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Abstract. The statistical distributions of observed flood
peaks often show heavy-tailed behaviour, meaning that ex-
treme floods are more likely to occur than for distributions
with an exponentially receding tail. Falsely assuming light-
tailed behaviour can lead to an underestimation of extreme
floods. Robust estimation of the tail is often hindered due
to the limited length of time series. Therefore, a better un-
derstanding of the processes controlling the tail behaviour
is required. Here, we analyse how the spatial variability of
rainfall and runoff generation affects the flood peak tail be-
haviour in catchments of various sizes. This is done using
a model chain consisting of a stochastic weather generator,
a conceptual rainfall-runoff model, and a river routing rou-
tine. For a large synthetic catchment, long time series of daily
rainfall with varying tail behaviours and varying degrees of
spatial variability are generated and used as input for the
rainfall-runoff model. In this model, the spatial variability
and mean depth of a sub-surface storage capacity are var-
ied, affecting how locally or widely saturation excess runoff
is triggered. Tail behaviour is characterized by the shape pa-
rameter of the generalized extreme value (GEV) distribu-
tion. Our analysis shows that smaller catchments tend to have
heavier tails than larger catchments. For large catchments es-
pecially, the GEV shape parameter of flood peak distribu-
tions was found to decrease with increasing spatial rainfall
variability. This is most likely linked to attenuating effects in
large catchments. No clear effect of the spatial variability of
the runoff generation on the tail behaviour was found.

1 Introduction

Extreme floods often come as a surprise, and many examples
of surprising floods can be found in the literature (Merz et al.,
2015). This is partly because of the low occurrence prob-
ability of extreme floods. Human intuition tends to expect
light-tailed behaviour (Taleb, 2007), and this would mean
that extremes are very unlikely. However, when a distribu-
tion is heavy-tailed rather than light-tailed, the occurrence
probability of extreme flood events is much higher. The up-
per tail of a distribution is called heavy when it decreases
more slowly than exponentially, indicating that the occur-
rence of extremes is more likely than for an exponentially
receding tail (El Adlouni et al., 2008; Papalexiou and Kout-
soyiannis, 2013). One example is the surprising and devas-
tating flood that happened in the Ahr Valley in western Ger-
many in summer 2021. The flood peak distribution which
was used to derive flood hazard maps before the 2021 event
was almost light-tailed, suggesting an extremely low occur-
rence probability (return period > 1 million years) of floods
of the magnitude of the 2021 event. However, considering
historical floods in the same area results in a flood peak dis-
tribution that is extremely heavy-tailed (Vorogushyn et al.,
2022). In fact, many streamflow and precipitation time se-
ries exhibit heavy-tailed behaviour (Bernardara et al., 2008;
Farquharson et al., 1992; Smith et al., 2018; Villarini et al.,
2011).

To quantify the tail heaviness of a distribution, different in-
dices exist (Wietzke et al., 2020). One that is frequently used
in hydro-meteorological studies is the shape parameter of the
generalized extreme value (GEV) distribution. The GEV dis-
tribution is the asymptotic distribution of independent block
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maxima (Fisher and Tippett, 1928) and is widely accepted
as a suitable distribution for annual maximum series. When
the shape parameter of a GEV distribution is larger than 0,
the distribution is considered to be heavy-tailed (El Adlouni
et al., 2008). The estimation of the upper-tail behaviour is
however associated with high uncertainties as it is sensitive
to the few largest events (Merz and Blöschl, 2009). This is
especially true for the short observational time series that are
typically available. Possible ways of achieving more robust
estimations of the tail behaviour can be regionalization ap-
proaches, the inclusion of historical floods, the simulation of
long time series, and the improvement of the understanding
of processes that control the tail behaviour (e.g. Merz and
Blöschl, 2005; Vorogushyn et al., 2022; Macdonald et al.,
2024).

Several studies have addressed the potential controls of
heavy-tailed behaviour and related characteristics of flood
peak distributions (Merz et al., 2022). These range from data-
based approaches (e.g. Macdonald et al., 2022; Thorarinsdot-
tir et al., 2018; Villarini and Smith, 2010) to model-based ap-
proaches (e.g. Struthers and Sivapalan, 2007; Rogger et al.,
2013; Macdonald et al., 2024) and review studies (e.g. Merz
et al., 2022). While some of the studies looked specifically
at indicators of tail behaviour like the GEV shape parameter
(e.g. Macdonald et al., 2024; Villarini and Smith, 2010), oth-
ers considered the entire flood frequency curve (e.g. Struthers
and Sivapalan, 2007; Rogger et al., 2013) or flood skewness
(McCuen and Smith, 2008; Merz and Blöschl, 2009).

In their review, Merz et al. (2022) formulated nine hy-
potheses on the influence of atmospheric, catchment, and
river network factors on flood peak tail behaviour. Previ-
ous studies linked characteristics of rainfall (Gaume, 2006),
runoff generation (Macdonald et al., 2022), and catchment
characteristics such as size (Villarini and Smith, 2010) or
aridity (Farquharson et al., 1992) to the tail behaviour of
flood peak distributions. Rainfall characteristics and runoff
generation processes especially have been found to be rele-
vant, and their influence on the tail behaviour is closely inter-
linked (McCuen and Smith, 2008; Macdonald et al., 2024).
Macdonald et al. (2024) concluded that, for both aspects, i.e.
rainfall generation and runoff generation, the spatial structure
can strongly affect flood peak generation and should there-
fore also be considered in the context of flood peak tail be-
haviour.

For small homogeneous catchments, Macdonald et al.
(2024) found that the rainfall tail dominates the flood peak
tail beyond a certain return period. Similarly, Gaume (2006)
stated that the statistical properties of rainfall asymptotically
control the shapes of flood peak distributions. However, it is
not clear from those studies whether this also holds for spa-
tially variable rainfall. Using simulation-based approaches,
it has been found that the influence of rainfall spatial vari-
ability on floods increases with return periods (Peleg et al.,
2017; Zhu et al., 2018). This indicates that it might also af-
fect the tail behaviour. Haberlandt and Radtke (2011) found

differences in derived flood probabilities when different de-
grees of spatial rainfall variability (uniform vs. random) were
used to force a hydrological model. While they do not state
a clear impact of rainfall spatial variability on flood peak tail
behaviour, their Fig. 4b suggests a heavier tail for spatially
uniform rainfall than for variable rainfall. In contrast, Wang
et al. (2023) concluded, based on simulations for five catch-
ments in Germany, increasing spatial variability of rainfall
results in heavier tails of flood peak distributions beyond a
certain degree of variability. They argued that spatially vari-
able rainfall creates more opportunities for partial saturation
excess because the soil moisture becomes more heteroge-
neous than with spatially uniform rainfall. So, on the one
hand, spatially variable rainfall could lead to more variability
in resulting flood flows and a higher chance of floods that are
significantly larger than the bulk of the events, which would
make a heavy-tailed distribution likely. On the other hand,
spatially variable rainfall could also lead to an attenuation of
flood peaks and thus reduce the differences between small
and large events, which would make a light-tailed distribu-
tion likely.

