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Abstract. We used empirical–statistical downscaling to de-
rive local statistics for 24 h and sub-daily precipitation over
the Nordic countries, based on large-scale information pro-
vided by global climate models. The local statistics included
probabilities for heavy precipitation and intensity–duration–
frequency (IDF) curves for sub-daily rainfall. The downscal-
ing was based on estimating key parameters defining the
shape of mathematical curves describing probabilities and re-
turn values, namely the annual wet-day frequency, fw, and
the wet-day mean precipitation, µ. Both parameters were
used as predictands representing local precipitation statis-
tics as well as predictors representing large-scale conditions.
We used multi-model ensembles of global climate model
(CMIP6) simulations, calibrated on the ERA5 reanalysis, to
derive local projections and future outlooks. Our analysis in-
cluded an evaluation of how well the global climate models
reproduced the predictors in addition to assessing the quality
of downscaled precipitation statistics. The evaluation sug-
gested that present global climate models capture essential
aspects of the covariance, and there was a good match be-
tween annual wet-day frequency and wet-day mean precip-
itation derived from ERA5 on the one hand and local rain
gauges in the Nordic region on the other. Furthermore, the
ensemble downscaled results for annual fw and µ were ap-
proximately normally distributed, which may justify using
the ensemble mean and standard deviation to describe the
ensemble spread. Hence, our efforts provide a demonstration
for how empirical–statistical downscaling can be used to pro-
vide practical information on heavy rainfall, which subse-
quently may be used for impact studies. Future projections
for the Nordic region indicated little increase in precipitation
due to more wet days, but most of the contribution comes
from increased mean intensity. The west coast of Norway had

the highest probabilities of receiving more than 30 mm d−1

precipitation, but the strongest relative trend in this prob-
ability was projected over northern Finland. Furthermore,
the highest estimates for trends in 10-year and 25-year re-
turn values were projected over western Norway, where they
were high from the outset. Our results also suggested that
future precipitation intensity is sensitive to future emissions,
whereas the wet-day frequency is less sensitive.

1 Introduction

Increasing atmospheric concentrations of greenhouse gases,
such as carbon dioxide (CO2) and methane (CH4) from hu-
man activity, strengthen the greenhouse effect and bring on
global warming as well as changes in the global hydrolog-
ical cycle (IPCC, 2021). Global climate models (GCMs)
and Earth system models (ESMs1) are our primary tools
for making projections of the future climate and represent
main features of the Earth’s climate system, but they are
not designed to describe the small-scale and local climate
change (Takayabu et al., 2015). Nevertheless, the local re-
sponse to global warming can be estimated through down-
scaling (see Appendix A), and international efforts on down-
scaling have been coordinated under the World Climate Re-
search Programme (WCRP) and its downscaling experiment
(CORDEX) (Gutowski Jr. et al., 2016). The term downscal-
ing in this case refers to the process of using large-scale infor-
mation that GCMs are able to reproduce skilfully, on scales
larger than their minimum skilful scale (Takayabu et al.,

1Henceforth, we use the term GCM when referring to both
GCMs and ESMs.
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2015), and subsequently add additional information about
inter-scale dependencies and systematic effects from fixed
geographical factors. Hence, our definition of downscaling
is different to both merely transforming the data to a finer
grid mesh and bias adjustment that corrects model output
so that they have similar statistical characteristics as obser-
vations without further considerations of GCMs’ minimum
skilful scale2. Results of GCMs are often downscaled to pro-
vide projections for a future climate on a regional or local
scale, but the omnipresence of pronounced non-deterministic
regional-scale decadal variability (Deser et al., 2012, 2020)
represents a challenge and a source of uncertainty (Hawkins
and Sutton, 2009). The non-deterministic chaotic contribu-
tion from natural and internal regional variations complicates
the assessment of the credibility and robustness of ensemble
projections, and one question is how to synthesize them into
user-relevant information. This is highly relevant for results
from downscaling approaches at national climate service lev-
els, for instance, within the European downscaling efforts in
EURO-CORDEX.

Another source of uncertainty in downscaled climate pro-
jections is connected to methodological choices and assump-
tions (Jacob et al., 2020). There are two main approaches in
downscaling: (i) dynamical downscaling with regional cli-
mate models (RCMs) and (ii) empirical–statistical down-
scaling (ESD). The former has often been more visible
within CORDEX, many climate service providers, and im-
pacts and adaptation communities (Rampal et al., 2024), and
CORDEX data often refer to a set of RCM simulations ex-
cluding ESD results, e.g. the IPCC Interactive Atlas (https://
interactive-atlas.ipcc.ch/regional-information/about, last ac-
cess: 22 December 2024). The one-sided focus may be a
legacy of the past European projects PRUDENCE (2001–
2004) and STARDEX (2002–2005), which had their dis-
tinct focus (Christensen et al., 2007; Christensen and Chris-
tensen, 2007; Goodess et al., 2003); however, results from
STARDEX did not indicate that RCMs were superior in
terms of reproducing information about extreme rainfall
(Haylock et al., 2006). Traditionally, ESD has been used
to estimate small-scale (local) temperature or precipitation
in terms of daily variability or aggregated statistics over
months, seasons, or years (Maraun et al., 2015), and down-
scaling of heavy precipitation has mainly involved dynamical
downscaling with RCMs, while the merits of ESD have per-
haps not been so widely recognized.

2There are, however, empirical–statistical downscaling
(ESD) methods that are closer to bias correction, downscaling
grid points separately and hence not taking minimum skilful
scale into consideration. For example, NASA’s NEX-GDDP
data set (https://www.nccs.nasa.gov/services/data-collections/
land-based-products/nex-gddp, last access: 22 December 2024) is
presented as downscaled climate scenarios but the method is a type
of bias correction. Also see Appendix A for further discussion on
this topic.

One advantage with ESD is that it requires little com-
putational resources, which makes it suitable for downscal-
ing large multi-model ensembles (Benestad, 2011; Mezghani
et al., 2017). Furthermore, ESD can be designed so that it is
transparent and easily traceable, as the R Markdown script in
this paper’s Supplement tries to facilitate (Benestad, 2024). It
is also possible to estimate various statistical aspects of pre-
cipitation through ESD, and Trenberth et al. (2003) argued
that the characteristics of precipitation are just as vital as
the amount. The characteristics of rain may indeed be more
prone to change as climate changes, and some key statistics
on precipitation involve both the typical amount falling on a
rainy day (wet-day mean precipitation, µ), how often it rains
(wet-day frequency, fw), how much time there is between
each rainfall (dry-spell duration or number of consecutive
dry days, ndd), duration of wet spells (number of consecu-
tive wet days, nwd, to account for clustering of precipitation
events in time), spatial extent of the precipitation (Lussana
et al., 2024), and phase (rain/snow). Here we show how ESD
can be designed to extract information on precipitation statis-
tics such as probabilities of exceeding a certain threshold and
intensity–duration–frequency (IDF) curves.

There have been many studies on mean trends or ex-
treme precipitation but fewer on moderate heavy rainfall. Ex-
tremes often involves either the general extreme value theory
(GEV), calibrated with block maxima, or the general Pareto
distribution with peak over threshold, thus fitting the tails of
the distribution (Coles, 2001). GEV also involves fitting three
parameters – location, scale, and shape – which are often
not well constrained for limited samples of block maxima.
Statistical models for moderate intense events, on the other
hand, may be calibrated from the bulk of the data sample
with fewer parameters (fw and µ) and may be easier to eval-
uate when time series only span a few decades. Furthermore,
if the parameters have a straightforward physical interpreta-
tion, they may also serve to enhance our understanding of
shifts in the statistics. Moderate extremes, such as merely
heavy rainfall (e.g. 20–50 mm d−1), may also trigger land-
slides, cause erosion, and affect the spread of waterborne dis-
ease or eco-toxins. Furthermore, since GCMs only provide a
coarse large-scale representation of the real climate system,
it is necessary to use downscaling methods that are not de-
graded too much by their lack of precision. Hence, we aimed
for a robust and approximate method for downscaling 24 h
precipitation statistics, to some extent scarifying its exacti-
tude which perhaps could be obtained through a sophisticated
representation in an ideal setting (e.g. GEV)3. Furthermore,
multi-variable predictors (common in traditional downscal-
ing and in machine learning, ML) place great and unrealistic
demands on GCMs because different variables simulated by
a GCM may be strongly correlated with the predictand over

3This refers to how closely we can reproduce the shape of the
mathematical curve describing probabilities rather than a bias/vari-
ance issues for the predicted outcomes.
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a historical calibration period but may evolve in different di-
rections in the future (Parding et al., 2019). In other words,
we expect a trade-off between exactitude and robustness, and
hence we aimed for robust and reliable low precision and ap-
proximate results for moderate extremes in our case (see Ap-
pendix A for more details).

