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Abstract. Accurate rainfall observations with high spatial
and temporal resolutions are key for hydrological applica-
tions, in particular for reliable flood forecasts. However, rain
gauge networks operated by regional or national environ-
mental agencies are often sparse, and weather radars tend to
underestimate rainfall. As a complementary source of infor-
mation, rain gauges from personal weather stations (PWSs),
which have a network density 100 times higher than ded-
icated rain gauge networks in the Netherlands, can be used.
However, PWSs are prone to additional sources of error com-
pared to dedicated gauges, because they are generally not in-
stalled and maintained according to international guidelines.
A systematic long-term analysis involving PWS rainfall ob-
servations across different seasons, accumulation intervals,
and rainfall intensity classes has been missing so far. Here,
we quantitatively compare rainfall estimates obtained from
PWSs with rainfall recorded by automatic weather stations
(AWSs) from the Royal Netherlands Meteorological Insti-
tute (KNMI) over the 2018–2023 period, including a sample
of 1760 individual rainfall events in the Netherlands. This
sample consists of the 10 highest rainfall accumulations per
season and accumulation intervals (1, 3, 6, and 24 h) over
a 6-year period. It was found that the average of a cluster
of PWSs severely underestimates rainfall (around 36% and
19% for 1 h and 24 h intervals, respectively). By adjusting
the data with areal reduction factors to account for the spatial
variability of rainfall extremes and applying a bias correction
factor of 1.22 to compensate for instrumental bias, the aver-
age relative bias decreases to−5 % for 1 h intervals or almost
zero for intervals of 3 h and longer. The highest correlations
(0.85 and 0.86) and lowest coefficients of variation (0.14 and
0.18) were found for 24 h intervals during winter and autumn,
respectively. We show that most PWSs are able to capture

high rainfall intensities up to around 30 mm h−1, indicating
that these can be utilized for applications that require rain-
fall data with a spatial resolution of the order of kilometres,
such as for flood forecasting in small, fast-responding catch-
ments. PWSs did not observe the most intense rainfall events,
which were associated with return periods exceeding 10 or
50 years (above approximately 30 mm h−1) and occurred in
spring and summer. However, the spatial distribution of rain-
fall likely played a large role in the observed differences
rather than instrumental limitations. This emphasizes the im-
portance of having a dense rain gauge network. In addition,
the variation in undercatch is likely partly due to the dis-
proportional underestimation of tipping bucket rain gauges
with increasing intensities. Outliers during winter were likely
caused by solid precipitation and can potentially be removed
using a temperature module from the PWS. We recommend
additional research on dynamic calibration of the tipping vol-
umes to improve this further.

1 Introduction

Accurate rainfall observations are essential for hydrologi-
cal applications, such as flood forecasting. However, rain-
fall is highly variable in time and space, making it chal-
lenging to capture its dynamics accurately. Consequently,
the stochastic nature of rainfall is one of the main sources
of uncertainty in hydrological modelling (Niemczynowicz,
1999; Moulin et al., 2009; Arnaud et al., 2011; Lobligeois
et al., 2014; Beven, 2016; McMillan et al., 2018). Small,
fast-responding catchments especially require accurate rain-
fall observations with high spatial and temporal resolution
for reliable predictions, such as on the order of kilometres
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and minutes for catchment areas of a few square kilometres
(Berne et al., 2004; Ochoa-Rodriguez et al., 2015; Cristiano
et al., 2017; Thorndahl et al., 2017). To reduce the uncer-
tainty of catchment-scale rainfall estimates, accurate instru-
ments with a high spatio-temporal resolution are required.

Rain gauges and weather radars are widely used instru-
ments for providing rainfall information for hydrological
forecasting. Each instrument has its own advantages and lim-
itations. Rain gauges can record rainfall relatively accurately
at the point scale. These rain gauges can be automatic or
manual, observing at short regular intervals (e.g. recorded
every 12 s and archived at 10 min time steps in the Nether-
lands) or daily, respectively. One limitation is that these mea-
surements are strictly only representative of the orifice area
of the individual recording gauge, and the network density
of dedicated rain gauges is not sufficient to capture small-
scale rainfall dynamics (Villarini et al., 2008; Hrachowitz
and Weiler, 2011; Van Leth et al., 2021). In addition, rainfall
observations from manual gauges, which are emptied into a
measuring cylinder and read once a day, are not available in
(near) real time. Weather radars, on the other hand, provide
data with high spatial and temporal resolution (i.e. typically
1 km2 and 5 min) that are available in near real time. How-
ever, radar rainfall estimates are prone to substantial uncer-
tainty and bias due to several sources of error. These are re-
lated to, for example, the calibration of the instrument itself,
signal attenuation, and the conversion from measured reflec-
tivities aloft into rainfall rates at the ground (Uijlenhoet and
Berne, 2008; Krajewski et al., 2010; Villarini and Krajewski,
2010).

Alternatively, crowdsourced rain measurements, in the
form of low-cost weather observation devices, may poten-
tially provide accurate local rainfall observations. These de-
vices are referred to as personal weather stations (PWSs)
and can contain a rain gauge module, which records rain-
fall at a high temporal resolution (5 min). The popularity
of these low-cost sensors equipped with a rain gauge has
been increasing in the last decade by up to around one PWS
for 9, 11, 13, and 15 km2 in May 2024 in the Netherlands,
Denmark, Switzerland, and Germany, respectively. Figure 1
shows several tens of thousands of PWSs with varying den-
sities across Europe, with more than 60 % having five or
more neighbouring stations within 10 km. In the Nether-
lands, these sensors currently have a network density which
is about 100 times higher than that of the automatic weather
stations (AWSs), with even higher densities in urban ar-
eas, where AWS densities are typically low (Overeem et al.,
2024b; Brousse et al., 2024). Once the PWS is connected
to an online platform such as the Weather Observations
Website (WOW; https://wow.metoffice.gov.uk/, last access:
25 August 2025), the Weather Underground website (https:
//www.wunderground.com/wundermap, last access: 25 Au-
gust 2025), or Netatmo (https://weathermap.netatmo.com/,
last access: 25 August 2025), observations are automatically
uploaded to the respective platform. The PWS data are open-

access and, in the case of Netatmo, they can be extracted in
near real time using an application programming interface
(API) every 5 min. However, since they are installed, oper-
ated, and maintained largely by non-specialist citizens, the
data quality of these PWSs is expected to be lower than that
of professionally operated gauges of national meteorological
or hydrological services.

Rain gauges from PWSs are prone to several sources of
error. These errors can be grouped into three categories. The
first category consists of PWS-related errors, such as those
related to inappropriate setups and a lack of maintenance
of rain gauges, calibration errors, rounding due to data pro-
cessing, and connectivity issues during data transfer (de Vos
et al., 2017; de Vos, 2019). The second category includes
general rain-gauge-related errors, such as undercatch due to
wind, solid precipitation or evaporation, and the intrinsic tip-
ping bucket error resulting from the given volume of water
that needs to be collected before the bucket tips (Habib et al.,
2001; Lanza and Vuerich, 2009). A third category of errors
arises due to spatial sampling uncertainties and thus differ-
ences between point rainfall estimates resulting from gauges
that are not collocated (Villarini et al., 2008).

Rain gauges of PWSs typically use an unheated tipping
bucket mechanism to record the rainfall volumes. The qual-
ity of rainfall intensity estimates from these mechanisms has
been shown to be intensity-dependent. Tipping buckets are
known to overestimate rainfall at low intensities and underes-
timate it at high intensities (Marsalek, 1981; Shedekar et al.,
2009; Colli et al., 2014). In addition, these errors can be am-
plified if the PWSs are not installed correctly and maintained
adequately.