Runoff generation can affect the tail behaviour of flood
peak distributions, especially through threshold processes
(Macdonald et al., 2024). Threshold processes in runoff gen-
eration have also been found to result in step changes in
flood frequency curves (FFCs) (Rogger et al., 2012; Struthers
and Sivapalan, 2007). In a data-based study of 480 catch-
ments in Germany and Austria, Macdonald et al. (2022)
found that heavy-tailed flood peak distributions emerge, es-
pecially when there are distinct differences in the catchment
responses between small and large flood events. Such distinct
differences and step changes have been found to decrease
with a more variable spatial distribution of storage capaci-
ties in a catchment (Rogger et al., 2013). Similarly, Struthers
and Sivapalan (2007) found that spatially variable soil depth
“simplifies” FFCs by allowing a smooth rather than abrupt
transition from unsaturated to saturated. They stated that ho-
mogeneous conditions lead to binary saturation behaviour
and heterogeneous conditions to a steadily increasing partial
saturation. Basso et al. (2015) linked heavy tails of stream-
flow distributions to highly non-linear storage–discharge re-
lations, and in a follow-up study they suggested that the spa-
tial heterogeneity of hydraulic properties between hillslopes
is one factor leading to such non-linear relationships (Basso
et al., 2016). Based on these studies, Merz et al. (2022) con-
cluded in their review that, while the importance of the catch-
ment response for heavy-tailed behaviour is clear, “there are
contrasting answers to the question whether spatial variabil-
ity in runoff generation enhances or dampens the tail heavi-
ness” of flood peak distributions.

Catchment size has been found to influence flood peak
tail behaviour, and it also interacts with the spatial variabil-
ity of rainfall and runoff generation. In data-based studies,
tail heaviness has been found to decrease with increasing
catchment size in Austria (Merz and Blöschl, 2009), Ger-
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many and Austria (Macdonald et al., 2022), and the eastern
United States (Villarini and Smith, 2010). In contrast, stud-
ies in the Appalachian region (Morrison and Smith, 2002)
and the entire United States (Smith et al., 2018) did not
find an effect of the catchment size on flood peak tail be-
haviour. Catchment size could influence the tail behaviour in
different ways. First, the dominant factors in flood genera-
tion can shift with catchment size: for example, convective
rainfall bursts are more relevant for small catchments, while
the effects of flood routing become more important in large
catchments (Merz and Blöschl, 2009). Second, the catchment
size interacts closely with the spatial variability of rainfall
and runoff generation. Zhu et al. (2018) found that the spa-
tial rainfall structure is more important for peak discharges
in large catchments compared to small ones, partly because
rainfall is generally less spatially variable in smaller catch-
ments. In contrast, Wang et al. (2023) found that tail heavi-
ness starts to increase at a lower degree of rainfall variability
in small catchments than in large ones and concluded that
small catchments are less resilient to the spatial variability
of rainfall with respect to the emergence of heavy flood peak
tails. With regards to runoff generation, Rogger et al. (2012)
stated that the catchment storage tends to become more spa-
tially variable with increasing catchment size. This makes the
widespread simultaneous saturation in a catchment and thus
the occurrence of a step change in the FFC more likely in
small catchments (Rogger et al., 2012), while at larger scales
such pronounced non-linear behaviour of the runoff genera-
tion tends to be averaged out (Merz et al., 2022).

To improve the highly uncertain estimation of the upper-
tail behaviour given the typical length of observations, a
better understanding of the processes that control the tail
behaviour and longer time series can be helpful. Both
can be achieved through modelling approaches. Through a
simulation-based approach, we can define and extract infor-
mation about all relevant flood processes which lead to a cer-
tain tail behaviour. We can also simulate long time series to
allow more robust statistical analyses. However, modelling
approaches can only represent a simplified version of reality
and cannot include all processes relevant to flood generation
in every detail. Still, a lot can be learned through such simu-
lations. Using a modelling approach, Macdonald et al. (2024)
analysed the effects of rainfall and runoff generation proper-
ties on flood peak tail behaviour. However, they focused on
small homogeneous catchments and did not analyse the ef-
fects of spatial variability and catchment size.

In this study, we analyse how the spatial variability of rain-
fall affects the upper-tail behaviour of flood peak distribu-
tions and whether this effect depends on the tail of the rainfall
distribution. We also investigate whether the spatial variabil-
ity of the runoff generation has an effect on the flood peak tail
behaviour. Finally, we analyse how those effects of spatially
variable rainfall and runoff generation interact with catch-
ment size and whether there is a link between catchment size
and the upper-tail behaviour of flood peak distributions. To

address these questions, we use a simulation model chain
consisting of a weather generator, a rainfall-runoff model,
and a river routing routine. With this model chain, long time
series of precipitation and discharge can be generated and
their tail behaviour subsequently assessed for catchments of
various sizes.

2 Methods

A simulation model chain is used to generate long time series
of precipitation and discharge. The model chain consists of
a stochastic weather generator, a conceptual rainfall-runoff
model, and a river routing routine (Fig. 1a). For the simu-
lated precipitation and discharge time series, frequency anal-
yses and an analysis of the respective upper-tail behaviour
are conducted. The simulations are run on a large synthetic
catchment to allow a range of spatially variable setups. The
different model setups are defined according to research
questions: different degrees of the spatial variability of rain-
fall and runoff generation are considered as well as rainfall
distributions with varying tail behaviours (Fig. 1b), and the
frequency analyses are conducted for catchments of various
sizes. Overall, the climate conditions and catchment prop-
erties used in the model setups are characteristic of central
Europe.

