drought events
across southeast Australia with an ensemble of four RCMs.
They projected these events would occur approximately ev-
ery 1 in 5 years by the end of the century for large parts of
southeast Australia. These studies have, however, relied on
projections derived from CMIPS or earlier.

This study expands on the available body of knowledge
for future meteorological droughts in Australia, employing
an ensemble of 60 high-resolution dynamically downscaled
CMIP6 simulations (15 historical and 45 future simulations).
The downscaling was performed using the Conformal Cubic
Atmospheric Model (CCAM) and followed the CORDEX
experimental protocol. These projections form part of the
Queensland Future Climate Science Program (QFCSP) and
are available at a 10 km resolution over the Australian conti-
nent as the QIdFCP-2 dataset (Queensland Future Climate
Projections 2). The QIdFCP-2 simulations were shown to
lead to improvements in mean climate over the historical pe-
riod; however, the largest improvements were noted for cli-
mate extremes, particularly over coastal and mountainous re-
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gions (Chapman et al., 2023). These projections form part
of a national strategy for climate projections, contributing to
a wider set of downscaled CORDEX-compliant projections
for Australia as part of the National Partnership for Climate
Projections (Grose et al., 2023), which will underpin climate
services and adaptation planning nationally. The objectives
of this contribution are as follows:

(1) to assess changes in future projected meteorological
droughts, including the frequency of occurrence, dura-
tion, spatial extent, and percent time in drought esti-
mated using SPI and SPEI;

(ii) to compare changes in droughts between three different
emissions pathways, two categories of drought severity,
and two drought indices;

(iii) to evaluate how different climatic regions of the Aus-
tralian continent are projected to experience future
droughts under three different emissions pathways and
estimate the time of emergence for significant shifts to
occur.

2 Methodology
2.1 Study area

This study evaluated changes to drought indices for the entire
Australian continent, which encompasses a range of climate
regions, including equatorial, tropical, sub-tropical, temper-
ate, Mediterranean, and arid regions. We assess drought
changes in four natural resource management (NRM) super-
clusters for Australia, namely Eastern Australia, Northern
Australia, the Rangelands, and Southern Australia, which are
grouped based on a combination of climate and biophysical
factors (CSIRO and Bureau of Meteorology, 2015) and have
been widely adopted within Australia (Chapman et al., 2024;
Grose et al., 2020; Kirono et al., 2020; Wasko et al., 2023)
for assessing the impacts of climate change (Fig. 1). Details
of the dominant climate zones and ecological characteristics
within each of these super-clusters are presented in Table S1
in the Supplement.

2.2 Data

We used the CCAM model developed by CSIRO (McGre-
gor and Dix, 2008) to dynamically downscale CMIP6 GCMs.
Typically, dynamical downscaling involves running an RCM
over a limited domain, with the host GCM forcing the lat-
eral boundaries. CCAM differs as it is a global stretched grid
model and so is run for the entire globe, with the domain
of interest run at a higher resolution. Here, instead of pro-
viding lateral boundaries, the regional atmosphere in CCAM
is influenced by large-scale climate simulated from the host
GCM, while at a small scale the atmosphere is allowed to
evolve freely (Thatcher and McGregor, 2009). CCAM was
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run using a stretched C288 grid in both atmospheric and
ocean-coupled versions, which consists of a model resolution
of approximately 10 km. In total, 35 vertical layers in the at-
mosphere and 30 layers in the ocean for the ocean-coupled
models were applied (Thatcher et al., 2015). A downscaling
approach outlined by Hoffmann et al. (2016) was used, which
involved bias-correcting the sea surface temperatures and sea
ice from the host GCMs prior to downscaling. This approach
has been found to improve the simulations of climate from
CCAM and other regional climate models (Hoffmann et al.,
2016; Kim et al., 2020; Lim et al., 2019).

We used an ensemble of 60 downscaled climate model
simulations derived from 11 different CMIP6 GCMs (Ta-
ble 1). The ensemble consists of 15 runs for historical
simulations and three sets of 15 runs for future simula-
tions under three Shared Socioeconomic Pathways (SSP126,
SSP245, and SSP370), representing low-, moderate-, and
high-emissions pathways, respectively. The ensemble of
GCMs used in this study was selected in order to best rep-
resent the future spread in the climate change signal from the
ensemble of global CMIP6 models while prioritising mod-
els which were better able to represent the Australian cli-
mate (Trancoso et al., 2023). For instance, we selected not
only several GCMs spread across the distribution of pro-
jected temperature and precipitation changes, but also out-
lier models representing the driest (ACCESS-ESM1.5) and
wettest (EC-Earth3) GCMs (Chapman et al., 2023). All the
GCMs were assessed based on their ability to represent Aus-
tralia’s precipitation and temperature compared to Australian
Gridded Climate Data Project (AGCD; Evans et al., 2020)
observational data between 1995 and 2014 using the Kling—
Gupta efficiency (KGE). The climate change signal at the
middle and end of the century was evaluated and combined
with the KGE score from the historical simulations to se-
lect the best-performing ensemble runs from the different
GCMs through a skill-spread—selection algorithm (Trancoso
et al., 2023). Five of the CCAM simulations were run us-
ing dynamic atmosphere—ocean coupling as presented in Ta-
ble 1 in order to better understand the influence of ocean
coupling on model outputs. Additionally, three variants in-
cluding the best-performing, the wettest, and the driest en-
semble member from the large ensemble (40 members) of
ACCESS-ESM1.5 simulations were considered to facilitate
assessments of intra-model variability. This represents the
largest downscaled ensemble of projections in Australia ran
at the highest resolution.