With respect to the PWS-specific sources of error, de Vos
et al. (2017) used an experimental setup to investigate part
of the instrument-related and data-processing-related errors
from PWSs. They showed that, under ideal circumstances
(i.e. installed and maintained according to World Meteoro-
logical Organization standards), three rain gauges, from the
Netatmo brand, recorded rainfall with high accuracy. Col-
locating the PWSs very close to one of the Royal Nether-
lands Meteorological Institute (KNMI) AWSs, spatial sam-
pling errors were also limited. Despite the potential of accu-
rate rainfall measurements from PWSs, their observations are
often not optimal, as the stations are not necessarily installed
according to guidelines from the World Meteorological Or-
ganization. For that reason, de Vos et al. (2019) developed
a quality control (QC) algorithm to filter outliers from the
PWS network without using data from an official rain gauge
network or weather radar. Similarly, Bárdossy et al. (2021)
developed a QC algorithm using a reference observation net-
work to filter outliers and correct the bias. Chen et al. (2018)
assigned trust scores based on spatial consistency between
stations.

While previous work has shown that implementing these
QC algorithms yields an overall improvement in the quality
of the PWS data (de Vos et al., 2019; Bárdossy et al., 2021;
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Figure 1. Indication of the density of Netatmo PWSs with rain gauges within Europe, showing the number of PWS neighbours within a
radius of 10 km. Data extracted from the Netatmo API in April 2024.

Graf et al., 2021; Overeem et al., 2024a; Nielsen et al., 2024;
El Hachem et al., 2024), a systematic long-term analysis of
the QC algorithm of de Vos et al. (2019) for different seasons,
accumulation intervals, and intensity classes has been miss-
ing so far. In particular, a focus on high rainfall intensities is
important, as the undercatch of rain gauges is likely dispro-
portional with increasing intensities. Here, we aim to quanti-
tatively compare rain data from PWSs and AWSs, expanding
on the results of de Vos et al. (2017, 2019). While weather
radar data have a higher spatial resolution than AWSs, they
are not used in this research as a reference because they
are prone to several sources of error and therefore signifi-
cantly underestimate rainfall. Note that in previous research
by Overeem et al. (2024a) and Nielsen et al. (2024), rainfall
estimates from PWSs were actually used to correct a rainfall
radar product.

The objective of this study is to systematically quantify
and describe the uncertainties arising from PWS rainfall es-
timates. By analysing the 10 largest rainfall accumulations
with return periods of up to 50 years during the period be-
tween 2018 and 2023, for 11 AWSs, four seasons, and four
time intervals, we can draw statistically meaningful conclu-

sions about this. To the best of the authors’ knowledge, such
a long-term study using PWS data that focuses on the most
intense rainfall events has not been performed before. Quan-
tifying the limitations of PWS rainfall observations and ad-
dressing them enhances the potential of PWSs for a wide
range of applications, including hydrological modelling, ur-
ban hydrology, and (hydrological) forecasting.

2 Study area and data

This study was carried out over the period 2018–2023 in
the Netherlands, which has a land surface area of approx-
imately 35 000 km2 (Fig. 3a). This period was chosen due
to the PWS data availability, which was too low (less than
five PWSs within a 10 km distance of the AWS) before 2018
and increased over the years. The Netherlands has a maritime
climate (Cfb according to the Köppen classification), where
winters are mild with an average temperature of 3.8 °C and
summers are relatively cool (17.2 °C) (KNMI, 2024). The av-
erage yearly rainfall between 1990 and 2020 is 851 mm yr−1

over the area (KNMI, 2024). In addition, regional variabil-
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Figure 2. Average rainfall per month and season in the Nether-
lands over the period 1991–2020, based on data from 13 automatic
weather stations spread over the country and obtained from KNMI
(2024). Coloured bars indicate the average rainfall per month (mil-
limetres per month, left y axis), and coloured hatched bars indicate
the average rainfall for each season (millimetres per season, right y
axis). Vertical grey lines indicate the interquartile range.

ity in rainfall extremes is observed, with higher values in the
western part of the country (Overeem et al., 2009a; Beersma
et al., 2019). The Dutch climate has a quite uniform distri-
bution of precipitation over the meteorological seasons, ex-
cept during spring, which is the driest season and contains
the driest month (i.e. April, average 41 mm) (see Fig. 2).
August is on average the wettest month (average 87.4 mm)
(KNMI, 2024). However, rainfall characteristics differ over
the seasons. Rainfall during the summer months and the
beginning of autumn is characterized by shorter durations
and higher precipitation intensities as a consequence of con-
vection during these months. In contrast, during the winter
months, lower intensities and more frequent and longer pre-
cipitation events occur (De Vries and Selten, 2023). These
different rainfall characteristics lead to a distinct seasonal cy-
cle in spatial rainfall correlation in the Netherlands (Van de
Beek et al., 2012, Fig. 4b), with longer correlation distances
for winter than for summer.

2.1 Personal weather stations

For the analysis here, rain gauges from the Netatmo brand of
PWSs were used. These PWSs have a large coverage over the
Netherlands which has slightly increased since 2018 (around
one PWS per 9 km2 area in 2024; Fig. 3a). This rain gauge
type uses a tipping bucket mechanism with a nominal vol-
ume of 0.101 mm according to the manufacturer (Netatmo,
2024a). These gauges can also be calibrated manually by the
owner by changing – via software – the volume per tip, re-
sulting in deviating tipping bucket volumes (approximately
13.5 % is manually calibrated according to de Vos et al.,
2019). The diameter of the collecting funnel is 13 cm (lead-
ing to an orifice area of 133 cm2). According to the manufac-

turer, the accuracy is 1 mm h−1 for a measurement range of
0.2 to 150 mm h−1, and the PWS operates best for tempera-
tures between 0 and 50 °C (Netatmo, 2024a). However, it is
unclear what this accuracy exactly entails, thereby showing
the need for this study.

The default rain gauge processing software records the
number of tips over approximately 5 min intervals, which is
communicated wirelessly to an indoor module. Next, the data
are transmitted via Wi-Fi to the Netatmo platform. The Ne-
tatmo software resamples this to regular 5 min intervals by
assigning the data to the next full 5 min interval. When within
a 5 min interval no data are transferred, this time interval is
not included by Netatmo (see the supporting information in
Table A1 for an example). When there is a connection failure
between the rain gauge module and the indoor module, the
rainfall will likely be attributed to a timestamp when there is
a connection again, potentially aggregating it over a longer
time interval than approximately 5 min (see the supporting
information in Table A2 for an example). However, when the
connection of the indoor module is also temporarily inter-
rupted, data are lost.

2.2 Reference dataset

The PWSs were evaluated against data from AWSs from the
KNMI. The KNMI operates a network of 33 AWSs across the
Netherlands, which are relatively homogeneously distributed
with approximately one AWS per 1000 km2 area (Fig. 3a).
These AWSs estimate cumulative rainfall every 12 s by mea-
suring the displacement of a float placed in a reservoir. The
data are archived at a lower resolution, i.e. every 1, 10 min,
and hourly. Here, AWS data with resolutions of 10 min and
1 h are used. The 10 min dataset contains unvalidated rainfall
data, while the hourly data have been validated (Brandsma
et al., 2020). The collecting funnel has a diameter of 16 cm
(corresponding to an orifice area of 201 cm2) and the device
is heated for temperatures below 4 °C. In addition, these sta-
tions are placed in open locations using an English setup or
Ott windscreen to reduce errors from wind-induced under-
catch (Brandsma et al., 2020). Nevertheless, these data are
not an absolute truth. Brandsma (2014) compared the AWS
network and manual rain gauge network over the Netherlands
and concluded that the AWS network underestimates rainfall
at 5 %–8 % annually, with a higher underestimation in winter
(7.7 %) than in summer (5.0 %). The undercatch is non-linear
with intensity, with larger intensities resulting in less under-
estimation. These uncertainties are not taken into account in
this research.

