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Abstract. Land surface models (LSMs) used in climate mod-
els typically represent surface hydrology as one-dimensional
vertical fluxes, neglecting the lateral movement of water
within and between grids. It is assumed that lateral flow of
water has a negligible impact on land surface states at climate
modelling resolutions of a few tens of kilometres. However,
with increases in model resolution, it may be necessary to in-
clude lateral flow in LSMs as satellite observations indicate
the influence of this process on ecohydrological states, par-
ticularly in water limited regions. Lateral flow has not been
modelled in Australia, but there is some evidence that this
process exerts a dominant influence on vegetation variabil-
ity in arid and semi-arid Australia. Here we use standalone
WRF-Hydro simulations to quantify the influence of over-
land and shallow subsurface lateral flow on surface fluxes
in southeast Australia, and the impact of model resolution
on the results. We perform LSM simulations at 1, 4, and
10km resolutions, with and without lateral flow, to assess
the changes in evapotranspiration. Our results show that lat-
eral flow increases evapotranspiration near major river chan-
nels in LSM simulations at 4 and 1 km resolutions, consistent
with high-resolution observations. The largest changes occur
in the warm season after a wet winter, with magnitudes of
50 % or more in some areas. However, the 1 km resolution
simulations also exhibit a widespread pattern of drier ridges,
different from the coarser resolutions. At 10km resolution
the increases in evapotranspiration are confined to the moun-
tainous regions. Our results suggest that it may be necessary

to include lateral flow in LSMs for improved simulations of
droughts and future water availability at resolutions higher
than 10 km.

1 Introduction

Land surface models (LSMs) were developed to represent
surface thermodynamic, hydrological and biogeochemical
processes and provide lower boundary fluxes to the atmo-
sphere in coupled climate model simulations. Land hydrol-
ogy in LSMs is conceptualised as one-dimensional vertical
fluxes that partition precipitation reaching the ground into
evapotranspiration, runoff, and storage change (Clark et al.,
2015). While some aspects of spatial land heterogeneity re-
lated to variation in land cover, soils and vegetation types are
incorporated in this one-dimensional framework (Lawrence
et al., 2019; Walters et al., 2019), the lateral flow of wa-
ter within and between model grid cells is typically not
represented (Clark et al., 2015; Fan et al., 2019). In some
cases, lateral flow is modelled using routing models uncou-
pled from LSMs as a subsequent part of the modelling sys-
tem, to obtain streamflow (Li et al., 2013; Yamazaki et al.,
2014). The eco-hydrological effects of lateral flow manifests
at spatial scales of tens of meters to kilometres (hillslope
scales) and this process is assumed to have negligible influ-
ence on states at LSM grid scales (typically a few tens to
around 100km) (Fan et al., 2019). Currently, climate mod-
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elling resolutions are increasing with advancements in com-
puting (Demory et al., 2020; Lucas-Picher et al., 2021) and
LSMs have expanded to represent a range of process linked
to vegetation dynamics (Fisher et al., 2018), nutrient cycling
(Sun et al., 2021), fire dynamics (Curasi et al., 2024) and as-
pects of water management including irrigation (Evans and
Zaitchik, 2008; Pokhrel et al., 2016). Many of these pro-
cesses are linked to hydrologic states in the LSM (Blyth et
al., 2021). As summarised by Fan et al. (2019), processes
such as topography driven drainage and variations in solar
insolation are understood to be fundamental organisers of
eco-hydrological states at finer spatial resolutions and need
to be incorporated into LSMs when applied at fine spatial
resolutions.

While lateral flow is not directly observed, other lines of
evidence indicate the relevance of this process. Modelling
studies using LSMs without lateral flow attribute reduced soil
storage, faster subsurface drainage, and faster shutdown of
evapotranspiration and streamflow to the lack of lateral flow
(Fan et al., 2019). Satellite observations show vegetation pat-
terns consistent with lateral water flow (Chen et al., 2016; Tai
et al., 2020), and solar insolation differences (Pelletier et al.,
2018). The water, energy and carbon exchanges between the
land and atmosphere are strongly coupled to vegetation ac-
tivity at regional and global scales (Duveiller et al., 2018;
Forzieri et al., 2020). Norton et al. (2022) report that areas
with higher hydrologic connectivity account for a larger pro-
portion of the land carbon uptake in arid and semi-arid Aus-
tralia, and lateral flow drives the variability in vegetation pro-
ductivity in these regions. Thus, there is evidence that lateral
flow processes in LSMs may be important in modelling wa-
ter, energy and carbon cycles.

There have been several model developments to include
lateral flow processes in LSMs, and they fall into two
broad categories (1) representation of lateral subsurface flow,
(2) representation of lateral overland flow in addition to sub-
surface flow. Models that represent lateral subsurface flow
range in complexity and include (1a) coupling a 3-D ground-
water model to an LSM (Bisht et al., 2018; Zhu et al., 2024),
(1b) quasi-3D approaches that incorporate a source term to
account for lateral flow in the vertical solution of soil water
fluxes (Felfelani et al., 2021; Qiu et al., 2024), and (1¢) more
simplistic sub-grid representative hillslopes with specified
connectivity that move water laterally within a model grid,
but not between grids (Hazenberg et al., 2016; Swenson et
al., 2019; Zhang et al., 2024). The three main modelling sys-
tems that represent lateral overland flow in addition to sub-
surface flow are (2a) HydroBlocks (Chaney et al., 2021),
(2b) WRF-Hydro (Gochis et al., 2020), and (2c) ParFlow-
Common Land Model (ParFlow-CLM) (Naz et al., 2023).
HydroBlocks and WRF-Hydro represent the lateral move-
ment of overland flow from infiltration and saturation ex-
cesses at fine spatial resolutions (of order 100 m). The Hy-
droBlocks model has been developed over the past few years
and has not been widely applied. WRF-Hydro has been de-
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veloped over the past two decades for streamflow forecast-
ing (Cosgrove et al., 2024; Gochis and Chen, 2003), but
a few studies have applied it to study the influence of lat-
eral flow (Arnault et al., 2021; Lahmers et al., 2020; Yang
et al., 2021). ParFlow-CLM simulates deeper groundwater
flow (up to about 100 m below ground) as well as overland
flow using a single framework at spatial resolutions of about
1 to 10km (Keune et al., 2016; O’Neill et al., 2021). This
model requires more subsurface information than the other
two modelling systems and is typically used without calibra-
tion due to higher computational requirements. A few studies
have used ParFlow-CLM to examine the influence of lateral
flow (Keune et al., 2016; Maxwell and Condon, 2016). It is
worth noting that this summary pertains to modelling sys-
tems that includes lateral flow processes in LSMs used for
Earth system modelling. Other models of lateral flow have
been developed in the domain of integrated surface subsur-
face hydrological modelling to understand watershed system
function (Bhanja et al., 2023; Brunner and Simmons, 2012).
But these formulations have not been used in LSMs, likely
due to the challenges in coupling them with LSMs.