2 Data and methods

2.1 Data

The daily rain gauge data used in this analysis were collected
from the European Climate Assessment & Dataset (ECA&D)
programme (Klein Tank et al., 2002) within the latitude range
of 55–71° N and longitude range of 5–30° E. The initial se-
lection comprised 2131 rain gauges as predictand, covering
the time interval from 1950–2021 from Belarus (4), Den-
mark (14), Estonia (27), Finland (443), Germany (1), Latvia
(29), Lithuania (13), Norway (669), Russia (11), and Sweden
(920), located at a range of elevations, with the highest point
being 2062 m a.s.l. Only rain gauge records with sufficient
number of valid data were included in the subsequent down-
scaling, and rain gauge measurements from only 652 loca-
tions remained in our predictand after short station records
had been removed. Figure 1 shows the geographical distribu-
tion of the rain gauges and their mean annual total rainfall.
The analysis was based on key aggregated statistics: annual
wet-day frequency, fw, and annual wet-day mean precipita-
tion, µ. We used the threshold of 1 mm d−1 to distinguish
between dry and wet days. Annual fw and µ with the same
threshold were also used as predictors and were estimated
from both the ERA5 reanalysis (Hersbach et al., 2020) and
GCMs.

The GCM data were taken from CMIP6 (Eyring et al.,
2016) for historical runs (HIST) as well as various emission
shared socio-economic pathway scenarios (SSP370, SSP126,
SSP245, and SSP585) described in IPCC (2021). Only a sub-
set of GCM runs was included here as daily precipitation was
needed to estimate annual fw and µ for use as predictors. To
reduce the data transfer amount, server-side data processing
facilities at the German Climate Computing Centre (DKRZ)
were used to derive the annual values with the Climate Data
Operators (CDO) software (Schulzweida, 2021) installed on
site. Nevertheless, a great deal of effort was required to de-
rive fw and µ from ERA5 and all CMIP6 runs, and hence we
make a case for a standard protocol for reanalysis and CMIP
data archives that includes monthly fw andµ. The predictors,
fw and µ, from CMIP6 HIST simulations were evaluated
against ERA5 following Benestad et al. (2023), testing the
GCMs’ ability to reproduce the mean seasonal cycle, interan-
nual variability in annual fw andµ, and their historical trends
(see Appendix B). One simulation (CESM2-WACCM-FV2)
was removed due to poor evaluation results, and our analysis
focused on 29 model runs following SSP370, but the other

emission scenarios are included in the Supplement (Benes-
tad, 2024).

2.2 Downscaling methodology

An introduction to downscaling and its traditional defini-
tions can be found in text books such as Benestad et al.
(2008) and Maraun and Widmann (2018) and in shorter arti-
cles in scientific encyclopedias (Benestad, 2016). Our anal-
ysis introduces a new aspect in terms of downscaling us-
ing large-scale wet-day mean precipitation, µ, as predictors
for estimating the predictand consisting of station-level µ,
as well as using large-scale wet-day frequency, fw, as pre-
dictors to downscale local fw at the station level. Both of
these types of predictors were estimated from the ERA5 re-
analysis and CMIP6 GCMs for the Nordic region (55–72° N,
5° W–45° E) using common empirical orthogonal functions
(henceforth “common EOFs”) as a framework for represent-
ing both the real-world and modelled conditions (Benestad,
2001). This choice implied using a so-called hybrid perfect
prognosis model output statistics (PP-MOS, https://cordex.
org/wp-content/uploads/2022/08/White-Paper-ESD.pdf, last
access: 22 December 2024) framework to represent the pre-
dictors and ensured that the covariance structures from ERA5
used for calibration matched those from GCMs used for pro-
jection. The introduction of the ERA5 reanalysis has been a
step change in terms of progress within ESD as there was a
close match between fw and µ from the reanalysis and rain
gauge measurements, respectively (see the Appendix B), en-
abling their use as predictors. More details and explanations
about downscaling in general and the specific downscaling
setup and analysis in our case are provided in Appendix A.

Here we distinguish between empirical orthogonal func-
tions (EOFs) and principal component analysis (PCA). We
used the former for data organized on a regular longitude–
latitude grid, as is the normal convention in the scientific lit-
erature (Lorenz, 1956; Wallace and Dickinson, 1972; North
et al., 1982; Preisendorfer, 1988; Navarra and Simoncini,
2010), whereas PCA (Wilks, 2006) was used for data se-
ries that had an irregular spatial distribution, such as rain
gauge measurements. Moreover, we used PCA to represent
the predictands as it tends to emphasize large-scale structures
in groups of local measurements (Benestad et al., 2015a),
and a step-wise multiple ordinary linear regression (OLR)
was used to find an optimal connection between principal
components from EOFs representing the large-scale predic-
tors and the principal components from PCA representing
local fw and µ. The downscaled annual fw and µ were
subsequently used to estimate the probability that the daily
precipitation amount (X′) exceeded a given threshold (x′)
using the simple and approximate relation Pr(X′ > x′)≈
fw exp(−x′/µ) based on Benestad et al. (2019). The analy-
sis for daily precipitation amounts was extended to sub-daily
timescales where the shape of intensity–duration–frequency
(IDF) curves was downscaled based on their dependency on
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Figure 1. Map showing the rain gauge station network from ECA&D used as predictands in the empirical–statistical downscaling of 24 h
precipitation statistics. The colour legend shows the mean annual total precipitation.

x′τ,L = αµ(L/24)ζ ln(fwτ), where α was a calibrated adjust-
ment factor, L was the duration of wet-spells in hours, τ
was the return period, and ζ described the fractal dimen-
sion for temporal-scale inter-dependencies (Benestad et al.,
2020). The downscaling was carried out using the R package
esd (Benestad et al., 2015b), and the downscaled results for
the sites of the rain gauge measurements were subsequently
gridded through the kriging of the spatial weights with ele-
vation as a co-variable using the R package LatticeKrig
(Nychka et al., 2016). The kriging was applied to the spa-
tial weights for the respective leading modes of PCA, which
describe coherent geographical patterns of variability over
the Nordic region. More details about the kriging method are
provided in Appendix A.

2.3 Evaluation

The evaluation of the models and methods is documented in
Appendix B and was applied to downscaled results through
both conventional cross-validation and standard statistical
tests of whether the observations belonged to the same sta-
tistical population as the downscaled multi-model ensemble.
There was a close match between the aggregated rain gauge
data and ERA5 for both fw and µ, where the cross-validation
was 0.93 for the leading PCA mode for annual fw and where
this leading PCA mode accounted for 50 % of the variance.
The downscaling exercise for the second PCA (29 % of the
variance) gave a cross-validation correlation of 0.92. Fur-

thermore, the geographical weights of the calibrated ERA5
predictor matched spatial patterns of the corresponding PCA
mode, as should be expected when the same variable is used
as both the predictor and the predictand. Similarly, the down-
scaling exercise between aggregated rain gauge and ERA5
for annual µ returned cross-validation correlations of 0.96
and 0.81 for first and second PCA modes, respectively (rep-
resenting 54 % and 26 % of the variance, respectively), also
with matching spatial weights between calibrated ERA5 data
and PCA modes. In summary, both high cross-validation
correlation and similar geographical distribution of spatial
weights in the predictors and predictands indicate a good
match between the ERA5 and rain gauge measurement an-
nual precipitation statistics when both involve the same vari-
able.