2.1 Synthetic catchment

The synthetic catchment on which the simulations are run
is generated using the R package OCNet (Carraro et al.,
2020). The package is designed to generate and analyse opti-
mal channel networks which reproduce “all scaling features
characteristic of real, natural river networks” (Carraro et al.,
2020). With a resolution of 2× 2 km2, a synthetic catchment
is generated that has an area of 101 588 km2 and elevations
between 0 and 805 m (Fig. 2a). In the aggregation of the river
network, we aim for a number of network nodes that is high
enough to allow spatial analyses over a wide range of catch-
ment sizes while balancing this with the increasing runtime
of the simulation model chain with an increasing number of
nodes. The final number of nodes is 678, corresponding to
678 sub-catchments in the catchment.

2.2 Simulation model chain

The first part of the simulation model chain is a stochas-
tic multi-site, multi-variate weather generator. It is set up
based on observational data from stations in Germany (Hun-
decha et al., 2009; Nguyen et al., 2021) and is used to gen-
erate time series of precipitation P , temperature T , and po-
tential evapotranspiration PET as input to the rainfall-runoff
model. With regards to P , the weather generator has been
evaluated as capturing well both the daily mean and the ex-
treme intensities for a large set of weather stations in central
Europe (Nguyen et al., 2021). Here, it is used to generate
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Figure 1. Schematics of the modelling approach. (a) The simulation model chain: using a stochastic weather generator, time series of
temperature (T ), potential evapotranspiration (PET), and precipitation (P ) are generated. These are then fed into a conceptual rainfall-runoff
model coupled with a river routing routine to simulate long, continuous discharge time series. (b) The model setups: in the weather generator,
different setups are generated by changing the spatial dependence strength and the tail behaviour of precipitation. In the rainfall-runoff model,
the mean value and spatial variability of the limit of the upper subsurface storage are varied between setups.

Figure 2. (a) The outlets of 163 catchments which are selected for analyses based on nine size classes and (b) the number of catchments per
size class. Catchments within one class are not nested, while catchments across classes can be nested.

multi-site point data for 678 points in the synthetic catch-
ment. Each of the points is considered to be representative
of a sub-catchment and is later taken as the areal input for
the respective sub-catchment. The generated time series are
based on observational data from the weather station in Bam-
berg (DWD, 2022), which is among the stations with the
longest available records in Germany. For each configura-
tion of the weather generator, 100 realizations of the same
length as the observed record, i.e. 72 years, are generated
with a daily resolution. The configurations differ in the tail

behaviour of P and in the spatial variability of P . For the
first aspect, the upper-tail shape parameter of an extended
generalized Pareto (extGP) distribution, which was fitted to
the observed P data, is modified systematically. This is done
by multiplying the extGP shape parameter by a factor be-
tween 0.1 and 1.3. The lower-tail shape and scale param-
eters of the extGP distribution remain as fitted to the data.
The P time series with different tail behaviours are then re-
scaled to have the same mean. To generate P time series with
different spatial variabilities, the spatial dependence strength
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of E-OBS data in Germany (Cornes et al., 2018) is derived.
Spatial dependence is quantified by calculating the pairwise
cross-correlation of precipitation between grid cells, mod-
elled as an exponential decay with distance, where the de-
cay coefficient k denotes dependence strength. For Germany,
k is around 0.0025 and is labelled as medium (M) depen-
dence strength. Based on this, two weaker (weakW , medium
weak MW) and two stronger (medium strong MS, strong S)
dependence strength setups are derived. Note that these are
“weak” and “strong” relative to the dependence strength de-
rived for Germany and are not necessarily in absolute terms.
The spatial dependence strength is used to derive data at all
locations based on the Bamberg data. This approach and the
manipulation of the extGP upper-tail shape parameter pro-
duce different spatial setups as well as time series with dif-
ferent frequencies of extremes.

The second part of the simulation model chain is a concep-
tual rainfall-runoff model following the structure of the HBV
model (R package TUWmodel; Parajka et al., 2007). It con-
sists of snow, soil moisture, response, and catchment routing
routines with a total of 15 model parameters. The model is
run in a lumped way in each of the 678 sub-catchments of the
large synthetic catchment (101 588 km2). It is forced by the
time series of P , T , and PET simulated with the weather gen-
erator as areal input. The temporal specifications are the same
as for the weather generator, i.e. 100 realizations of 72 years
of daily data for each setup. However, the first 2 years of
each realization and setup are used as a warm-up period for
the model and are later removed from the analyses; 14 of
the 15 model parameters are set to fixed values and do not
vary between model setups. The values are based on the av-
erage parameter values of model calibrations for 273 Aus-
trian catchments as reported by Merz et al. (2011) and can
be found in Table A1 in Macdonald et al. (2024). The only
model parameter that varies between model setups is the stor-
age capacity of the upper subsurface storage LUZ. When this
storage capacity is exceeded, an additional and faster runoff
component q0 is triggered:

q0 =
SUZ−LUZ

k0
, (1)

where SUZ is the storage in the upper zone and k0 is the stor-
age coefficient for the very fast runoff response. The spa-
tial variability in LUZ thus affects whether saturation ex-
cess runoff is triggered locally or widely. In the model se-
tups, three different mean levels of the storage capacity LUZ
are considered (23, 43, and 63 mm) as well as different spa-
tial configurations: for five degrees of variability, LUZ varies
across space following the topography (Fig. 1b). The low-
est storage capacity LUZ,min is assumed at the highest eleva-
tion zmax, and it increases linearly for lower elevations:

LUZ,i =
LUZ,min−LUZ

zmax− z
· zi +

LUZ · zmax−LUZ,min · z

zmax− z
, (2)

whereLUZ,i is the storage capacity at elevation zi and z is the
mean elevation of the entire catchment. The five degrees of
spatial variability are achieved by setting LUZ,min to different
values of LUZ: between 2 mm (lowest variability) and 1 mm
(highest variability). The mean values and ranges of LUZ
are defined based on the ranges reported in previous studies
(Parajka et al., 2007; Macdonald et al., 2024) and findings
from test runs. The ratio of the mean rainfall depth to the
catchment storage is relevant for the frequency of storage ex-
ceedances, and so LUZ is defined as covering a wide range of
exceedance frequencies with the pre-defined rainfall data.

