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Abstract. Achieving water budget closure improves the con-
sistency of water budget component datasets, including pre-
cipitation (P ), evapotranspiration (ET), streamflow (Q) and
terrestrial water storage change (TWSC), thereby advanc-
ing our understanding of basin-scale water cycle dynam-
ics. Existing water budget closure correction (BCC) meth-
ods typically aim to eliminate the entire water imbalance er-
ror (1Res) by fully redistributing it across budget compo-
nents. However, this often overlooks the trade-off between
achieving perfect closure and the errors introduced into the
corrected components through this redistribution. Moreover,
inaccurate estimation of redistribution weights can lead to
contradictory outcomes, such as negative values in P , ET, or
Q. In this study, we quantify the uncertainties introduced by
four existing BCC methods (CKF, MCL, MSD, and PR) at
the monthly scale across 84 basins spanning diverse climate
zones. We then propose a novel method, IWE-Res, which
identifies an optimal redistributing strategy by minimizing
the combined error from both the errors introduced to in-
dividual budget components and the remaining 1Res error.
This method also reduces the occurrence of negative values
in the corrected datasets. Our results show: (1) Existing BCC

methods can result in negative values in 0 %–10 % of the
time series for each corrected budget component (typically
< 5 %); (2) The proposed IWE-Res method improves the ac-
curacy of corrected components compared to existing meth-
ods, reducing RMSE by 29.5 % for P , 24.7 % for ET, 69.0 %
for Q, and 6.8 % for TWSC; and (3) For most basins, ex-
cluding those in cold regions, the optimal redistribution is
achieved when 40 %–90 % of 1Res is redistributed. By of-
fering a more balanced approach to water budget closure, this
study improves the accuracy and reliability of corrected bud-
get component datasets.

Highlights.

– Existing correction methods may introduce large errors, and
more seriously cause unrealistic negative values in P , ET and
Q in up to 10 % of cases.

– A novel IWE-Res method is proposed to improve the accuracy
and consistency of corrected satellite-based water budget com-
ponent data.
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– In most river basins (except cold regions), the best correction
is achieved by adjusting 40 % to 90 % of the total water imbal-
ance error.

1 Introduction

The terrestrial water balance represents a fundamental phys-
ical framework that describes the distribution and movement
of water across the Earth’s land surface (Lehmann et al.,
2022) and is governed by four interconnected components –
precipitation (P ), evapotranspiration (ET), streamflow (Q),
and terrestrial water storage change (TWSC) – that together
regulate the exchange of water among the atmosphere, land,
and oceans (Abolafia-Rosenzweig et al., 2021; Sahoo et al.,
2011; Chen et al., 2020a; Wang et al., 2015). These compo-
nents are dynamically linked and respond to climatic vari-
ability, land surface heterogeneity, and human interventions
across a range of spatial and temporal scales. Achieving
water budget closure (that is, ensuring internal consistency
among these fluxes and storages), Eq. (1) is essential for ad-
vancing our understanding of hydrological processes (Li et
al., 2024; Mourad et al., 2024).

P −ET−Q−TWSC= 0 (1)

where P represents precipitation, ET represents evapotran-
spiration, Q represents streamflow, and TWSC represents
terrestrial water storage change. It is worth noting that TWSC
refers to the change in total terrestrial water storage, includ-
ing but not limited to surface water, soil moisture, groundwa-
ter, water infiltrating into aquifers, and ice/snow (Mehrnegar
et al., 2023; Pellet et al., 2020; Wang et al., 2022). Infiltrated
water into aquifers is not permanently stored, but eventually
returned to major water bodies sooner or later (Levison et al.,
2016). The ability of aquifers to retain or transmit infiltrated
water is strongly influenced by local geological characteris-
tics, particularly the spatial heterogeneity, presence of frac-
tures, or high-permeability pathways (Levison et al., 2016;
Schiavo, 2023).

Despite its importance, obtaining observational datasets
that achieve water balance closure remains a major chal-
lenge. In practice, no single observational system can simul-
taneously measure all four water budget components at the
required resolution and accuracy. Each budget component
is typically derived from independent data sources or mod-
els with differing spatial and temporal characteristics, which
complicates the direct closure of the terrestrial water budget.
P is typically derived from point-based rain gauge net-

works, which are generally reliable but often incomplete, re-
quiring gap-filling (Esquivel-Arriaga et al., 2024; Nassaj et
al., 2022; Bai et al., 2021; Lockhoff et al., 2014). The main
source of uncertainty lies in the spatial distribution and rep-
resentativeness of these gauges, particularly in relation to P
type (Bai et al., 2019; Trenberth et al., 2014). Spatial un-
certainty tends to be low for widespread frontal systems but

can be substantial for localized convective storms (Palharini
et al., 2020). Gauge placement is often dictated by acces-
sibility and logistical convenience, which may lead to un-
derestimation of the uncertainty in daily P inputs (Wang et
al., 2017; Bai et al., 2019; Wu et al., 2018). Satellite-based
P estimates have demonstrated good performance in cap-
turing frontal rainfall, but not in other rainfall types (Ma-
sunaga et al., 2019; Petković et al., 2017; Palharini et al.,
2020). ET is commonly estimated by empirical or physically
based models (Jacobs and De Bruin, 1998; McMahon et al.,
2016; Allen et al., 1998). Although these models are gener-
ally well calibrated, uncertainties persist due to the complex
influence of advection and localized meteorological variabil-
ity, especially in small catchments. At larger spatial scales,
energy balance approaches tend to provide sufficiently accu-
rate estimates (Hua et al., 2020; Hao et al., 2018; Ruhoff et
al., 2022).Qmeasurements typically exhibit low uncertainty
when rating curves are well established and regularly main-
tained (Jian et al., 2015; Krabbenhoft et al., 2022). However,
uncertainty can still arise from the delineation of watershed
boundaries, particularly in regions where groundwater flow
does not align with surface catchment divides (Huang et al.,
2023; Bouaziz et al., 2018). This mismatch can result in mis-
representation of actual hydrological contributions. TWSC
generally has a negligible impact on water balance calcu-
lations over multi-year periods, but can significantly affect
short-term (e.g., daily) balances (He et al., 2023; Zhang et
al., 2016). A key challenge is to define the effective depth
over which TWSC should be quantified, as changes in soil
moisture near the surface are more easily observed than those
occurring at greater depths.

Hydrological models, which are grounded in the princi-
ple of mass conservation and explicitly implement the wa-
ter balance equation, offer an alternative to direct observa-
tion for achieving water budget closure. However, in practice,
model structure simplifications, parameter uncertainties, and
errors in meteorological forcing data introduce substantial bi-
ases and propagate uncertainty across simulated components.
These limitations make it equally difficult to achieve water
budget closure using hydrological modeling alone.

In recent years, the rapid expansion of remote sensing and
reanalysis datasets has significantly improved global access
to budget components, offering new opportunities for data-
driven analysis of hydrological processes. However, even
these advanced products often exhibit internal water budget
inconsistencies. To address this issue, a growing number of
studies have adopted water budget closure correction (BCC)
methods to reduce water imbalance error (1Res), with the
goal of forcing 1Res from a non-zero value (1Res 6= 0) to
theoretical closure (1Res= 0), where1Res=P−ET−Q−
TWSC (Zhou et al., 2024; Munier and Aires, 2018; Zhang et
al., 2016). Common methods include Proportional Redistri-
bution (PR), the Constrained Kalman Filter (CKF), Multi-
ple Collocation (MCL), and the Minimized Series Deviation
(MSD) method (Pan et al., 2012; Luo et al., 2023a). For ex-
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ample, Abhishek et al. (2021) applied the PR, CKF, and MCL
methods to quantify water budget closure and uncertainties
in budget components in the upper Chao Phraya River basin;
Abolafia-Rosenzweig et al. (2021) evaluated the effective-
ness of PR, CKF, and MCL methods in closing the water
budget for 24 global basins; Dastjerdi et al. (2024) developed
a precipitation data merging method to improve precipitation
estimates based on existing BCC methods.

Existing BCC methods redistribute the entire 1Res error
among water budget components to enforce strict water bud-
get closure. This redistribution is typically guided by the rel-
ative uncertainties of the individual components, based on
the assumption that the entire residual error originates from
observational or modeling errors in these datasets. However,
this assumption overlooks the fact that 1Res is not solely
the result of measurement or estimation errors in P , ET, Q,
or TWSC. Rather, it is a composite residual that also re-
flects contributions from systematic biases and the omission
of unmeasured components. These include deep groundwa-
ter exchanges that may cross basin boundaries, snow and
glacier storage changes (particularly in high-altitude or high-
latitude regions), and anthropogenic influences such as irri-
gation withdrawals, reservoir operations, and inter-basin wa-
ter transfers. Because existing BCC methods do not explicitly
account for these additional sources of imbalance, forcing
strict closure by allocating the entire 1Res to the measured
components can introduce unrealistic uncertainties. As a re-
sult, the application of existing BCC methods – despite their
goal of improving internal consistency – often leads to lim-
ited improvements, or, in some cases, even a decline in the
accuracy of the corrected hydrological datasets.