The downscaling approach adopted has been shown to sig-
nificantly improve the performance across the host GCMs
for precipitation and temperature in all seasons when com-
pared to gridded AGCD observational data, with the largest
improvements noted for climate extremes, even when as-
sessed across the four Australian IPCC regions (Chapman
et al., 2023), which are similar to the NRM super-clusters
adopted in this study. Across Australia as a whole, seasonal
precipitation was shown to improve in all models, with an en-
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Figure 1. Extent of study area and sub-regions adopted in this study showing NRM super-clusters (CSIRO and Bureau of Meteorology,
2015) for the whole of Australia with major climate regions also shown.

Table 1. Details of the 15 climate model simulations downscaled from the 11 CMIP6 GCMs considered in this study.

CMIP6 Model Model full name Resolution  Ensemble member CCAM setup

ACCESS-ESM1.5 Australian Community Climate and Earth System 1.875° x 1.25°  r6ilplfl atmospheric
Simulator, version 1.5 r20ilp1fl atm—ocean coupled

r40ilp1fl atm—ocean coupled

ACCESS_CM2 Australian Community Climate and Earth System 1.875° x 1.25°  r2ilplfl atm—ocean coupled
Simulator, version 2

CMCC-ESM2 Centro Euro-Mediterraneo sui Cambiamenti 0.9° x 1.25°  rlilplfl atmospheric
Climatici

CNRM-CM6-1-HR  Centre National de Recherches Météorologiques 0.5°x0.5° rlilplf2 atmospheric
Coupled Global Climate Model, version 6.1, high rlilplf2 atm—ocean coupled
resolution

EC-Earth3 European Community Earth-System Model, 0.8°x0.8° rlilplfl atmospheric
version 3

FGOALS-g3 Flexible Global Ocean-Atmosphere-Land System 2.5°x2.5° rdilplfl atmospheric
Model, grid point version 3

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory Earth 1°x1°  rlilplfl atmospheric
System Model, version 4

GISS-E2-2-G Goddard Institute for Space Studies Model E2.2G 2.°x2.5° r2ilplf2 atmospheric

MPI-ESM1-2-LR Max Planck Institute Earth System Model, 1.9°x 1.9°  19ilplfl atmospheric
version 1.2, low resolution

MRI-ESM2-0 Meteorological Research Institute Earth System 1.125° x 1.125°  rlilplfl atmospheric
Model, version 2.0

NorESM2-MM Norwegian Earth System Model, version 2, 1°x1° rlilplfl atmospheric
1° resolution rlilplfl atm—ocean coupled
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semble average improvement of 43 % using the Kling—Gupta
efficiency, while the annual cycle of precipitation improved
in most models with an ensemble average improvement of
13 % (Chapman et al., 2023). Downscaling also improved
the fraction of dry days, reducing the bias for too many low-
rain days. These improvements have clear beneficial effects
for the simulation of future droughts. In the future, the cli-
mate change signal of the host GCMs from downscaling was
shown to generally be preserved for precipitation, though
with some differences in magnitudes in some regions, partic-
ularly in summer. For temperature changes, the downscaled
models were shown to have good agreement with the host
models across Australia (Chapman et al., 2024).

We used observational data to evaluate the SPI and SPEI
indices during the historical period (1980-2010). Daily grid-
ded precipitation data with a spatial resolution of 0.05° (ap-
proximately 5km) were obtained from the AGCD, while
daily gridded (resolution of 0.05°) PET data derived from
the Penman—Monteith reference crop equation were obtained
from the Australian Water Outlook. All observational data
were re-gridded to the same grid resolution as the down-
scaled climate projections using distance weighting interpo-
lation for precipitation and bilinear interpolation for PET.

2.3 Drought indices

We used the SPI and SPEI indices to assess changes to fu-
ture meteorological droughts based on downscaled climate
simulations. SPI reflects changes to precipitation only, while
SPEI is calculated from the difference between precipitation
and PET and therefore reflects changes to the overall wa-
ter deficit by considering the impacts of increased tempera-
tures and evaporative demand in addition to atmospheric wa-
ter supply. To calculate SPEI, we apply PET derived from
the Penman—Monteith reference crop method (Allen et al.,
1998), which is a physically based approach. This was cal-
culated offline using daily CCAM outputs of solar radiation,
vapour pressure, maximum and minimum temperature, mean
sea level pressure, and wind speed. This method for deriving
PET is more intensive than simpler temperature-based ap-
proaches but is recommended where data are available (Be-
gueria et al., 2014; Hosseinzadehtalaei et al., 2017; Sheffield
et al., 2012).

PET and precipitation data were aggregated to monthly to-
tals for all grid cells and used to calculate SPI and SPEI with
the SPEI R package (Begueria et al., 2017). For SPI, we fit-
ted precipitation data to the gamma distribution, while for
SPEI we fitted the difference between precipitation and PET
to the log-logistic distribution as recommended by Vicente-
Serrano et al. (2010). Normality tests were performed using
the Shapiro—Wilk test at the 95 % confidence level on the de-
rived SPI and SPEI to ensure the grid cells conformed to nor-
mality. Most grid cells (over 85 %) conformed to normality
for all months (Fig. S1 in the Supplement). As the outputs
follow a normal distribution, different categories of drought
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Table 2. SPI and SPEI drought classification table following McKee
et al. (1993) with associated probability of event from the chosen
historical period.

SPI or SPEI values Categories Probability of event
SPI or SPEI < -2 Extreme drought 2.3 %
—2.0 <SPlor SPEI < —1.5 Severe drought 4.4 %
—1.5 <SPl or SPEI < —1.0 Moderate drought 9.2 %
—1.0 <SPl or SPEI < 1.0 Near normal 68.2 %
1.0 <SPlorSPEI < 1.5 Moderate wet 9.2%
1.5 <SPIor SPEI < 2.0 Severe wet 4.4 %
SPI or SPEI > 2.0 Extreme wet 23%

and also wetness may be classified according to the calcu-
lated SPI or SPEI Z value. Table 2 shows the adopted classi-
fication scheme used for both SPI and SPEI as suggested by
McKee et al. (1993).