3 Methods

3.1 Station selection

Rainfall data at 5 min intervals from multiple PWSs were ex-
tracted using the Netatmo API (Netatmo, 2024b). Note that
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Figure 3. Map of the Netherlands showing (a) the locations of the 33 AWSs employed by KNMI and the locations of available PWSs in
2024 obtained using the Netatmo API (approximately 4000 PWSs) (Netatmo, 2024b). The photo in the right corner shows an example of the
PWS used in this research. Note that working PWSs in 2024 are not part of the dataset in this study. (b) The selected AWSs and PWSs from
2018 to 2023 in this study. Built-up areas, indicated in grey, were obtained from the European Environment Agency (2020).

the API only provides access to data from PWSs that were
operational at the time of access, which was in February
2024. We do not have access to data from stations that were
previously in operation but no longer online at the time of ac-
cess. Two search radii were employed to find all operational
PWSs within that range. One radius of 10 km around an AWS
was used to quantify the quality of the PWSs, and a radius of
20 km was used to filter the PWS data using a quality con-
trol algorithm. Van de Beek et al. (2012) and Van Leth et al.
(2021) showed that the decorrelation distance for precipita-
tion over the Netherlands is around 50 km for 1 h accumu-
lation intervals. Comparing PWSs within 10 km of an AWS
can therefore be assumed to limit spatial sampling errors with
respect to a larger search radius.

First, all PWSs within 20 km around each AWS were iden-
tified. Second, AWSs that had at least five PWSs within
10 km since 1 January 2018 were kept in the dataset. Next,
the 10 closest available PWSs located within 10 km of the
AWS were selected (Fig. 4, purple crosses) for the compari-
son with the AWS nearby. Note that the selection of PWSs
varies per selected rainfall event due to temporary station
outages and changing data and station availability over time.
This procedure resulted in 11 AWSs with a cluster of 5 to
10 PWSs around it (see Fig. 3b for the selected AWSs and
the used PWSs). All PWSs within 20 km were used to filter
the data (Fig. 4, orange dots and purple crosses) using the
quality control algorithm developed by de Vos et al. (2019)
and described below (Sect. 3.4).

Figure 4. Example of the selection procedure for the AWS at
Schiphol. The green star indicates the AWS operated by the KNMI,
and the purple crosses indicate the 10 closest PWSs within a dis-
tance of 10 km around the AWS. The orange dots are the other
PWSs within 20 km of the AWS, which are utilized for quality con-
trol. Built-up areas, indicated in grey, were obtained from European
Environment Agency (2020).

3.2 Event selection

A similar event selection procedure was used as described
by Imhoff et al. (2020), which defines an event as a certain
time period rather than by the beginning and end of rainfall.
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Rainfall observations from the 10 min dataset of the AWSs
were employed to make a selection of events between 2018
and 2023 using a moving window approach. Only the 10
largest rainfall accumulations were selected, as these are the
most important ones for pluvial flood forecasting. Analysis
shows that, on average, the 10 highest 1 h rainfall accumula-
tions for the selected AWSs account for 12.5 % of the annual
rainfall. The hourly dataset (clock hour) was employed to
perform a consistency check on this selection. For selected
events with rainfall differences of more than 10 % with the
validated hourly dataset, the values of the validated hourly
dataset were used instead. These deviations occurred in less
than 0.4 % of the total number of selected events. Note that
the selected events can contain time steps without any rain
observed.

For every selected AWS based on the methodology in
Sect. 3.1, the 10 largest rainfall events per meteorological
season (winter, spring, summer, and autumn) and accumu-
lation interval (1, 3, 6, and 24 h) were selected to draw
statistically meaningful conclusions. This results in a total
of 11 stations× 4 seasons× 4 accumulation intervals× 10
events= 1760 individual events for the analysis. The events
were selected in such a way that, for the same station and
accumulation interval, no overlapping time series were in-
cluded.

The statistics of the selected events are shown in Fig. 5.
A clear seasonality is observed here, especially for 1 h in-
tervals (Fig. 5a), with the highest rates during summer
(June–July–August, JJA) and the lowest rates during winter
(December–January–February, DJF) and medians of 14.65
and 6.17 mm h−1, respectively. This is in line with the Dutch
climate, where the highest rainfall intensities occur during
summer and are typically characterized by convective rain-
fall (Beersma et al., 2019).

Based on the return periods provided by Beersma et al.
(2019), over 75 % of the selected observed rainfall accu-
mulations in winter, spring, and autumn have a return pe-
riod of less than 0.5 years, while in summer this is around
25 % (Fig. 5a). Most extreme events occur during the sum-
mer months, with multiple events having a return period
of over 5 years and one event exceeding a return period
of 100 years. Rainfall rates during the autumn months
(September–October–November, SON) are slightly higher
than in spring (March–April–May, MAM), with medians
of 9.40 and 8.33 mm h−1, respectively (Fig. 5a). However,
spring appears to have two extreme outliers, with return pe-
riods that exceed 10 years. Note that these return periods are
calculated based on annual statistics, which are dominated by
rainfall events from March to October. Because winter has
the lowest intensities, return periods then based on annual
statistics are low.

3.3 Areal reduction factor

The rainfall observed by a cluster of PWSs is averaged, ef-
fectively representing the rainfall over an area while compar-
ing it with a point measurement (AWS), which has a limited
spatial footprint. With an increasing domain area, the varia-
tion of areal precipitation becomes smaller than that of point
precipitation. To account for the reduction in the magnitude
of rainfall extremes over an area as compared to a point,
areal reduction factors (ARFs) can be applied. The ARF
estimates areal rainfall percentiles from point rainfall per-
centiles. Overeem et al. (2010) and more recently Beersma
et al. (2019) parameterized the ARF based on weather radar
for the Netherlands. This reduction factor is a function of
duration, area, and return period, with rarer events having a
stronger areal reduction. Equations (1a), (2), (3b), (4), and
(5) of Beersma et al. (2019) are used to estimate the ARF.
The inverse of the ARFs will be used to adjust the values of
the PWSs to a point observation.

3.4 Quality control algorithm

As stated by El Hachem et al. (2024), the key advantage of
the QC algorithm of de Vos et al. (2019) over QC algorithms
such as those developed by Bárdossy et al. (2021) and Lewis
et al. (2021) is that no auxiliary data are required. This makes
it particularly suitable for regions lacking access to (real-
time) reference data. For that reason, we decided to use the
QC of de Vos et al. (2019). The high-influx (HI) and faulty
zero (FZ) filters from the personal weather station quality
control (PWSQC) algorithm of de Vos et al. (2019) were
applied to filter the PWS dataset. HI data can be caused by
sprinklers, addition of liquids into the gauge, or tilting of the
gauge. In addition, a high influx can result from a temporary
connection interruption between the rain gauge module and
the indoor module, assigning the rain to the timestamp when
the connection is re-established. Disaggregating this type of
high influx using reliable rainfall time series from nearby sta-
tions could potentially solve this issue. The HI filter uses four
parameters:

1. d, the maximum distance over which neighbouring
PWSs are selected that likely capture similar rainfall dy-
namics;

2. nstat, the minimum required number of neighbouring
PWSs;

3. φA, a threshold value; and

4. φB, a threshold value.