A clear manifestation of this limitation is the occurrence of
negative values in corrected budget component datasets when
applying existing BCC methods at the monthly scale, such
as negative P , ET, and Q. These unrealistic negative values
arise when an excessive share of the 1Res is redistributed to
specific components. For instance, if the BCC method over-
estimates the error in a specific component, it may assign an
excessively large portion of 1Res to that component. When
the magnitude of the correction exceeds the component’s
original value, the result is a negative flux, which is hydro-
logically incorrect. Beyond introducing negative values, such
imbalanced redistribution compromises the integrity of the
remaining components. Overcorrecting one variable neces-
sarily reduces the share of 1Res available for others, poten-
tially degrading their accuracy. Our previous work demon-
strated that enforcing water budget closure can, to some ex-
tent, reduce the accuracy of individual components and tends
to introduce an ET regulation factor to mitigate accuracy loss
in ET caused by existing BCC methods (Luo et al., 2023a). A
more hydrologically sound approach may involve partial clo-
sure, whereby only the portion of 1Res attributable to quan-
tified uncertainties is redistributed, while the residual linked
to unmeasured processes is retained.

The key question we aim to answer in this study is the
extent of uncertainty introduced into budget components by
existing BCC methods for enforcing water budget closure
and, more critically, whether this uncertainty exceeds the re-
duction in the 1Res error. If the introduced uncertainty out-
weighs the error reduction, fully closing the water budget
may not be necessary. As noted earlier, 1Res represents a
composite error, whereas existing BCC methods primarily
address errors in budget components. Therefore, an optimal
balance for redistributing the1Res error should be identified
– one that minimizes the combined error from budget com-
ponents and the remaining water imbalance. This optimal
balance allows for redistributing only the portion of 1Res
attributable to errors in budget components, rather than the
entire 1Res, thereby preventing the occurrence of negative
values in budget components due to improper error redis-
tribution. However, research on identifying this optimal bal-
ance, which is crucial for improving existing BCC methods,
remains lacking.

The primary goals of this study are to quantify the un-
certainties introduced by existing BCC methods in closing
the water budget from multiple perspectives and to propose a
new IWE-Res method for identifying the optimal balance in
1Res redistribution. To enhance the robustness of error anal-
ysis and validate the proposed IWE-Res method, we applied
four existing BCC methods with varying principles and com-
plexities (PR, CKF, MCL, and MSD) across 84 global basins
with diverse climatic characteristics. The specific objectives
of this study are:

1. To quantify the uncertainties introduced into budget
components by enforcing water budget closure using
existing BCC methods from multiple perspectives, in-
cluding uncertainties relative to observations, the occur-
rence of negative values in budget components, and de-
viations from the original budget component datasets.
This analysis provides a more comprehensive under-
standing of the trade-offs between achieving water bud-
get closure and the associated errors;

2. To analyze in detail the occurrence of negative corrected
values in budget components caused by existing BCC
methods, including the proportion of negative values
within the time series of each budget component and
their spatial distribution under varying climatic condi-
tions;

3. To compare the reduction in1Res with the correspond-
ing increase in budget component errors resulting from
enforced water budget closure;

4. To propose a new method (IWE-Res) for identifying the
optimal balance in 1Res redistribution, minimizing the
combined error from both introduced budget component
errors and the remaining 1Res error. The accuracy and
reliability of the proposed IWE-Res method were vali-
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dated through comparisons with existing BCC methods
(PR, CKF, MCL, MSD).

2 Study area and data

To robustly quantify the uncertainties introduced by exist-
ing BCC methods in closing the water budget and to assess
the accuracy of the proposed IWE-Res method across dif-
ferent climate zones, multiple river basins worldwide were
selected as study areas. In total, 84 basins (Fig. 1) were cho-
sen based on the availability of streamflow observations from
the Global Runoff Data Centre (GRDC) for the period 2002–
2020. To ensure data reliability, the proportion of missing
data was kept below 10 %, with missing values interpolated
using a linear method. Notably, approximately 90 % of the
basins used in this study had less than 5 % missing data.

The climate classifications presented in Fig. 1 were de-
termined using the Köppen climate classification system, a
widely adopted framework that categorizes global climates
based on temperature and precipitation thresholds (Crosbie
et al., 2012; Hansford et al., 2020; Liu et al., 2022; Papachar-
alampous et al., 2023). This system divides the world into
five primary climate types – Tropical, Arid, Temperate, Cold,
and Polar. Its key strength lies in its integration of climate
data with vegetation distribution, making it highly relevant
to ecological environments.

For each budget component, multiple datasets are typically
available, with accuracy varying across different basins. No
single dataset consistently performs best across all global
basins. Therefore, multiple datasets were selected for each
budget component to generate various data combinations
(Eqs. 2–3). This approach ensures the inclusion of the most
suitable dataset combinations while mitigating uncertainties
associated with reliance on a single dataset.

Given the biases in the outputs of global P and ET mod-
els, observationally constrained datasets that have under-
gone bias correction or rigorous quality control are generally
considered more accurate and reliable (Ehret et al., 2012).
Accordingly, priority was given to datasets that incorpo-
rate extensive ground-based observations and provide bias-
corrected or quality-controlled products. We selected four P
datasets – GPCC, GPM IMERG, MSWEP, and PERSIANN-
CDR; three ET datasets – GLDAS, GLEAM, and TerraCli-
mate; and three TWSC datasets derived from GRACE satel-
lite observations – GRACE CSR, GRACE GFZ, and GRACE
JPL. All datasets were either bias-corrected according to the
standards of their respective data providers or subjected to
systematic quality control. Observed Q data were obtained
from the GRDC platform. The above datasets were upscaled
to the basin and monthly scales using spatial and temporal
averaging. By combining these datasets, a total of 36 distinct
data combinations were generated for each basin (Eq. 3).

Cjkl =
[
PjETkTWSClQ

]
(2)

where j , k, and l represent the indices of the datasets cor-
responding to each budget component. Table 1 provides ba-
sic information on the datasets used in this study, along with
their corresponding indices. Equation (3) represents a matrix
composed of the elements defined in Eq. (2).

C =

 C111 C112 C113 C121 C122 C123 C131 C132 C133
C211 C212 C213 C221 C222 C223 C231 C232 C233
C311 C312 C313 C321 C322 C323 C331 C332 C333
C411 C412 C413 C421 C422 C423 C431 C432 C433

 (3)

The Global Precipitation Climatology Centre (GPCC)
dataset, provided by the German Weather Service (DWD), is
derived from a dense global network of rain gauge observa-
tions, and incorporates strict quality control procedures such
as station data validation, temporal consistency checks, and
outlier removal (Becker et al., 2013; Schneider et al., 2008).
The dataset is available at 0.25° spatial resolution and daily to
monthly temporal scales. The Global Precipitation Measure-
ment Integrated Multi-Satellite Retrievals (GPM IMERG)
Final Run product, developed by NASA and JAXA, inte-
grates multiple satellite-based precipitation estimates and ap-
plies monthly bias correction using ground-based gauge data
(Wang et al., 2017; Cui et al., 2020; Huang et al., 2019). The
Multi-Source Weighted-Ensemble Precipitation (MSWEP)
dataset combines satellite, gauge, and reanalysis data using
an ensemble-weighted approach, incorporating over 77,000
ground stations for daily-scale bias correction (Beck et al.,
2019a, 2017). The PERSIANN-CDR dataset, based on satel-
lite remote sensing and artificial neural network technol-
ogy, spans 60° S to 60° N with 0.25° daily resolution, and
is bias-corrected using the GPCP monthly product, which in-
cludes extensive rain gauge observations (Chen et al., 2020b;
Kaprom et al., 2025; Sadeghi et al., 2019).

For ET, the Global Land Data Assimilation System
(GLDAS), developed by NASA and NOAA, uses land sur-
face modeling and data assimilation to produce physically
consistent estimates of land surface fluxes. The GLEAM
dataset, developed by the Miralles team at the University of
Bristol, estimates actual ET using satellite-derived net radia-
tion and air temperature via the Priestley-Taylor model, and
applies a stress factor derived from vegetation optical depth
(VOD) and soil moisture to adjust potential evaporation. Ter-
raClimate dataset provides global monthly actual ET esti-
mates based on the Penman Montieth approach (Abatzoglou
et al., 2018). Notably, bias correction in global ET prod-
ucts is generally less systematic than for P products, mainly
due to the limited availability and spatial coverage of in situ
flux tower observations. As a result, bias adjustments in ET
datasets are typically indirect, relying on corrections applied
to the climate forcing variables rather than to ET itself.

The launch of the GRACE and GRACE Follow-On
(GRACE-FO) satellite missions has provided new opportu-
nities for more accurate observations of large-scale TWSC.
GRACE operated from 2002 to 2017, followed by GRACE-
FO starting in 2018 (Boergens et al., 2024). These mis-
sions infer terrestrial total TWSC by tracking temporal vari-
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Figure 1. Overview of the Study Area. The climate classification used in this study is based on the Köppen climate classification system.

ations in Earth’s gravity field, which are primarily attributed
to changes in terrestrial water mass. The GRACE TWSC
datasets used in this study are provided by the University
of Texas Center for Space Research (CSR), the German
Research Centre for Geosciences (GFZ), and NASA’s Jet
Propulsion Laboratory (JPL), all of which include multiple
bias correction procedures to improve data quality (Landerer
et al., 2012; Shamsudduha et al., 2017). These bias correction
procedures include filtration to suppress correlated noise and
striping artifacts (Swenson and Wahr, 2006), replacement of
poorly resolved spherical harmonic coefficients (e.g., degree-
2 term C20) with satellite laser ranging data (Loomis et al.,
2020), and correction for glacial isostatic adjustment (GIA)
(Peltier et al., 2012; Mu et al., 2017). Numerous studies have
demonstrated the sensitivity and reliability of GRACE satel-
lite data for monitoring TWSC (Swenson and Wahr, 2006;
Resende et al., 2019; Majid et al., 2019; Reager et al., 2014).