The last part of the model chain is a river routing mod-
ule, which routes the simulated runoff of each sub-catchment
along the river network to the final outlet. The routine uses
a cascade reservoir approach and is based on the Streamflow
Synthesis and Reservoir Regulation (SSARR) model (US-
AEDNP, 1975). For a given catchment with a median length
of river sub-reaches of 10 km, the routing needs to be run
on a sub-daily timescale to achieve accurate results. Through
test runs, the optimum value between accuracy and compu-
tational time is found to be a 2-hourly resolution. The daily
runoff simulated with the rainfall-runoff model is disaggre-
gated to 2-hourly values using linear interpolation between
the simulated values and is re-aggregated to daily time series
after the routing. The river routing is defined by three model
parameters: the number of sub-reaches per river reach (nbr),
a coefficient affecting the time of storage per sub-reach (kts),
and an exponential coefficient controlling the impact that
a change in discharge has on the time of storage per sub-
reach (n) (NOAA, 2003). The time of storage (TS) per sub-
reach is defined as

TS=
kts
Qn

, (3)

with Q being the discharge. The parameter nbr is commonly
estimated using the characteristic reach length LC by taking
the ratio between the total length of a river reach and LC
(Pelin and Pahlsson, 2012). The three parameters are kept
constant between all model runs and their values are based
on physical considerations: the parameter values should re-
sult in realistic peak flows and travel times for a catchment
of a given size. Previous studies found travel times of flood
peaks for 500 km river reaches between 1.5 and 6 d (He,
2020; Allen et al., 2018; Meyer et al., 2018). Using the re-
lation between catchment size and maximum observed daily
peak flow of the 360 German catchments analysed by Mac-
donald et al. (2022), a peak flow of 4500 to 7500 m4 s−1 is
estimated for a catchment of 101 588 km2. Travel times and
peak flows within these ranges at the final outlet were used
as criteria for defining the model parameters of the routing
routine. The parameters are set to LC = 10 km, kts= 10, and
n= 0.3. These values are within the ranges reported in pre-
vious studies (Pelin and Pahlsson, 2012; USAEDNP, 1975).

The output of each run of the model chain consists of the
simulated discharge time series at each outlet, along with the
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time series of the share of the very fast runoff component and
the respective model parameters and precipitation time series
which were used in the model run. While we aimed to set up
the model with climate conditions and catchment properties
which are realistic for central Europe, the simulated time se-
ries do not relate to real-world catchments. Instead, the focus
is on analysing the effects that specific changes in the model
configurations have on the tail behaviour of flood peak dis-
tributions.

2.3 Analysis of the simulated time series

The simulated time series of P and Q and the spatial indices
are analysed for catchments of different sizes. To this end, a
subset of the 678 sub-catchments and their upstream catch-
ments is selected as follows: first, lower and upper size lim-
its are determined. The catchments should consist of at least
three sub-catchments to allow spatial analyses, which results
in a lower size limit of 200 km2. Further, there should be at
least three distinct catchments of similar sizes to allow robust
results, which leads to an upper size limit of 30 000 km2. Sec-
ond, nine catchment size classes within this range were de-
fined with the following breaks: 200, 300, 500, 1000, 2000,
3000, 5000, 10 000, 20 000, and 30 000 km2. Third, within
each size class, all distinct catchments are selected. If there
are nested catchments within one size class, only the largest
one of them is considered. This results in 163 catchments
(Fig. 2), which consist on average of 14 sub-catchments and
for which all subsequent analyses are conducted.

To analyse the tail behaviour, annual maxima of the simu-
lated P andQ time series are derived. For P , this is done for
all 678 locations used in the weather generator. For Q, this
is done only for the 163 selected outlets. After removing the
warm-up periods, the 100 realizations of each model setup
are combined into one long time series of 7000 years for dis-
tribution fitting. GEV distributions are fitted to the annual
maximum series (AMS) of P and Q using L-moments. L-
moment fitting has been evaluated as reasonably efficient in
parameter estimation compared to the maximum likelihood
method (Hosking, 1990) while being a lot less computation-
ally expensive. In addition to this, a recent study by Vogel
et al. (2024) highlighted the advantages of using L-moments
when working with heavy-tailed data, as L-moments are al-
ways finite when the mean exists, even if higher moments do
not exist. To make the tail behaviour of P andQ comparable,
the shape parameters of the P distributions are aggregated to
the same 163 outlets where Q is analysed: for each outlet,
the median shape parameter of the P distributions of all the
upstream sub-catchments is estimated.

The spatial variability of P is quantified for each model
setup and for each of the 163 outlets. First, the spatial co-
efficient of variation CVP,t of P across all sub-catchments
upstream of an outlet is estimated for each day t :

CVP,t =

√
1
N

N∑
n=1

(
Pt,n−Pt

)2
Pt

, (4)

where N is the number of sub-catchments upstream of the
respective outlet, Pt,n is the rainfall depth in sub-catchment n
on day t , and Pt is the mean rainfall depth across all N sub-
catchments on day t . Second, the median of CVP,t of all rainy
days within the 7000-year time series is estimated (CVP,med).
Rainy days are defined as all days on which it rained in at
least one sub-catchment (P > 0 mm).

The spatial variability of the runoff generation is quanti-
fied for each model setup and for each of the 163 outlets. As a
measure of spatial runoff variability, we consider how locally
or widely saturation excess runoff is usually triggered in a
catchment. For each day t , the number of sub-catchments up-
stream of an outlet where the very fast runoff component q0
was active is evaluated. The mean of this number is esti-
mated for all days on which q0 was active in at least one sub-
catchment, and it is then divided by the total number of sub-
catchments. This gives the average share of sub-catchments
in which the very fast runoff component is triggered simulta-
neously. That is, it is a measure of whether saturation excess
runoff is usually triggered locally or widely in a catchment.

3 Results

Simulated discharge time series of 375 different model se-
tups are analysed for 163 catchments ranging in size from
200 to 30 000 km2. We find a clear downward trend in the
GEV shape parameter of flood peak distributions with in-
creasing catchment size (Fig. 3). While there is a large spread
in the shape parameters between the different model setups
for each catchment, there is a significant (p value< 0.001)
linear trend across the catchment sizes. The GEV shape pa-
rameter decreases by 0.04 per order of magnitude of catch-
ment size.