It is important that the GCMs skilfully reproduce the same
large-scale information that was found in the ERA5 reanal-
ysis during calibration since we use it as a predictor when
making projections for the future. Hence, our evaluation also
involved testing the ability of the GCMs in reproducing the
predictors in a skilful way and is described in more de-
tail in Appendix B. The test of simulated predictor quality
used common EOFs (Barnett, 1999) to compare the spatio-
temporal covariance structure captured by simulations with
corresponding information derived from the ERA5 reanal-
ysis as in Benestad et al. (2023) but applied to fw and µ,
respectively. The CMIP6 GCMs reproduced the mean sea-
sonal cycle in fw and µ aggregated from the ERA5 reanal-
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ysis as well as the historical interannual mean variability in
the annual fw and µ (for the period 1959–2021). A compar-
ison of historical trends in GCM historical runs and ERA5
further indicated that the GCMs were able to reproduce the
observed historical changes in fw and µ. The CMIP6 ensem-
bles for fw and µ were of limited size since they were gen-
erated from daily data, and, for example, monthly fw and µ
values are not (yet) part of the CMIP standard output pro-
tocol. We thus limited our analysis to one particular con-
figuration from each GCM (e.g. r1i1p1f1). The number of
ensemble members of regional or local climate projections
can be interpreted as equivalent to statistical sample size as
each model simulation involves non-deterministic stochastic
decadal variability (Deser et al., 2012, 2020). The normal dis-
tribution may provide useful information on statistical data
samples with about 30 data points if the data are normally
distributed, and hence, distributions of downscaled ensemble
results were tested against a normal distribution as in Ben-
estad et al. (2023). The results of these tests suggested that
the ensemble mean and standard deviation can provide an
approximate description of the ensemble.

The evaluation of both the downscaling method and the
GCM simulations established that local wet-day frequency,
fw, and wet-day mean precipitation, µ, can be skilfully es-
timated over the Nordic region from corresponding large-
scale quantities from both the ERA5 reanalysis and CMIP6
simulations. The subsequent step was to use these results to
make projections for future climatic outlooks and estimate
changes in precipitation statistics based on relationships es-
tablished from previous studies (Benestad et al., 2019, 2020).
Such steps are, to the best of our knowledge, the first efforts
to downscale statistical properties for daily precipitation di-
rectly beyond downscaling extreme climate indices (Good-
ess et al., 2003; Haylock et al., 2006). Benestad et al. (2019)
provided an evaluation of the statistical framework for es-
timating probabilities of moderate 24 h precipitation, which
involved 1875 rain gauge records from North America and
Europe with more than 50 years of valid data over the pe-
riod from 1961–2018, and this evaluation will not be repeated
here. To compensate for the thin upper tail of the exponen-
tial distribution, which is expected to significantly underes-
timate extremes, an empirical scaling factor, α, was intro-
duced, and the analysis was restrained to moderate extremes
(20–50 mm d−1). This scaling factor partly compensates for
the fact that extreme 24 h precipitation does not follow an
exponential distribution but has a thicker upper tail of the
statistical distribution (Ye et al., 2018; Papalexiou and Kout-
soyiannis, 2013).

3 Results

Figure 2 shows time series for the wet-day frequency, fw,
and wet-day mean precipitation, µ, extracted for Blindern,
Oslo, and the black symbols show the annual statistics de-

Figure 2. Ensembles of downscaled wet-day frequency, fw, and
wet-day mean precipitation, µ, for Oslo based on the SSP370 emis-
sion scenario. Black symbols show annual such aggregated statis-
tics estimated from rain gauge measurements from Blindern, Oslo,
and the green shading marks the ensemble spread of corresponding
downscaled results.

rived from historical measurements, whereas the green band
shows corresponding statistics downscaled from the CMIP6
SSP370 multi-model ensemble. The comparison between
model results (green band) and observations (black symbols)
gives an indication of the precision of the downscaling as
it did not involve any further calibration beyond the origi-
nal training of the downscaling model against the PCA-based
predictand. Neither the observations nor the projections indi-
cated any pronounced trend in the annual fw for Oslo; how-
ever, statistics based on rain gauge measurements over all
the Nordic sites nevertheless suggested a general weak in-
crease in the number of wet days over the 1950–2021 period
that was statistically significant at the 5 % level (see the Sup-
plement). The downscaled projections for Oslo (green shad-
ing in Fig. 2) and the Nordic countries (lower-left panel in
Fig. 3), however, indicated a weak (geographically mixed
and non-significant) general decrease in the number of wet
days for the period 2015–2099 based on the ensemble mean
of the CMIP6 simulations following the SSP370 emission
scenario. Other emission scenarios gave some variations in
the outlook, and SSP126 as well as SSP585 results gave a
more mixed picture of trends in future fw (see the Supple-
ment). The trend estimates in fw were expected to vary with
the frequency of weather types, and the forces driving the
atmospheric circulation that characterize different weather
types tend to arise from variations in the distribution of atmo-
spheric mass, which is not necessarily strongly constrained
by an increased greenhouse effect. However, there has been
as slight trend in annual fw in Oslo that was reproduced in a
downscaling exercise using ERA5 as predictor (see the Sup-
plement).

There has been a modest increase in annual wet-day mean
precipitation, µ, that was more pronounced than the trends in
fw, which is also visible in Fig. 2 (right panel) and Fig. 3d.
The trend estimates in µ were more spatially consistent
within the various emission scenarios, although higher emis-
sions were connected to stronger trends, and the results indi-
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Figure 3. Maps of downscaled mean fw (a) and µ (b) as well as trend estimates (c, d).

cated increases for most of the region except in the vicinity
of Tromsø municipality in northern Norway. Table 1 presents
the ensemble mean and standard deviation for a small selec-
tion of locations projected for the period from 2071–2100.
The downscaled results suggested that projected trends in fw
were not sensitive to the emission scenario (SSPs); however,
the magnitude of projected trends in µ ranked from the low-
est in SSP126, then SSP245 and SSP370, and the highest in
SSP585.

Since the mean precipitation is the product of the wet-
day frequency and wet-day mean precipitation4, we esti-
mated trends in total precipitation based on the fw, µ, and
product rule and used this information to explain total pre-

4x′ =
∑
x′/nw× nw/n= fwµ, where fw = nw/n and µ=∑

x′/nw.

cipitation changes in terms of the changing number of wet
days or changing intensity. Figure 4 shows estimated future
trends in precipitation (mm d−1 per decade in upper panel;
dx′/dt = µdfw/dt+fwdµ/dt) as well as its contribution re-
garding the changing number of wet days (lower left) and
changes in mean precipitation intensity (lower right). The
projections of the future climate in the Nordic region indi-
cated a general increase in the total precipitation is mainly
due to increased wet-day mean precipitation, µ, and in spite
of decreased wet-day frequency, fw, according to the se-
lected CMIP6 simulations.

The wet-day frequency, fw, and wet-day mean precipita-
tion, µ, represent two key parameters for approximate esti-
mation of the probability of heavy rainfall according to

Pr(X′ > x′)= fw exp(−x′/µ), (1)
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Figure 4. Estimated trend in mean precipitation, x′ = fwµ (a), and the contribution due to wet days, fw, (c) and mean intensity, µ (d).

proposed and evaluated by Benestad et al. (2019). Figure 5
shows the observed fraction of days per year with more than
30 mm for Blindern, Oslo (black symbols), compared with
such low-precision estimates based on this expression and
the ensemble means for fw and µ (using the expression
f we

−30/µ; solid red line) shown with error bars of 1 standard
deviation (dashed red). In other words, the results presented
here were the downscaled estimates for fw and µ used as in-
put in Eq. (1) without further calibration, and the statistics
based on rain gauge measurements and information down-
scaled from the GCM ensembles indicated somewhat match-
ing levels; however, the observations included some years
with substantially higher numbers of days with heavy rain-
fall. These results nevertheless serve as an example where
probabilities for heavy rainfall have been downscaled di-

rectly though the parameters fw and µ as opposed to aggre-
gating data points from of a statistical sample containing tra-
ditionally downscaled time sequences of weather states. An-
other benefit with a parameterized expression for probability
was that we could differentiate it according to the product
rule as follows: dPr(X′ > x′)/dt = (dfw/dt)exp(−x′/µ)+
fwx

′/µ2 exp(−x′/µ)(dµ/dt). Figure 6 shows maps of both
Pr(X′ > x′) and percentage trends5 for the SSP370 ensem-
ble mean, and the results indicated the highest probabilities
for days, receiving more than 30 mm of precipitation on the
west coast of Norway, but the relative trends were the great-
est over northern Finland. The density of rain gauge measure-
ments was lower in northern Finland and Norway, however,

5The trend is 100× dPr(X′ > x′)/Pr(X′ > x′).
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Table 1. The ensemble mean and standard deviation of the wet-
day frequency, fw, and wet-day mean precipitation, µ, projected
for 2071–2100 for a selection of locations.