The GRDC provides the most comprehensive open-access
river discharge data available worldwide, collected from
national hydrological agencies. This dataset includes river
streamflow measurements from over 10 000 stations across
159 countries (Su and Zhang, 2024). To minimize the impact
of missing data on the reliability of the results, hydrologi-
cal stations were selected based on the criterion that missing
values accounted for less than 10 % of the total dataset. Lin-
ear interpolation was then applied to fill any remaining data
gaps.

3 Methods

3.1 Water imbalance error

The water balance equation describes the conservation of
mass between water inflows, outflows, and changes in stor-
age within a given region (Eq. 1). However, in practice, this
balance is rarely achieved due to various sources of error.
These include systematic biases (such as missed portions of
outflow resulted from unclosed basin boundaries and inac-
curacies in catchment area delineation, particularly in small
basins), measurement uncertainties, and the omission of un-
measured components. Consequently, each budget compo-
nent (P , ET, Q, and TWSC) is subject to an associated er-
ror term (denoted as εP , εET, εQ, εTWSC, respectively), lead-
ing to a non-closure of the water budget (i.e., Eq. 1 becomes
Eq. 4) (Aires, 2014; Wong et al., 2021). The resulting imbal-
ance is represented by the residual error term 1Res (Eq. 5),
which quantifies the inconsistency among the observed or es-
timated components of the water cycle.

Minimizing the 1Res error is a key objective in practical
hydrological applications, as it enhances the accuracy and
reliability of budget component datasets. However, it is im-
portant to note that smaller1Res values may arise from error
compensation among budget components rather than genuine
improvements in data accuracy. Therefore, a high-precision
water balance dataset is characterized not only by a near-zero
1Res error but also by budget components that closely ap-
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Table 1. Datasets used for this study.

Variable Data Source Number Resolution Reference

P Global Precipitation Climatology
Centre (GPCC)

1 0.25° per month Schneider et al. (2008)

Global Precipitation Measurement
(GPM IMERG)

2 0.1° per month Huffman et al. (2015)

Multi-Source Weighted-Ensemble
Precipitation (MSWEP)

3 0.1° per month Beck et al. (2019b)

Precipitation Estimation from
Remotely Sensed Information using
Artificial Neural Networks – Climate
Data Record (PERSIANN-CDR)

4 0.25° per month Hsu et al. (1997)

ET global land data assimilation system
(GLDAS)

1 0.25° per month Park and Choi (2015)

Global Land Evaporation Amsterdam
Model (GLEAM)

2 0.25° per month Miralles et al. (2011)

TerraClimate 3 1/24° per month Abatzoglou et al. (2018)

TWSC Gravity Recovery and Climate
Experiment (GRACE CSR)

1 1.0° per month Watkins et al. (2015)

Gravity Recovery and Climate
Experiment (GRACE GFZ)

2 1.0° per month Watkins et al. (2015)

Gravity Recovery and Climate
Experiment (GRACE JPL)

3 1.0° per month Watkins et al. (2015)

Q Global Runoff Data Centre (GRDC) – – Burek and Smilovic (2023)

proximate their true values (Luo et al., 2023a).

(P + εP )− (ET+ εET)−
(
Q+ εQ

)
− (TWSC+ εTWSC)= 0 (4)

1Res= εET+ εQ+ εTWSC− εP

= P −ET−Q−TWSC (5)

where εP , εET, εQ, εTWSC are the errors in budget compo-
nents of P , ET, Q, and TWSC relative to their true values,
respectively.

3.2 Existing water budget closure correction methods

To minimize the 1Res error in Eq. (5) (reducing 1Res from
6= 0 to 0), various statistical BCC methods have been devel-
oped. These methods differ in their principles for redistribut-
ing the 1Res error, leading to varying levels of introduced
uncertainty. To systematically assess the uncertainties associ-
ated with existing BCC methods in closing the water budget
and to reduce uncertainty in method selection, we evaluated
four representative methods: PR, CKF, MCL, and MSD (Luo
et al., 2023b; Abolafia-Rosenzweig et al., 2021; Dastjerdi et
al., 2024). In the following application of these BCC meth-
ods, the TWSC data used in this study refer to the basin-scale

total terrestrial water storage change observed by GRACE
satellite data.

For each basin, these four methods were applied to 36 dif-
ferent data combinations (Eq. 3), yielding 144 uncertainty
estimates. The optimal combinations were identified using a
5 % threshold. By averaging the errors introduced into bud-
get components across these selected optimal combinations,
we quantified the uncertainty associated with existing BCC
methods. This approach minimizes uncertainties arising from
both BCC method selection and budget component data se-
lection, enabling a more objective evaluation of the errors in-
troduced by existing BCC methods. A brief overview of the
four BCC methods is provided below:

1. PR method.

The PR method assumes that the error in budget com-
ponents is proportional to their magnitudes (Abatzoglou
et al., 2018). Based on the relative magnitudes of these
variables, the1Res error is redistributed across them to
achieve water budget closure (Eq. 6).

Fi =Xi −1Res(Gi)

(
|Xi |∑n
j=1|Xj |

)
(6)
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where Fi and Xi represent the corrected and original
data for budget components (P , ET, Q and TWSC), re-
spectively; n denotes the number of budget components
involved in the water budget closure calculation; 1Res
represents the water imbalance error; G is a constant
vector defined as G= [1 − 1 − 1 − 1].

2. CKF method.

The CKF method is developed based on the Kalman fil-
ter method (Pan and wood, 2006). For a given set of es-
timated budget components X = [P ETQTWSC]T and
their estimated errors 1Res=GX 6= 0 (where G is a
constant vector,G= [1−1−1−1]), the goal is to find a
new set of estimates F = [P ′ET′Q′TWSC′]T such that
GX′ = 0, achieving water budget closure (Pan et al.,
2012). In simple terms, the CKF method redistributes
the 1Res among the budget components based on the
error covariance of X, defined as 1εXX (Eq. 7), to ob-
tain a closured dataset.

1εXX = (X−X0)(X−X0)T (7)

where X0 refers to the reference values of the estimated
budget components, and the bar over an expression de-
notes expectation. For P , ET and TWSC, the refer-
ence values X0 were calculated by averaging all con-
sidered datasets, following previous studies (Zhang et
al., 2018; Abolafia-Rosenzweig et al., 2021). For Q,
we adopted observed Q. Due to the difficulty in quan-
tifying the uncertainty in observed Q, previous studies
have reported gauge-based uncertainty as a percent er-
ror for some of the basins, ranging from 2.3 %–28.8 %
(Clarke, 1999; Mueller, 2003; Shiklomanov et al., 2006;
Abolafia-Rosenzweig et al., 2021). We followed a simi-
lar approach to estimate the uncertainty associated with
Q in this study.

The error covariance matrix1εXX is of dimension 4×4
and represents the covariances among errors in the four
budget components:

1εXX =

 1εP−P 1εP−ET 1εP−Q 1εP−TWSC
1εET−P 1εET−ET 1εET−Q 1εET−TWSC
1εQ−P 1εQ−ET 1εQ−Q 1εQ−TWSC
1εTWSC−P 1εTWSC−ET 1εTWSC−Q 1εTWSC−TWSC

 (8)

Following Pan et al. (2012), the off-diagonal elements
representing cross-variable error covariances were as-
sumed to be zero, under the assumption that errors
among different budget components are uncorrelated.
Accordingly, the matrix F can be computed as shown
in Eq. (9).

F=X+K(0−GX) (9)

where K =1εXXC
T (C1εXXC

T )−1 is the Kalman
gain. Setting GX =1Res, and Eq. (9) can be rewritten
as Eq. (10).

F=X−1εXXGT (G1εXXGT )−11Res (10)

where error covariance εXX is calculated entry by entry
according to Eq. (8).

3. MCL method.

The MCL method is an extension of the triple colloca-
tion (TC) method. It calculates the weights for redis-
tributing the 1Res error among budget components by
estimating the errors relative to their true values (ex-
pressed as distances, without requiring knowledge of
the true values). The fundamental equations of the MCL
method are shown in Eqs. (11)–(12).

Fi =Xi −1Res(Gi)(d ixx0−norm) (11)

d ixx0−norm =
d ixx0

4∑
j=1

∣∣∣djxx0

∣∣∣ (12)

In these equations, Fi represents the corrected data for
the ith budget component; Xi denotes the original data
for the ith budget component; 1Res represents the wa-
ter imbalance error; d ixx0−norm represents the weight as-
signed to the ith budget component, and d ixx0

represents
the distance between the ith budget component and the
true value, as calculated using the Monte Carlo (MC)
method. For example, in the case of five precipitation
data products (N = 5), the calculation of d ixx0

(d1t , d2t ,
d3t , d4t , and d5t) is shown in Eqs. (13)–(14).

A(N)y(N) = b(N) (13)

A(5) =



1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1


,

y(5) =


d2

1t
d2

2t
d2

3t
d2

4t
d2

5t

 , b(5) =



d2
12
d2

13
d2

14
d2

15
d2

23
d2

24
d2

25
d2

34
d2

35
d2

45


(14)

4. MSD method.

The MSD method redistributes the1Res to each budget
component based on minimizing the time-series devia-
tion error, aiming to reduce model uncertainties caused
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by errors in estimating time-point deviations (Luo et al.,
2023b). Specifically, the MSD method first calculates
the minimum time-series deviation distance between re-
mote sensing data for budget components and multi-
source integrated data products (EO) (Eq. 15).