Several studies have used LSMs with lateral flow to quan-
tify the impact on land surface and climate states. Swenson
et al. (2019) used global LSM simulations at coarse spatial
resolutions with subsurface intra-grid lateral flow and found
that lateral flow causes differences in evapotranspiration be-
tween upland and lowland hillslope columns, and that the
largest differences occur in arid and semi-arid regions. Sub-
sequently, regional models were used to understand the in-
fluence of lateral flow on land surface states at higher spa-
tial resolutions in parts of United States, Europe, Africa and
China. These studies report that while increases in regional
mean soil moisture and evapotranspiration (ET) induced by
lateral flow are small, the changes are spatially heteroge-
nous (Chaney et al., 2021; Fersch et al., 2020; Lahmers et
al., 2020; Qiu et al., 2024; Zhang et al., 2024). In urban ar-
eas, fine scale heterogeneity of impervious areas and open
spaces may induce substantial changes in the surface energy
balance (Alexander et al., 2024; Reyes et al., 2016). On re-
gional scales, including lateral ground water flow is reported
to increase the proportion of ET from transpiration over the
United States (Maxwell and Condon, 2016). Coupled re-
gional land—atmosphere simulations indicate that lateral flow
can influence convective organisation (Lahmers et al., 2020)
and recycled precipitation (Arnault et al., 2021; Zhang et al.,
2021) in some regions. In Australia, the influence of lateral
flow on land surface states has not been examined in regional
LSMs.

Overall, the evidence suggests that gradient driven lateral
flow convergence can modulate regional water, energy and
carbon fluxes and that it may be necessary to model this
process in high-resolution LSMs, particularly in water lim-
ited regions. While the influence of hydrologic connectivity
is visible in vegetation patterns in semi-arid Australia, the
impact of lateral flow in this region has not been quantified.
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This study aims to understand the influence of lateral flow on
land surface states in southeast Australia, and the impact of
model resolution on the results. We use standalone LSM sim-
ulations at varying spatial resolutions to examine the changes
in ET and surface water partitioning due to lateral flow. In
standard LSM simulations, surface and subsurface runoff are
removed from the system at the end of each model time step.
In LSM simulations with lateral flow representation, runoff
remains in the system and continues to affect other water cy-
cle components such as ET and soil moisture.

2  Methods
2.1 Experiment Design

We perform standalone simulations using WRF-Hydro ver-
sion 5.2 (Gochis et al., 2020) with the Noah-MP LSM to
study the influence of lateral water flow on surface fluxes in
a domain that covers an area in southeast Australia (Fig. 1).
There is substantial topographic variation in the domain with
low lying areas in the northwest and mountainous regions
with elevations above 1000 m in the southeast. The domain
includes upper reaches of the Murray River system that flows
west across the region (Appendix Fig. Ala). Figure Ala
shows the surface water catchments and major rivers in the
region — the Murrumbidgee, Upper Murray, Ovens and Goul-
burn rivers. In the results Sect. 3.2.3, we analyse the mod-
elling results in more detail in the connected basins outlined
in blue in Fig. 1 — Upper basins (the combined Upper Murray
and Kiewa basins), Ovens, and Murray Riverina.

The WRF-Hydro modelling system consists of a column
LSM (here we use Noah-MP) that simulates the vertical ex-
change of water and energy at the surface at resolutions of
1 to 10km, coupled to routing modules that simulate lat-
eral flow at finer resolutions (100s of meters). WRF-Hydro
has the capability to simulate overland, shallow subsurface,
and channel flows on the fine resolution routing grid. The
subsurface lateral flux in the saturated portion of the soil
column is calculated based on hydraulic gradients using the
method documented in Wigmosta et al. (1994) and Wigmosta
and Lettenmaier (1999), implemented in the Distributed Hy-
drology and Soil Vegetation Model (Gochis et al., 2020).
Overland and channel flow is calculated using the diffusive
wave formulation, using Manning’s equation as the resis-
tance formulation (Gochis et al., 2020). In the simulations
presented in this paper, overland and shallow sub-surface
flows are modelled, and these processes feedback to influ-
ence soil moisture and surface fluxes in the LSM. The wa-
ter that flows into the channel grids is routed downstream to
model streamflow and does not feedback to affect the LSM
soil moisture. In other words, channel leakages are not rep-
resented in the model. The WRF-Hydro modelling system
also has the functionality to specify a conceptual represen-
tation of baseflow by passing the underground runoff from
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the LSM directly into the channel network, but this is not
used in the simulations presented in this paper. We calibrate
model parameters to match streamflow at selected gauges.
Based on preliminary calibration results, the baseflow repre-
sentation is turned off in our simulations. It is worth noting
that lateral saturated sub-surface flow is being modelled in
our simulations as described above, despite baseflow being
turned off.