Location Emission fw± σf µ± σµ
scenario

Geiranger SSP370 0.44 ± 0.06 9.24 ± 0.78
SSP126 0.44 ± 0.06 9.1 ± 0.78
SSP245 0.44 ± 0.06 9.12 ± 0.8
SSP585 0.44 ± 0.05 9.28 ± 0.9

Halden SSP370 0.34 ± 0.05 7.18 ± 0.43
SSP126 0.34 ± 0.05 7.06 ± 0.35
SSP245 0.34 ± 0.05 7.16 ± 0.46
SSP585 0.33 ± 0.05 7.24 ± 0.44

Helsinki SSP370 0.32 ± 0.04 5.89 ± 0.34
SSP126 0.32 ± 0.04 5.62 ± 0.28
SSP245 0.32 ± 0.04 5.75 ± 0.36
SSP585 0.31 ± 0.04 6.05 ± 0.43

Malmö SSP370 0.3 ± 0.02 5.72 ± 0.25
SSP126 0.31 ± 0.02 5.47 ± 0.22
SSP245 0.3 ± 0.03 5.6 ± 0.29
SSP585 0.3 ± 0.03 5.86 ±0.34

Oslo SSP370 0.32 ± 0.04 7.24 ± 0.41
SSP126 0.32 ± 0.04 6.99 ± 0.35
SSP245 0.32 ± 0.04 7.15 ± 0.45
SSP585 0.32 ± 0.04 7.38 ± 0.47

Stockholm SSP370 0.28 ± 0.03 5.31 ± 0.21
SSP126 0.29 ± 0.03 5.15 ± 0.17
SSP245 0.29 ± 0.03 5.24 ± 0.22
SSP585 0.28 ± 0.03 5.39 ± 0.27

Tallinn SSP370 0.34 ± 0.04 5.67 ± 0.31
SSP126 0.35 ± 0.04 5.39 ± 0.28
SSP245 0.34 ± 0.04 5.52 ± 0.36
SSP585 0.33 ± 0.04 5.82 ± 0.4

Vestervig SSP370 0.37 ± 0.04 6 ± 0.18
SSP126 0.37 ± 0.04 6.01 ± 0.16
SSP245 0.37 ± 0.04 6.01 ± 0.18
SSP585 0.36 ± 0.05 5.99 ± 0.2

and the uncertainties there are expected to be higher than fur-
ther south (see Appendix A for further details).

The parameterized expression for probabilities also en-
abled the downscaling of approximate estimates of return
values based on x′τ = αµ ln(fwτ), where α is a calibration
coefficient (Benestad et al., 2019). Figure 7 shows both 10-
year (left panels) and 25-year (right panels) return values as
well as their estimated trends (lower panels) based on the en-
semble mean SSP370 results. The greatest return values were
estimated over western Norway, with 10-year estimates rang-
ing within 30–170 mm d−1, while 25-year estimates varied
within the range 40–220 mm d−1. The lowest estimates were
downscaled for parts of northern Finland, Sweden, and Nor-

way. Projected future trends in x′τ were estimated based on
trends in the wet-day frequency, dfw/dt , and wet-day mean
precipitation, dµ/dt (lower panels in Fig. 3); the above ex-
pression; and the product rule, and increases in x′τ were in
general a result of increasing mean intensity rather than more
wet days. The greatest trends in the return value, dx′τ /dt ,
were downscaled over western Norway with already high
levels, but there were also notable increases over southwest-
ern Finland and over parts of southwestern Sweden.

Downscaled fw and µ also provided first-guess esti-
mates for intensity–duration–frequency (IDF) curves, assum-
ing there is a fractional dependence between temporal scales.
We based our estimates of IDFs on Benestad et al. (2020)
using the expression x′τ,L = αµ(L/24)ζ ln(fwτ), which de-
scribes mathematical curves whose shapes are approximately
similar to IDF curves estimated through more traditional
means, where α is the same calibration coefficient as above,
L is the duration in hours, τ is the return interval, and ζ de-
scribes the fractional dependency between temporal scales
and was fitted to observational rain gauge measurement data.
We estimated how the shape of IDF curves may change due
to trends in fw and µ (their trends are shown in the lower
panels in Fig. 3), and IDFs for Oslo for the present and the
future are shown in Fig. 8. Different estimates for IDFs for
the present, x′τ,L, and the future, x∗τ,L, provide an opportu-
nity to estimate scaling factors for IDF x∗τ,L and x′τ,L curves
to account for further climate change: 1.13–1.14 for fw and
µ projected with SSP370 ensemble mean, not taking into ac-
count decadal variability. A crude measure for accounting for
decadal variability was to use the ensemble spread ± σ , and
subtracting σ for the present and adding σ in the future gave
scaling factors within the range of 1.18–1.20 for SSP370. For
higher emissions associated with SSP585, the scaling factors
were 1.27–1.38 and in this case only based on the ensemble
mean and not accounting for decadal variability. All these es-
timates varied with the return period τ , but the scaling factors
were the same across time duration L in accordance with the
expression above. In this case, we assumed that α and ζ were
constant for a given site.

We also explored the connection between the wet-day fre-
quency and duration of dry spells (number of consecutive dry
days), which may provide some indication of meteorologi-
cal drought risk (see the Supplement). The calibration of our
ESD method indicated that there was a link between large-
scale fw values from ERA5 and the mean duration of dry
spells. The spell duration approximately followed a geomet-
ric distribution where the mean duration (number of consec-
utive dry days) was the inverse of the success probability,
which implies that we can approximately estimate the prob-
ability of a dry spell lasting longer than a given threshold. A
projected weak reduction in fw over the Nordic region will
therefore suggest slightly increased risks of meteorological
droughts in the future.
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Figure 5. Observed and estimated fraction of days per year in Oslo with more than 30 mm based on Eq. (1). The solid line shows estimates
using the ensemble mean for fw andµ as input and dashed lines the ensemble mean with the ensemble standard deviation added or subtracted.
The red curves represent the raw results of the calculation and do not involve any further calibration.

Figure 6. Estimates of the mean probability of more than 30 mm precipitation in 24 h according to Pr(X′ > x′)= fw exp(−x′/µ) (a) and the
proportional trend in the probability estimated using the product rule (b). These results are based on downscaled fw and µ from the CMIP6
ensemble following the SSP370 emission scenario.

4 Discussions

To our knowledge, this is the first time the shape of curves
representing probabilities for heavy rainfall or IDF curves
has been downscaled using a hybrid PP-MOS approach
(which addresses the “domain adaption” aspect discussed in
Rampal et al., 2024) applied to multi-model GCM ensem-
bles, albeit estimating the parameters defining their shapes.

Those parametric expressions nevertheless enabled us to
analyse the causes for trends in precipitation, probabili-
ties, return values, probability of meteorological droughts,
or shifts in the shape of IDF curves. These statistics were
calculated from formulas which used downscaled fw and µ
as input, and the results underscored that both the wet-day
frequency and the wet-day mean precipitation are two key
parameters for describing 24 h precipitation. In our case, the
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Figure 7. Estimates of the 10-year and 25-year return values based on the expression x′τ = αµ ln(fwτ) (Benestad et al., 2019) and their
future trend estimates (c, d). The results are based on the SSP370 emission scenario and the CMIP6 ensemble mean downscaled fw and
µ (a, b).

Figure 8. Estimate of intensity–duration–frequency curves for Blindern, Oslo, based on downscaled fw and µ (thin solid–dotted) and
their future trend estimates (thick solid–dashed). These results are based on the SSP370 emission scenario and the expression x′τ (L)=
αµ(L/24)ζ ln(fwτ) (Benestad et al., 2020).
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results were more sensitive to the mean precipitation inten-
sity, µ, than wet-day frequency, fw.