Dx,→n =−

[∑n
j=1(y(EO,j)− y(EO,→n))(x(RS,j)− x(RS,→n))

]2

∑n
j=1(x(RS,j)− x(RS,→n))2

+

∑n

j=1
(y(EO,j)− y(EO,→n))

2 (15)

where Dx,→n represents the minimum time-series de-
viation distance for budget component x (e.g., P , ET,
TWSC); y(EO,j) and x(RS,j) refer to the integrated value
and raw value of the budget component x, respectively;
y(EO,→n) and x(RS,→n) denote the average deviation of
budget component x from the first to the nth time point.

Next, the MSD method calculates the weights for each
budget component based on Dx,→n (Eq. 16).

wx,j =
Dx,→j∑4
i=1Di,→j

(16)

where wx,j is the weight of budget component x at time
point j .

Finally, the weight calculation results from Eq. (16) are
substituted into Eq. (17) to achieve water budget clo-
sure.
FBCC
P,j

FBCC
ET,j
FBCC
R,j

FBCC
TWSC,j

=

FRaw
P,j

FRaw
ET,j
FRaw
R,j

FRaw
TWSC,j



−1Res


1
−1
−1
−1



wP,j
wET,j
wR,j
wTWSC,j

 (17)

where FBCC represents the budget components (P , ET,
Q, and TWSC) corrected for water budget closure,
while FRaw denotes the raw, uncorrected values of the
budget components.

3.3 Uncertainties introduced by existing BCC methods
for closing water budget

When the existing BCC methods described in Sect. 3.2 are
applied to close the water budget, they redistribute 1Res
based on the estimated errors of budget components but ne-
glect unmeasured components. This inevitably leads to an
unreasonable redistribution of the 1Res error, introducing
new uncertainties. The magnitude of these introduced errors
and whether they can be ignored remain unresolved, primar-
ily due to insufficient observational data for some budget
components, making it difficult to quantify the associated un-
certainties.

Our analysis in this study reveals that when existing BCC
methods are used for water budget closure, certain budget
components that typically have positive values, such as P ,
ET, and Q, occasionally become negative in some months.
Previous studies have also mentioned this issue (Lehmann
et al., 2022). This clearly indicates an unreasonable redis-
tribution of 1Res errors, underscoring the urgent need for
methodological improvements. Despite this issue, research
on negative values remains limited. Key questions persist
regarding the proportion of negative values in each budget
component under current BCC methods, which variables are
most susceptible to severe negative values, and how these er-
rors vary throughout the year. Addressing these questions is
critical for refining existing BCC methods.

Notably, quantifying negative values does not require ob-
servational data. To comprehensively assess the uncertain-
ties introduced by forced water budget closure, we consider
three aspects: errors of individual budget components rela-
tive to observed values (Sect. 4.2.1), negative values aris-
ing from budget closure (Sect. 4.2.2), and ensemble errors
(Sect. 4.2.3).

1. Errors of individual budget components.

Quantifying this type of error requires determining ref-
erence values for budget components. However, for cer-
tain variables, such as ET, observational data are insuf-
ficient across global watersheds, posing a major chal-
lenge in accurately characterizing global ET patterns.
As a result, approximate reference values must be used
to ensure the reliability of the results.

In this study, reference values for budget components
were established based on the following principles. For
Q, long-term observational records from hydrological
stations were available for all selected basins, meeting
the study’s requirements. For TWSC, we utilized three
observational datasets from the GRACE satellite, which
currently provides the only large-scale measurements
of basin water storage changes under rigorous quality
control. The reliability of GRACE data has been val-
idated through ground-based observations (Famiglietti
et al., 2011; Landerer et al., 2020; Rodell et al., 2009;
Tapley et al., 2004; Yeh et al., 2006). Thus, GRACE
TWSC data can be considered approximately reliable.
To further enhance its accuracy, we applied data fusion
techniques, as described in Eq. (18), to merge the three
GRACE TWSC products into a single reference dataset
(Munier and Aires, 2018; Zhang et al., 2018).

The uncertainty introduced by existing BCC methods
for precipitation was evaluated from two perspectives.
First, 13 basins with sufficient observational precip-
itation data were selected, using observed precipita-
tion as the reference. This sample size was sufficient
for assessing the uncertainties associated with exist-
ing BCC methods. Second, 71 additional basins lack-
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ing sufficient observational precipitation data were in-
cluded, for which fused precipitation values, derived us-
ing Eq. (18), served as reference. This approach enabled
cross-validation of the reliability of the fused dataset by
comparing results with those from basins with observa-
tional data, allowing the study to be extended to a larger
number of basins.

ET is the most challenging budget component to mea-
sure directly. The scarcity of globally available ET ob-
servational data precludes the direct use of observed
ET as a reference. To address this limitation, previous
studies have either focused on a few basins with avail-
able observational data or compared multiple existing
ET datasets. ET products are generally considered reli-
able if their magnitudes and trends align with those of
other datasets (Chen et al., 2021; Pan et al., 2020; Xu et
al., 2019). Some studies have also employed the fusion
of multiple data products as a reference for ET valida-
tion (Jiménez et al., 2018; Mueller et al., 2011; Yao et
al., 2014). Following this approach, we assessed the un-
certainty introduced by existing BCC methods for ET
by utilizing a fusion-based reference dataset.

Mx =

∑n

i=1
Mx,i ·ωi and ωi =

1
σ 2
i

/
∑1

i=1

1
σ 2
i

(18)

whereMx represents the fused value of the budget com-
ponent,Mx,i denotes the ith product of the budget com-
ponent; ωi denotes the weight of the ith product, and σ 2

i

refers to the covariance error of the ith product, n is the
total number of budget components, and x refers to P ,
ET or TWSC.

After establishing reference values for budget compo-
nents, we quantify errors in the original data relative
to these references, using the positive metric CC and
inverse metric RMSE as examples, denoted as CC1
and RMSE1, respectively. Similarly, errors in the BCC-
corrected data relative to the reference values are calcu-
lated, represented as CC2 and RMSE2.

To assess the uncertainties introduced by water budget
closure, changes in CC and RMSE (CC′ and RMSE′)
are computed using Eqs. (19) and (22). Positive values
of CC′ and RMSE′ indicate an improvement in data ac-
curacy following BCC correction, whereas negative val-
ues suggest a decline. In addition to CC and RMSE,
other statistical metrics used in this study include the
positive indicator NSE and the negative indicator MAE.

CC′ = CC2−CC1 (19)
NSE′ = NSE2−NSE1 (20)
MAE′ =MAE1−MAE2 (21)
RMSE′ = RMSE1−RMSE2 (22)

CC=
∑n
i=1(Obsi −Obs)(Simi −Sim)√∑n

i=1(Obsi −Obs)2
√∑n

i=1(Simi −Sim)2
(23)

NSE= 1−
∑n
i=1(Simi −Obsi)2∑n
i=1(Obsi −Obs)2

(24)

MAE=
1
n

∑n

i=1
|Simi −Obsi | (25)

RMSE=

√
1
n

∑n

i=1
(Obsi −Simi)

2 (26)

where Obsi represents the reference value at time i, and
Simi represents either the original data or the BCC-
corrected data. Obs and Sim represent the mean values
of Obs and Sim, respectively, and n is the sample size.

2. Negative values.

Negative values are defined as the issue that arises when
the BCC method is used to close the water budget, and
the redistributed1Res error exceeds the actual values of
budget components (P , ET,Q, and TWSC), causing P ,
ET, and Q to become negative. For TWSC, a negative
value occurs when the corrected TWSC has an opposite
sign to its raw value. These negative values represent
only a subset of the errors introduced during water bud-
get closure but reflect an extreme case of unreasonable
1Res error redistribution, serving as an indicator of the
BCC method’s effectiveness.

When a budget component exhibits a negative value,
the redistribution of 1Res errors to other components
is significantly affected, reducing the overall accuracy
of the corrected datasets. Thus, negative values are a
critical factor influencing the performance of existing
BCC methods and should be prioritized for improve-
ment. To better understand this issue, we analyze the
proportion of negative values for each budget compo-
nent, their seasonal distribution, and their sensitivity to
climatic conditions (i.e., their prevalence in arid versus
humid basins). Insights from this analysis were incor-
porated into the proposed IWE-Res method to address
the occurrence of negative values (Sect. 3.4).

3. Ensembled error of four budget components.

The aforementioned evaluations (1) and (2) assess er-
rors for individual budget components. To gain a more
comprehensive understanding of the uncertainties intro-
duced by water budget closure, we also evaluate the
combined error. First, the absolute error (AE) of each
budget component is calculated (using P as an ex-
ample, see Eq. 29). Second, the relative absolute er-
ror (RAE) is determined for each budget component
(Eq. 28). Finally, by aggregating the relative errors of in-
dividual components, we define the ensembled relative
error (Eq. 27) to quantify the overall error introduced by
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BCC methods.