Here we use the standard Noah-MP LSM which has a con-
stant soil depth of 2 m with vertically homogeneous soil pa-
rameters. This formulation can contribute to biases in runoff
and evapotranspiration, which may be ameliorated by incor-
porating variable and higher soil depths, groundwater pro-
cesses, and vertical soil heterogeneity (Gochis et al., 2010;
Barlage et al., 2015; Wu et al., 2021; Yimam et al., 2025) in
the modelling framework. These aspects have not been ex-
plored in this study as they are outside the scope of the work
presented here.

Our experiment set consists of simulations with and with-
out lateral flow at different LSM and routing resolutions (Ta-
ble 1). The higher order channels in the routing grid used for
modelling are identified from digital elevation data and they
match the river network in the region available from other
sources (Fig. Al). The Noah-MP parameterisations used are
the defaults in WRF-Hydro (Gochis et al., 2020) and are
listed in Appendix Table A1. We estimate the differences be-
tween the “LAT” and “CTL” simulations at the same reso-
lutions to quantify the influence of lateral flow and use the
suite of experiments to understand the variation with model
resolution. We simulate years 2013 to 2017 and analyse the
changes in ET during December 2015 to November 2017
broken into individual seasons, discarding the first ~ 3 years
as spin-up.

The analyses years 2016 and 2017 consist of a wet year
followed by a dry year in this region. From the Australian
Gridded Climate Data (AGCD) (Jones et al., 2009), the do-
main average annual rainfall in 2016 is 940 mm, which is in
the top decile of the long term record since 1911. In contrast,
the domain average annual rainfall in 2017 is 640 mm which
is about the 30th percentile. The domain average annual tem-
peratures during both years are 15 °C, which is slightly more
than 1 °C above the 1911-1960 mean.

2.2 Datasets
2.2.1 Geographic data

Static datasets from different sources are used to provide land
information to the model. We use the global Hydrosheds Dig-
ital Elevation Model (DEM) (Lehner et al., 2008) available at
a resolution of 90 m (https://www.hydrosheds.org/, last ac-
cess: 7 April 2022) to delineate the flow paths and accumula-
tion areas required for the routing modules. The landcover of
year 2014-2015 from the Dynamic Land Cover Dataset ver-
sion 2.1 (DLCDv2.1) available from Geoscience Australia
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Figure 1. (a) The WRF-Hydro model domain in southeast Australia. (b) Features in the domain. Background shading indicates topography,
and the surface water catchments (black outlines) that drain into the streamflow gauges (blue triangles) used for calibration are marked
on the map. The basins outlined in red (Upper Basins, Ovens, and Murray Riverina) are used to analyse the influence of lateral flow in
basins with varying topographic characteristics. The network of major rivers (blue lines) based on data from Geoscience Australia (https:
/Ipid.geoscience.gov.au/dataset/ga/42343, last access: 5 August 2023) are shown in panel (b).

Table 1. List of simulations in the experiment set up.

Simulation type Simulation  Land surface model Routing  Routing resolution
name resolution (km) (m)
CTL (Noah-MP) CTL1 1 -
CTL4 4 Off -
CTL10 10 -
LAT (Noah-MP + WRF-Hydro) LAT1-250 1 250
LAT1-100 1 100
LAT4-250 4 On 250
LAT4-100 4 100
LAT10-250 10 250
LAT10-100 10 100

(Lymburner et al., 2011) is used to provide land cover in-
formation for the LSM, and the soil data from the Food and
Agriculture Organisation, which is available as part of de-
fault geographic datasets for WRF are used to provide soil
type information. Preliminary experiments indicated that the
model simulations of streamflow are particularly sensitive to
soil representation. We analysed simulations using alternate
soil types specified based on soil attributes data available
from the Terrestrial Ecosystem Research Network (TERN)
(Searle, 2021), but finally used the default soil data as it re-
sulted in a closer match to observed streamflow. The bet-
ter streamflow simulations obtained using the default soil
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dataset rather than the TERN dataset may be surprising, as
the TERN data, which utilises regional observations (Teng
et al., 2018), likely provides more accurate soil information
over Australia. This is possibly because the modelled influ-
ence of soils on surface water partitioning in each land col-
umn relies on soil parameters in addition to soil type. The
land model uses parameters (such as moisture at saturation,
field capacity, wilting point, saturated hydraulic conductiv-
ity) for each soil type, the default values for which are de-
fined based on scarcely available field observations in vari-
ous regions (Kishné et al., 2017). Our results suggest that re-
gional measurements that can be used to refine the default pa-
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rameters values in conjunction with the regional soil datasets,
such as the TERN dataset, may be necessary to obtain im-
proved simulations.

2.2.2 Meteorological forcing data

Standalone simulations of WRF-Hydro need meteorological
forcing data consisting of precipitation, 2 m air temperature,
humidity, near surface winds, surface pressure, downwelling
shortwave and longwave radiation variables at least at 3-
hourly temporal resolution (Gochis et al., 2020). Some of the
required forcing variables over Australia are available from
an observation based gridded dataset, the Australian Gridded
Climate Data (AGCD) (Jones et al., 2009). However, these
observations are available only at daily timescales, which
are insufficient. Therefore, in this study, we force the sim-
ulations with hourly data from the ERAS5-Land reanalysis
dataset (Mufioz-Sabater et al., 2021). We correct the precip-
itation and temperature from the reanalysis forcing to match
monthly AGCD data to obtain more realistic climate forc-
ings, which is necessary as we calibrate the model to simu-
late observed streamflow. The monthly accumulated precip-
itation and mean temperature from ERAS-Land reanalysis
are scaled to match the AGCD observations for the corre-
sponding month at each grid. This correction is performed as
AGCD is a high-quality historical data developed by apply-
ing topography resolving analyses methods to in situ obser-
vations (Jones et al., 2009) and is expected to be more accu-
rate than reanalysis data. The corrected forcing data would
thus match the AGCD closely at monthly timescales, while
using the sub daily pattern of variation in the ERAS5-Land re-
analysis. Compared to ERA5-Land, the AGCD precipitation
exhibits higher spatial variation primarily over the moun-
tainous areas in the domain (Fig. A2), and these differences
can have substantial effect on infiltration rates in land sim-
ulations (Sampson et al., 2020). Application of the monthly
scaling correction induces localised increases and decreases
in hourly precipitation rates from ERAS5-Land as shown in
Fig. A2c.