Our results suggested a slight reduction in the future wet-
day frequency over the Nordic countries, which may re-
flect predominant changes in the atmospheric circulation pat-
terns due to the location of storm tracks and blocking high-
pressure systems. Present state-of-the-art GCMs still have bi-
ases when it comes to storm tracks and blocking frequencies,
which is possibly due to a coarse representation of the polar
jet stream and other processes in the Arctic (IPCC, 2021).
The downscaling may underestimate long-term changes in
the mean precipitation intensity µ, even if the evaluation of
the CMIP6 models seemed to score well on the comparison
between trends in GCMs and ERA5. A separate test where
µ was downscaled solely based on ERA5 reanalysis did not
capture the historical changes observed in Oslo (see the Sup-
plement). Furthermore, the projections of the wet-day fre-
quency, fw, did not account for the risk that circulation pat-
terns may change in ways not captured by present models.
There may also be tipping points in the North Atlantic and
sea ice cover, changes in the jet stream, effects from dis-
placed storm tracks, and inaccurate simulation of blocking
high-pressure system frequencies (IPCC, 2021). Neverthe-
less, a take-home message is that long-term trends in µ were
sensitive to future emissions.

One question is whether the fractal temporal scaling prop-
erties utilized in the approximate IDF representation in Fig. 8
are stable or if we can expect them to change in time and
space. It is also possible that there are diverging trends in fw
or µ during different seasons that cancel each other out in
the annual mean that are, for example, associated by prevail-
ing presence of different seasonal meteorological phenom-
ena. Our results suggested that the annual wet-day frequency,
fw, was more coherent over space as all the 20 leading EOFs
combined accounted for 88 % of the variance in the ERA5 re-
analysis compared to 74 % for the annual wet-day mean pre-
cipitation,µ. Moreover, the leading EOF mode for the annual
wet-day mean precipitation, µ, from ERA5 captured 19 % of
the variance as opposed to 30 % for fw, which suggests that
µ to a greater degree reflects small-scale processes and phe-
nomena not being as strongly correlated over the region on
annual timescales. Local and mesoscale processes and phe-
nomena that may influence µ include surface-air fluxes, and
local geographical effects such as orographic forcing. How-
ever, both fw and µ are expected to reflect meteorologi-
cal phenomena ranging from local microscale to mesoscale
and synoptic scales that may produce precipitation with dif-
ferent characteristics, dynamics and mechanisms, including
convection, cut-off lows, mid-latitude cyclones, frontal sys-
tems, atmospheric rivers, and orographic forcing. Both in-
creased precipitation amount from higher surface tempera-
ture and changes in the distribution of the precipitation over
the planetary surface play a role in the trends in extreme pre-
cipitation amounts. Benestad et al. (2024) found a link be-
tween increased intensity on the one hand and increased rate

of evaporation as well as changes in the global surface area
receiving daily precipitation on the other. They also observed
that changes in the global fractional surface area with daily
precipitation were connected to the global statistics of the
wet-day frequency, fw.

It is important to combine equivalent results from both
ESD and RCMs when downscaling is used to produce
regional or local climate projections for the future since
they are based on different assumptions and have different
strengths and weaknesses but are expected to give similar
results for aggregated precipitation and temperature. All ex-
pressions used here in connection with ESD can also be com-
bined with RCMs as Oguz et al. (2024) used the EURO-
CORDEX ensemble (RCMs) rather than ESD to estimate fw
and µ. They subsequently used the IDF curves as a basis for
weather generators (Monte Carlo simulations) to provide in-
put for landslide modelling. We leave a comparison with sim-
ilar information from RCMs for future work.

Our results were produced with a hybrid PP-MOS strat-
egy for downscaling climatic parameters represented through
PCAs that may serve as a benchmark for machine learning
and artificial intelligence (AI; Rampal et al., 2024). There is
value in combining this ESD approach with more advanced
machine learning (ML) or artificial intelligence (AI) methods
that produce results with very different constraints. However,
since downscaling fw or µ does not require as large data vol-
ume or as long time series as either ML, AI, or traditional
methods for studying extremes, such a comparison is limited
to cases with ample observational data or “pseudo-realities”
using model output. One merit of our strategy is that it pro-
vides an explainable method which enhances our understand-
ing of projected changes and thus complements many ML/AI
methods. Hence, our downscaling strategy addresses some
of the research questions stated in Rampal et al. (2024), and
when the recipe of the entire analysis can be documented
through an R Markdown script (see the Supplement), it is
easier to provide transparency and the traceability sought in
scientific discourse.

It is important to account for chaotic and stochastic
variability on regional and decadal scales (Deser et al.,
2012, 2020), for instance, using large multi-model ensem-
bles as a surrogate for statistical sampling and letting the en-
semble spread give a crude representation of probable out-
comes. This analysis suggested that the ensemble spread for
both annual fw and µ was approximately normal which im-
plies that the ensemble mean as well as the standard deviation
may provide useful information about the ensemble spread.
The CMIP ensemble here was limited to one simulation per
GCM because fw and µ had to be estimated from avail-
able daily output, making it difficult to explore uncertainties
connected to initial conditions, natural variability, and model
choices (Mezghani et al., 2019). However, it may be possible
to use factorial regression or ANOVA to assess how model
choice affects the downscaled ensemble with larger multi-
model ensembles that include multiple simulations with the
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same GCM (Benestad et al., 2017, 2016). With the available
CMIP6 data in this case, it was only possible to carry out an
assessment of the sensitivity to emissions through compar-
ing downscaled results from SSP126, SSP245, SSP370, and
SSP585.

5 Conclusions

We used the ERA5 reanalysis and local rain gauge mea-
surements from Nordic countries to calibrate empirical–
statistical downscaling models, which were applied to
CMIP6 projections using annual wet-day frequency, fw, and
wet-day mean precipitation, µ, respectively, as both predic-
tors and predictands. A good match between the ERA5 re-
analysis and rain gauge measurements for these two key
statistics over the Nordic region made for a good calibra-
tion of our downscaling method. Predictors from global cli-
mate models from CMIP6 were evaluated and scored well in
terms of their ability to represent mean seasonal variations,
interannual variability of annual aggregates, and past trends
of the large-scale predictors needed for the downscaling. Our
downscaling used a hybrid PP-MOS approach for estimating
parameters for mathematical curves providing actionable re-
gional climate information. The downscaled fw and µ were
subsequently used to estimate local probabilities for heavy
rainfall, return values, and changes in the shape of intensity–
duration–frequency curves. We used kriging with elevation
as a covariate to generate Nordic maps of fw and µ and their
projected changes. Projected changes in the future suggest
increases in µ but very slight decreases in fw, hinting at less
frequent or a similar level of wet days in the future but also
more intense rainfall. The amplitude of projected trends in µ
was sensitive to the emission scenario, but trends in fw were
not. The spread between the ensemble members was approx-
imately normally distributed, which implies that essential in-
formation about the ensemble may be captured through the
ensemble mean and standard deviation.

Appendix A: Detailed information about the
downscaling methodology

A1 Interpretations of the concept of downscaling

There are different definitions of downscaling,
one being the mapping of data onto a finer grid
(https://doi.org/10.5194/egusphere-2024-1463-RC1, Anony-
mous Referee, 2024) and another for which the information
on large-scale features, which climate models are able to
reproduce, is combined with information about the depen-
dency across spatial scales to derive small-scale information
(Benestad, 2016). The former may not always take into
account the fact that numerical models have a minimum
skilful scale and only provide a limited representation of
reality (Takayabu et al., 2015). Downscaling is not restricted

to producing gridded data with a higher resolution, and there
are examples where downscaling has been carried out for
a single location (Wilby et al., 2002; Maraun et al., 2015;
Benestad et al., 2008). Moreover, the main objective of the
COST VALUE project (Maraun et al., 2015) was to establish
a standard evaluation scheme based on 85 different single
locations scattered across Europe. On the other hand, a plain
interpolation to a finer grid is usually not considered to be
a downscaling approach, but bias adjustment is sometimes
referred to as downscaling. Neither an interpolation, spatial
disaggregation, nor bias adjustment, or any combination
thereof, emphasizes the large-scale aspects that numeri-
cal models are able to reproduce with greater skill than
grid-point estimates.