A variety of different accumulation periods may be ap-
plied when calculating the SPI or SPEI, ranging from 1 to
48 months. Smaller accumulation periods (1-3 months) can
be used to assess impacts on systems that are quick to re-
spond to droughts (e.g. soil moisture and small creek flows),
while longer accumulation periods (12—48 months) better re-
flect the impacts on systems that respond more slowly to
water deficits, such as groundwater and reservoir levels. We
adopted a 12-month accumulation period for our assessments
of SPI and SPEI as this was considered a suitable timeframe
for water deficits to impact various hydrological and agricul-
tural systems (Zargar et al., 2011).

When assessing droughts using historical data, the full pe-
riod of historical data available is generally used to fit the dis-
tribution, with the World Meteorological Organization rec-
ommending a minimum of 30 years (Svoboda et al., 2012).
However, when assessing changes to these indices as a result
of climate change, a historical period is commonly adopted
to fit the distribution. The fitted distribution parameter values
are then applied to estimate the SPI and SPEI for the future
period, allowing for a comparison of projected future dryness
and wetness compared to the recent past. For our assessment,
we have adopted a historical period from 1981-2010 to fit
the gamma and log-logistic distributions for SPI and SPEI,
respectively. Fitted distribution values were then used to cal-
culate SPI and SPEI over the full time series, containing both
historical and future simulations (1981-2100).

The SPI and SPEI time-series results are calculated at the
grid-cell scale for the observational data and for the ensemble
of downscaled climate simulations and are used to detect the
occurrence of droughts. For the sake of validation, projected
droughts from historical simulations were compared against
those estimated from observational data. A drought event is
defined when the SPI or SPEI falls below a value of —1 and
finishes once the value exceeds —1 again. The definitions for
the categories of drought severity are presented in Table 2.
In this study, we focus on the changes to all droughts (mod-
erate, severe, and extreme) and to extreme droughts. Metrics
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relating to the frequency, duration, spatial extent, and percent
time in drought were calculated for each of the drought cat-
egories. Here, the frequency is defined as the total number
of events recorded over a given time period, the duration is
the average duration of recorded drought events (in months),
the percent time in drought is the fraction of time droughts
occur, and the spatial extent is the number of grid cells af-
fected by each drought severity category divided by the total
number of grid cells within a given region for each time step.
We evaluated the biases in the drought metrics from each of
the climate models considered compared to the observational
data over the period used to fit the distributions (1981-2010).

2.4 Climate change assessment

We assessed the impacts of climate change on droughts for
the 2050s (2041-2060) and the 2090s (2081-2100) relative
to the 1995-2014 reference period, which is in line with
the IPCC assessment. The historical simulations were used
to benchmark the reference period, while future simulations
were used to quantify the climate change impacts. Results
from each of the 45 future simulations were evaluated indi-
vidually and in a weighted model ensemble, which adopted a
one-model—one-vote rule. This weights the models according
to the number of downscaled simulations per host model (i.e.
the three ACCESS-ESM1-5 models were averaged to a sin-
gle model, while the two NorESM2-MM and CNRM-CM6-
1-HR were also averaged), resulting in an 11-model aver-
age. To determine where there is confidence in the changes to
the drought metrics, we adopt the signal-to-noise ratio to see
where the climate change signal emerges over the “noise” of
the model ensemble (Hawkins et al., 2014). Here, the model
uncertainty is considered noise using the standard deviation
of the projections (Hawkins and Sutton, 2011). We calculate
the signal from the 11-model average, while the noise is de-
rived from the standard deviation of all 15 projections (Chap-
man et al., 2024). Stippling is shown on the ensemble mean
and median change maps where the signal-to-noise ratio is
greater than 1.0 (Chapman et al., 2024; Hawkins et al., 2014;
Hawkins and Sutton, 2011).

Results in this paper are also assessed across the four
NRM super-cluster regions (Fig. 1). Additional supplemen-
tary datasets tailoring projected drought impacts to Aus-
tralian local government areas (566 sub-regions included)
and river basins (219 sub-regions included) are also made
available (Eccles, 2024) thanks to the high-resolution pro-
jections used in this study. We evaluated time-series results
for the individual models and the ensemble average. For this
purpose, a 20-year moving average was applied to determine
long-term changes to SPI and SPEI values and to remove
year-to-year variability. Outputs of both SPI and SPEI fol-
low a normal distribution, with defined probabilities of oc-
currence for the different drought categories in the histori-
cal period (Table 2). We therefore assessed when significant
changes to the long-term average values occurred based on a
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10 % and 20 % shift towards dryness compared to the histori-
cal period. A 10 % shift towards dryness corresponded to the
40th percentile of SPI and SPEI results from the historical pe-
riod, while a 20 % shift corresponded to the 30th percentile.
The goal of this analysis was to determine the time of emer-
gence for significant shifts in the long-term climate to take
place and to compare the results across regions and emis-
sions scenarios. We also evaluated changes to the probabil-
ity density function (PDF) of the SPI and SPEI to determine
changes to the distribution of the different drought events.
This was further applied to assess the changes to the percent-
age of area under drought for the four NRM super-clusters
assessed.