A time interval of a station is flagged as having a “high in-
flux” if the median of the neighbouring stations does not ex-
ceed φA, while the station itself records a value above φB.
When the neighbouring stations observe moderate to heavy
rainfall, the station is flagged when the measurement exceeds
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Figure 5. Mean rainfall intensity (millimetres per interval) for the different selected events per season (11 AWSs× 10 rainfall events) for
the four accumulation intervals (1, 3, 6, and 24 h). The left y axis shows the rainfall over the specific interval, and the right y axis shows
the different corresponding return periods for the intensities reported by Beersma et al. (2019). The lower and upper whiskers indicate the
minimum and maximum intensities and the boxes the inter-percentile range (25th–75th). During summer, outliers were present, with return
periods longer than 50 years.

the median × (φB/φA). According to de Vos (2019), most
rainfall observations that should be flagged by the HI filter
were very high. They tested different subsets of parameters
and found that variations in φA and φB hardly affect the re-
sults.

Faulty zeroes can result from failure of the tipping bucket
mechanism due to, for example, a tilted rain gauge or ob-
structions such as leaves or insects. The FZ filter uses three
parameters, i.e. the range d , nstat, and nint. For the nint time
intervals at least, the median of the neighbouring PWSs
needs to be higher than zero, while the PWS itself reports
zero rainfall.

The value of parameter d calibrated by de Vos (2019) (Ta-
ble 1) is 10 km for both HI and FZ. This is the average decor-
relation distance of rainfall at the 5 min time interval in the
Netherlands (Van Leth et al., 2021, Fig. 4a). This same work
shows that this value ranges from about 10 km in summer
to about 50 km in winter. In our research, we limit the ef-
fect of spatial variability of rainfall by selecting only the five
closest neighbouring stations (this is on average a distance
of 5.4 km), well within the decorrelation distance of rain-
fall at the 5 min timescale for any season in the Netherlands
(Van Leth et al., 2021).

For the reasons mentioned above, the same calibrated pa-
rameters as in Table 2 of de Vos (2019) were applied. First, a
list of PWS neighbours within 10 km was constructed. Sec-
ond, HI and faulty zero FZ filters were computed for every
time step (i.e. 5 min). At least five neighbouring PWSs must
be present to attribute the HI and FZ flags; otherwise, the

value will be eliminated from the dataset. Time steps that
were flagged according to the HI or FZ flags were removed.

The station outlier (SO) filter from the PWSQC algorithm
requires at least 2 weeks of data (or longer if there was insuf-
ficient precipitation in this period) and is computationally ex-
pensive, which is not favourable for real-time applications. In
addition, by taking the average of a cluster (minimum 5 and
maximum 10) of stations around an automatic weather sta-
tion, the effect of individual station outliers is limited. This
last step is different from the method suggested by de Vos
et al. (2019). As a last step of the PWSQC algorithm, a de-
fault bias correction (DBC) factor was applied to the dataset.
de Vos et al. (2017) used an experimental setup and showed
that under ideal circumstances there is on average an instru-
mental bias of 18 % in the Netatmo PWSs, suggesting the
need for a DBC factor of 1.22 to correct these instrumental
biases.

3.5 Network stability

Over time, the availability of PWSs changes due to fac-
tors such as connection failure. To analyse the availability
of PWSs, a dataset comprising operational PWSs on 1 Jan-
uary 2018 within 10 km from an AWS was employed. This
dataset contained 178 PWSs. Time series from the PWSs
were extracted for each selected event according to the
method described in Sect. 3.2. In total, 95.8 % of the PWSs
were available for all selected events during the 6 consecu-
tive years. From these available PWSs, 3.5 % of the total time
steps did not contain any data due to either missing data or
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Table 1. Percentage of the PWSs available (28 480 different PWS
time series) over all selected events after flagging data and setting
minimum availability criteria.

Availability criteria Remaining PWSs

100 % 40.9 %
92 % 79.9 %
83 % 83.7 %
75 % 85.8 %

irregular data transfers that were longer than 5 min. In addi-
tion, 0.7 % of the PWSs did not have five neighbours within
10 km. Applying the quality control algorithm leads to more
data being discarded. For the remaining PWSs with enough
neighbours, 8.9 % of the total data are either discarded (i.e.
flagged as FZ or HI), have a temporal resolution beyond
5 min, or are missing.

Since we can only suspect that data are likely not missing
when a 5 min time step is not included, a minimum avail-
ability criterion was set to limit a biased comparison. A min-
imum percentage of time steps should be valid before ag-
gregating the data. The criterion set has a large impact on
the availability (Table 1). By requiring a data availability of
100 % before aggregation, 40.9 % of the dataset is retained,
while a lower required availability (92 %) almost doubles
(79.7 %) the remaining stations of the original dataset. Lower
criteria potentially result in underestimation of rainfall due
to missing data. Based on these results, a data availability
requirement of 83 % was chosen (e.g. at least 10 out of 12
5 min intervals within 1 h) to keep a large part of the original
dataset (83.7 %), which is also in line with Overeem et al.
(2024a).

3.6 Validation

The data quality of the PWSs was evaluated by comparing
the PWS data to those of the selected AWSs, using the rela-
tive bias, the coefficient of variation (CV) of the residuals, the
Pearson correlation coefficient (r), and the slope of the lin-
ear regression relationship. Note that the evaluation metrics
were calculated over the total rainfall within a time interval
and over the average of the cluster of PWSs.

The relative bias was defined as follows:

Bias=

n∑
i=1
RPWS,i

n∑
i=1
RAWS,i

− 1, (1)

with n the total number of events for each season and time
interval and RAWS and RPWS the rain recorded by the AWS
and PWS, respectively. Values above zero indicate an over-
estimation and values below zero an underestimation of the
PWS data. The CV is used to describe the dispersion of rain-
fall, with values closer to zero suggesting greater consistency

with the mean of the reference and higher values indicating
more dispersion, defined as follows:

CV=

√
1
n

n∑
i=1

(
Rres,i −Rres

)2
RAWS

, (2)

with the overbar indicating the arithmetic mean and

Rres = RPWS−RAWS. (3)

The Pearson correlation coefficient describes the strength of
the linear relation between the PWSs and the AWS, with val-
ues ranging between -1 and 1, and it was calculated between
all events within a season and aggregation interval (including
zeroes):

r =
cov(RPWS,RAWS)

sd(RPWS)sd(RAWS)
. (4)

The linear regression line, fitted through the origin, is defined
as follows:

RPWS = a ∗RAWS, (5)

with a the slope calculated over all events:

a =

n∑
i=1
RAWS,iRPWS,i

n∑
i=1
(RAWS,i)2

. (6)

Values close to 1 indicate strong agreement with the refer-
ence dataset.

4 Results

After applying the HI and FZ filters and requiring a minimum
data availability before aggregation, around 88 % of the orig-
inal dataset was kept. For 87 (0.5 %) of the total time series
used, at least one HI flag was attributed to a time step. In 93 %
of the cases, no data were transferred for at least 15 min prior
to the flagged HI time step, suggesting that these flags may
result from comparing data aggregated over longer time in-
tervals (≥ 15 min) to a 5 min time step, potentially leading to
mismatches and flagging data. For 5.8 % of the time series,
at least one FZ occurred. Around 15 % of the PWSs were
manually calibrated, with a median tipping volume of 0.117
and 95 % of the calibrated tipping bucket volumes ranging
between 0.09 and 0.203.