Global climate models have a typical spatial resolution of
100 km and therefore only have a coarse representation of
the land surface, and the mountain regions are represented
by crude pixels with typically lower heights than in reality.
Some of the said simple approaches for producing data on a
finer grid may implicitly add information about elevation, for
example, through the inclusion of bias adjustment or kriging
with elevation as a covariate, but the models’ minimum skil-
ful scale is not the same as the model resolution. Moreover,
it is acknowledged that the models’ minimum skilful scale
typically encompasses several grid boxes (Von Storch et al.,
1993; Benestad, 2016). Various models in the CMIP6 ensem-
ble have a different spatial resolution, ranging from 50 km
to 260 km, whereas the ERA5 has a resolution of approxi-
mately 31 km (these data are provided on a reduced Gaussian
grid which has quasi-uniform spacing over the globe). Fur-
thermore, model data typically represent the average value
over a grid-box volume (e.g. temperature) or area (e.g. pre-
cipitation) with a spatial dimension of several cubic or square
kilometres, whereas observations represent conditions at spa-
tial scales of metres. The local rain gauge data can, for all
intents and purposes, be considered point-source measure-
ments (collected by funnels with a 20 cm diameter) and rep-
resent local (small-scale) climate information. In our anal-
ysis, downscaling provides the translation of large-scale in-
formation that can be provided by global climate models to
local statistics for precipitation collected by rain gauges by
adding information about their dependencies.

While RCMs and traditional ESD provide output for a
sequence of atmospheric states (or outcomes) at a daily or
sub-daily resolution, which we can refer to as weather con-
ditions, our strategy has been to downscale the key parame-
ters describing the shape of the mathematical curve for local
probability, rather than estimating the statistics from sam-
ples made up of such data sequences. We can loosely refer
to the former as downscaling weather, whereas the latter can
be termed downscaling climate if climate can be defined as
weather statistics or probability density functions (PDFs) re-
flecting (sub-)daily precipitation amounts. The application
of the downscaling climate approach is not as widespread
as the downscaling of time sequences with individual atmo-
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spheric states. Statistical properties of precipitation are ex-
pected to follow a more systematic geographical distribution
than any random individual weather event, being influenced
by prevailing large-scale conditions as well as fixed local ge-
ographical factors. Our objective was to downscale param-
eters describing the shape of a PDF or similar mathemat-
ical curves, and this approach was first inspired by Pryor
et al. (2005, 2006) and is based on a long-term effort and
a series of projects – e.g. EU SPECS (https://cordis.europa.
eu/project/id/308378, last access: 22 December 2024, CiX-
PAG (https://cicero.oslo.no/no/prosjekter/cixpag, last access:
22 December 2024, KlimaDigital (https://www.sintef.no/
projectweb/klimadigital/, last access: 22 December 2024,
and EU SPRINGS (https://www.springsproject.eu/, last ac-
cess: 22 December 2024). The downscaling climate approach
can also be applied to, for example, summertime heatwaves
or used to downscale the probability of the occurrences, nH,
as well as the duration of hot spells, LH (Benestad et al.,
2018); however, heatwaves were beyond the scope of the
present analysis. Another example of the merit of this con-
cept is the downscaling of storm track density (Parding et al.,
2019), and future work in the EU SPRINGS project will ex-
plore the possibility of downscaling public health statistics
for waterborne diseases that may lead to diarrhoea.

Using the same variables for predictors and predictands,
as in this case, leaves it up to the GCMs to represent the un-
derlying phenomena that generate precipitation. We could re-
fer to this strategy as a hybrid super-resolution model output
statistics (SR-MOS) in the terms proposed by Rampal et al.
(2024) rather than PP-MOS; however, we stick to PP-MOS
for simplicity. Improved GCMs in the future may reproduce
various meteorological phenomena and processes with im-
proved skill, which may lead to better estimates for future
projections. It is also important that the reanalysis used for
calibration matches the predictands closely.

A2 The predictors representing the large scales

Both the covariates from reanalyses used for calibrating
the downscaling methods and corresponding covariates from
global climate models used for making projections are re-
ferred to as predictors in the context of downscaling. Such
predictors represent large-scale aspects that global climate
models are able to reproduce with skill. Here we chose pre-
dictors that consisted of the same variables as the small-scale
information that we sought through downscaling: the annual
wet-day frequency, fw, and the annual wet-day mean precip-
itation, µ. This choice was motivated by the expectation of
a systematic dependency between the large-scale and small-
scale aspects of the same variable.

All of the CMIP6 models in our analysis were regridded
to match the grid of ERA5 for the region (55–72° N, 5° W–
45° E). Since data produced by reanalyses and global cli-
mate models have a high degree of redundancy, the informa-
tion contained therein can be reorganized as spatially coher-

ent patterns which represent substantial fractions of the co-
variance structure. These patterns involve mathematical tech-
niques within linear algebra (Strang, 1988) known as empir-
ical orthogonal functions (Lorenz, 1956; Wallace and Dick-
inson, 1972; North et al., 1982; Preisendorfer, 1988; Navarra
and Simoncini, 2010), commonly referred to as EOFs. EOFs
(and PCA used to describe predictands in the next subsec-
tion) make use of this redundancy and organize the informa-
tion so that the most salient aspects of its covariance struc-
ture are represented by its leading modes. Furthermore, the
high degree of redundancy makes it possible to represent the
most important covariance information in a much smaller
volume of data than the original raw data as illustrated by
the schematic in Fig. A1. Here we use X to represent the
anomalies of the original data with a temporal dimension, nt,
and a spatial dimension, nr (for gridded data, nr = nx × ny ,
but here the particular geographical arrangement of the data
points is not affecting the calculations). EOFs (and the PCA
for the predictand) were implemented through the means of
a singular value decomposition (SVD) (Strang, 1988), where
U represented the spatial weights (“geographical pattern”),
3was a diagonal matrix that held the eigenvalues (variances)
in decreasing order, and V contained the time series (princi-
pal components, PCs, used in the regression analysis) accord-
ing to

X = U3V T . (A1)

One important issue is that the same large-scale struc-
tures in the predictors found for the reanalysis during cal-
ibration of the downscaling methods must be found in the
model simulations to make projections for the future. A sim-
ple way to ensure identical covariance structures in the two
is to use so-called common EOFs as proposed more than
20 years ago by Benestad (2001), where anomalies of the
GCM data are mapped onto the same grid (regridded) as
those from the reanalysis and the respective anomalies are
combined so that the GCM data follow the ERA5 data in
time; X = [XERA5,XGCM]. Here, each GCM simulation was
regridded to match the grid of ERA5 through bilinear inter-
polation, and ordinary EOFs were estimated for the joint data
matrix. Since the spatial pattern, U , and the eigenvalue, 3,
were common for the joint data matrix, the two data sources
were only distinguished by V = [VERA5,VGCM] in Eq. (A1).

A3 The predictands representing the small scales

The predictand consisted of 652 local rain gauge measure-
ments from the Nordic countries over the period from 1951–
2021, and one reason to use a principal component analy-
sis (PCA) of annually aggregated statistics (fw and µ) was
that its gravest modes had a closer link to large-scale predic-
tors than each local time series (Benestad et al., 2015a). The
mathematics of PCA was similar to that of EOFs (Eq. A1),
but the original data and hence the matrices therein were
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Figure A1. A graphical illustration of representing the predictors in terms of EOFs. The left-hand side shows the data matrix with one map
for each year, but since there are many reoccurring/similar (typical) spatial patterns, it is possible to represent the most salient information
of these data matrix in terms of three dominant patterns (right-hand side), with temporal weights describing their presence and eigenvalues
indicating their general prominence. This schematic furthermore illustrates the concept of common EOFs, where one part of the data matrix
holds reanalysis data and another part holds GCM data. Their temporal weights are also distinguished by a different background colour on
the right, and the part representing the reanalysis is then used in the calibration against rain gauge data, whereas the other part is used for
making projections. Typically, the common EOFs require much less computer memory and are easier to process than the original data. They
also provide a framework for evaluating the predictors since the temporal weights associated with the reanalysis and the GCM should have
similar statistical properties. Since our schematic only includes the three leading modes, it reflects the expression X ≈ U3V T rather than
Eq. (A1).

distinct from that of the predictor and can be expressed as
X′ = U ′3′V ′

T . The difference between EOFs and PCA is
that the former represents data on regular longitude–latitude
grids, where the data are weighted by the area of their respec-
tive grid-box area, whereas PCA represents data with coor-
dinates that have irregular structures. The downscaling only
involved a representation of the predictands in the shape of
PCA, where the local climate information was embedded in
the spatial weight, U ′, and eigenvalue, 3′.