3 Results
3.1 Validation of projected droughts

We compared differences between CCAM-derived metrics of
droughts and those derived from observational products for
the historical period (1981-2010) to quantify the biases of
the historical simulations. The metrics derived from histori-
cal simulations for individual model runs tended to overesti-
mate SPI-based metrics and underestimate SPEI-based met-
rics when compared against observational data (Fig. 2). The
variability in biases across individual model runs was ex-
pected as heterogeneous runs from host GCM models were
selected to estimate future model uncertainty. However, bi-
ases to the ensemble average were substantially reduced, de-
noting a good match to the observational data, particularly
for SPEI.

3.2 Climate change assessment
3.2.1 Changes to SPI and SPEI

The 20-year moving average SPI and SPEI time-series re-
sults under SSP370 are presented in Fig. 3. Decreases in
SPEI were observed for all the models across all regions, in-
dicating substantial agreement on future drying using SPEI.
The largest decreases were observed by the end of the cen-
tury. By contrast, the results for SPI were more heteroge-
neous, with many models predicting increases and decreases,
as evident by the spread of models in the direction of the
trend (Fig. 3), though the ensemble averages tended towards
a slight increase in wetness for the Rangelands and an in-
crease in dryness for Southern Australia. These same patterns
of change can be noted in the raw time-series results of the
ensemble averages presented in the supplementary materials
for each emissions scenario (Figs. S3—S5 in the Supplement).
Interannual variability from the different projections in each
of the regions is presented in Figs. S25-S48 in the Supple-
ment.

The times taken for the ensemble average to reach a 10 %
and 20 % shift of the probability towards drier conditions (ac-
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Figure 2. Comparison of the differences in calculated metrics of drought and extreme droughts between climate model simulations and
observations for the historical period over all of Australia (1981-2010). Drought metrics from observation data are presented as solid black

lines, while points show metrics from climate model simulations.

cording to the Z score) are shown by vertical dash-dotted
lines. These thresholds were not reached for SPI using the
ensemble average (though they are for some individual mod-
els), and hence no vertical dashed lines are shown. For SPEI
a 10 % shift towards drier conditions was reached by 2040 for
the Rangelands and Southern Australia, and a 20 % shift was
reached by 2060. These shifts of 10 % and 20 % were delayed
in Northern Australia and Eastern Australia to approximately
2060 and 2090, respectively. Results for SSP126 and SSP245
are available in the Supplement (Figs. S6 and S7).

More wetting was evident under the high-emissions sce-
nario for the Rangelands compared to the low- or moderate-
emissions scenarios when considering only precipitation us-
ing SPI, but more drying was evident when the additional
impacts of increased PET were considered through SPEI
(Fig. 4). For SPEI, all emissions scenarios consistently pre-
dict a 10 % shift in the moving average value by approxi-
mately 2040 and a 20 % shift by approximately 2060. Only
at the end of the century were there significant differences
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in SPEI between the different emissions scenarios, with
the greatest decreases noted under SSP370. Similar patterns
were also observed for the other NRM super-clusters as-
sessed (Figs. S8-S10 in the Supplement).

There was a notable shift towards more pronounced
drought conditions in the 2050s and 2090s compared to the
reference period (1995-2014) when assessing the probabil-
ity density function (PDF) of both SPI (Fig. 5) and SPEI
(Fig. 6). Relatively minor changes to the PDF were noted for
SPIin Eastern Australia and Northern Australia, though there
was a tendency towards lower SPI values (increased dryness)
by the 2050s and 2090s compared to the reference period
(1995-2014). Decreases were more pronounced for South-
ern Australia, while the changes to the Rangelands appeared
minimal. In all regions, the largest changes were noted for
the negative tails of the SPI distribution (< —1), indicating
an increased likelihood of more pronounced periods of mod-
erate to extreme droughts. Interestingly, in most regions, this
appears to have come at the cost of the near-normal and mod-
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Figure 3. Time-series results for SPI and SPEI calculated as a 20-year moving average for each climate model considered with the ensemble
average shown in red for each of the regions under the SSP370 scenario. Vertical dash-dotted lines show the time taken for the ensemble

average value to shift by 10 % and 20 % (according to the Z score).

erate wet categories (—1 to 1.5) but does not look to have
changed the positive tail of the distribution (> 1.5) to the
same extent. A quantification of the change to the probabil-
ity of occurrence for the different categories of events un-
der SSP370 confirms that the increase in extreme and severe
droughts primarily led to decreased near-normal and mod-
erately wet conditions (Table 3). The probability of extreme
wetness is shown to have also increased in all regions using
SPI. This suggests an overall shift towards more periods of
drought while maintaining similar levels or increased periods
of pronounced wetness (Fig. 5). There was an overall shift
away from typical climate conditions towards more periods
of both extreme drought and wetness (Table 3).

When the additional impacts of increased evaporation
were considered using SPEI, there were notable shifts to-
wards drier conditions in all regions, especially by the end of

Hydrol. Earth Syst. Sci., 29, 4689-4710, 2025

the century (Fig. 6). This was particularly true for the Range-
lands and Southern Australia (Table 3), which are subject to
low rainfall and are therefore more strongly influenced by
relative increases in PET. The shifts towards lower SPEI val-
ues and drier conditions were seen across the full distribu-
tion of data, including the tails, suggesting a future decrease
in periods of wetness which was not reflected in the SPI re-
sults. Though only minor changes were projected for extreme
wetness under SSP370 (Table 3), changes are shown to be
considerably smaller under the moderate- and low-emissions
scenarios (Tables S2 and S3 in the Supplement).

3.2.2 Changes to drought extent

A notable increase in the area affected by droughts was pro-
jected for all regions under SSP370 considering SPEI, with

https://doi.org/10.5194/hess-29-4689-2025
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Figure 4. Time-series results for SPI and SPEI calculated as a 20-year moving average for each climate model considered with the ensemble
average shown in red for each of the emissions scenarios for the Rangelands. Vertical dash-dotted lines show the time taken for the ensemble
average value to shift by 10 % and 20 % (according to the Z score).