2.2.3 Calibration and evaluation data

WRF-hydro model parameters are calibrated to match 3d
mean streamflow at four Hydrologic Reference Stations
(HRS) in the domain (gauges 410047, 412050, 224201,
405240). Observed streamflow at the HRS locations are
available from the Australian Bureau of Meteorology (Zhang
et al., 2013). The catchments and gauges used in calibra-
tion are shown in Fig. 1. We validate the modelled ET
from the WRF-Hydro simulations against two observation-
based ET datasets. We use actual ET from a satellite based
high-resolution (30 m) monthly dataset estimated using the
CMRSET (CSIRO MODIS Reflectance-based Scaling Evap-
oTranspiration) algorithm version 2.2 (Guerschman et al.,
2022; McVicar et al., 2022), referred to as the CMRSET
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data hereafter. We also use a merged observationally con-
strained ET product with a relatively coarser spatial resolu-
tion of 0.25°, the Derived Optimal Linear Combination ET
(DOLCE) version 3 (Hobeichi et al., 2021), hereafter re-
ferred to as the DOLCE dataset. The DOLCE dataset also
provides uncertainty estimates.

2.3 Calibration of model parameters

We calibrate sixteen WRF-Hydro model parameters as listed
in Table 2. Eleven of the parameters are known to influence
streamflow, based on prior applications of WRF-Hydro in the
United States (Pal et al., 2023; Wang et al., 2019). Addition-
ally, we calibrate the model parameter LKSATFAC, which
also influences modelled streamflow in our simulations based
on preliminary assessments. LKSATFAC is a multiplier on
the lateral hydraulic conductivity in the model, and we cali-
brate this parameter by soil type. We use the Parameter ESTi-
mation (PEST) tool (Doherty, 2016) for calibration. We ap-
ply the parallel PEST tool using an optimisation function to
reduce the biases in 3 d mean streamflow during a 45d pe-
riod from 1 September to 15 October 2016 (i.e., 15 obser-
vational data points) at all four streamflow gauges shown in
Fig. 1. Calibration of WRF-Hydro is computationally inten-
sive and involves choices that may be aligned to the purpose
of the simulations. Here we study the influence of lateral flow
on seasonal timescales and hence the main purpose of cali-
bration is to obtain better streamflow outcomes on monthly
to seasonal timescales, rather that improved simulations of
daily scale streamflow events. The streamflow in the domain
primarily occurs in the cool season (May to October), and
model simulations using default parameter values exhibit bi-
ases during these high flow months (Fig. 2). However, pre-
liminary results showed that event-based calibration to high
flow days did not translate to improved monthly flows indi-
cating that it is necessary to use a period at least of the order
of a month, which includes both high and low flow days at the
four gauges for calibration. As a 45 d period is computation-
ally feasible, and yields reasonable outcomes at monthly to
seasonal timescales, this length of time is chosen for calibra-
tion. The daily streamflow data is smoothed by aggregating
to 3 d flows to dampen the effect of individual high flow days.
Eight PEST iterations are performed to identify the optimum
parameter values. The calibration is performed for a simula-
tion with an LSM resolution of 4 km and routing resolution
of 250 m (LAT4-250). We use the same calibrated parame-
ter values for the simulations at the other model resolutions
listed in Table 1. To quantify the improvements in biases and
Nash Sutcliffe Efficiency (NSE) resulting from the calibra-
tion, we compare modelled streamflow using the calibrated
and default parameter values in longer simulations spanning
two years, 2016-2017.

Hydrol. Earth Syst. Sci., 29, 4491-4513, 2025
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Table 2. The model parameters included in the calibration, their default values, lower and upper bounds, and the optimum values identified

through calibration.

A. Devanand et al.: Lateral flow in southeast Australia

Parameter name  Parameter description Default Lower bound Upper bound Calibrated optimum value

xslopel Determines the bottom drainage from 0.1 1 x 10% 1 0.0128
the LSM soil column

REFDK Reference for soil conductivity 2 x 100 1x 108 1x10° 1.54 x 108

REFKDT Soil infiltration parameter 3 0.01 5 1.82

ovnl Overland roughness of land use class 0.2 0.1 0.3 0.287
“evergreen broadleaf forest”

ovn2 Overland roughness of land use class 0.035 0.015 0.06 0.015
“dryland cropland and pasture”

LKSATFAC3 Multiplier on lateral hydraulic 1000 10 10000 8617
conductivity of soil class 3 “sandy
loam”

LKSATFAC6 Multiplier on lateral hydraulic 1000 10 10000 2312
conductivity of soil class 6 “loam”

LKSATFAC7 Multiplier on lateral hydraulic 1000 10 10000 173
conductivity of soil class 7 “sandy clay
loam”

LKSATFAC9 Multiplier on lateral hydraulic 1000 10 10000 37
conductivity of soil class 9 “clay loam”

LKSATFACI12 Multiplier on lateral hydraulic 1000 10 10000 10000
conductivity of soil class 12 “clay”

mannl Manning’s n of stream order 1 0.55 0.35 0.6 0.35

mann2 Manning’s n of stream order 2 0.35 0.15 0.35 0.15

mann3 Manning’s n of stream order 3 0.15 0.08 0.15 0.127

mann4 Manning’s n of stream order 4 0.10 0.05 0.15 0.0973

mann5 Manning’s n of stream order 5 0.07 0.02 0.10 0.1

mann6 Manning’s n of stream order 6 0.05 0.015 0.10 0.05

2.4 Water balance in the simulations components to demonstrate the closure of the water balance

The simulated water cycle components are used to under-
stand the influence of lateral flow on surface water parti-
tioning. In control simulations using Noah-MP LSM with-
out lateral flow, incoming precipitation is partitioned into ET,
surface runoff (variable name: sfcrnoff), underground runoff
(variable name: udgrnoff), and changes in soil moisture in
the four layers (0-10, 10-40, 40-100, 100-200cm) of the
soil column. The volumetric soil moisture in each layer con-
verted to water depths are used to estimate the total soil mois-
ture change for water balance calculations. The total runoff
is estimated in two ways (a) as the sum of the surface and un-
derground runoff components, and (b) as the residual of pre-
cipitation after ET and soil moisture changes. We use these

Hydrol. Earth Syst. Sci., 29, 4491-4513, 2025

in the control simulations.