F(Re)=
1
n

∑n

i=1

∣∣AE
(
P ′
)∣∣− |AE(PRaw)| +

∣∣AE
(
ET′

)∣∣
−|AE(ETRaw)| +

∣∣AE
(
Q′
)∣∣

−|AE(QRaw)| +
∣∣AE

(
TWSC′

)∣∣
−|AE(TWSCRaw)|

P0 +ET0 +Q0 + |TWSC0|

=
1
n

n∑
i=1

RAE(P )+RAE(ET)+RAE(Q)+RAE(TWSC)
P0 +ET0 +Q0 + |TWSC0|

(27)

RAE(P )=
∣∣AE(P ′)

∣∣− |AE(PRaw)| (28)
AE(P )= |P −P0| (29)

where, F (Re) represents the ensembled relative error,
and RAE refers to the relative value of absolute error,
with i denoting the month. The subscript “Raw” corre-
sponds to the raw data of the budget components, the
subscript 0 represents the observed data, the superscript
“′” denotes the BCC-corrected data for the budget com-
ponents. The degree of alteration induced by the BCC
methods for each budget component are defined based
on the value of F (Re), and four intervals are established
in 5 % increments: no significant change [0 %–5 %], mi-
nor change (5 %–10 %], moderate change (10 %–15 %],
and significant change (> 15 %).

3.4 Proposed IWE-Res method for closing water
budget

In this section, we propose the IWE-Res method to iden-
tify the optimal balance for redistributing 1Res, minimiz-
ing the sum of the introduced error to budget components
and the remaining 1Res error while reducing the negative
values introduced by closing the water budget. Unlike ex-
isting BCC methods that fully redistribute the 1Res term
in a single step, the IWE-Res method adopts a gradual, it-
erative redistribution strategy that allows for more consis-
tent correction. Specifically, the method incrementally allo-
cates fractions of 1Res to P , ET, Q and TWSC, based on
fixed percentage steps and guided by existing BCC weighting
schemes. At each iteration, the redistribution process seeks
to minimize the combined error – defined as the sum of the
induced changes in the water budget components and the re-
maining unexplained1Res. This dual-objective criterion en-
sures that the method balances error reduction while main-
taining hydrological plausibility. Importantly, the approach
includes a mechanism to avoid introducing implausible neg-
ative values. If, during any iteration, the corrected value of a
component becomes negative – violating hydrological con-
straints such as non-negative precipitation or runoff – further
redistribution to that component is halted. Subsequent iter-
ations reallocate the remaining 1Res among the unaffected
components. From a hydrological perspective, this strategy
acknowledges that not all of the residuals can be attributed
to known components. Some portion of 1Res may originate
from unmeasured or poorly constrained processes. By par-
tially closing the water budget in a controlled and iterative
manner, the IWE-Res method reduces the risk of overcor-

recting well-characterized components while better preserv-
ing the consistency of the entire budget. The specific steps of
the proposed IWE-Res method are as follows:

First, the 1Res error is calculated using Eq. (5) and the
original datasets of budget components.

Second, an iterative loop is constructed to compute the er-
rors introduced into budget components during the gradual
redistribution of the 1Res error and to address negative val-
ues. To more accurately identify the optimal balance, a step
size of 0.1 % of 1Res is used in each iteration in this study.
We denote the 1Res redistributed to budget components in
each iteration as x, where x ∈ [0, 1Res].

During each redistribution of 1Res, two error terms are
computed: (1) the remaining1Res error, defined as1Res*=
1Res− x, and (2) the error introduced to budget compo-
nents due to the redistribution of the x error, denoted as IWE
(Eq. 31). When these errors are plotted in a coordinate sys-
tem, two distinct curves emerge (Fig. 2), each representing a
different error relationship. For1Res* (Eq. 30), Fig. 2 shows
a fixed, monotonically decreasing linear trend, as 0.1 % in-
crements of1Res are uniformly redistributed to budget com-
ponents using existing BCC methods. In contrast, the IWE
curve exhibits a non-fixed shape, reflecting the cumulative
error introduced to budget components during the redistri-
bution of a portion of 1Res (Eqs. 31–32). This variability in
the IWE curve arises from the nonlinear relationship between
the introduced budget component errors and the reduction in
1Res error.

1Res∗ = ax+ b =−x+1Res (30)
IWE= F(εP ,εET,εQ,εTWSC)= F(x,RAE) (31)

RAE=
1
4

4∑
i=1
(RAE(P )

+RAE(ET)+RAE(Q)+RAE(TWSC)) (32)

where x represents the portion of 1Res redistributed to the
budget components, with a range from 0 to 1Res. The terms
εP , εET, εQ, εTWSC represent the errors introduced to P , ET,
Q and TWSC, respectively, due to the redistribution of x to
the budget components. F(x,RAE) denotes the RAE error
calculated by the redistribution of the x error to budget com-
ponents.

During the iterative correction process, if any of the wa-
ter budget components (P , ET, and Q) becomes negative,
the redistribution of water imbalance error to that component
is immediately suspended. In subsequent iterations, redistri-
bution is recalculated to ensure that only components with
physically meaningful positive values receive the imbalance
correction. For example, if ET becomes negative in a given it-
eration, the imbalance is subsequently redistributed to P , Q,
and TWSC only, in accordance with Eq. (33). For TWSC, if
a sign reversal occurs during iteration (i.e., from positive to
negative or vice versa), the redistribution of the water imbal-
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ance error to TWSC is suspended in the following iteration.

Fi =Xi − x(Gi)

(
|εi |∑n
j=1

∣∣εj ∣∣
)

(33)

where Fi denotes the corrected dataset, and Xi denotes the
original dataset of budget components. Since ET does not
participate in the redistribution of the residual error x based
on the example above, the weighting vector is defined as
G= [1, 0, −1, −1]. The term ε represents the error in bud-
get components estimated using existing BCC methods, as
described in Sect. 3.2.

Third, the IWE-Res curve is plotted (Fig. 2) to provide an
intuitive comparison between the introduced budget compo-
nent errors and the remaining water imbalance error. The er-
ror calculation results from Eqs. (30) and (31) are presented
within the same coordinate system.

The IWE-Res method is illustrated in Fig. 2 using four
curves. The x axis represents the percentage of water imbal-
ance error redistributed to budget components using exist-
ing BCC methods, while the y axis denotes the percentage
of the remaining water imbalance error (1Res*) after each
iteration. The black dashed line represents the redistributed
x-error value among the budget components. The thin blue
solid line represents the1Res* error curve. Since the sum of
redistributed x and remaining 1Res* equals the total 1Res
error, this curve forms a monotonically decreasing 45° line.
The thin green solid line represents the introduced budget
component error (IWE) after a given percentage of 1Res
is redistributed (x axis), with its shape varying depending
on the redistribution process (Fig. 2 is illustrative). Initially,
when no1Res is redistributed (x = 0), the IWE error is zero.
As more 1Res is redistributed (with increasing x values),
IWE increases due to the growing uncertainty introduced.
The thin red solid line represents the total error, defined as the
sum of 1Res* and IWE after applying BCC methods. This
curve varies depending on the redistribution process, and its
minimum value identifies the optimal balance where com-
bined 1Res* and IWE errors are minimized. The intersec-
tion of the 1Res* and IWE curves indicates only the point
at which these errors are equal, not necessarily the optimal
balance.

To determine the optimal redistribution of the water im-
balance error, we plot the IWE-Res curve (the green solid
line) for each basin, identifying the minimum of the red total
error curve. We then analyze its patterns across basins with
different characteristics to optimize water budget closure and
improve the accuracy of budget component datasets.

The IWE error in Fig. 2 also serves as a metric for eval-
uating the performance of existing BCC methods. If a BCC
method perfectly redistributed1Res without introducing ad-
ditional errors, the IWE curve would be a flat line at zero, and
the red total error line would coincide with the blue 1Res*
error line. This scenario indicates that full redistribution of
water imbalance error achieves the optimal balance, provid-

ing indirect validation of the IWE-Res method’s effective-
ness.

Finally, the optimal balance is identified, enabling the gen-
eration of a high-precision dataset that improves water bud-
get closure. The optimal balance corresponds to the min-
imum of the total error curve (IWE+1Res*), where the
sum of remaining water imbalance error and introduced bud-
get component errors is minimized. Ideally, both 1Res*
and IWE would reach their minimum values simultaneously,
meaning minimal error is introduced while fully redistribut-
ing 1Res. However, since this ideal state may not always
be achievable, identifying the point where combined error is
minimized is essential. This principle defines the proposed
IWE-Res method (Fig. 2).

4 Results

4.1 Water imbalance error

This section presents a comparative analysis of variations in
water imbalance errors across different basins and data com-
binations, aiming to clarify how errors in budget components
contribute to these discrepancies. Figure 3 illustrates the spa-
tial distribution of monthly 1Res errors across various data
combinations. To prevent the cancellation of positive and
negative values, the absolute values of monthly 1Res errors
were first computed for each basin and then averaged.

As shown in Fig. 3, 1Res values vary significantly across
basins. Most basins in Africa, South America, and Europe
exhibit high 1Res values, typically exceeding 20 mm. In
North America, 1Res values generally range from 15 to
45 mm. Due to inconsistencies among budget component
datasets, substantial differences in 1Res also emerge across
different data combinations. In combinations where only P
data varied while other budget component datasets remained
constant (combinations in Fig. 3 where the first digit varies
while the second and third remain constant), pronounced
changes in water imbalance errors were observed in parts
of southern Africa, northern Asia, and North America. This
suggests substantial estimation errors in P for these regions.