The catchment size is found to interact with the spatial
variability of rainfall. For 25 different setups of the weather
generator, which were evaluated at 163 catchments of various
sizes, the spatial variability of P expressed as CVP,med in-
creased with increasing catchment size (Fig. 4). This means
that rainfall tends to be more variable in larger catchments.
As expected, we also see a clear stratification of CVP,med
with the spatial dependence strength specified in the respec-
tive setup of the weather generator. A weak spatial depen-
dence strength of P results in more spatially variable rainfall
and thus a higher CVP,med than a strong spatial dependence
strength.

When the GEV distribution of the forcing rainfall has a
high shape parameter, the resulting discharge also tends to
have a higher GEV shape parameter than that resulting from
rainfall with a lighter tail (Figs. 3 and 5). This is observed for

Hydrol. Earth Syst. Sci., 29, 447–463, 2025 https://doi.org/10.5194/hess-29-447-2025



E. Macdonald et al.: Heavy-tailed flood peak distributions 453

Figure 3. Shape parameters (ξQ) of generalized extreme value (GEV) distributions fitted to simulated discharge series versus catchment
area (A). Results are based on 375 model setups which are evaluated at 163 catchment outlets. The model setups differ in the tail be-
haviour (ξP) and spatial variability of the rainfall input as well as in the mean value and spatial variability of the limit of the subsurface
catchment storage. GEV distributions were fitted to annual maximum series of 7000 years. A linear trend (black line) and its formula are
displayed.

Figure 4. The median spatial coefficient of variation of precipitation (CVP,med) versus A for 163 catchments. CVP,med is based on the daily
rainfall in all sub-catchments of a catchment, and the median is taken across all rainy days of the 7000-year time series. Results are based on
25 setups of the weather generator: five values of spatial dependence strength DSP from weak (W ) to strong (S) and five values of the tail
heaviness (ξP) of the underlying rainfall distribution.

different catchment sizes (Fig. 3) and for different degrees of
spatial variability of the rainfall (Fig. 5).

Increasing spatial variability of rainfall tends to lead to a
decrease in the flood peak shape parameter, at least when the
spatial variability of the catchment storage capacity is low
(Fig. 5, left column). With increasing spatial variability of
the catchment storage capacity, the downward trend becomes
less clear. Especially when the spatial variability of rainfall
is low but that of the storage capacity is high (Fig. 5, right
column), there is a large spread in the tail behaviour of flood
peak distributions. In contrast, when the spatial variability of
both rainfall and storage capacity is high, we see a downward

trend in flood peak shape parameters against rainfall vari-
ability. This indicates that, as rainfall variability increases, it
starts dominating the flood peak tail behaviour, independent
of the degree of storage variability.

The overall downward trend in flood peak shape parame-
ters with increasing rainfall variability should be considered
with care, as we see a clear relation between the spatial vari-
ability of rainfall and catchment size (Fig. 4). As higher de-
grees of rainfall variability are often related to larger catch-
ments, the observed trend might show the combined effect
of rainfall variability and other processes that change with
catchment size, such as peak attenuation and river routing.
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Figure 5. ξQ of GEV distributions fitted to simulated discharge series versus spatial rainfall variability expressed as CVP,med. Results are
based on 375 model setups which are evaluated at 163 catchment outlets. The model setups differ in the tail behaviour (ξP) and spatial
variability (CVP,med) of the rainfall input as well as in the mean value (LUZ) and spatial variability (var(LUZ)) of the limit of the subsurface
catchment storage. GEV distributions are fitted to annual maximum series of 7000 years.

To address this aspect, the effect of the spatial variability of
rainfall is analysed separately for two catchment size classes.

By considering only simulations with low variability of
the catchment storage capacity and by evaluating size classes
separately, we can reduce confounding effects. For the
54 smallest catchments (200–500 km2), the rainfall variabil-
ity CVP,med ranges between 0.085 and 0.83, while CVP,med is
between 0.62 and 1.9 for the 10 largest catchments (5000–
30 000 km2) (Fig. 6). There are fewer sub-catchments in the
smaller catchments, and therefore variability cannot get as
high as in the larger catchments. For the small catchments,
there is a very slight or hardly any trend of flood peak shape
parameters with increasing rainfall variability. For the large
catchments, flood peak shape parameters decrease with in-
creasing rainfall variability. Here, the downward trends are
especially clear for high rainfall shape parameters and low
catchment storage capacities. Further, we see an effect of
the mean level of the catchment storage capacity LUZ: for
smaller catchment storages, the range of flood peak shape
parameters for any given rainfall variability is smaller than
for larger catchment storage capacities (Fig. 6). The larger
storage capacity seems to enhance the differences in flood
peak shape parameters which are induced by different rain-
fall shape parameters.

To quantify the spatial variability of runoff generation, we
consider whether saturation excess runoff is usually triggered
locally or widely in a catchment. This is characterized here

by the average share of sub-catchments in which the very fast
runoff component q0 is triggered simultaneously (nq0/N ). In
analysing the effect of spatially variable runoff on flood peak
tail behaviour, we are particularly interested in the variability
that is induced by catchment properties such as the storage
capacity rather than by spatially variable rainfall. However,
spatially variable rainfall has a strong effect on the spatial
variability of runoff generation: for spatially variable rain-
fall, the share of sub-catchments in which the very fast runoff
component is triggered simultaneously is not affected by the
spatial variability of the catchment storage capacity (Fig. 7).
On the other hand, for homogeneous rainfall, we see a clear
relation: the higher the spatial variability of the catchment
storage capacity, the lower the nq0/N , meaning that satura-
tion excess runoff occurs rather locally for very variable stor-
age capacities. If we want to analyse the spatial variability
of runoff generation that is related to catchment properties,
we need to consider homogeneous rainfall to exclude strong
confounding effects. However, assuming homogeneous rain-
fall conditions over a catchment of 101 588 km2 is not very
realistic. The following results should therefore not be mis-
taken for realistic simulations, but they can still provide in-
sights into how certain processes affect the flood peak tail
behaviour.

By considering only model runs with homogeneous rain-
fall, we can eliminate the effect of rainfall variability on
saturation excess runoff, so that we see only the effect of
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Figure 6. ξQ of GEV distributions fitted to simulated discharge series versus spatial rainfall variability expressed as CVP,med. Results are
based on 75 model setups with close to homogeneous catchment storage (i.e. var(LUZ)= low). The setups differ in the tail behaviour (ξP)
and spatial variability (CVP,med) of the rainfall input as well as in the LUZ. The simulations are evaluated for the 54 smallest and 10 largest
catchments. GEV distributions are fitted to annual maximum series of 7000 years. Locally estimated scatterplot smoothing (LOESS) curves
are fitted to subsets of simulations with the same rainfall tail behaviour.

