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Abstract. Large-scale hydrologic models are increasingly
being developed for operational use in the forecasting and
planning of water resources. However, the predictive strength
of such models depends on how well they resolve various
functions of catchment hydrology, which are influenced by
gradients in climate, topography, soils, and land use. Most as-
sessments of hydrologic model uncertainty have been limited
to traditional statistical methods. Here, we present a proof-
of-concept approach that uses interpretable machine learning
techniques to provide post hoc assessment of model sensitiv-
ity and process deficiency in hydrologic models. We train a
random forest model to predict the Kling–Gupta efficiency
(KGE) of National Water Model (NWM) and National Hy-
drologic Model (NHM) streamflow predictions for 4383
stream gauges in the conterminous United States. Thereafter,
we explain the local and global controls that 48 catchment
attributes exert on KGE prediction using interpretable Shap-
ley values. Overall, we find that soil water content is the most
impactful feature controlling successful model performance,
suggesting that soil water storage is difficult for hydrologic
models to resolve, particularly for arid locations. We identify
nonlinear thresholds beyond which predictive performance
decreases for NWM and NHM. For example, soil water con-
tent less than 210 mm, precipitation less than 900 mm yr−1,
road density greater than 5 km km−2, and lake area percent
greater than 10 % contributed to lower KGE values. These re-
sults suggest that improvements in how these influential pro-
cesses are represented could result in the largest increases in
NWM and NHM predictive performance. This study demon-
strates the utility of interrogating process-based models us-

ing data-driven techniques, which has broad applicability and
potential for improving the next generation of large-scale hy-
drologic models.

1 Introduction

Large-scale hydrologic models are important tools for un-
derstanding and forecasting the fluxes of water across the
earth’s surface to manage floods, droughts, and other hydro-
logic extremes (Brunner et al., 2021; Tijerina et al., 2021).
Most often, these models convert meteorological inputs to
streamflow predictions by parameterizing and calibrating in-
ternal hydrological processes. Accurate simulation of inter-
nal processes is a grand challenge of hydrology (Blöschl et
al., 2019) because of the difficulty of resolving equifinal-
ity (Vrugt and Beven, 2018), scaling relationships (Savenije,
2018), epistemic uncertainties in hydrologic data (Beven,
2024), and spatial heterogeneity in watershed attributes (San-
tos et al., 2025). The accurate determination of sensitive
model parameters and drivers is crucial for improving pro-
cess representation in hydrologic models and, ultimately, the
management of water resources (Pandit et al., 2025; Rei-
necke et al., 2025).

The National Water Model (NWM) and the Na-
tional Hydrologic Model (NHM) are two process-oriented,
continental-scale hydrologic models used in operational
decision-making (Towler et al., 2023). The NWM framework
applies the Weather Research and Forecasting Hydrologic
model (WRF-Hydro) formulation, which simulates infiltra-
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tion, evaporation, transpiration, overland flow, shallow sub-
surface flow, baseflow, channel routing, and passive reservoir
routing but not active reservoir management (Cosgrove et
al., 2024). The NHM framework applies the Precipitation–
Runoff Modeling System (PRMS) formulation, which rep-
resents evaporation, transpiration, runoff, infiltration, inter-
flow, groundwater flow, and channel routing but not reser-
voir operations, water withdrawals, or stream releases (Re-
gan et al., 2019). See Sect. S1 in the Supplement for more
details on each model. A key distinction is that the NWM
targets high-spatial-resolution (∼ 250 m) and high-temporal-
resolution (hourly) flood forecasting. In contrast, the NHM
assesses long-term water availability at hydrologic-response-
unit scales (∼ 100 km2, driven by daily forcing) (Towler et
al., 2023). Both models exhibit spatially variable streamflow
skill across US catchments (Tijerina et al., 2021), with the
strength of prediction varying as a function of catchment-
scale climate, land use, and physiography. Collectively, dif-
ferences in resolution, process formulation, and treatment
of human regulation make the NWM–NHM pair an ideal
testbed for structural sensitivity analysis: drivers influential
in both frameworks likely denote overarching hydrologic
controls, whereas divergent sensitivities flag processes that
are represented differently (or omitted) in either approach.

The sensitivity of process-based hydrologic models to cer-
tain catchment attributes and parameters has been interro-
gated using well-established statistical tools, such as sen-
sitivity analysis (Pianosi et al., 2016; Song et al., 2015).
These approaches work by exploring the range of values that
model parameters may take and recording the net impact
on model performance (Mai, 2023). Notable examples in-
clude the Sobol’ (2001) and Morris (1991) methods. A draw-
back of traditional sensitivity analysis methods, particularly
when applied to large-scale hydrologic applications (Mai et
al., 2022), is that they can be computationally demanding
(Sarrazin et al., 2016). Less demanding techniques, such as
the Robustness Assessment Test (RAT; Nicolle et al., 2021),
have been developed to evaluate model bias without the need
to control the calibration process, but these focus only on the
influence of temporal forcings, such as air temperature. Thus,
there is a need to continue to develop spatial methods for as-
sessing model sensitivity that are useful in scenarios where
traditional methods are computationally intractable.