The local rainfall was measured at various locations with
an irregular geographical spread, with some regions hav-
ing more observations than others (Fig. 1), and there was a
denser network of data in some regions (e.g. southern Scandi-
navia) and sparser network in others (e.g. the north). Regions
with a different density of data get weighed differently with
the PCA, and the results presented here involved a less effec-
tive calibration for areas with a lower station density (such as
northern Norway/Finland) than southern Scandinavia. This

caveat may imply higher uncertainties for the data-sparse re-
gions in the far north.

The results from the downscaling were subsequently post-
processed to provide maps as shown herein. The maps
were generated though a kriging based on Markov random
fields (Nychka et al., 2016) and made use of the R pack-
age LatticeKrig, which follows a fixed-rank kriging ap-
proach with a large number of basis functions. It was de-
signed to provide spatial estimates that were comparable to
standard families of covariance functions, and its Markov
random field approach, combined with a basis function rep-
resentation, was supposed to enable an implementation of
different geometries. The kriging aspect here was merely
used to provide spatial maps once local information had
been derived for fw and µ for the locations of the rain
gauge measurements, and the main objective here was to
demonstrate how daily precipitation statistics can be derived
through empirical–statistical downscaling and then be used
for making local projections for a future climate. Further-
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more, the kriging was only applied to the spatial patterns of
the PCA for the leading mode, U ′, to produce U ′krig, and the

expression X′ = U ′krig3
′V ′

T was subsequently used to gen-
erate maps of fw and µ, with X′ representing either fw or µ.
For downscaled estimates, the contents of V ′ were replaced
with the results of the regression model presented in the sec-
tion below.

While the statistical parameters fw and µ were subject to
downscaling, we sought solutions for expressing the proba-
bility Pr(X′ > x′) and return periods of heavy precipitation
(moderate extremes, typically X′ ∈ 10, · · ·,50mm) based on
a modified exponential distribution. We used approximated
estimates for the probability of heavy precipitation based
on Pr(X′ > x′)= fwe

−x′/µ and return values according to
x′τ = αµ ln(fwτ). Benestad et al. (2019) evaluated these ex-
pressions for 9817 locations in Europe and North America,
and we do not repeat this evaluation here (the results are
published in an open-access journal). The approach for esti-
mating the parameters that determine the shape of intensity–
duration–frequency (IDF) curves was evaluated by Parding
et al. (2023) and Benestad et al. (2020) for sites in Norway,
and these evaluations are not repeated here either (said papers
are also in open-access journals). The main objective here
was to show how parameters that specify the shape of mathe-
matical curves for local precipitation statistics can be derived
directly through empirical–statistical downscaling given that
the curves themselves provide useful information.

A4 Details about the downscaling method

To ensure that the spatial covariance structure in ERA5 asso-
ciated with variation in the rain gauge statistics is the same
in the GCM, the regression analysis was carried out within
a framework of the spatial patterns held in matrix U that
are common for both reanalysis and model. The calibra-
tion involved a step-wise multiple ordinary linear regression
(OLR), which only used part of the principal component,
VERA5:

V̂ ′j = β0,j +
∑
i

βi,jVERA5,i . (A2)

In Eq. (A2) the term VERA5,i is principal component i of
the EOFs representing the predictor from ERA5 used for cal-
ibration, whereas V ′j represents the j th-order principal com-
ponent from the PCA, representing the predictand and the
aggregated statistics based on the local rain gauge data. In
this case, V ′ and VERA5,i were synchronized time series rep-
resenting local and large-scale annual precipitation aggre-
gates, respectively. It is Eq. (A2) that facilitates the transform
from large to small scales and is referred to as the down-
scaling method, in this case involving a regression model,
whereas the rest of the data processing provides the prepa-
rations, framing, and proper context for this analysis. The
calibration provided estimates for the regression coefficient,
βi , which were then used to make projections for the future

according to

X′ = U ′3′V ′DS, (A3)

where U ′ and 3′ are the spatial weight and eigenvalue from
the PCA representing the predictand and V ′DS,j = β0,j +∑
iβi,jVGCM,i incorporates the results from Eq. (A2). In

other words, we used Eq. (A3) together with the regression
coefficients and the part of the common EOFs represent-
ing the global climate models (V ′DS = [V

′

DS,1,V
′

DS,2, · · ·]) to
make projections.

In our downscaling attempts over the Nordic region, we
used the five leading PCA modes (j = 1,2, · · ·,5) to repre-
sent the most salient information of annual fw and µ esti-
mated from the rain gauge measurements (the predictands),
representing 100 % of the variance in the station-based statis-
tics for both. To represent the predictors, we used the seven
leading EOFs (i = 1,2, · · ·,7), estimated for fw or µ from
ERA5, in a step-wise multiple OLR to estimate each PCA
mode for the predictand. In other words, the OLR was used to
relate large-scale information from ERA5 to local informa-
tion provided by the rain gauge data, and time series repre-
senting annual fw and µ were generated based on the regres-
sion coefficient, βi , and subsequently computed according to
Eq. (A3).

The first step of the model calibration involved a 5-fold
cross-validation (Gutiérrez et al., 2018), where the data were
split into five equal segments, and one was withheld from
the calibration of the remaining four segments and then
compared with predicted values (out of sample). This exer-
cise was repeated for all combinations, and the final cross-
validation scores were estimated based on all iterations. The
final calibration, however, was carried out for annual data
over the entire period from 1951–2021 (51 data points for
each PCA mode).

Appendix B: Evaluation

B1 Cross-validation

It is a standard practice to evaluate downscaled results
through a cross-validation exercise and Tables B1–B2 show
cross-validation correlations for each of the five PCA modes
and for each type of GCMs. The scores vary slightly due
to different spatial resolutions and slight differences in their
embedded covariance information.
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Table B1. Cross-validation correlation of the principal components
from PCA used to represent the predictand for fw (columns). The
rows represent the different results for the different ensemble mem-
bers.

PC1 PC2 PC3

ACCESS.CM2.r1i1p1f1 0.93 0.93 0.79
ACCESS.ESM1.5.r1i1p1f1 0.91 0.93 0.76
AWI.CM.1.1.MR.r1i1p1f1 0.92 0.92 0.8
BCC.CSM2.MR.r1i1p1f1 0.9 0.94 0.75
CanESM5.r1i1p1f1 0.9 0.93 0.77
CMCC.CM2.SR5.r1i1p1f1 0.92 0.93 0.79
CNRM.CM6.1.r1i1p1f2 0.91 0.93 0.78
CNRM.ESM2.1.r1i1p1f2 0.91 0.93 0.8
EC.Earth3.r1i1p1f1 0.9 0.93 0.79
EC.Earth3.AerChem.r1i1p1f1 0.9 0.93 0.8
EC.Earth3.Veg.r1i1p1f1 0.89 0.94 0.79
EC.Earth3.Veg.LR.r1i1p1f1 0.9 0.93 0.79
FGOALS.g3.r1i1p1f1 0.9 0.94 0.75
GFDL.ESM4.r1i1p1f1 0.9 0.94 0.78
INM.CM4.8.r1i1p1f1 0.92 0.92 0.79
INM.CM5.0.r1i1p1f1 0.92 0.93 0.8
IPSL.CM5A2.INCA.r1i1p1f1 0.93 0.93 0.8
IPSL.CM6A.LR.r1i1p1f1 0.93 0.92 0.81
KACE.1.0.G.r1i1p1f1 0.93 0.93 0.78
MIROC.ES2L.r1i1p1f2 0.92 0.92 0.8
MIROC6.r1i1p1f1 0.9 0.91 0.79
MPI.ESM1.2.HR.r1i1p1f1 0.92 0.92 0.8
MPI.ESM1.2.LR.r1i1p1f1 0.92 0.93 0.78
MRI.ESM2.0.r1i1p1f1 0.92 0.92 0.81
NorESM2.LM.r1i1p1f1 0.89 0.93 0.8
NorESM2.MM.r1i1p1f1 0.89 0.93 0.77
UKESM1.0.LL.r1i1p1f2 0.9 0.93 0.75

B2 Evaluation of ERA5

A good match between annual rain gauge statistics and cor-
responding statistics derived from ERA5 also constitutes an
evaluation of the ERA5 reanalysis. Hence, diagnostics of
empirical–statistical downscaling can be used to evaluate re-
analyses such as ERA5. Figure B1 gives a graphical repre-
sentation of diagnostics associated with the calibration of the
regression coefficients for the leading PCA mode, βi,1, of
fw, where i ∈ 1, · · ·,7. These figures indicate that the spatial
weights with the most impact on annual fw in ERA5 match
the geographical distribution of the sites with the greatest
weight in U ′1 (upper panels show

∑
iβi,1Ui), and the lower-

left panel shows the results of a cross-validation applied to
pure ERA5 data.