Figure 7. Average share of sub-catchments with simultaneous activation of the very fast runoff component (nq0/N ) against the spatial
coefficient of variation of the catchment storage (CVLuz). Results are based on 50 model runs which are evaluated at 163 catchment outlets.
Model setups differ in the tail behaviour and spatial variability of the rainfall input and in the spatial variability of the limit of the sub-surface
catchment storage (LUZ). Heterogeneous precipitation (P ) relates to the model setup with the weakest spatial dependence strength for P ,
while for a homogeneous P the same time series of P is assumed for all the sub-catchments. LOESS curves are fitted for different catchment
size classes.
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Figure 8. ξQ of GEV distributions fitted to simulated discharge series versus the average share of sub-catchments with simultaneous acti-
vation of a very fast runoff component (nq0/N ). Results are based on 75 model setups with homogeneous rainfall, which are evaluated at
163 catchment outlets. The model setups differ in the tail behaviour (ξP) of the rainfall input as well as in the LUZ and spatial variability of
the limit of the sub-surface catchment storage. GEV distributions are fitted to annual maximum series of 7000 years.

runoff generation variability caused by spatial variability in
the catchment storage capacity. Whether saturation excess
runoff is triggered locally or widely has no clear effect on
the tail behaviour of flood peak distributions (Fig. 8). When
saturation excess runoff is usually triggered very widely in
a catchment, i.e. when the average share of sub-catchments
with simultaneous activation of very fast runoff component
is close to 1, the GEV shape parameters are clustered around
a few values – those clusters differ in terms of the tail be-
haviour of the rainfall distribution and in the mean storage
depth. For spatially variable runoff generation, i.e. when sat-
uration excess is usually triggered more locally, we see point
clouds with no clear trends or relations. These point clouds
however look different for the different mean levels of the
catchment storage capacity.

There appears to be a non-linear relationship between the
shape parameters of the flood peak distributions and the av-
erage depth of the sub-surface catchment storage (Fig. 9).
The flood peak shape parameters are low for small and
large catchment storage capacities and have a maximum for
medium storages. This non-linear behaviour seems to be re-
lated to the distribution fitting rather than to hydrological
processes: when looking at the frequency curves of simu-
lated annual maxima and the respective fitted distributions

(Fig. 10), the tail behaviour of the simulated peak discharges
is not always represented well by the fitted GEV distribution.
There can be a step change in the annual maxima, and the
return period of the step change affects how well the fitted
distribution can represent the data. The return period in turn
depends on rainfall characteristics and the catchment stor-
age. For example, in cases with small catchment storage ca-
pacities and light-tailed precipitation, the fitted GEV distri-
butions overestimate the flood peaks with high return periods
(Fig. 10, top row).

In the setup with the least variable catchment storage ca-
pacities, the estimated mean storages for all 163 catchments
cluster around the mean values used in the model setups,
i.e. 23, 43, and 63 mm (Fig. 9). In contrast, for the most
variable setup of catchment storage capacities, the estimated
mean storages range from 4 to 102 mm. The mean values are
fixed in the model setup for the entire large catchment, but
we analyse sub-catchments, and they can have very different
mean storages depending on where in the large catchment
they are located.

How locally or widely saturation excess runoff is usually
triggered in a catchment only has a very little effect on the
flood peak shape parameter compared to the mean catchment
storage (Fig. 9). For heavy-tailed rainfall distributions, more
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Figure 9. ξQ of GEV distributions fitted to simulated discharge series versus the LUZ. Results are based on 75 model setups with homoge-
neous rainfall, which are evaluated at 163 catchment outlets. Model setups differ in the tail behaviour (ξP) of the rainfall input and in the mean
value and spatial variability of the limit of the sub-surface catchment storage. The latter results in spatial variability of runoff generation,
which is expressed here as the average share of sub-catchments with simultaneous activation of a very fast runoff component (nq0/N ). GEV
distributions are fitted to annual maximum series of 7000 years.

variable runoff generation at the same level of the mean stor-
age capacity tends to lead to a lower flood peak shape param-
eter (Fig. 9, bottom right). For light-tailed rainfall distribu-
tions, this is only true for medium catchment storage capaci-
ties, while for larger storage capacities more variable runoff
generation leads to higher shape parameters (Fig. 9, bottom
left).

4 Discussion

The trend we found of decreasing flood peak shape param-
eters with increasing catchment sizes is in line with some
previous studies (e.g. Macdonald et al., 2022; Villarini and

Smith, 2010). Other studies did not find this trend (e.g. Smith
et al., 2018; Morrison and Smith, 2002). The stream gauges
analysed by Morrison and Smith (2002) are most likely
also included in the larger set of gauging stations analysed
by Villarini and Smith (2010), and the latter ones analysed
much longer time series – at least 75 years of observations
compared to 30 years for Morrison and Smith (2002). The
trend found by Villarini and Smith (2010) therefore appears
more reliable. They found a decrease in the shape parame-
ter of 0.07 per order of magnitude of the catchment size for
572 catchments in the eastern United States, which is slightly
higher than the decrease of 0.04 resulting from our analy-
sis. This could be a regional difference or related to differ-
ences between real-world data and simulations with a spe-
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Figure 10. Example flood frequency curves (FFCs) for the (a) smallest and (b) largest catchments analysed. The annual maxima of the
simulated discharge series of 7000 years are presented (dots and triangles) along with the GEV distributions fitted to those annual maxima
(solid and dashed lines). The FFCs result from 16 model setups which differ in the tail behaviour (ξP) and spatial dependence strength (DSP)
of the rainfall input as well as in the LUZ and var(LUZ) of the limit of the sub-surface catchment storage.

cific modelling setup: some studies show that rainfall tails
become lighter for larger areas (Merz et al., 2022; Overeem
et al., 2010; Dyrrdal et al., 2016), but in our setup we keep
the rainfall tail constant across catchment scales. Adding this
effect could enhance the downward trend of flood peak shape
parameters against catchment sizes. A potential explanation
for the trend is that, in small catchments, distinct non-linear
behaviours in the runoff generation and convective rainfall
bursts can result in heavy tails, while in larger catchments,
where routing effects become increasingly important, these
effects might be averaged out (Merz and Blöschl, 2009).