When different ET products were used (combinations
where the second digit varies while the first and third re-
main constant), water imbalance errors changed significantly
in most basins. Specifically, in combinations using the Terra-
Climate ET dataset, water imbalance errors exceeded 35 mm
in the majority of basins, indicating severe water imbalance.
This underscores the considerable discrepancies among ET
products and their substantial impact on accurately repre-
senting basin water balance. In contrast, when TWSC data
from different GRACE products were used (combinations
where the third digit varies while the first and second remain
constant), variations in water imbalance errors across basins
were relatively small.
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Figure 2. Framework of the IWE-Res method to identify the optimal balance for redistributing the 1Res error. The x axis represents the
proportion of 1Res redistributed to budget components, while the y axis reflects the proportion of the remaining 1Res error. The black
dashed line represents the redistributed x-error value among the budget components. The blue solid line represents the 1Res* curve, while
the green solid line shows the IWE error introduced into budget components after redistributing the corresponding percentage of 1Res. The
red solid line represents the total error curve.

Overall, ET and P are the primary variables influencing
water imbalance in most basins, consistent with previous
findings (Pan et al., 2012; Zhang et al., 2018). The uncer-
tainty in budget component datasets remains a key challenge
for water balance research (Dagan et al., 2019; Lv et al.,
2017; Luo et al., 2023a).

4.2 Uncertainties of budget components introduced by
closing water budget

To gain a more comprehensive understanding of the uncer-
tainties introduced into budget components when closing the
water budget, this section analyzes the errors introduced by
fully closing the water budget using existing BCC methods
from three perspectives: the errors of individual budget com-
ponents, the occurrence of negative values, and ensemble er-
rors (Sect. 3.3).

4.2.1 Errors of individual budget components

Figure 4 presents the relative statistical metrics calculated us-
ing Eqs. (19)–(22) to evaluate the uncertainties introduced
into budget components by existing BCC methods. Positive

values indicate an improvement in the accuracy of corrected
budget components, whereas negative values indicate a de-
cline in accuracy.

Overall, existing BCC methods exhibit notable limitations
in enhancing the accuracy of budget components. In partic-
ular, for P , nearly all statistical metrics (CC′, NSE′, MAE′,
RMSE′) across various basins yield negative values. For in-
stance, under the CKF method, these values are approxi-
mately −0.05, −0.15, −3.82, and −8.47 mm, respectively,
indicating a significant reduction in the accuracy of the cor-
rected P dataset when BCC methods are applied to en-
force water budget closure. Specifically, the accuracy of the
corrected P dataset decreases by approximately 6 %, 34 %,
11 %, and 55 %, as reflected in the CC, NSE, MAE, and
RMSE metrics, respectively. Analysis of 13 selected basins
with sufficient P observations further confirms this decline,
showing a reduction in the accuracy of budget-corrected P
(Fig. 5). A possible explanation for this decrease is the in-
herently high accuracy of raw P datasets, supported by ad-
vancements in remote sensing technologies, meteorological
models, and observational networks. However, when BCC
methods are applied, water imbalance errors from other bud-
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Figure 3. Spatial distribution of the 1Res error on a monthly scale for different combinations of budget components. The unit of 1Res is
mm. Each subplot represents a distinct combination, where the first digit corresponds to the P product, the second to the ET product, and the
third to the TWSC product. The detailed definitions of these combinations are provided in Eq. (3).

get components, such as ET, may be inappropriately redis-
tributed to the corrected P dataset in an effort to enforce
overall water budget closure. As a result, while the total wa-
ter budget is balanced, the accuracy of the corrected P data
is compromised.

The impact of enforcing water budget closure using exist-
ing BCC methods on ET was particularly significant (Fig. 4),

with approximately 50 % of basins exhibiting improved ac-
curacy in corrected ET. For TWSC, most basins showed de-
creased accuracy. For Q, CC′ and NSE′ values ranged from
0 to −0.5, while MAE′ and RMSE′ were primarily concen-
trated between 0 and −20 mm. Consequently, the accuracy
of corrected Q declined, with CC, NSE, MAE, and RMSE
decreasing by approximately 0.1, 0.2, 3, and 5 mm, respec-
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Figure 4. Box plot quantifying the errors introduced into budget components by existing BCC methods when closing the water budget.
(a)–(d) represent the results of the CC′, NSE′, MAE′, RMSE′ indicators, respectively. Positive values indicate an improvement in accuracy
relative to the reference values after applying existing BCC methods, while negative values indicate a decline. Different colors represent
different BCC methods.

tively. These findings indicate that while redistributing the
entire1Res enhances the consistency of budget components,
it provides limited improvement in their accuracy and may
even introduce further errors. Identifying an optimal redistri-
bution strategy for1Res errors could help mitigate this issue.

4.2.2 Negative values

This section examines the occurrence of negative values in
budget components arising from the application of existing
BCC methods to close the water budget. For each budget
component, the proportion of months with negative values
relative to the total time series was computed (Fig. 6). Over-
all, the fraction of negative values across budget components
ranges from 0 % to 10 %, with the majority falling below 5 %.
This proportion is notable, as negative values indicate sub-
stantial inaccuracies in the redistribution of water imbalance
errors by existing BCC methods. When a budget component
exhibits a negative value, the accuracy of the remaining bud-
get components is also compromised. The relatively high oc-
currence of negative values highlights the need for method-
ological improvements to enhance the performance of exist-
ing BCC methods.

Among the individual budget components, ET and TWSC
exhibit the most pronounced negative values, followed by
P , while Q shows the least (Fig. 6). Notably, the proportion
of negative values in budget components varies significantly
across climate types. For P , negative values generally remain
below 5 % but can occasionally reach 7 % in arid regions.
The likelihood of negative P values is higher in tropical and

arid climates (mostly below 5 %) compared with temperate
and cold regions (around 1 %). For ET, the proportion of neg-
ative values is largely below 5 %, but it is notably higher in
cold climates (reaching 9 %), followed by arid and temperate
regions (approximately 1 %–3 %). Tropical climates exhibit
the lowest proportion of negative ET values, with most in-
stances below 1 %. Q consistently shows a low occurrence
of negative values across all climate types (generally below
3 %), with a slightly higher probability in tropical regions
than in other zones. The proportion of negative TWSC val-
ues ranges from 3 % to 10 %, being lowest in tropical cli-
mates (below 5 %), while other climate types exhibit values
between 3 % and 10 %. Previous studies based on the Budyko
framework (ignoring TWSC) at the annual scale have shown
that water balance is primarily governed by P and poten-
tial ET (Sankarasubramanian and Vogel, 2002; Zhang et al.,
2008; Koster and Suarez, 1999). However, these influences
vary across climatic regions. For example, in tropical and
arid regions, P tends to be the dominant controlling factor
(Du et al., 2024; Wu et al., 2018; Liu et al., 2017; Guo et al.,
2022). In cold regions, the Budyko model exhibits relatively
limited accuracy in estimating ET at the annual scale (Lute et
al., 2014; Gao et al., 2010; Potter et al., 2005). These previ-
ous findings at the annual scale provide indirect support for
our results derived at the monthly scale.

Figure 7 presents the seasonal cycle of negative values
across different climate zones, examining whether these val-
ues exhibit significant seasonal patterns. Negative P values
predominantly occur in winter and spring, with a higher pro-
portion from January to March in tropical climates compared
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Figure 5. Box plot illustrating precipitation errors introduced by correcting1Res using existing BCC methods across 13 basins with sufficient
observational precipitation data. The x axis represents the 13 basins in the following order: NIGER, OB, MISSISSIPPI, SACRAMENTO,
SAN JOAQUIN, SUSQUEHANNA, BRAZOS, FRASER, NELSON, MURRAY, RIO EBRO, ELBE, and KURA.

Figure 6. Percentage of negative values for corrected datasets of
budget components induced by closing the water budget. Different
colors indicate distinct climate classifications.

to arid regions. ET tends to show negative values more fre-
quently in winter and spring, with a lower likelihood in sum-
mer and autumn. Except in summer, cold climate zones are
most susceptible to negative ET values. Among the four bud-
get components,Q has the lowest occurrence of negative val-
ues. Negative TWSC values exhibit no obvious seasonal pat-
tern, with arid regions exhibiting a higher likelihood of neg-
ative values throughout the year compared to other climate
types. These findings indicate that the occurrence of negative
values varies significantly across seasons and climate zones.
Future research should account for this seasonal variability
to further refine existing BCC methods.

4.2.3 Ensemble errors

Figure 8 presents the ensemble errors in budget components
(i.e., F (Re) in Eq. 27) introduced by existing BCC meth-
ods (CKF, MCL, MSD, and PR). All four methods exhibit
similar spatial distribution patterns. Notably, high ensemble
errors (F (Re) > 10 %) are concentrated in the northwestern
basins of North America, particularly in Alaska, suggesting
substantial variations in budget components in these regions.
Basins with minor ensemble errors (5 %< F (Re)≤ 10 %)
generally cover larger areas, such as African and North-
ern Asia. Although these errors are relatively small, they
remain non-negligible. Basins with lower ensemble errors
(F (Re)≤ 5 %) also cover some basins. Further analysis of
1Res in basins with higher F (Re) values reveals a strong
correlation, as these basins also exhibit larger 1Res. This
finding highlights the limitations of existing BCC methods
in effectively redistributing 1Res errors.