Table 3. Projected absolute percent change to the percent of time spent in different drought and wetness categories by the 2050s and 2090s
compared to the reference period (1995-2014) using the ensemble average under SSP370.

Index Category Eastern Australia ‘ Northern Australia ‘ Rangelands ‘ Southern Australia
2050s  2090s | 2050s 2090s | 2050s  2090s | 2050s  2090s

SPI Extreme drought 0.75 1.41 1.37 1.52 0.68 —0.26 293 5.74
Severe drought 0.48 1.49 1.22 1.35 0.46 —0.78 2.07 2.98
Moderate drought 0.08 1.22 0.59 1.71 —0.15 —1.82 1.42 1.84

Near normal 0.01 —3.84 | —4.36 —3.38 -3.76 —-2.39 =733 —11.37
Moderate wetness  —1.13 —1.1 | —-0.61 —1.63 —0.13 1 —0.88 —1.46

Severe wetness —0.49 —0.08 0.35 —0.46 0.7 1.41 —-0.02 0.1
Extreme wetness 0.3 0.9 1.43 0.89 2.2 2.84 1.81 2.17

SPEI  Extreme drought 3.7 9.88 4.29 8.23 8.71 20.99 8.88 24.78
Severe drought 3.05 7.81 4.06 8.8 6.4 10.73 6.6 9.67
Moderate drought 2.66 5.29 1.91 6.26 2.9 3.57 3.66 2.55

Near normal —4.08 —-14.6 | =7.39 —14.71 | —1297 -26.23 | —13.71 2798
Moderate wetness  —3.13 =513 | —=2.43 —5.55 —3.88 —6.68 —4.02 —6.52

Severe wetness —2.23 —3.27 —1.1 —2.96 —-1.99 —-3.49 —-2.29 =3.75
Extreme wetness —0.13 —0.43 0.56 —-0.32 0.55 —-0.43 0.56 —0.36
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Figure 5. Probability density function plot of SPI values from the full ensemble of climate models for the reference period (1995-2014),
2050s (2041-2060), and 2090s (2081-2100). Results are shown for the three SSPs in the four NRM super-clusters considered. Dashed lines

show mean values.

the largest increases noted by the end of the century and for
Southern Australia and the Rangelands (Fig. 7). This same
increase in drought extent, however, was not seen for SPI
except in Southern Australia, where there was a trend to-
wards more extreme droughts, though the magnitude of the
change was significantly smaller than that seen for SPEI. In-
terestingly, the largest increases in drought extent occurred
for extreme and severe events, while the extent of moder-
ate droughts, which are a more common occurrence under
present conditions, did not increase significantly for either
SPI or SPEL These results suggest that the largest increases
in droughts will occur for extreme events, rather than moder-

Hydrol. Earth Syst. Sci., 29, 4689-4710, 2025

ate events (Fig. 7 and Table 3). This is especially true when
the impacts of increased PET are considered using SPEI. The
results for SSP245 and SSP126 show more modest increases
in drought extents for all the NRM super-clusters (Figs. S8
and S9), especially for the area in extreme drought, though
the pattern of change remains the same.

PDFs of the area affected by extreme droughts are pre-
sented for SPI (Fig. 8) and SPEI (Fig. 9). For SPI, an in-
crease in the area affected by extreme droughts can be seen in
all regions and emissions scenarios, except for in the Range-
lands under SSP370, where a minor decrease was projected
by the end of the century (Fig. 8). These increases are typ-

https://doi.org/10.5194/hess-29-4689-2025
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Figure 6. Probability density function plot of SPEI values from the full ensemble of climate models for the reference period (1995-2014),
2050s (2041-2060), and 2090s (2081-2100). Results are shown for the three SSPs in the four NRM super-clusters considered. Dashed lines
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ically on the order of 1% to 2 % of the area, representing a
near doubling of the total area affected by extreme droughts.
The increase was especially significant in Southern Australia,
where the average extent of extreme drought increases from
1.9 % in the reference period to between 4.3 % and 5.0 %
by the 2050s and 4.0 % and 7.8 % by the 2090s, depending
on the emissions scenario adopted. Under the high-emissions
scenario, this represented a 4-fold increase in the area under
extreme droughts. The magnitude of the changes were even
more pronounced for SPEI, changing from 1.6 % in the ref-
erence period to between 8.8 % and 10.6 % by the 2050s and

https://doi.org/10.5194/hess-29-4689-2025

8.1 % and 27.9 % by the 2090s, depending on the emissions
scenario adopted (Fig. 9).

3.2.3 Changes to drought occurrence

For the percent time in drought, frequency, and duration of
extreme droughts, there were few regions where the signal-
to-noise ratio was greater than 1 for SPI (Fig. 10). Significant
increases can be noted in southwest Western Australia, south-
ern Victoria, southern South Australia, and western Tasmania
under the high-emissions scenario (SSP370), which are seen
to reflect the spatial changes in mean precipitation (Fig. S2

Hydrol. Earth Syst. Sci., 29, 4689-4710, 2025
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Figure 7. Time series of the ensemble average percent of area in drought in the four NRM super-clusters for SPI and SPEI under SSP370.

in the Supplement). In southwest Western Australia, SPI-
related extreme droughts were projected to both occur more
frequently and last longer, leading to considerable increases
in the percent time in drought. By contrast, the increases in
the percent time in drought in southern Victoria, southern
South Australia, and western Tasmania appears to be prin-
cipally the result of increased drought frequency, with less
clear changes noted for drought duration. In addition to these
regions, there were also significant increases in the percent
time in moderate to extreme drought for the Gulf of Carpen-
taria and northeastern Queensland for SSP370 by the 2090s
(Fig. S15 in the Supplement), which were not evident in the
extreme droughts. For the remainder of the country, the re-
sults of SPI tended to be more uncertain. Interestingly, there
were no regions of Australia where there was a significant
reduction in the time spent in extreme drought.