Irrespective of the degree of spatial variability of rainfall,
we found that a higher shape parameter of the rainfall dis-
tribution tends to lead to a higher shape parameter of the
flood peak distribution. This is in line with the findings of
Macdonald et al. (2024) for small homogeneous catchments
and those of Gaume (2006), who stated that rainfall statisti-
cal properties asymptotically control the shape of flood peak
distributions. We estimate the rainfall shape parameter for
each catchment by taking the median shape parameters of
the P distributions of all the sub-catchments. An alternative
approach would be to aggregate P on a daily basis across the
catchment area and then derive the annual maxima and shape
parameters from the aggregated, areal P . We assume that the
slightly simpler approach that we use gives adequate results
for our setup, as we do not vary the rainfall tail behaviour in
space. In each setup of the weather generator, rainfall is gen-
erated with a fixed upper-tail shape parameter of the extGP
distribution across all the sub-catchments. If the rainfall tail
behaviour varies strongly in space within a catchment, the

alternative approach is deemed more appropriate for estimat-
ing rainfall tail behaviour that is representative of the entire
catchment.

We found a decreasing trend of flood peak shape parame-
ters with increasing spatial variability of rainfall, especially
for large catchments, and no clear trend for small catchments.
For small catchments, the range of spatial variability con-
sidered was smaller than for larger catchments, as the spa-
tial variability is limited by the number of sub-catchments
in a catchment in our setup. The decreasing trend that we
found for large catchments seems to oppose the results of
Wang et al. (2023), who found that increasing spatial vari-
ability of rainfall leads to heavier tails of flow distributions
beyond a certain degree of variability. They based this find-
ing on scenario simulations for five German catchments (98–
2841 km2). In two of their three scenarios, they kept the spa-
tial variability of rainfall fixed in time, i.e. for all precipi-
tation events and resulting floods. The spatial coefficient of
variation of rainfall CVP in their setups ranged from close to
0 to well beyond 10 (i.e. 1000 %), and the degree of variabil-
ity beyond which they found an increase in tail behaviour was
a CVP of 2 or larger. The daily CVP values in our study cover
a similar range (Fig. 11), while the median across all rainy
days in a catchment is always below 2. The rainfall variabil-
ity in our setups is based on the spatial dependence strength
estimated for E-OBS rainfall data in Germany, with two more
levels of weaker dependence strength and two more levels of
stronger dependence strength than observed. The range of
rainfall variability in Wang et al. (2023) is based on the es-
timated spatial variability for 175 German catchments based
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Figure 11. Percentiles of the spatial coefficient of variation of precipitation (CVP) versus the A of 163 catchments. CVP is based on the daily
rainfall in all sub-catchments of a catchment, and for each catchment the percentiles across all rainy days of the 7000-year time series are
presented. Results are based on five setups of a weather generator with W to S DSP between rainfall depths in the sub-catchments.

on REGNIE data, which is a rainfall field interpolated from
point observations (Rauthe et al., 2013). The main difference
seems to be that Wang et al. (2023) consider CVP to be con-
stant in time. They take a value above the 95th percentile of
daily CVP values as the upper bound of the spatial variabil-
ity in their simulation setups – this means that values which
were observed on less than 5 % of the days in all the catch-
ments are used in some setups to define the spatial variability
on every day; that is, they are constant in time. Although the
spatial variability of rainfall might increase in the future due
to an increase in intensity and a decrease in spatial extent
(e.g. Wasko et al., 2016; Peleg et al., 2018), it seems unlikely
that such high degrees of variability will become persistent
in time. We believe that this rather unrealistic assumption
of Wang et al. (2023) is the main reason for finding oppos-
ing trends in flood peak tail behaviour with increasing spatial
variability.

We explain the decreasing trend in tail heaviness with the
increasing spatial variability that we found for large catch-
ments as follows: in the least variable setup, extreme rainfall
events occur simultaneously in a large part of the catchment
and can therefore lead to widespread enhanced runoff gener-
ation, which in turn can result in a distinctively higher flood
peak at the outlet of the catchment. In a more variable setup,
on the other hand, extreme rainfall events are only localized,
and therefore enhanced runoff generation might also be trig-
gered only locally. Such a local flood peak is then attenu-
ated on its way to the catchment outlet. In small catchments,
we did not find a clear trend of flood peak shape parameters
against rainfall variability, and the likely reason for this is the
smaller attenuation effect in smaller catchments.

Finding lighter flood peak tails for increasing spatial vari-
ability of rainfall in large catchments could be seen as good
news in the light of climate change. The spatial variability of
rainfall is expected to increase in a warmer climate due to an
increase in intensity and a decrease in spatial extent, as stud-

ies on convective rainfall and storm cells found (Wasko et al.,
2016; Peleg et al., 2018). Such spatially more concentrated
precipitation can be interpreted as increased spatial variabil-
ity at the scale of large catchments and might therefore re-
duce the tail heaviness and thus the chance of surprising
floods. However, the situation looks very different for small
catchments: even more localized storm cells can cover the
entire catchment area and the prospective intensified rainfall
would result in more severe flooding. A shift to more spa-
tially variable rainfall in a warmer future should therefore
not necessarily be taken as good news for large catchments
but rather indicates that the analysis of the flood peak tail be-
haviour will become increasingly important for small catch-
ments.

The spatial variability of runoff generation caused by spa-
tially variable sub-surface catchment storage capacities does
not show a clear effect on flood peak tail behaviour. When
the average share of sub-catchments with simultaneous acti-
vation of the very fast runoff component is close to 1, satura-
tion excess runoff is usually triggered widely in a catchment.
In this case, the flood peak shape parameters are clustered
around a few values (Fig. 8), and these clusters vary accord-
ing to the tail behaviour of the rainfall distribution and the
mean storage depth. This influence of the rainfall tail be-
haviour and the mean storage depth for near-homogeneous
runoff generation can be compared to the findings of Mac-
donald et al. (2024). For small catchments with homoge-
neous rainfall and runoff generation, they found that, beyond
a certain return period, the tail of the rainfall distribution
asymptotically controls the tail of the flood peak distribu-
tion, and this return period depends on the ratio of catch-
ment storage to catchment wetness. We assume the storage
capacity to follow the topography, with shallow storages at
high elevations and deeper storages at lower elevations, as the
soil depth usually decreases with increasing elevation (Scull
et al., 2003; Van Tol et al., 2013). Test runs indicated though
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that the exact spatial pattern in the spatially variable setups
do not affect the findings (not shown).