4.1 Spatial sampling

The PWSs in this study were selected based on the closest
distance from an AWS without considering the uniformity of
the distribution around the AWS. Figure 6 shows that the av-
erage cluster distance to an AWS is around 4.4 km and that
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the average inter-gauge PWS distance of all pairs within a
cluster is around 5 km. This indicates that, overall, the se-
lected stations are not clustered in one location and repre-
sent a larger area. Variation in the distance to the AWSs
in Fig. 6a can be explained by the location of the selected
AWSs. Higher PWS network densities and associated shorter
distances to the closest PWSs can be found in urban regions.
However, most of the AWSs are located in rural regions. In
addition, variability in Fig. 6 also partially results from fluc-
tuating data availability and the number of available PWSs,
which increases over the years. The average number of PWSs
within a cluster is 8.75.

4.2 Areal reduction effect

Figure 7 shows a substantial decline in ARFs with larger
area sizes and shorter durations, with the largest reductions
for short durations. The decline becomes more prominent for
longer return periods. For an area of 79 km2 (based on a ra-
dius of 5 km towards an AWS) and a duration of 1 h, the ARF
according to Beersma et al. (2019) varies between 0.88 and
0.82 for return periods of 2 and 50 years, respectively, while
for 24 h the ARF varies between 0.96 and 0.92 for return pe-
riods of 2 and 50 years, respectively. The reduction becomes
larger for a radius of 10 km. For example, the ARFs are 0.78
and 0.70 for a duration of 1 h and return periods of 2 and
50 years, respectively. To convert the areal estimate from the
PWSs into a point observation (reflecting the AWS), the PWS
cluster average is adjusted using the inverse of the ARF, with
the area based on a 10 km radius (the maximum distance be-
tween a PWS and an AWS used in the PWS selection proce-
dure).

4.3 Bias

The relative bias of the non-adjusted PWS cluster average
over multiple accumulation intervals was quantified by com-
paring it with AWSs nearby for the selected rainfall events
(Table 2, each row indicating different accumulation inter-
vals). Results indicate that, without applying any ARF or
DBC factor, on average, significant biases are present in
rainfall observations from the PWSs. The underestimation is
largest for accumulation intervals of 1 h (around 36%). The
magnitude of the bias decreases over longer intervals towards
an average underestimation of around 19% for accumulation
intervals of 24 h. In addition, a seasonal dependency is visi-
ble for the bias.

It is important to make a distinction between the sources
of bias in order to avoid correcting non-instrumentally re-
lated errors. Due to the setup of this study, which makes use
of PWSs within a maximum 10 km distance from an AWS,
the bias can be divided into two categories: (1) bias result-
ing from the spatial variation in rainfall extremes and (2) an
instrumental bias.

The ARF accounts for the spatial variability of rainfall
extremes and illustrates that the bias is partially caused by
category 1. The ARF was applied to compensate for the
spatial variation of rainfall extremes and to fairly compare
the rainfall measured by a cluster of PWSs with one AWS.
The largest areal reductions are visible for 1 h accumulation
(Fig. 7 and Table 2), reducing the relative bias on average
over all seasons from −36 % to −22 %. During the winter
months on average, the lowest rainfall intensities and the
least spatial variability of rainfall occur (Fig. 9), resulting in
the smallest areal reduction. The ARFs have a limited effect
on the 24 h events, with an average reduction of 2 percentage
points in the bias over all seasons. The remaining bias for
time intervals of 3 h over all seasons and longer is on average
around 16 %.

The remaining biases are part of the second category and
indicate the need for a DBC factor to adjust the instrumental
biases. To compensate for this instrumental bias, the DBC
factor of 1.22 was applied. After application of this DBC
factor, the underestimation for 1 h intervals over all seasons
decreases to an average of 5 %, while for 3 h and longer in-
tervals it converges towards zero or in a slight overestimation
of the rain. The remaining bias is within the expected uncer-
tainty of rainfall observations. This is supporting evidence
that the DBC factor of 1.22 works effectively.

A small part of the dataset obtained from Netatmo (5.38 %
of the selected events’ total time steps) was not included,
suggesting either that data were missing or that the system
suffered from connection issues, resulting in irregular data
transfer (longer than approximately 5 min). It is expected that
the effect of this on the bias will be limited, as most of the
data are likely not missing. Rather, the effect is caused by ir-
regular data transfer and/or connection interruption between
the rain gauge and the indoor module (see the supporting in-
formation in Tables A1 and A2).

4.4 Seasonal dependence

For the selected events, a seasonal dependency is visible for
the performance of the PWSs (Figs. 8 and 9). The seasonal
effect is most pronounced for shorter accumulation intervals
(1 h and 3 h), with the best performances of the PWSs in win-
ter and autumn and the worst performances in summer and
spring (Fig. 9). Events in winter show the lowest variability
of the PWS observations compared with the AWS observa-
tions (e.g. average CV values of 0.30 and 0.21 for accumu-
lation intervals of 1 h and 3 h, respectively). While the CV is
larger for autumn (0.41 and 0.26), the correlation between the
PWSs and AWSs is higher during autumn compared to win-
ter (Fig. 9b). Winter in the Netherlands is mainly character-
ized by larger, more persistent rainfall systems, which have
a longer decorrelation distance (80 km for 1 h aggregations)
(Van de Beek et al., 2012). In addition, the error bars for win-
ter are smaller compared with the other seasons, showing that
there is more consistency between the individual PWSs (see
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Figure 6. Histogram of (a) the distances between the PWS clusters and the AWSs per event and (b) the inter-station distances between all
selected PWS pairs within a cluster per event, all based on 1760 pairs. The vertical red dashed line indicates the mean distance, the vertical
black line the median, the left and right whiskers the minimum and maximum distances, and the boxes the inter-percentile range (25th–75th).

Figure 7. Areal reduction factor (left y axis) as a function of dura-
tion for area sizes with radii of 5, 10, and 20 km (converted into an
area) and return periods of T = 2, 25, and 50 years.

Fig. 9 and the supporting information in Fig. B1 for a com-
plete overview of all of the seasons and accumulation inter-
vals). For that reason, it is expected that the spatial sampling
errors were minimized during winter, indicating that other
factors, such as solid rain, caused the lower correlation.

Figure 9a shows that, for all seasons, the CV decreases
over longer accumulation intervals. For 1 h intervals the CV
varies between 0.30 and 0.54 over the different seasons,
while for 24 h the CV shows lower variability, with values
varying between 0.14 and 0.27. Similarly, the correlation co-
efficient increases from values ranging from 0.43 to 0.74 for
1 h intervals to a range from 0.75 to 0.86 for 24 h intervals.
This indicates that, for longer accumulation intervals, rain-
fall observations from PWSs exhibit less variability and more
agreement with those from AWSs. Data transferring and pro-
cessing errors decrease for longer accumulation intervals, as

Table 2. Relative bias calculated before and after applying an areal
reduction factor based on Beersma et al. (2019) and correcting
for the instrumental bias over the 110 (i.e. 10 rainfall events× 11
AWSs) selected rainfall events per season and interval.