For SPEI, there was wide model agreement for more fre-
quent and longer drought events for the majority of the con-
tinent, particularly under SSP370 and for the end of the cen-
tury (Fig. 10). This was especially true for the percent time
in drought, which is the result of both increasing drought fre-
quency and duration. For parts of Northern Australia and
Eastern Australia, there was generally less model agree-
ment from the signal-to-noise ratio (as shown by the hatch-
ing), and the magnitude of the changes was typically smaller
when compared to southern regions and the interior of the
continent. There was a large range between the 10th- and

Hydrol. Earth Syst. Sci., 29, 4689-4710, 2025

90th-percentile ensemble projections for both SPI and SPEI
(Figs. S16-S21 in the Supplement), highlighting the uncer-
tainty in these projections.

Considerable inter-model variability was evident in the
projections, as shown by boxplots from the model ensemble
(Fig. 11), especially for SPEI. The variability was largest for
the percent time in drought and frequency of droughts in the
more arid regions of Southern Australia and the Rangelands,
while for drought duration, the model variability was greater
in the more humid regions of Northern and Eastern Australia.
The inter-model variability appears to approximately scale
with the mean change in the projections, indicating greater
uncertainty for larger changes. When using SPEI there was
very wide agreement towards more frequent and longer ex-
treme droughts from the full ensemble of models in all re-
gions. For SPI there was less certainty in the sign of change
in most regions, except for Southern Australia where there
was a clear tendency towards more frequent and longer ex-
treme droughts. For Southern Australia, there was agreement
between SPI and SPEI on the sign of the change but not the
magnitude. For the other regions, the results were less cer-
tain, though generally most models appeared to point towards
more frequent extreme droughts, with an overall increase in
the time spent in extreme droughts for all regions and emis-
sions scenarios.

https://doi.org/10.5194/hess-29-4689-2025
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4 Discussion
4.1 Future drought

Our study shows there is likely to be an increase in the fre-
quency of droughts, particularly extreme droughts, across
Australia, especially in Southern Australia and when assess-
ing SPEI-derived drought metrics. The results for SPI were
more uncertain in terms of the sign of change, reflecting un-
certainty in rainfall projections (Fig. S2). Both drought in-
dices projected an increase in the percentage of time spent in
drought as well as in the spatial extent, frequency, and du-

https://doi.org/10.5194/hess-29-4689-2025

ration of droughts in southwest Western Australia, southern
South Australia, southern Victoria, and western Tasmania,
especially by the end of the century and under high emis-
sions (Fig. 10). While the sign of the change is clear in
these regions, especially for SPEI, there is considerable inter-
model variability in the magnitude of the projected changes
(Fig. 11), which may necessitate decision-makers adopting
an adaptive approach to planning for these future eventual-
ities. These results are consistent with recent observations
which have pointed towards a trend of decreasing precipita-
tion for these regions (Dey et al., 2019) and are also con-
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sistent with recent global and regional assessments of future
droughts (Cook et al., 2020; Herold et al., 2021; Kirono et
al., 2020; Spinoni et al., 2020; Ukkola et al., 2020; Wang
et al., 2021; Zeng et al., 2022). Using earlier CMIP5 pro-
jections, Kirono et al. (2020) showed a marked increase for
future droughts in Southern Australia, which is in line with
the findings from this study. However, they also showed wide
model agreement towards increased droughts in Eastern Aus-
tralia using SPI, which was not reflected in this study to the
same degree. This may relate to the selection of the climate
model ensemble adopted, which has been shown to be one

Hydrol. Earth Syst. Sci., 29, 4689-4710, 2025

of the principal sources of uncertainty (Ukkola et al., 2018).
Similarly, Trancoso et al. (2024) have shown that the precip-
itation agreement of the host GCMs is particularly low for
Australia for both CMIP5 and CMIP6 models, except for the
southwest Western Australia region.

Our results show considerable increases in the area af-
fected by future extreme droughts, especially in Southern
Australia and under the high-emissions pathway. In the ab-
sence of the strong mitigation of emissions (i.e. SSP370),
an additional 5.9 % increase in the area affected by extreme
drought was expected using SPI in Southern Australia by

https://doi.org/10.5194/hess-29-4689-2025
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the end of the century, which corresponds to a 4-fold in-
crease in the area affected compared to current conditions.
Under a low-emissions scenario (SSP126), these increases
are reduced to 2.1 % or a near doubling compared to cur-
rent conditions (Fig. 8). Differences between emissions sce-
narios were greater when evaluating the results of SPEIL
Here, we found cutting emissions from high to low levels
by the end of the century would decrease the area affected
by extreme droughts by a factor of 4 in Southern Australia,
3.2 in the Rangelands, 1.9 in Northern Australia, and 2.8
in Eastern Australia (Fig. 9), highlighting the importance
of meeting emission reduction targets. The increases in ex-
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treme droughts are larger than those projected for moderate
droughts, particularly in Southern Australia and the Range-
lands (Table 3). Extreme droughts have a disproportionate
impact on agriculture, society, and the environment com-
pared to more moderate droughts (Noel et al., 2020; Po-
top, 2011), and as such these changes would likely necessi-
tate robust adaptation measures. We provide supplementary
datasets tailoring these projections to Australian river basins
and local government areas (Eccles, 2024). These datasets
provide derived drought metrics at a much more granular
scale, which may be useful for informing local- and regional-
scale decisions on adaptation and drought preparedness.
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Interestingly, the increase in extreme droughts did not lead
to a decrease in extreme wetness but rather mostly reduced
time in near-normal climate conditions (Table 3). Indeed, in
some regions there was an increase in the time spent in ex-
treme wet conditions in the future, indicating an overall shift
towards more extreme climatic conditions. This was due to
a shift in the mean and an overall flattening of the PDFs
of SPI and SPEI as seen in Figs. 5 and 6, leading to more
time in drought conditions. Similar PDFs changes have been
noted in global assessments of soil moisture, runoff, and the
Palmer drought index under CMIP5 and CMIP6 (Zhao and
Dai, 2015, 2022).