Figure B2 shows similar results for µ and shows that there
was a close match between the annual wet-day mean precipi-
tation aggregated from rain gauge data and the ERA5 reanal-
ysis.

Table B2. Cross-validation correlation of the principal components
from PCA used to represent the predictand for µ (columns). The
rows represent the different results for the different ensemble mem-
bers.

PC1 PC2 PC3

ACCESS.CM2.r1i1p1f1 0.94 0.8 0.77
ACCESS.ESM1.5.r1i1p1f1 0.94 0.79 0.74
AWI.CM.1.1.MR.r1i1p1f1 0.95 0.78 0.78
BCC.CSM2.MR.r1i1p1f1 0.95 0.76 0.75
CanESM5.r1i1p1f1 0.95 0.79 0.72
CMCC.CM2.SR5.r1i1p1f1 0.94 0.62 0.74
CNRM.CM6.1.r1i1p1f2 0.94 0.8 0.77
CNRM.ESM2.1.r1i1p1f2 0.94 0.77 0.71
EC.Earth3.r1i1p1f1 0.94 0.76 0.75
EC.Earth3.AerChem.r1i1p1f1 0.94 0.8 0.75
EC.Earth3.Veg.r1i1p1f1 0.95 0.78 0.76
EC.Earth3.Veg.LR.r1i1p1f1 0.96 0.77 0.76
FGOALS.g3.r1i1p1f1 0.96 0.78 0.76
GFDL.ESM4.r1i1p1f1 0.94 0.78 0.74
INM.CM4.8.r1i1p1f1 0.95 0.79 0.74
INM.CM5.0.r1i1p1f1 0.94 0.79 0.76
IPSL.CM5A2.INCA.r1i1p1f1 0.94 0.77 0.74
IPSL.CM6A.LR.r1i1p1f1 0.94 0.77 0.75
KACE.1.0.G.r1i1p1f1 0.92 0.76 0.74
MIROC.ES2L.r1i1p1f2 0.94 0.81 0.74
MIROC6.r1i1p1f1 0.95 0.78 0.72
MPI.ESM1.2.HR.r1i1p1f1 0.96 0.8 0.76
MPI.ESM1.2.LR.r1i1p1f1 0.94 0.8 0.75
MRI.ESM2.0.r1i1p1f1 0.94 0.8 0.76
NorESM2.LM.r1i1p1f1 0.94 0.8 0.76
NorESM2.MM.r1i1p1f1 0.95 0.8 0.76
UKESM1.0.LL.r1i1p1f2 0.94 0.79 0.76

B3 Evaluation of the global climate models

Since large-scale aspects were used as predictors in the
downscaling, we evaluated the skill of the selected global cli-
mate models in reproducing them. Large-scale aspects from
ERA5 were used for the calibration of the downscaling mod-
els, and therefore the climate simulations were compared
with corresponding ERA5 data to make the evaluation rel-
evant for the downscaling results. We started by assessing
the mean annual cycle to provide a test of whether the repre-
sentation of physical processes and conditions in the models
captures the most salient variations such as the mean seasonal
cycle. Further steps in our evaluation involved testing their
ability to reproduce the characteristics of interannual varia-
tions and past trends in fw andµ. Both interannual variability
and assessment of past trends are relevant for when down-
scaling is used to make projections for the future because the
former reveals whether the models are able to reproduce the
covariance information associated with the Earth’s climate. It
is also important that the models are able to capture changes
(interannual variability and long-term trends) in the past if
they are to be trusted to predict changes in the future. The re-
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Figure B1. Diagnostics of the calibration of the multiple regression
model for the leading PCA mode for annual fw. Panel (a) shows the
spatial weights of annual fw from derived from rain gauge measure-
ments and panel (b) shows the spatial weights from the weighted
combination of EOFs of corresponding ERA5 data weighted ac-
cording to the regression coefficients from the calibration exercise.
Panel (c) provides the results from a 5-fold cross-validation and
(d) examines how well the multiple regression captures long-term
trends. This is an example of a skilful calibration where the spatial
weights match, the cross-validation score is high, and the long-term
trends are well reproduced.

sults of these evaluations can be found in the Supplement but
are not presented here in more detail as our main objective
was to demonstrate how it is possible to downscale statistical
properties on daily precipitation directly.

B4 Ensemble evaluation

An evaluation of downscaled ensemble results may include
an assessment of whether the data follow a normal distribu-
tion, and rank statistics can be used to test whether the model
results belong to the same statistical population as the ob-
served target data. We tested the downscaled data in terms
of both their rank statistics based on individual years and
the ratio of observed to modelled standard deviations asso-
ciated with their reproduction of interannual variability. It is
important that the downscaled results reproduce the typical
interannual variability and historical trends for the selected
locations.

Figure B3 shows an evaluation of the statistical distribu-
tion of the downscaled ensemble results and suggests that the
ensemble results were close to being normally distributed for
both fw and µ. Hence, information about the ensemble can

Figure B2. Same as Fig. B1 but for µ.

be approximated by the ensemble mean and ensemble stan-
dard deviation.

The average rank of annual respective fw and µ from
the observations from Blindern, Oslo, was estimated over
the 1951–2014 period in terms of the downscaled results
(Fig. B4). If the ensemble results belonged to the same statis-
tical population as the observations, then this rank statistics
should follow a uniform distribution. For fw, the mean rank
was 0.49 and well within the range of 0–1 (p value of 0.49).
The observed standard deviation for fw was 1.33 times that
of the ensemble for the overlapping historical simulations.
Likewise, the mean rank for µ was 0.44, with a correspond-
ing ratio in standard deviation of 1.41. Figure B4 shows the
case, for Blindern, Oslo, as an example of how the down-
scaled ensemble can be assessed, and in this case the down-
scaled ensemble gave a slight underestimate of the magni-
tude of the interannual variability.

An evaluation of trends indicated ranges for both fw and µ
which spanned the observed trends at the 652 locations, but
the ensembles underestimated the interannual variability for
both fw and µ (see the Supplement).
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Figure B3. A comparison between the ensemble distribution (his-
torical run) and the normal distribution for annual fw (a) and µ
(b) for their respective leading PCA. The near-linear fit suggests
that the distribution of the ensemble results is close to being nor-
mally distributed for the most important PCA mode.

Appendix C: Projections of regional future precipitation
statistics

We have, in our analysis, explored annually aggregated fw
and µ, but the presence of various meteorological phenom-
ena tends to vary with the seasons, and a mean annual trend
may mask possible opposite trends in different seasons. To
assess this possibility, we took a random sample from his-
torical rain gauge measurements from Oslo and compared
seasonal trends in both fw and µ (see the Supplement). Our
random test suggested that there were no pronounced oppo-
site trends, but a more thorough exercise would entail down-
scaling seasonal mean precipitation statistics for the Nordic
region. We leave the task of seasonal focus for the future
as a part of our objectives was to develop and evaluate the
downscaling approach for the EU SPRINGS project and to
provide the first projections for the planned national report
Klima i Norge 2100. This strategy will also be explored in
collaboration with Mozambique through a CORDEX flag-
ship pilot study (FPS) southeast Africa and the Norad-funded
project Sarepta (https://bistand.met.no/en/Sarepta, last ac-
cess: 23 December 2024). This downscaling climate ap-
proach for precipitation may work even if there is limited

Figure B4. A comparison between the downscaled ensemble an-
nual fw (a) and µ (b) for Oslo and corresponding observations indi-
cates that the model results reproduce both amplitude and long-term
trends at a realistic level.

rain gauge data, but it is important that reanalyses such as
ERA5 correspond well to data on the ground.

Code availability. The R Markdown script, on which this analy-
sis is based, is provided in the Supplement and available from
figshare (https://doi.org/10.6084/m9.figshare.25809196.v2, Benes-
tad, 2024).

Data availability. The data used in the analysis are avail-
able together with computer code from FigShare at
https://doi.org/10.6084/m9.figshare.25809196.v2 (Benestad,
2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-29-45-2025-supplement.
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