In contrast to its spatial variability, the average depth of the
sub-surface catchment storage appears to affect the shape pa-
rameter of flood peak distributions in a non-linear way. If the
storage capacity is exceeded only by large and not smaller
rainfall events, this can result in a step change in the flood
frequency curve (Rogger et al., 2012). The size of the stor-
age capacity determines the return period in which the step
change occurs (Rogger et al., 2012). This means that the av-
erage depth of the sub-surface storage is relevant for how of-
ten the storage capacity is exceeded for a given rainfall level.
Spatial variability in the storage capacity or soil depth has
been found to smooth out step changes in the FFC (Rogger
et al., 2013; Struthers and Sivapalan, 2007). Our results in-
dicate that the return period in which a step change occurs
in the FFC has a stronger effect on the tail behaviour of the
fitted distribution than how pronounced this step change is.
However, as Fig. 10 shows, having a step change in the FFC
can mean that the annual maxima are not represented well
by a GEV distribution. For example, in the model setups with
low storage capacity and light-tailed rainfall, some simulated
annual maximum flood peaks show a kind of S shape with a
step change in a low return period and a confined increase in
flood peaks with increasing return periods beyond this. Such
a shape of the FFC cannot be represented by a GEV distri-
bution, and so the fitted distributions overestimate the flood
peaks with high return periods. This shows that GEV distri-
butions can have a poor fit when a process shift is present.
Nevertheless, GEV distributions are commonly used in hy-
drological practice, e.g. for the estimation of design floods.
In conclusion, the pattern of the GEV shape parameter ver-
sus the average storage capacity that we found is most likely
linked to the distribution fitting and only indirectly to hydro-
logical processes.

For some small catchments, running the model at an
hourly instead of daily resolution would have been more
appropriate as the concentration times might be sub-daily.
However, this would have increased the computational costs
drastically. For the weather generator especially, generating
time series of 7000 years for the given setups at an hourly
resolution did not seem feasible. Further, a higher temporal
resolution would have limited the data available for setting up
and calibrating the weather generator. With the aim of bal-
ancing accuracy and computational feasibility, the weather
generator and rainfall-runoff model were run at a daily scale,
while the data were disaggregated to a higher temporal reso-
lution for the river routing.

The findings from this study are based on synthetic catch-
ments and simulation runs. This has the great advantage that
much longer time series can be generated than are usually
available from observations. This allows a more robust esti-
mation of the tail behaviour as the sampling uncertainty of
the GEV shape parameter decreases with increasing sample
size (Wietzke et al., 2020). However, results from simula-

tion runs are first of all representative of the simplified world
represented by the models and are not necessarily transfer-
able to the real world. For example, in our setup, we only
considered how locally or widely saturation excess runoff is
triggered to represent the spatial variability of runoff genera-
tion. In a real catchment, multiple flow paths and runoff com-
ponents might be activated during extreme events. As with
all models, the rainfall-runoff model that we use is a simpli-
fied representation of reality and is not able to represent all
potential runoff generation processes. Nevertheless, the find-
ings based on simulated time series can still give us valuable
insights into how the analysed processes affect the tail be-
haviour of flood peak distributions. This is particularly the
case as the different parts of the simulation model chain have
been shown to represent real-world behaviour well when cal-
ibrated with real-world data (e.g. Nguyen et al., 2021; Ceola
et al., 2015; Parajka et al., 2007).

5 Conclusions

Rainfall characteristics and runoff generation processes can
affect the tail behaviour of flood peak distributions. Here,
we analysed how the spatial variability of rainfall and runoff
generation influences flood peak tail behaviour and whether
and how this interacts with the sizes of catchments. To ad-
dress these questions, a simulation-based approach was used:
a model chain consisting of a weather generator, a rainfall-
runoff model, and a river routing routine was set up for a
large, synthetic catchment. Different configurations of the
models were designed to represent varying degrees of spatial
variability of rainfall, varying tail behaviours of the rainfall
distributions, varying mean catchment storage depths, and
varying degrees of spatial variability in the runoff genera-
tion. With these setups, 7000 years of discharge were sim-
ulated, generalized extreme value (GEV) distributions were
fitted, and their tail behaviour was analysed. This was done
for 163 catchments ranging between 200 and 30 000 km2 in
size.

We found that the GEV shape parameter decreases with
increasing catchment size, meaning that smaller catchments
tend to have flood peak distributions with heavier tails. Inde-
pendent of the catchment size, a rainfall distribution with a
heavier tail results in a flood peak distribution with a heav-
ier tail. Further, the shape parameter of flood peak distribu-
tions was found to decrease with increasing spatial variability
of the rainfall, especially for large catchments. This is most
likely linked to the flow attenuation effects in large catch-
ments through which local flood peaks are balanced out on
their way to the catchment outlet. With regards to runoff gen-
eration, we found no clear effect on the flood peak tail be-
haviour, depending on whether saturation excess runoff usu-
ally occurs locally or widely in a catchment. In contrast, the
average depth of the catchment storage seems to have a non-
linear effect on the GEV shape parameter of flood peak dis-
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tributions. These results suggest that how frequently satura-
tion excess runoff is triggered has a stronger effect on the
tail behaviour of flood peak distributions than how locally
or widely this happens. However, the identified effect of the
mean storage capacity on the GEV shape parameter might be
to some degree related to aspects of the distribution fitting.
When process shifts are present in a catchment, the flood fre-
quency curve might show a step change, and as a result the
flood peaks might not be represented well by a GEV distri-
bution. This should always be kept in mind when using GEV
distributions for the estimation of design floods.

Overall, the spatial variability of rainfall shows a much
stronger effect on the tail behaviour of flood peak distribu-
tions than the spatial variability of runoff generation. The ef-
fect of spatially variable rainfall is closely interlinked with
the catchment size, and attenuating effects in large catch-
ments are assumed to lead to lighter tails. The findings are
based on simulation runs so that future studies are required
to validate the findings in real-world catchments.
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