While there was wide model agreement on increased
droughts for Southern Australia, our results point to less
agreement among the ensemble of climate models and be-
tween the two drought indices for the other regions assessed.
The differences between the two drought indices were partic-
ularly notable, with SPEI tending towards increased droughts
for the majority of the continent, while results from the
precipitation-based SPI were more uncertain (Fig. 10). The
differences between SPI and SPEI diverged further as the
projections extended further into the future, with the largest
differences noted by the end of the century and under the
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higher-emissions scenario (Fig. 11), which corresponds to
when atmospheric water demands from elevated PET were
largest. Similar differences between these indices have been
noted in studies using CMIP6 GCMs (Wang et al., 2021;
Zeng et al., 2022). Atmospheric water demand was also
found to be the principal factor contributing to increased
future soil moisture drought over Australia (Zhao and Dai,
2022). Divergences between these indices have also been
observed in studies of the recent past, with the majority of
the Earth’s landmass shown to have had a wetting trend us-
ing SPI between 1971 and 2022 and an opposing drying
trend when evaluating SPEI (Nwayor and Robeson, 2023).
For Australia, no trend was evident between 1980 and 2020
using SPI, while a significant drying was noted using SPEI
(Vicente-Serrano et al., 2022).

4.2 Differences between SPI and SPEI

Differences between SPI and SPEI were also more evident in
arid and semi-arid regions such as the Rangelands, which re-
ceive relatively low precipitation but have high potential for
evaporative loss. In these regions, proportional increases in
PET projected under climate change are substantially greater
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than the magnitude of possible changes to precipitation. As
such, the relative impact of PET increases on the overall wa-
ter budget (P — PET) is greater than in humid regions, where
precipitation changes can be just as consequential. Precipita-
tion variability has been shown to be the principal driver of
SPEI in humid regions, while in arid regions PET is the prin-
cipal driver (Vicente-Serrano et al., 2015). This is reflected
in our projections of future drought for SPEI, with smaller
projected increases and less model agreement evident in the
more humid Northern and Eastern Australia compared to
the Rangelands and Southern Australia (Figs. 10 and 11).
However, further PET increases which drive SPEI in water-
limited regions (the Rangelands and Southern Australia) are
unlikely to have as much of a consequence as in humid re-
gions where the potential upper limit of actual evaporation
has not already been met.

In this study, PET was derived using the Penman—
Monteith method (Allen et al., 1998). This approach is more
data intensive than simplified techniques that rely on temper-
ature inputs only but is considered more robust and has been
recommended when data are available (Hosseinzadehtalaei
et al., 2017; Sheffield et al., 2012). Purely temperature-based
models such as Thornthwaite (Thornthwaite, 1948) and Har-
greaves (Hargreaves and Samani, 1985) equations have been
shown to overestimate future PET. A limitation of this ap-
proach is that the approach for deriving PET does not resolve
interactions between elevated CO, and vegetation (Trancoso
et al., 2017). Specifically, studies have shown that elevated
CO; results in reduced stomatal conductance and elevated
water use efficiency of vegetation (Leakey et al., 2009), lead-
ing to reduced transpiration (Novick et al., 2016). However,
increased fertilisation from elevated CO, would likely lead
to increased leaf size (Pritchard et al., 1999) and increase
transpiration.

While there is some disagreement on the magnitude of fu-
ture PET increases, there is confidence in the sign of change,
unlike for precipitation for which there is much uncertainty
around the sign of future changes (Trancoso et al., 2024).
Under climate change, increasing temperatures will lead to
increased evaporative demand, impacting the overall wa-
ter budget. Studies which adopt SPI only to assess future
changes to droughts miss this important component and may
therefore underestimate future drought changes. On the other
hand, there is potential that the SPEI could overestimate fu-
ture drought magnitudes, especially in water-limited regions,
and might rather represent a conservative upper limit of po-
tential future drought risk. Changes to other drought types
may therefore end up lying somewhere between these two in-
dices, depending on the drought type and the region assessed
(Reyniers et al., 2023; Tomas-Burguera et al., 2020).

The simulated changes to drought are likewise influenced
by the projected land cover changes incorporated into CCAM
as part of the emissions scenarios (Eyring et al., 2016). These
land cover changes are not dynamic or responsive to changes
in the climate but rather follow prescribed changes from one
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land cover type to another. The changes in land cover can
influence temperatures and wind speed (due to changing sur-
face roughness) in the projections, therefore influencing PET
and SPEI in some regions.