Relative bias [−]

Interval DJF MAM JJA SON

No ARFs or DBC applied

1 h −0.33 −0.39 −0.38 −0.34
3 h −0.22 −0.26 −0.27 −0.21
6 h −0.20 −0.23 −0.21 −0.20
24 h −0.18 −0.21 −0.19 −0.18

ARFs applied

1 h −0.20 −0.26 −0.22 −0.19
3 h −0.15 −0.19 −0.16 −0.13
6 h −0.16 −0.19 −0.12 −0.14
24 h −0.17 −0.20 −0.16 −0.16

ARFs and DBC applied

1 h −0.02 −0.10 −0.05 −0.01
3 h 0.04 −0.01 0.03 0.07
6 h 0.03 −0.01 0.07 0.05
24 h 0.01 −0.02 0.03 0.03

the effect of attributing rainfall to an erroneous time stamp
decreases. This takes place for example when the connec-
tion between the indoor and outdoor modules is temporar-
ily interrupted, potentially attributing rainfall to a timestamp
when there is a connection again and as a consequence ag-
gregating it over a longer time interval than approximately
5 min (see the supporting information in Table A2). Within a
cluster of PWSs, variation in rainfall is observed. However,
using the average rainfall of each PWS cluster shows great

Hydrol. Earth Syst. Sci., 29, 4585–4606, 2025 https://doi.org/10.5194/hess-29-4585-2025



N. Rombeek et al.: Evaluation of high-intensity rainfall observations 4595

agreement with the AWS. Overall, the average of the cluster
of PWSs largely follows the 1 : 1 line, with slopes of the fit-
ted lines indicating slight underestimation or overestimation
by varying between 0.97 and 1.03 for 24 h. A seasonal effect
is limited on the slope for durations of 3 h and longer. Fur-
thermore, high correlations, low CV values, and low biases
are found for both winter and autumn, indicating that there is
good agreement with the AWSs (Fig. 9).

4.5 Outlier identification

Figure 8 shows that, for certain individual events, the PWSs
report rainfall amounts which deviate strongly from those ob-
served by the AWSs. We investigated the causes of some of
these outliers further, which are indicated with orange cir-
cles.

It can be seen in Fig. 8c that one of the selected events
showed (almost) no precipitation measurements according to
the cluster of PWSs, while the AWS nearby recorded precip-
itation. These outliers occurred during winter and were also
observed for the 6 h accumulation interval. In the Nether-
lands, winter has on average around 34 d with a minimum
temperature below 0 °C (KNMI, 2024), which is outside the
optimal temperature range of the PWSs. For the event with
the outliers in Fig. 8c, the maximum temperature was be-
low −1.4 °C. It is not possible to unambiguously determine
whether precipitation is solid based solely on temperature.
However, a temperature-based flag can provide end users
with an indication that the rainfall observations may be sub-
ject to uncertainty. Flags were assigned to time series where
the corresponding AWS recorded temperatures below freez-
ing. If these events were discarded by a temperature filter that
filters stations when temperatures are below a certain thresh-
old for a certain duration, the values of r and CV for 6 h for
winter would have improved to 0.83 and 0.18, respectively.
For 24 h this would have been r = 0.88 and CV= 0.12. How-
ever, as these are only two points and the two intervals have
some overlap in time at the same location, no statistically
valid conclusion can be drawn from this.

During summer and spring, the highest rainfall accumula-
tions were observed by the AWSs, with intensities exceeding
35 mm h−1. An example of the low performance of PWSs for
two high rainfall events in summer can be seen in Fig. 8b.
These events likely skew the overall performance during
these months. A large spread is observed within the cluster,
especially for the highest event in summer in Fig. 8b, indicat-
ing a large variation in the spatial rainfall distribution. This
suggests that the differences between the cluster of PWSs and
AWSs are not necessarily only related to instrumental limi-
tations but are rather due to the spatial rainfall distribution.
In addition, tipping bucket mechanisms are known for hav-
ing difficulties in recording higher rainfall intensities. PWSs
only send rainfall data to the Netatmo platform twice every
10 min, which is considerably lower than the recording in-
terval of AWSs (12 s). More than one-third of the rainfall

during these events fell within 10 min, exceeding intensities
of 75 mm h−1 during that interval. However, it is unknown
whether the rain was evenly spread within these 10 min or
mostly occurred during a shorter period of time and whether
this measurement range of the PWSs was indeed exceeded.

5 Discussion

5.1 Bias

Adjusting the PWS dataset with ARFs and correcting for the
instrumental bias using a DBC factor reduces the bias. The
remaining bias can indicate either that e.g. a higher DBC fac-
tor is required to correct for the substantial underestimation
or that the ARFs are not able to fully account for the spatial
variability of the rainfall.

5.1.1 Spatial sampling errors

Rainfall exhibits spatial variability, which is related to the
temporal scale and rainfall intensity, with shorter tempo-
ral resolutions and higher intensities often associated with
greater heterogeneity. The decorrelation distance of rainfall
is typically much higher in winter compared to summer in
the Netherlands. Specifically, for shorter aggregation times,
this holds (Van de Beek et al., 2012; Van Leth et al., 2021).
The average distance of around 4.4 km from a PWS cluster
to the closest AWS was below the decorrelation distance cor-
responding to a 1 h aggregation interval found by Van Leth
et al. (2021) and Van de Beek et al. (2012). While this limits
the errors related to spatial sampling, it is expected that this
effect will remain most pronounced for events in, for exam-
ple, summer and spring and at shorter aggregation intervals
(i.e. 1 h). Lowering the radius reduces the number of avail-
able PWSs and consequently increases the uncertainty. From
the error bars in Fig. 8, variation within a cluster of PWSs
was observed, with the largest variation found in spring and
summer. For small-scale convective rainfall events, the dis-
tance to the closest AWS might still have been too large, re-
sulting in the variations in the rainfall observed by the PWSs
nearby. Radar images show that, for several events, the dif-
ferences between AWSs and PWSs are caused by the spatial
distribution of the rainfall (see the supporting information in
Figs. D1, D2, and D3).

To account for spatial variability, an ARF was estimated
for each event. However, such factors are based on areal rain-
fall climatology, representing an average behaviour and not
tied to one specific event. The radius of 10 km, which was
based on the maximum possible distance of a PWS to an
AWS, was used for the area to estimate the ARFs. For each
event, a different PWS cluster was used, potentially repre-
senting a larger or smaller area and therefore requiring a dif-
ferent corresponding adjustment of the ARF. A smaller or
larger radius has a large effect on the ARF (Fig. 7).
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Figure 8. Scatterplots of filtered PWS rainfall accumulations against AWS records for the winter (a, c) and summer (b, d) seasons and
accumulation intervals of 1 h (a, b) and 24 h (c, d). The large coloured dots indicate the average of a cluster of PWSs against one AWS, and
the vertical bars indicate the minimum and maximum of that cluster of PWSs. The colours indicate the number of PWSs used to calculate the
mean, minimum, and maximum rainfall. The small grey dots indicate one individual PWS against an AWS. Orange circles indicate examples
of outliers. The RAWS and RPWS represent the average rainfall over the selected events recorded by the AWS and PWS, respectively.
RPWS = a ∗RAWS represents the linear regression line fitted through zero, with a indicating the slope.