In simulations including lateral flow, the total runoff con-
sists of channel flow, overland flow and underground runoff
components simulated on the fine resolution routing grid.
The runoff terms on the routing grid are not written to out-
put files to reduce computational expense. Hence, we esti-
mate the total runoff in the lateral flow runs as the residual of
precipitation after ET and soil moisture changes closing the
water balance in a manner consistent with the control simu-
lations.
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Figure 2. Improvements in streamflow with calibration. Simulated cumulative monthly streamflow using default and calibrated parameters
(coloured lines) compared to observed streamflow (black lines) at the gauge locations (in GL/month) in simulations with an LSM resolution
4 km and routing resolution 250 m (LAT4-250). The biases and NSE of the simulations are indicated by the numbers in the corresponding

colours in each panel.

3 Results
3.1 Evaluation against observations
3.1.1 Streamflow

Figure 2 compares the observed cumulative monthly stream-
flow during 2016-2017 with modelled streamflow in simula-
tions using default and calibrated parameter values in LAT4-
250 simulations. The use of calibrated parameters reduces bi-
ases and improves NSE at all four gauges. In simulations us-
ing calibrated parameters, the NSE are higher than 0.65. The
streamflow at gauges 224201 and 410047 exhibit biases of
around 15 %, whereas the streamflow at gauges 412050 and
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405240 are underestimated by 52 %—57 %, even with the cal-
ibrated parameters. This underestimation is likely related to
the specification of baseflow in the simulations. The concep-
tual baseflow representation is turned off in our simulations
to achieve a better representation of streamflow, considering
all four gauges. We found that including baseflow improves
the streamflow at gauges 412050 and 405240, while deteri-
orating the others. It may be possible to improve modelled
streamflow through the implementation of baseflow repre-
sentations that vary between catchments, which is outside the
scope of this study. As mentioned in the “Methods” section,
we use default soil data available from the geographic dataset
of WRF in our simulations based on analyses of stream-
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flow using alternate soils. The sensitivity of streamflow to
soil data is shown in Fig. A3. The sensitivity to soil speci-
fications and baseflow noted here indicate the potential for
spatially variable parameters to improve simulations in this
region, which may be explored in future work.

Figure A4 shows the monthly streamflow during 2016—
2017 in simulations at different resolutions with all simu-
lations using the calibrated parameters from the LAT4-250
run. The streamflow magnitudes in 1 and 4 km LSM resolu-
tions are similar to the streamflow from the calibrated LAT4-
250 run. However, the 10km resolution LSM run exhibits
large biases at three out of the four gauges, probably due to
the coarse grid resolution. Recalibrating model parameters
at 10 km resolution may reduce the biases at this resolution.
However, in this study, we use the calibrated parameters from
the LAT4-250 simulation for all simulations in the experi-
ment set, so that the differing model parameters do not affect
our inferences about the impact of lateral flow.

3.1.2 Evapotranspiration

We compare the simulated domain average monthly ET (do-
main shown in Fig. 1b) during 2016-2017 with estimates
from the CMRSET and DOLCE datasets in Fig. 3. The
DOLCE dataset includes uncertainty estimates that provide
a range for the ET in the domain. The simulated timeseries
of ET are within the range from the DOLCE product 75 %
of the time, and slightly outside this range the rest of the
time (6 out of 24 months). When compared to the satellite-
based CMRSET data, the simulations exhibit some biases.
During the summer months, there are positive biases of about
430 % in the simulations with respect to the CMRSET data.
The simulated ET is also at the higher end of the range indi-
cated by the DOLCE product in summer. In winter and early
spring of year 2017 (June to October of 2017), the simula-
tions exhibit negative deviations of about —20 % from the
CMRSET estimate and are also near the lower end of the
range from the DOLCE dataset. The negative biases in ET
in dry year 2017 in our simulations are consistent with pre-
viously reported systematic biases in land surface models
(Ukkola et al., 2016).

3.2 Influence of lateral flow
3.2.1 Spatial changes in evapotranspiration

While the domain average ET from simulations at differ-
ent resolutions are similar (Fig. 3), there are differences in
the spatial patterns. Figure 4 shows the spatial pattern of the
changes in seasonal mean ET with inclusion of lateral flow
in simulations at varying LSM resolutions, using a 250 m
routing grid. The ET changes in simulations using a 100 m
routing grid are shown in Fig. 5. Including lateral flow re-
sults in largest changes in spring (SON) and summer (DJF).
In spring, the domain average ET increases by about 0.1 to
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0.2mmd~" (4% to 9%). The domain average changes in
summer are slightly smaller in magnitude. The spatial pat-
tern of changes in ET varies with the resolution of the LSM.
At a resolution of 1 km (Fig. 4h), there is a reduction in ET
in upstream areas that do not exist in the coarser resolution
runs (Fig. 41, p). In summer, the reduction in ET in upstream
ridges are visible at all resolutions, but more widespread and
prominent in the 1km LSM simulation (Fig. 4e). At LSM
resolutions of 1 and 4km, the patterns of major rivers in
the domain, the Murrumbidgee, Ovens, and Goulburn rivers
(river network is shown in Fig. A1) are visible in the changes
in ET. At 10km, the influence of drainage networks is not
visible in the ET changes. The Murray Riverina region lo-
cated downstream of the Ovens and Goulburn rivers expe-
rience the largest changes in ET in the 4 and 1 km runs. In
winter and autumn, the ET changes are smaller than in the
other two seasons with minor increases near the river chan-
nels.