4.3 Implications

While this study focused only on meteorological droughts,
these changes will have inevitable consequences for other
drought types (e.g. agricultural and hydrological), though
it should be noted that the propagation from meteorologi-
cal droughts to other drought types is typically non-linear
(Mukherjee et al., 2018). It should be noted that increases
in SPEI may not necessarily translate into on-the-ground
changes, especially in water-limited environments where
PET is already far greater than precipitation. In these regions,
which includes most of Australia, the timing and magnitude
of precipitation may be a more important consideration, and
as such care must be taken when interpreting the SPEI-based
drought projections. Significant decreasing trends for stream-
flow have been observed for most of Australia in the recent
past, with only catchments in the northern tropics showing
an increasing trend (Amirthanathan et al., 2023). This has
led to increased hydrological droughts over much of South-
ern Australia, which cannot be explained by changes to rain-
fall alone (Wasko et al., 2021). In southeast Australia, the
millennium drought (2001-2009) was a major contributor
to decreased streamflow (Fiddes and Timbal, 2016). How-
ever, despite the meteorological drought breaking in 2010,
a hydrological drought has persisted in many catchments,
with runoff volumes significantly lower than in pre-drought
conditions despite a return in precipitation (Fowler et al.,
2022; Peterson et al., 2021). This suggests that hydrolog-
ical droughts can persist indefinitely following prolonged
meteorological droughts (Peterson et al., 2021). Future in-
creases in the time spent, extent, and duration of meteorolog-
ical droughts as suggested by this study may therefore have
significant ramifications for hydrological droughts in Aus-
tralia, by effectively altering the long-term rainfall-runoff
response. In southwest Western Australia, observed stream-
flow declines have been attributed to a combination of de-
creased rainfall and increased vegetation (Liu et al., 2019).
CO;, fertilisation may therefore work in tandem with meteo-
rological droughts to further exacerbate future hydrological
droughts (Mankin et al., 2019; Trancoso et al., 2017) in spite
of COz-induced changes to stomatal conductance reducing
plant transpiration changes.

Both positive and negative changes in land cover can in-
fluence meteorological droughts through changes in precip-
itation, temperature, and wind speed (due to changing sur-
face roughness). For instance, in southwest Western Aus-
tralia large-scale anthropogenic land cover changes were
shown to partially drive long-term declines in precipitation
along coastal regions and increases in inland regions (Pitman
et al., 2004; Timbal and Arblaster, 2006). The projections
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included in this study incorporate time-varying land cover
changes which are prescribed according to the emissions sce-
nario (Eyring et al., 2016), though these are relatively mi-
nor for Australia. These changes are, however, not dynamic
or responsive to changes in the climate and as such could
respond differently in the future, potentially impacting the
magnitude of the drought changes presented. It is important
to note that such changes to land cover and other associated
environmental factors (e.g. groundwater and soil moisture)
would have much more profound impacts for other drought
types (e.g. agriculture and hydrological) compared to mete-
orological droughts as these are directly influenced by land
surface characteristics.

Elevated PET during periods of precipitation deficit will
likely increase the severity of plant stress due to differences
between the atmospheric water demand and the water avail-
able for transpiration (Anderegg et al., 2015). This can lead
to plant dieback and mortality, which may also be worsened
by elevated heat stress due to a warming climate, potentially
influencing the propagation and response of future droughts.
Higher atmospheric water demand can also work to dry out
vegetation and elevate fire risk (Clarke et al., 2022). The re-
cent tinderbox drought in southeast Australia is an example
of a drought characterised by below-average rainfall, high
atmospheric water demand, and reduced water availability
(Devanand et al., 2024). The high atmospheric water demand
and limited water availability led to elevated temperatures
and amplified heatwaves and likely contributed to the Black
Summer bushfires (Devanand et al., 2024). An amplification
of future meteorological droughts characterised by elevated
PET and higher temperatures may therefore lead to an in-
crease in such events, which will have obvious ramifications
for bushfire risk and heatwaves. Further research is, however,
required to quantify the magnitude of these future changes as
a result of the projected meteorological drought changes.

5 Conclusions

We evaluated the impacts of climate change on meteoro-
logical droughts using two commonly adopted indices (SPI
and SPEI). For this purpose, high-resolution CMIP6 climate
models under three SSP scenarios were applied. The results
show consistent increases in future frequency, duration, per-
cent time, and spatial extent of SPI droughts for southwest
Western Australia, southern Victoria, southern South Aus-
tralia, and western Tasmania, while a majority of Australia
was projected to see increases according to SPEIL The in-
creases were largest by the end of the century and under
the high-emissions (SSP370) scenario, especially for SPEI,
as this is when increases in temperature and evaporative de-
mand were greatest. These increases appear to have largely
come at the expense of “normal” climatic conditions, with
little changes or small increases in time spent under extreme
wet conditions, pointing towards an overall shift towards
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more extreme climatic conditions across Australia. There
was greater certainty in the sign of change for droughts when
assessing SPEI compared to SPI for all regions due to strong
certainty in increasing PET, though there was still consid-
erable uncertainty in the magnitude of the changes. Under
a scenario of high emissions, a 4-fold increase in the area
affected by extreme drought was expected for Southern Aus-
tralia by the end of the century, considering just changes to
rainfall (SPI). When the additional impacts of evaporative
losses from PET were considered (SPEI), there was a 17-fold
increase in the area impacted compared to current conditions.
Under a low-emissions scenario, these changes decreased to
2-fold for SPI and 5-fold for SPEI, highlighting the impor-
tance of mitigating emissions. The relative changes were less
substantial for the other NRM region clusters assessed, ex-
cept for the Rangelands, for which significant increases were
shown when evaluating SPEI by the end of the century but
not when evaluating SPI. Overall, our findings show strong
increases in meteorological droughts for the majority of Aus-
tralia, particularly in the southern region, by the end of the
century and under high-emissions scenarios. These results
have multi-sectoral implications with a strong impact on wa-
ter supply and agriculture, and we encourage stakeholders
to explore the supplementary datasets with tailored drought
calculations for Australian local government areas and river
basins to support decision-making.
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