5.1.2 Instrumental bias

An instrumental bias of −18 % was identified by de Vos
et al. (2017) using an experimental setup that minimized
the spatial sampling errors. This suggests a DBC factor of
1.22 to compensate for the instrumental bias. However, other
studies came up with different DBC factors. From de Vos
(2019), a bias correction factor of 1.13 came out for a 1-
month dataset covering the Netherlands, which is different
from the 1-year calibration set from the same study for Am-
sterdam only (DBC factor of 1.24). Alternatively, Overeem
et al. (2024a) used a DBC factor of 1.063 for a pan-European
dataset. Neither of the DBC factors (1.063 or 1.13) would
have been able to fully compensate for the bias present in the
dataset used in this research. This difference might be caused
by two main reasons. First, both DBC factors were bulk cor-

rection factors tuned on different reference datasets. de Vos
et al. (2019) utilized gauge-adjusted radar values. Radars in-
directly measure rainfall, which might not be representative
of rainfall at the ground. In addition, radars do not measure
on a grid. Rather, the values are interpolated, adding extra
uncertainty. Spatially adjusting radars with rain gauges im-
proves the overall quality. However, substantial errors re-
main. Secondly, this research focused on the highest rainfall
events over a longer period of time, while neither de Vos et al.
(2019) nor Overeem et al. (2024a) distinguished between cer-
tain types of rain events, looking rather at a full month or
year of rainfall. The performance of tipping buckets is a non-
linear function of rainfall intensity (Niemczynowicz, 1986;
Humphrey et al., 1997). It requires time for the tipping bucket
mechanism to reposition itself after a tip. Higher intensities
enhance this problem, resulting in an increased undercatch.
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Figure 9. Coefficient of variation (a), correlation coefficient (b), bias (c), and slope (d) of filtered PWS rainfall accumulations against AWS
for different seasons and accumulation intervals. The lower and upper whiskers indicate the minimum and maximum of each metric and
the boxes the inter-percentile range (25th–75th). The red diamonds indicate the values in winter after discarding events based on attributed
temperature flags. The estimated uncertainty is obtained using bootstrapping (1000 iterations with replacement).

Therefore, the type of dataset and the included rainfall events
play a role in the performance. Applying a DBC factor of
1.22 over the dataset almost eliminates the bias. The study of
de Vos et al. (2017) considered only a few months around the
spring period, specifically from 12 February to 25 May 2016,
which may have influenced the bias reported in that study.

5.1.3 Manual calibration

Around one-seventh of the PWSs used in this study (15 %)
were manually calibrated by their owners. However, it is un-
known what the accuracy of such a manual calibration is.
The number of tips was determined for each manually cali-
brated PWS and converted into the original default value of
0.101 mm. On average, there is a 4 % decrease in the rainfall
observed by the PWS cluster, resulting in a slightly increased
underestimation or slightly decreased overestimation by the
PWSs. The CV values slightly improve with an average of
0.01, while the change in r is negligible (see the supporting
information in Table C1).

5.2 Quality control

The quality control algorithm of de Vos (2019) utilized in this
research improves the overall performance of the PWSs (see
the supporting information in Fig. E1). However, there are
some limitations to this algorithm. The algorithm works only
if there are enough neighbouring stations within 10 km, lim-
iting its usefulness for less densely populated regions. That
said, for this study only a small percentage (0.66 %) was dis-
carded from this dataset due to an insufficient number of
neighbouring PWSs. While the number of currently active
PWSs is quite high in Europe, they are not evenly distributed
(see Fig. 1 for the network density of PWSs across Europe).
For that reason, regions with a less dense network of PWSs
are expected to have a higher percentage of discarded stations
due to insufficient neighbours (around 35 % within Europe).
Alternatively, other data sources (such as gauges or weather
radars operated by national meteorological or hydrological
services) can be employed for quality control, such as those
employed in the QC algorithm by Bárdossy et al. (2021). In
addition, insufficiently calibrated PWSs which record higher
rainfall at each time stamp are not discarded by the HI filter
if a certain threshold is not reached. These differences be-
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come more apparent when accumulated over longer periods.
With a dynamic bias correction factor, this could have been
adjusted.

Another limitation of a quality control algorithm that does
not use auxiliary data is that if all PWSs provide faulty obser-
vations, these timestamps are not flagged, consequently giv-
ing a wrong signal. This was observed for two events during
winter for the 6 and 24 h accumulation intervals, when none
of the stations recorded any precipitation during an event,
while the AWSs did observe precipitation (e.g. Fig. 8c). Dur-
ing winter, solid precipitation can occur, which can result
in an undercatch by the PWSs, as these are not heated and
consequently work best for temperatures above the freezing
point. Results from Overeem et al. (2024a) also suggested
that PWSs are not able to capture solid precipitation. Qual-
ity control algorithms based on a reference dataset, such as
from Bárdossy et al. (2021), would have filtered these PWSs.
Alternatively, a temperature filter could be developed with-
out using auxiliary weather stations. The temperature module
present at the PWS can be utilized for this.

6 Conclusions

This study provides insights into the systematic errors across
the personal weather station (PWS) network during high-
intensity rainfall events by performing a comprehensive anal-
ysis over 6 years. The analysis focuses on the most intense
rainfall observations for a large number of events (1760) over
6 years (2018–2023) in the Netherlands. PWS data were eval-
uated against rainfall measurements from automatic weather
stations (AWSs). These events were selected over differ-
ent meteorological seasons (winter, spring, summer, and au-
tumn), durations (1, 3, 6, and 24 h), and AWSs (11 locations
spread across the country). PWS data were filtered with a
quality control (QC) algorithm utilizing neighbouring PWSs.
After QC, around 88 % of the original dataset was kept. To
reduce uncertainty from single stations, metrics were calcu-
lated over a cluster of PWSs rather than individual stations.

Results showed that PWSs severely underestimate rain-
fall. A seasonal effect is visible in the bias, specifically for
shorter accumulation intervals, with the largest biases for
summer and spring. A part of this bias can be attributed to
the spatial distribution of rainfall. To account for this, areal
reduction factors (ARFs) were applied. This seasonal depen-
dence minimizes after applying ARFs. In addition, a default
bias correction (DBC) factor of 1.22 was used to compen-
sate for the instrumental bias. The DBC factor substantially
reduces this bias for intervals of 3 h and longer, indicating
that the DBC factors of 1.063 proposed by Overeem et al.
(2024a) (European dataset) and 1.13 proposed by de Vos
et al. (2019) (Netherlands dataset) are not able to account
for high-intensity rainfall events. A seasonal and temporal
dependence is seen from the correlation coefficient (r) and
coefficient of variation (CV). Outliers in winter seemed to

have been caused by freezing temperatures (solid precipi-
tation). For that reason, we recommended further analysing
the impact of temperature or solid precipitation on the per-
formance of the PWS. The temperature module available in
PWSs can be used for this. In addition, PWSs did not observe
the most intense rainfall events, with high intensities over
a relatively short amount of time (e.g. > 75 mm h−1 within
10 min). These highest intensities occurred during summer
and spring, with events that typically occur once in 10 years
or even longer return periods. The spatial footprint of these
high-intensity rainfall events is often small, influencing er-
rors related to spatial sampling due to the average distance
of 4.4 km to the nearest AWS. This suggests the need for a
high-density observation network to reliably capture local-
ized rainfall extremes. Rain gauges from the PWSs used in
this research utilize a tipping bucket mechanism, which is
known to suffer from non-linear underestimation errors with
increasing intensities, potentially contributing to these out-
liers. To quantify this, experimental studies are necessary to
limit other sources of errors. The performance of the PWSs
improved over longer accumulation intervals, resulting in r
values of 0.85 and 0.86 and CV values of 0.14 and 0.18 for
24 h in winter and autumn, respectively.