The resolution of the routing grid has a smaller effect on
these results, as the general pattern of ET changes in simu-
lations using 250 and 100 m routing grids at the same LSM
resolution are similar (Figs. 4 and 5). In terms of domain
averages, simulations with 100 m routing result in slightly
stronger changes compared to the 250 m routing grid, at the
same LSM resolutions. The differences in spatial patterns
also indicate that larger changes in ET tend to be located fur-
ther upstream in simulations using a 100 m routing grid.

Table A2 lists the domain average precipitation, ET, runoff
components, and the change in soil moisture from the nine
simulations. In the control runs, total runoff estimated as
(a) the sum of the surface runoff and underground runoff
components matches (b) the residual of precipitation after
ET and total soil moisture change, demonstrating the closure
of water balance. In simulations including lateral flow, total
runoff is estimated as the residual of precipitation after ET
and total soil moisture change. In terms of domain average
water balance, the redistribution of water through the inclu-
sion of lateral flow facilitates increases in ET and soil stor-
age in the domain, and a decrease in total runoff. In control
simulations without lateral flow (CTL1, CTL4, CTL10), the
domain average total runoff is about 17 % of the rainfall (2-
year runoff ratio=0.17), while ET is 84 %. The combined
total of ET and runoff is slightly higher than rainfall over
the two years, which is balanced by a slight decrease in soil
moisture. The inclusion of lateral flow increases the 2-year
cumulative ET by 2% to 4 %. As ET is a substantial com-
ponent of the surface water balance, this translates to larger
changes of —11 to —22 % in total runoff (2-year runoff ra-
tio with lateral flow =0.13 to 0.15). The changes in ET, soil
moisture and total runoff with the inclusion of lateral flow
are summarised in Table 3.
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Figure 3. Comparison of the domain average ET (in mm d—h during 2016-2017 in the model simulations with CMRSET and DOLCE
datasets. During some months, the different dashed lines are not differentiable because the domain averages from the different simulations

overlap.

Table 3. Changes in cumulative domain average surface water components over 2-years from December 2015 to November 2017 due to the

inclusion of lateral flow.

Experiment ET change in ~ Soil moisture change  Total runoff change

mm (in %) in mm (in %) in mm (in %)
LAT1-100 minus CTL1 43 3 %) 6 (32 %) —49 (=19 %)
LAT1-250 minus CTL1 25 (2 %) 4 (24 %) —29 (=11 %)
LAT4-100 minus CTL4 54 (4 %) 4 (21 %) —58 (=22 %)
LAT4-250 minus CTL4 45 (4 %) 3 (18 %) —48 (=19 %)
LAT10-100 minus CTL10 49 (4 %) 3 (17 %) —52 (=20 %)
LAT10-250 minus CTL10 44 (3 %) 2 (12 %) —46 (—18 %)

3.2.2 Consistency with observations

The higher ET near the river channels in the model sim-
ulations including lateral flow are consistent with patterns
from the high-resolution CMRSET dataset. Figure 6 com-
pares the spatial anomalies in ET from the high-resolution
1km LSM simulations (CTL1 and LAT1-250) with those
from the CMRSET data. The spatial ET anomalies from
CMRSET indicate the presence of higher ET near the chan-
nels in the downstream areas of Murrumbidgee and Murray
Riverina basins in DJF, MAM and SON (Fig. 6a, c, d). The
anomalies in the LAT1-250 simulations are also positive near
the channels in these seasons (Fig. 6i, j, 1). The CTL1 simu-
lations without lateral flow do not show this pattern (Fig. 6e—
h). However, the modelled spatial anomalies in the LAT1-
250 simulations are larger in magnitude than the CMRSET
anomalies, especially in DJF and SON. The CMRSET spa-
tial anomalies near the channels also appear to be more spa-
tially diffused in contrast to the LAT1-250 simulations. This
could be because processes such as seepage from the chan-
nels to the soil column and re-infiltration of over bank in-
undated water are currently not represented in WRF-Hydro.
Nevertheless, the higher ET near major river channels in the
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satellite-based CMRSET product qualitatively supports the
patterns in our high-resolution simulations including lateral
flow.

3.2.3 Larger impact in downstream basins

We quantify the area average changes in ET in basins that ex-
hibit large changes with inclusion of lateral flow in Fig. 7, the
Upper (includes Upper Murray and Kiewa), Ovens and Mur-
ray Riverina basins (outlined in Fig. 1). The Upper and Ovens
basins receive substantial amount of rainfall in the cool sea-
son (April-September). The Upper basin is characterised by
steep topographic variation of more than 10 mkm~! (Fig. 1),
while the Ovens basin has gentler topographic variation.
Murray Riverina, located downstream of the Upper and
Ovens basins, receives lower rainfall and has flatter topog-
raphy. Figure 7b—c shows the basin average changes in ET
with inclusion of lateral flow at different resolutions. In the
Upper basins, the 1 km resolution simulations exhibit neutral
to slightly negative changes in ET, indicating that the drier
ridges seen in the mean seasonal ET (Figs. 4 and 5) dominate
the basin average signal at this resolution. In contrast, the
coarser resolution simulations exhibit positive changes in this
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Figure 4. Spatial patterns of seasonal mean ET at various LSM

resolutions with 250 m routing (a—d) Mean seasonal ET in the CTL1

simulation. The mean seasonal changes in ET with inclusion of lateral flow (in mm d_l) (e=h) LAT1-250 minus CTL1 (i-1) LAT4-250
minus CTL4, (m—p) LAT10-250 minus CTL10. The mean and absolute mean changes averaged over all the grids in the domain in mm d-!
and percentage are indicated in the panel titles of (e€)—(p). The mean seasonal patterns of ET in CTL4, and CTL10 simulations are similar to

that shown in (a)—(d) and are thus not included in this figure.

basin. In the Ovens basin, the changes in ET are generally
positive at all resolutions. However, the changes in the 1 km
resolution runs are much smaller in magnitude than in the
coarser LSM resolutions. In Murray Riverina, the 1 and 4 km
resolution simulations exhibit the largest influence due to lat-
eral flow. The changes in this basin amount to ~ 1 mmd~!