To determine whether the error cost introduced by exist-
ing BCC methods in closing the water budget outweighs the
reduction in water imbalance error, we analyzed the relation-
ship between the reduction in 1Res error and the introduced
budget component errors (Fig. 9). As shown in Fig. 9, with
the exception of the PR method, the basins where |RAE| ex-
ceeds |Res| are largely consistent across the other three BCC
methods. This discrepancy arises because the PR method re-
distributes 1Res based on the magnitude of budget com-
ponents, whereas the CKF, MCL, and MSD methods re-
distribute 1Res according to the estimated errors in budget
components.
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Figure 7. Seasonal cycle of the proportion of negative errors for budget components. Different colors representing various climate types. The
Southern Hemisphere data by applying a 6-month shift to align its seasonal phases with those of the Northern Hemisphere.

Figure 8. Ensemble errors in budget components introduced by closing the water budget using existing BCC methods.

For the CKF, MCL, MSD, and PR methods, the propor-
tions of basins where |RAE| exceeds |Res| are 44.05 %,
52.44 %, 56.79 %, and 77.38 %, respectively. This indicates
that, for all four methods, the introduced |RAE| error in bud-
get components surpasses the reduction in water imbalance
error in more than 40 % of the basins. These findings un-
derscore the non-negligible uncertainties introduced by these

methods. Striking a balance between reducing water imbal-
ance error and minimizing the impact of budget component
errors remains a critical challenge, motivating us to propose
the IWE-Res method to identify optimal balance.
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Figure 9. Comparison of relative absolute error (RAE) and residual error (Res) for four BCC methods (CKF, MCL, MSD, PR) across various
basins. The black lines in the red shaded area on the upper half of the y axis indicate that the error introduced by the BCC methods for budget
components exceeds the reduction in 1Res error (|RAE|> |Res|), while the green shaded area on the lower half of the y axis represents
cases where the error introduced is less than the reduction in 1Res error (|RAE|< |Res|).

4.3 Verifying the accuracy of the proposed IWE-Res
method

Based on the error analysis of existing BCC methods in
Sect. 4.2, this section assesses the accuracy and reliability of
the proposed IWE-Res method. The evaluation is conducted
through a comparative analysis with PR, CKF, MCL, and
MSD, focusing on three key aspects: the errors of individ-
ual budget components, the occurrence of negative values,
and ensemble errors.

Figure 10 compares the accuracy of the proposed IWE-Res
method with existing PR, CKF, MCL, and MSD methods
from the perspective of errors in individual budget compo-
nents. The red and blue lines represent the IWE-Res method
and the existing BCC methods, respectively, while the bars
indicate the relative accuracy improvement of the IWE-Res
method compared to the BCC methods. As shown in Fig. 10,
the proposed IWE-Res method exhibits consistently higher
accuracy than all existing CKF, MCL, MSD, and PR meth-

ods for budget components P , ET, Q, and TWSC. This re-
sult highlights the superior capability of the IWE-Res method
in optimizing errors in budget corrected datasets. Accord-
ing to the statistical metrics CC, NSE, MAE, and RMSE,
the proposed IWE-Res method improves the corrected P

data by 4.2 %, 21.3 %, 25.5 % and 29.5 %, respectively, com-
pared to the existing BCC methods. For corrected ET, the im-
provements are 6.9 %, 265.7 %, 17.6 % and 24.7 %, respec-
tively; for correctedQ, the improvements are 3.4 %, 185.1 %,
67.1 %, and 69.0 %; and for corrected TWSC, the improve-
ments are 0.0 %, 7.0 %, 7.5 %, and 6.8 %.

Table 2 presents the percentage of negative values ob-
served in the corrected budget components for the proposed
IWE-Res method and existing BCC methods. One of the key
contributions of the IWE-Res method is its ability to ad-
dress the critical limitation of negative value generation in
existing BCC methods. As a result, the percentage of nega-
tive values in the corrected P , ET, Q, and TWSC data us-
ing the proposed IWE-Res method is zero. In contrast, the
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Figure 10. Performance comparison of the proposed IWE-Res method with existing BCC methods in corrected individual budget compo-
nents. The red and blue lines in the figure represent the average values across all basins considered in this study.

corrected P , ET, Q, and TWSC data obtained from exist-
ing BCC methods contain negative values to varying degrees
(for a detailed analysis of negative values, see Sect. 4.2.2).
These results demonstrate that, in addition to improving the
accuracy of budget components relative to observations, the
proposed IWE-Res method effectively eliminates the issue of
negative values inherent in existing BCC methods.

We further evaluate the accuracy and reliability of the pro-
posed IWE-Res method using the ensemble error metric de-
fined by Eq. (27) (Fig. 11), where lower values indicate bet-
ter model performance. As shown in Fig. 11, the IWE-Res
method significantly reduces ensemble errors compared to
existing BCC methods. For instance, in the CKF method, the
median ensemble error decreases from above 5 % to below
5 %. This reduction is even more pronounced in the MCL,
MSD, and PR methods. Additionally, the interquartile ranges
under IWE-Res are notably narrower, suggesting improved
control over stochastic variability. For example, in the PR
method, the interquartile range shrinks from 5 %–8 % (exist-
ing BCC methods) to 1 %–2 % (IWE-Res), reflecting an ap-
proximate 67 % reduction in variability. These findings high-
light the robustness of the IWE-Res method in minimizing
integrated errors, aligning with its previously demonstrated
excellence in single-variable error optimization and negative
value elimination.

Figure 11. Performance comparison of the proposed IWE-Res
method and existing BCC methods based on the ensemble errors
of budget components.

4.4 Identifying the optimal balance for redistributing
water imbalance error

Based on the proposed IWE-Res method, this section aims
to determine the optimal balance for redistributing water
imbalance errors across different climate zones (Tropical,
Arid, Temperate, and Cold climate zones) to achieve the best
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Table 2. The percentage of months with negative values in the corrected datasets of budget components P , ET, Q, and TWSC for the
proposed IWE-Res method and existing BCC methods. The percentages in the table represent the average values across all basins considered
in this study.

P ET Q TWSC

Existing IWE-Res Existing IWE-Res Existing IWE-Res Existing IWE-Res

CKF 0.31 % 0 % 6.73 % 0 % 0.75 % 0 % 4.81 % 0 %
MCL 1.82 % 0 % 4.78 % 0 % 0.77 % 0 % 7.61 % 0 %
MSD 1.68 % 0 % 7.03 % 0 % 0.82 % 0 % 5.40 % 0 %
PR 0 % 0 % 0.57 % 0 % 0.72 % 0 % 0.47 % 0 %

trade-off (Figs. 12–15). Specifically, it seeks to minimize
both water imbalance errors and the uncertainties in budget
components introduced by enforcing water budget closure.
The findings offer a valuable reference for generating high-
precision datasets of budget components with a closed wa-
ter budget in diverse climate regions. When developing the
IWE-Res method, we incorporated multiple BCC methods,
each based on different principles. As a result, the identi-
fied optimal balance results vary across methods. This sec-
tion presents results for the CKF method only.

Overall, the optimal balance varied among basins located
in different climate zones (Figs. 12–15). In most basins
within the Tropical, Arid, and Temperate zones, the optimal
balance was achieved when only a portion of the water im-
balance error, rather than the entire error, was redistributed to
budget components. However, this pattern was not observed
in the Cold region.

For most basins in the Tropical climate zone (Fig. 12), the
optimal balance was reached when 40 %–90 % of 1Res was
reallocated to budget components, suggesting that the cor-
rected budget datasets achieve their highest accuracy within
this range. Notably, approximately 20 % of basins attained
their optimal balance when 80 %–90 % of 1Res was re-
distributed, while about 70 % did so within the 40 %–50 %
range. Therefore, in Tropical basins, if sufficient observa-
tional data are unavailable to precisely determine the optimal
balance, redistributing 40 %–50 % of 1Res to budget com-
ponents is recommended to obtain the most accurate dataset.

For basins in the Arid climate zone (Fig. 13), optimal bal-
ance are generally found when 40 %–90 % of 1Res is re-
distributed, indicating that the corrected budget component
datasets achieve their highest accuracy within this range.
Specifically, approximately 31 % of basins reach their op-
timal balance at 40 %–50 % redistribution, 38 % at 60 %–
80 %, and over 20 % at 90 %. Thus, the distribution of opti-
mal balance in Arid basins does not follow a distinct pattern.

In the Temperate climate zone (Fig. 14), optimal bal-
ance are concentrated within the 40 %–90 % range. Approx-
imately 53 % of basins achieve their optimal balance when
40 %–50 % of 1Res is redistributed, while 17 % and 13 %
reach it at 70 % and 90 % of the 1Res redistribution. A
smaller proportion of basins achieve optimal balance at 60 %

and 80 % of the 1Res redistribution. Overall, redistributing
40 %–50 % of1Res minimizes the combined error from both
the introduced budget component error and the remaining
water imbalance error in most basins.

In Cold climate zone basins (Fig. 15), the optimal bal-
ance is typically reached when the entire1Res is fully redis-
tributed. This suggests that complete redistribution of 1Res
does not compromise the accuracy of the budget components.
This is primarily due to the trend observed in the IWE curve,
which initially increases – indicating rising error – before
decreasing, in contrast to the patterns seen in most basins in
Figs. 12–14. A comparison of 1Res and the negative val-
ues introduced by full redistribution of 1Res across climate
zones reveals that, in Cold regions, negative values predomi-
nantly occur in ET. This is likely due to the inherently lower
ET values in Cold regions, which increases the likelihood of
negative values when 1Res is redistributed. However, errors
introduced in other budget components, such as P and Q,
remain relatively low under full redistribution of 1Res.