With the high density of PWSs in the Netherlands (around
one PWS per 9 km2 area), there is a clear potential to use
PWSs. This will also be the case for other regions in Europe
that have a relatively high coverage of PWSs. The accuracy
however depends on the desired temporal resolution, season,
and intensity. Although applying a DBC factor reduces or
even completely compensates for the underestimation, we
recommend further investigating the dynamic responses of
these stations at different intensities to enable dynamic cali-
bration and consequently minimize non-linear errors related
to this.
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Appendix A: Netatmo data processing

Table A1. Example of the Netatmo software that resamples data to regular 5 min intervals by assigning them to the next full 5 min interval.

Raw Aggregated

Time (dd-mm-yyyy hh:mm:ss) Rain (mm) Time (dd-mm-yyyy hh:mm:ss) Rain (mm)

29-10-2024 05:54:48 0.0 29-10-2024 05:55:00 0.0
29-10-2024 05:59:56 0.303 29-10-2024 06:00:00 0.303
29-10-2024 06:05:03 1.313 29-10-2024 06:05:00 Not included by Netatmo
29-10-2024 06:09:58 2.626 29-10-2024 06:10:00 3.393
29-10-2024 06:15:07 2.626 29-10-2024 06:15:00 Not included by Netatmo
29-10-2024 06:20:01 1.111 29-10-2024 06:20:00 2.626
29-10-2024 06:25:09 0.505 29-10-2024 06:25:00 1.111
29-10-2024 06:30:17 1.616 29-10-2024 06:30:00 0.505

29-10-2024 06:35:00 1.616

Table A2. Examples of times when there was likely a temporary connection interruption between the indoor module and the rain gauge.
Rainfall will likely be attributed to a timestamp when there is a connection again, resulting in a higher temporal resolution. For example, at
20:26:21 the rainfall is likely aggregated over 22 min.

Raw Aggregated

Time (dd-mm-yyyy hh:mm:ss) Rain (mm) Time (dd-mm-yyyy hh:mm:ss) Rain (mm)

29-10-2024 19:50:59 0.303 29-10-2024 19:55:00 0.303
29-10-2024 19:56:07 0.101 29-10-2024 20:00:00 0.101
29-10-2024 20:01:02 0.404 29-10-2024 20:05:00 1.111
29-10-2024 20:04:08 0.707 29-10-2024 20:10:00 Not included by Netatmo
29-10-2024 20:26:21 7.777 29-10-2024 20:15:00 Not included by Netatmo

29-10-2024 20:20:00 Not included by Netatmo
29-10-2024 20:25:00 Not included by Netatmo
29-10-2024 20:30:00 7.777
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Appendix B: Overview of all seasons and accumulation
intervals

Figure B1. Scatterplots of filtered PWS rainfall accumulations against AWSs for the winter (a, e, i, m), spring (b, f, j, n), summer (c, g,
k, o), and autumn (d, h, l, p) seasons and accumulation intervals of 1 h (a–d), 3 h (e–h), 6 h (i–l), and 24 h (m–p). The large coloured dots
indicate the average of a cluster of PWSs against one AWS, and the vertical bars indicate the minimum and maximum of that cluster of
PWSs. The colours indicate the number of PWSs used to calculate the mean, minimum, and maximum rainfall. The small grey dots represent
one individual PWS against an AWS. RAWS and RPWS represent the average rainfall over the selected events recorded by the AWS and
PWS, respectively. RPWS = a ∗RAWS represents the linear regression line fitted through zero, with a indicating the slope.
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Appendix C: Calibration effect

Table C1. Relative bias, coefficient of variation (CV), and correlation (r) of filtered PWS rainfall accumulations against AWSs for differ-
ent seasons and accumulation intervals. PWSs with manual calibrated tipping volumes were converted into the original default value of
0.101 mm.

Interval DJF MAM JJA SON

Bias

1 h −0.06 −0.13 −0.08 −0.05
3 h 0.0 −0.04 0.0 0.03
6 h −0.01 −0.05 0.04 0.01
24 h −0.02 −0.05 −0.01 0.0

CV

1 h 0.29 0.54 0.44 0.39
3 h 0.20 0.36 0.35 0.26
6 h 0.18 0.30 0.34 0.22
24 h 0.14 0.24 0.26 0.18

r

1 h 0.62 0.43 0.61 0.75
3 h 0.77 0.57 0.67 0.81
6 h 0.82 0.65 0.67 0.86
24 h 0.86 0.76 0.75 0.86

Appendix D: Spatial distribution of rainfall

Figure D1. Rainfall distribution on 31 May 2018 at 10:30 UTC, based on 1 h of accumulated rainfall from the gauge-adjusted radar product
(Overeem et al., 2009b). The asterisk indicates the location of the AWS which measured 39 mm in 1 h, whereas the circles with red borders
represent the locations of the PWSs. The fill colour of both the asterisk and the circles represents the recorded rainfall at the specific rain
gauge.
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Figure D2. Rainfall distribution on 4 August 2021 at 16:50 UTC, based on 1 h of accumulated rainfall from the gauge-adjusted radar product
(Overeem et al., 2009b). The asterisk indicates the location of the AWS which measured 30 mm in 1 h, whereas the circles with red borders
represent the locations of the PWSs. The fill colour of both the asterisk and the circles represents the recorded rainfall at the specific rain
gauge.

Figure D3. Rainfall distribution on 29 June 2021 at 18:00 UTC, based on 1 h of accumulated rainfall from the gauge-adjusted radar product
(Overeem et al., 2009b). The asterisk indicates the location of the AWS which measured 67 mm in 1 h, whereas circles with red borders
represent the locations of the PWSs. The fill colour of both the asterisk and the circles represents the recorded rainfall at the specific rain
gauge.
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Appendix E: Raw PWS data

Figure E1. Scatterplots of raw PWS rainfall accumulation data against AWSs for the winter (a, e, i, m), spring (b, f, j, n), summer (c, g,
k, o), and autumn (d, h, l, p) seasons and accumulation intervals of 1 h (a–d), 3 h (e–h), 6 h (i–l), and 24 h (m–p). The large coloured dots
indicate the average of a cluster of PWSs against one AWS, and the vertical bars indicate the minimum and maximum of that cluster of PWSs.
The colours indicate the number of PWSs used to calculate the mean, minimum, and maximum rainfall. The small grey dots represent one
individual PWS against an AWS. RAWS and RPWS represent the average rainfall over the selected events recorded by the AWS and PWS,
respectively. r and CV indicate the correlation coefficient and the coefficient of variation. RPWS = a ∗RAWS represents the linear regression
line fitted through zero, with a indicating the slope.
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Code and data availability. The data from automatic weather sta-
tions from the KNMI are freely available on the KNMI
data platform for 10 min intervals: https://dataplatform.knmi.nl/
dataset/neerslaggegevens-1-0 (KNMI, 2025a). The hourly val-
idated dataset is available at https://www.daggegevens.knmi.nl/
klimatologie/uurgegevens (KNMI, 2025b). Part of the quality con-
trol of the Netatmo gauge data, i.e. the faulty zeroes and high-influx
filters, is based on the PWSQC algorithm written in the R language
and can be found at https://doi.org/10.5281/zenodo.10629488 (de
Vos, 2024). The dataset with the Netatmo PWS rainfall data
can be found at https://doi.org/10.4121/caa0a93a-effd-4574-95ec-
cd874ca97c05.v1 (Rombeek et al., 2024).
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