Hydrol. Earth Syst. Sci., 29, 4491-4513, 2025

(50 %) after the wet cool season of 2016, and the changes
in ET in this region persist through to April 2017. Consider-
ing the two different routing resolutions, a 100 m routing grid
tends to increase the changes in ET compared to the 250 m
grid at all LSM resolutions in these basins. LSMs are known
to systematically vary and generally underestimate ET dur-
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Figure 5. Similar to Fig. 4e—p but for simulations with 100 m routing. The mean seasonal changes in ET with inclusion of lateral flow (in
mm d_l) (a—d) LAT1-100 minus CTL1 (e-=h) LAT4-100 minus CTL4 (i-1) LAT10-100 minus CTL10. The mean and absolute mean changes
averaged over all the grids in the domain in mm d~1and percentage are indicated in the panel title.

ing dry down periods when compared to flux tower observa-
tions (Ukkola et al., 2016). Our results show that lateral flow
could be one of the processes that contribute to dry down bi-
ases in LSMs, especially in regions that are downstream of
topography. The increase in ET due to lateral flow results in
cooler maximum air temperatures in Summer. In simulations
at 4 and 1km resolutions, the Murray Riverina basin aver-
age monthly maximum temperatures from December 2016
to January 2017 is about 0.3° cooler in simulations including
lateral flow.

4 Conclusions

We used standalone LSM simulations at different spatial res-
olutions to quantify the influence of lateral flow on ET and
surface water partitioning in a topographically diverse region
in southeast Australia. LSM simulations at resolutions of 4

https://doi.org/10.5194/hess-29-4491-2025

and 1 km show lateral flow induced increases in ET near ma-
jor channels in spring and summer. Similar spatial anomalies
exist in high-resolution observations. Simulations at 10 km
resolution exhibit different spatial pattern of changes with
the ET increases confined to upstream locations. The high-
resolution 1km simulations also exhibit widespread drying
at the upstream ridges, which are absent at 4 and 10 km reso-
lutions. The dry ridges and wet valleys in our high-resolution
(1km) simulations are consistent with understanding from
hillslope scale critical zone studies (Fan et al., 2019), and
with results from high-resolution simulations in a test water-
shed in the U.S. (Qiu et al., 2024). The domain average ET
increases due to lateral flow from our simulations are small
(2% to 4 %), consistent with prior assessments (Chaney et
al., 2021; Lahmers et al., 2020). We find that the changes in
surface water partitioning reduces domain average runoff by
between —11 % and —22 %.
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Our results have implications for the utility of LSMs
in water management applications. In southeast Australia,
rainfall-runoff relationships are already changing, and the
observed changes are thought to be linked to changes in
evapotranspiration, vegetation, and vadose zone recharge
processes (Fowler et al., 2022; Peterson et al., 2021).
These shifts are challenging to simulate in conceptual
rainfall-runoff models that are currently used to develop
streamflow projections for management decision making
(Gardiya Weligamage et al., 2023). LSMs could develop into
a viable alternative for these types of application. In our sim-
ulations, lateral flow modulates runoff by changing the sur-
face water partitioning between evaporation and runoff, sug-
gesting that including this process may enhance the ability of
LSMs to model hydrological shifts.

Our results also have implications for modelling droughts
and future water availability. Our simulations show largest
increases in ET in the downstream Murray Riverina region;
after a wet winter lateral flow lengthens the ET dry down
by more than 3 months in this region. This suggests that in-
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corporating lateral flow processes can reduce long standing
LSM deficiencies in simulating seasonal droughts (Ukkola et
al., 2016) in areas where flow convergence effects are dom-
inant. Further, assessments at finer spatial resolutions report
that lateral water movement has a dominant influence on eco-
hydrological outcomes both during climate extremes in the
past (Mastrotheodoros et al., 2020; Norton et al., 2022), and
in a warming climate (Stephens et al., 2022). While the im-
pact of lateral flow on domain average ET is small, the pat-
tern of dry ridges and wet valleys indicate the potential for lo-
cal differences in drought onset, with ridges entering periods
of soil moisture droughts faster than the valleys. These spa-
tial patterns have implications for coupled climate modelling
as idealised land-atmosphere simulations in literature report
that such spatial heterogeneities can feedback to induce sec-
ondary atmospheric circulations and affect cloud structure
(Sakaguchi et al., 2022).

Our results show that the influence of lateral flow on soil
moisture and land-atmosphere fluxes depends on model spa-
tial resolution. In simulations at 10 km resolution, the spatial
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pattern of changes due to lateral flow differ from the high-
resolution simulations and observations. This suggests that it
may not be essential to include lateral flow in all current gen-
eration of regional climate projections which are at resolu-
tions of order 10 km, including the CMIP6-based CORDEX
Australasia projections (Grose et al., 2023). Our results are
specific to southeast Australia, and this conclusion needs to
be tested in other regions as the degree to which this conclu-
sion is transferable is not clear. However, the next generation
of climate modelling is moving towards km-scale resolutions
(Wedi et al., 2020) and the Earth Virtualization Engine (EVE)
(Stevens et al., 2024) aims to provide information at ~ 1 km
scale granularity, globally to aid decision making. Our results
suggest that the influence of lateral flow cannot be ignored at
these higher spatial resolutions.