5 Discussion

5.1 Uncertainty introduced by existing BCC methods

To quantify the uncertainty introduced by existing BCC
methods in closing the water balance, we evaluated four BCC
methods across 84 global basins. The assessment focused on
errors in individual budget components, occurrences of neg-
ative values, and ensemble errors in budget components. Our
findings indicate that while existing BCC methods improve
the consistency of budget components, their ability to en-
hance the accuracy of these components is limited and, in
some cases, may even reduce it. It is worth noting that the
datasets generated by both the existing BCC methods and
the IWE-Res method proposed in this study were not further
bias-corrected against independent observations. For basin-
specific applications requiring higher reliability, we recom-
mend additional bias correction.

Several factors may contribute to this reduction in accu-
racy. First, most existing BCC methods estimate errors in
budget components without incorporating independent ob-
servational data. These methods then redistribute water im-
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Figure 12. IWE-Res curve in basins of Tropical climate zone for identifying the optimal balance that enhances water budget closure and
reduces uncertainty.

Figure 13. IWE-Res curve in watersheds of Arid climate zone for identifying the optimal balance that enhances water budget closure and
reduces uncertainty.

balance errors based on these internally estimated uncertain-
ties (Sect. 3.2). However, the absence of observational con-
straints undermines the reliability of the estimated compo-
nent errors, which in turn leads to a suboptimal and po-
tentially biased allocation of the imbalance. As previously
noted, inaccurate error estimates for a single variable can

propagate through the redistribution process, biasing the
residual redistribution to the remaining budget components
and ultimately lowering the accuracy of all water budget
components (Abolafia-Rosenzweig et al., 2021). Incorporat-
ing high-quality observational data into the error estimation
process is therefore essential to improve the robustness of
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Figure 14. IWE-Res curve in watersheds of Temperate climate zone for identifying the optimal balance that enhances water budget closure
and reduces uncertainty.

BCC methods; Second, existing BCC methods are limited
by their assumption that the entire water imbalance error can
be fully attributed to errors in the measured budget compo-
nents. These methods enforce water budget closure by com-
pletely redistributing the water imbalance error among the
budget components, yet this residual may also stem from sys-
tematic biases and unmeasured processes – not just estima-
tion errors of measured budget components. In this study, we
propose an iterative optimization approach that seeks a bal-

anced redistribution of the 1Res, aiming to minimize both
the errors introduced to individual budget components and
the remaining 1Res. This method significantly improves the
accuracy of the corrected datasets. Future research may fur-
ther enhance this framework by integrating it with physically
based hydrological or land surface models, which could pro-
vide a promising pathway toward more physically consis-
tent and realistic water budget estimates; Third, the obser-
vational datasets themselves often fail to strictly satisfy wa-
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Figure 15. IWE-Res curve in watersheds of Cold climate zone for identifying the optimal balance that enhances water budget closure and
reduces uncertainty.

ter budget closure due to measurement limitations and sam-
pling errors. This introduces uncertainty when using these
datasets to validate the accuracy of BCC-corrected estimates.
For instance, even if the corrected datasets more closely ap-

proximate the true values of budget components, the lack of
ground-truth observations presents a fundamental challenge
for objectively evaluating the effectiveness of these correc-
tions. Future work should prioritize the development of more
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objective and physically grounded evaluation metrics to as-
sess the accuracy of BCC-corrected datasets. Although this
challenge lies beyond the scope of the present study, address-
ing it will be critical for advancing the reliability of water
budget assessments.

5.2 Identification of the optimal balance

Each budget component inherently contains observational or
model-based errors. Indiscriminately redistributing water im-
balance errors across all budget components to achieve com-
plete water budget closure can introduce additional uncer-
tainties. By identifying the optimal balance for error redistri-
bution across different climate zones, we observed significant
variations in distribution patterns. In tropical and temperate
regions, most basins achieved their optimal balance when
40 %–90 % of the water imbalance error was redistributed,
with a concentration around the 40 %–50 % range. In arid
regions, the distribution of optimal balance was more dis-
persed, lacking a clear concentration within any specific re-
distribution range but generally falling within the 40 %–90 %
range. Cold climate regions exhibited distinct characteristics,
with most basins achieving the smallest error when the water
imbalance error was fully redistributed.

Overall, optimizing the redistribution ratio of water im-
balance errors is critical for improving the accuracy of cor-
rected budget components. However, the sensitivity of these
components to error redistribution varies, and both over- and
under-correction can propagate new imbalances across the
remaining terms, ultimately misrepresenting the underlying
hydrological processes. While existing BCC methods esti-
mate redistribution weights based on the relative uncertainty
of each component, future research should examine the phys-
ical rationale behind these redistributions. The spatiotempo-
ral variability of residual errors offers valuable insight into
their dominant sources, which can serve as an independent
reference to validate the influence weights computed by BCC
methods. For instance, as shown in previous studies, the con-
tribution of TWSC to residual errors diminishes at annual
and especially decadal timescales, where P and ET uncer-
tainties become more dominant. Spatial patterns of residuals
also reflect the nature of regional precipitation regimes. In re-
gions dominated by frontal systems, such as temperate zones,
remotely sensed precipitation products tend to capture rain-
fall events more accurately, leading to smaller residuals. In
contrast, in areas characterized by convective rainfall – such
as the tropics and arid zones – larger residuals are observed,
likely due to the higher uncertainty in capturing short-lived
and spatially localized storm events.

Notably, the choice of spatial resolution has a signifi-
cant impact on the results (Aziz et al., 2022; Bormann,
2006; Senan et al., 2022). Following many previous stud-
ies (Lehmann et al., 2022; Abolafia-Rosenzweig et al., 2021;
Luo et al., 2023c; Wang et al., 2014; Tan et al., 2022; Sahoo
et al., 2011), the BCC method in this study is also applied at

the basin scale rather than the grid scale for the following rea-
sons: (1) Achieving water budget closure at the grid scale is
complex and challenging due to the difficulty of quantifying
all water flux and storage components flowing into and out
of the grid, including P , ET, TWSC, lateral inflow and out-
flow, leakage losses, and human water withdrawals and re-
turns. Several of these components, such as lateral flow and
leakage, are poorly observed or highly uncertain, and their
omission introduces substantial error; (2) The datasets of dif-
ferent variables have varying spatial resolutions, and resam-
pling them to a common resolution introduces uncertainties,
which in turn affect the accuracy of water budget closure cor-
rection; (3) The coarse spatial resolution of GRACE-derived
TWSC data limits their applicability for water budget closure
calculation at the grid scale. At monthly resolution, TWSC
is a critical component and cannot be neglected. Averaging
GRACE data to the basin scale helps reduce random errors
by offsetting positive and negative biases, thereby increasing
the reliability of water budget closure correction; (4) Despite
advances in remote sensing and in situ observation networks,
grid-scale uncertainties remain substantial for some budget
components, such as ET. Basin-scale analysis therefore re-
duces uncertainty and improves the reliability of water bud-
get closure correction results.

6 Conclusions

Existing BCC methods introduce new uncertainties when
closing the water budget due to challenges in accurately
estimating errors in budget components and the integrated
concept of water imbalance error. This study first evaluates
the issues arising from existing BCC methods by compar-
ing the errors introduced in budget components with the im-
provement in water budget closure precision. A new method,
termed IWE-Res, is proposed to identify the optimal redistri-
bution of1Res, aiming to minimize the sum of the remaining
residual error and the introduced budget component error. To
assess the reliability of the IWE-Res method, we compare it
with four different BCC methods across 84 basins spanning
various global climate zones. The main conclusions are as
follows:

1. While applying existing BCC methods reduces water
imbalance error, it simultaneously introduces new errors
in budget components. For P , a decline in accuracy is
observed in most basins. For Q, the corrected data ex-
hibits lower performance than the raw data, with reduc-
tions in CC, NSE, MAE, and RMSE of approximately
0.1, 0.2, 3, and 5 mm, respectively. At the basin scale,
more than 40 % of basins experience budget component
errors greater than the reduction in 1Res after applying
existing BCC methods.

2. The proportion of negative corrected values in each bud-
get component is predominantly within 0 %–5 %. For
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ET, negative corrected values are mostly below 5 %,
though they reach 9 % in cold climate regions. For P ,
the proportion is primarily below 5 %, with rare occur-
rences around 7 %. Q generally exhibits a lower pro-
portion of negative values, mostly below 3 %. In TWSC,
negative values are concentrated between 3 % and 10 %.

3. The proposed IWE-Res method improves the accuracy
of corrected budget components compared to existing
BCC methods. Based on RMSE, it improves the accu-
racy of corrected P by 29.5 %, corrected ET by 24.7 %,
corrected Q by 69.0 %, and corrected TWSC by 6.8 %.

4. Except in cold regions, redistributing 40 %–90 % of
1Res to budget components yields the optimal balance,
minimizing the sum of the remaining 1Res and the in-
troduced budget component error. In tropical and tem-
perate regions, the optimal balance is typically achieved
when 40 %–50 % of 1Res is redistributed. Similarly, in
arid regions, redistributing 40 %–90 % of 1Res effec-
tively reduces errors, though the optimal redistribution
ratio varies across basins. In most cold-region basins,
the total error is minimized when the entire 1Res is re-
distributed.
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