Our simulations have limitations that indicate two main
avenues of future work required to improve the representa-
tion of lateral flow in LSMs in southeast Australia. First, our
simulations are sensitive to soil information, indicating the
potential for improvement through modification of soil types
and parameters. Such sensitivities to input datasets (Yang et
al., 2021) and model parameters (Chaney et al., 2021; Zhang
et al., 2024) are also noted in other regional studies. Combin-
ing field measurements with remotely sensed soil informa-
tion have been shown to bring benefits in the U.S. (Xu et al.,
2023) and may be studied in future work in Australia. Ex-
ploring the transferability and utility of Australian regional
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soil information developed for water accounting (Dutta et al.,
2017; Viney et al., 2015) to regional land surface modelling
may also be worthwhile. Second, more accurate representa-
tion of processes including baseflow and the feedback from
the channels to the soil columns may be relevant in arid and
semi-arid regions, such as southeast Australia. These pro-
cesses are not represented in our simulations. Our calibration
results suggest that spatially varying baseflow may improve
lateral flow representation in our domain. Incorporating soil
layers deeper than the 2 m depth modelled in standard Noah-
MP have reduced surface flux biases in some cases in other
semi-arid locations (Gochis et al., 2010; Barlage et al., 2015)
and may be explored in future work. Incorporating channel
seepages have improved streamflow simulations in semi-arid
Arizona (Lahmers et al., 2021), but the feedback of this pro-
cess to the soil column has not been modelled yet.

In summary, our results suggest that existing coarse reso-
lution simulations of surface fluxes over southeast Australia
are not sensitive to the omission of lateral flows. However, at
high spatial resolution, these fluxes are sensitive and the addi-
tional complexity of including lateral flows becomes impor-
tant. There are existing methods of capturing lateral flows in
land surface models so our conclusion is not an impediment
to using high-resolution models, but ensuring that these com-
ponents are tested and implemented in modelling systems re-
mains a priority.
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Appendix A: Additional figures and tables

Catchments and Major Rivers Channels in the WRF-Hydro routing grid

(@) , || (b) A
34°S/" | 5 !

146°E 148°E 146°E T 148°E

Figure Al. (a) Surface water catchments (grey outlines and text) based on data from FAO AQUASTAT (https://data.apps.fao.org/catalog/
dataset/6a53d768- 1e20-46ea-92a8-c4040286057d, last access: 5 August 2023) and major rivers (pink lines and text) based on data from
Geoscience Australia (https://pid.geoscience.gov.au/dataset/ga/42343, last access: last access: 5 August 2023), and (b) higher order channels

(stream order of four or higher) used in the WRF-Hydro model.
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Figure A2. (a) Cumulative 2-year rainfall during 2016-2017 from the ERAS-Land dataset, (b) Cumulative 2-year rainfall during 2016-2017
from ERAS5-Land scaled to match the AGCD dataset, (¢) mean differences in hourly precipitation rates in 2016-2017. Only grids that show
significant differences (at 5 % significance level) are shaded in panel (c).
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by the numbers in the corresponding colours in each panel.
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Figure A4. Simulated cumulative monthly streamflow using the calibrated parameter values compared to observed streamflow (in GL per

month) at the gauge locations in simulations at different resolutions.
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Table A1. Noah-MP parameterisation options used for the simulations.

Noah-MP physics Option selected

parameterisation

Dynamic vegetation 4 — Leaf area index/stem area index from lookup table; maximum vegetation fraction from
climatology

Stomatal resistance 1 — Ball-Berry formulation

Soil moisture reduction for 1 — Similar to original Noah based on soil moisture

stomatal resistance controlling

Runoff 3 — Infiltration excess surface runoff and free drainage subsurface runoff
Surface exchange coefficient 1 — Monin -Obukhov similarity

Frozen soil 1 — Hydraulic properties from total soil water and ice (Niu and Yang, 2006)
Supercooled liquid water in 1 — General form of freezing-point depression equation (Niu and Yang, 2006)

frozen soil

Radiative transfer 3 — Two-stream approximation applied to vegetated fraction
Snow albedo 2 — From land surface scheme CLASS
Partitioning precipitation into 1 — Formulation as in Jordan (1991)

rainfall and snowfall

Lower boundary condition of 2 — Fixed lowest soil temperature from input
soil temperature

Temperature time scheme 3 — Semi-implicit but split by snow fraction

Surface resistance to 4 — Sakaguchi and Zeng (2009) for non-snow and separate snow resistance for snow fraction
evaporation/sublimation

https://doi.org/10.5194/hess-29-4491-2025 Hydrol. Earth Syst. Sci., 29, 4491-4513, 2025
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Table A2. Domain average water cycle terms accumulated over a 2-year period from December 2015 to November 2017 in the simulations.
Negative soil moisture changes indicate a loss of moisture from the 2 m soil column over the 2-year period.

Variable Simulation

CTL1 LAT1-100 LAT1-250 CTL4 LAT4-100 LAT4-250 CTL10 LAT10-100 LAT10-250

Precipitation, 1504.4 1504.4 1504.4  1504.7 1504.7 1504.7  1503.1 1503.1 1503.1
P (mm)

ET (mm) 1264.3 1307.7 1289.1 12629 1317.2 1308.1  1260.8 1309.6 1304.8

Soil moisture —-17.9 —-12.2 -135 -179 —14.2 —-146 —-179 —-15.0 —15.7
change, SM
(mm)

Surface runoff, 46.2 46.5 47.5
sfcrnoff (mm)

Underground 211.8 213.2 212.7
runoff,
udgrnoff (mm)

(a) Total runoff 258.0 259.7 260.2
(sfernoff +

udgrnoff), Ro

(mm)

(b) Total runoff 258.0 208.9 228.8 259.7 201.7 211.2 260.2 208.5 214.0
(P-ET-SM),
Ro (mm)

Water balance 0.0 0.0 0.0
closure error, P

—ET - SM —

sfernoff -

udgrnoff (mm)

Runoff ratio 0.17 0.14 0.15 0.17 0.13 0.14 0.17 0.14 0.14
(Ro/P)
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Code availability. The code is available at
https://doi.org/10.5281/zenodo.17118203 (Devanand, 2025b).
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