Explainable or interpretable machine learning methods
have the potential to bridge the gap between data-driven in-
sights (provided by machine learning models) and process-
based understanding (contained within physically based
models) (Slater et al., 2025). These methods help to explain
why a model gives the prediction that it does (Lundberg et al.,
2020). Several explainable machine learning methods have
been developed, including Partial Dependence Plots (PDP;
Friedman, 2001), Local Interpretable Model-Agnostic Ex-
plainers (LIME; Ribeiro et al., 2016), and Shapley Additive
Explanations (SHAP; Lundberg et al., 2020). In hydrology,
for example, these tools have been applied for the analysis of

hydrologic fluxes (Brêda et al., 2024), soil moisture (Huang
et al., 2023), water table depth (Ma et al., 2024), and drought
intensity (De Meester and Willems, 2024). Interpretable ma-
chine learning can complement and enhance traditional sen-
sitivity approaches (Maier et al., 2024) by providing post hoc
interpretative insights into how parameter changes influence
hydrologic model predictions – that is, without the need for
perturbing the model parameter space. Interpretable machine
learning methods are not without limitations as they only
imply relations in the model which may not necessarily be
causal (Heskes et al., 2020), and thus caution should be ex-
ercised when interpreting model explanations.

This paper aims to interrogate large-scale hydrologic
model performance with machine learning tools to identify
which processes may be inadequately represented in physi-
cally based models. Thus, the questions we address are the
following: what catchment attributes can be used to predict
poor model performance, and are certain dominant hydro-
logical processes associated with these catchment attributes?
To answer these questions, we present a proof-of-concept ap-
proach that uses machine learning techniques to provide post
hoc assessment of model sensitivity. We did this by build-
ing a random forest model to predict KGE values for NWM
and NHM predictions at over 4000 basins (Fig. 1). There-
after, model predictions were interpreted using Shapley val-
ues, which highlight the physiographic and hydrologic con-
trols of process-based model performance. This work aims to
inform improvements for the next generation of large-scale
hydrologic models for the responsible stewardship of water
resources into an uncertain future.

2 Methods

2.1 The National Water and National Hydrologic
Model

We retrieve daily streamflow observations and predictions for
gauged locations (sites) for the NWM version 2.1 and NHM
version 1.0 from existing repositories (Johnson et al., 2023b;
Regan et al., 2019; Towler et al., 2023). Section S1 summa-
rizes the models that produced the data used in this study. A
total of 4614 basins with at least 10 years of data that span the
contiguous US (CONUS) are included in our analysis (USGS
Water Data for the Nation, 2023). The date range of flow ob-
servations and predictions is from water years 1984 to 2016.

NWM and NHM performance at each site was assessed
using the Kling–Gupta efficiency (KGE), a common metric
in hydrologic modeling (Gupta et al., 2009). The KGE is cal-
culated as

KGE= 1−
√
(α− 1)2+ (ρ− 1)2+ (β − 1)2, (1)

where ρ is the Pearson correlation coefficient, and α and β
are the ratios of the standard deviation and the mean, respec-
tively, of model predictions to data observations. The accu-
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Figure 1. Flow diagram showing the application of interpretable machine learning in this study. (1) Data observations and National Water
Model (NWM) or National Hydrologic Model (NHM) predictions are used to generate a target Kling–Gupta efficiency (KGE) for each site.
(2) Catchment attributes are input to a random forest (RF) model to predict KGE for each site. (3) The RF model is evaluated by comparing
the predicted KGE to the target KGE using the coefficient of determination (R2) to determine goodness of fit. (4) Shapley values (ψ) are
used to explain the marginal contributions of catchment attributes that distinguish KGE prediction at a particular site, f (x), from the average
modeled KGE for all sites, E[(f (x)]. In the given example, the values of the climate and topography attributes at this individual gauge lower
the predicted KGE (−ψ), whereas the values of the hydrology and agriculture attributes increase the predicted KGE (+ψ).

Figure 2. Cumulative distribution function (CDF) of National Wa-
ter Model (NWM) performance for humid (PET/P < 1, n= 3827)
and arid (PET/P > 1, n= 787) sites as assessed by the Kling–
Gupta efficiency (KGE) evaluation metric.

racies of NWM (Fig. 2) and NHM (Fig. S1) predictions are
particularly sensitive to aridity. The KGE values calculated
in Eq. (1) serve as the target variables for the forthcoming
machine learning model (Fig. 1).

2.2 Random forest model

Random forest modeling is an ensemble-based machine
learning approach for predicting continuous values and cap-
turing nonlinear trends in a dataset (Ho, 1998). We train a

random forest model, comprised of 1000 regression trees, to
predict the target KGE at each site using catchment attributes
as input variables (termed “features”). The features (n= 48)
are derived from BasinATLAS (Linke et al., 2019) and incor-
porate wide ranges of climate, hydrology, topography, soils
and geology, undeveloped vegetation, agriculture, and urban
land use. The names and descriptions of the 48 predictors can
be found in Table S1, and the spatial variations of the 48 pre-
dictors across the CONUS are shown in Fig. S2. The features
were selected based on their likelihood to impact hydrology.
Soil water content appears to be an important predictor in
the later analysis, and we define it here for clarity. Soil water
content is defined as the annual soil water available for evap-
otranspiration (Global High-Resolution Soil-Water Balance,
2023), and the original study authors calculated it as equal to
the long-term effective precipitation minus the sum of actual
evapotranspiration and runoff.

The random forest model was trained and validated using
bootstrapping. Individual trees are grown from an in-the-bag
bootstrap of the observation dataset. Out-of-bag observations
not included in the bootstrap are used for model validation.
The models were trained using the mean squared error ob-
jective function. The coefficient of determination (R2) was
calculated to assess the predictive performance of the ran-
dom forest (Pearson, 1901). Extreme values (outliers) can
distort the utility of a predictive and interpretable model (Liu
et al., 2018). Because the KGE metric has a small upper
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bound (+1) and an infinite lower bound (−∞), a small sub-
set of very negative values can dominate model inferences.
The lowest KGE value for a gauged location in the NWM
dataset is −302.8, whereas the 5th percentile of KGE val-
ues −2.7. The performance at both sites would be consid-
ered “unacceptable”; thus, including extreme negative val-
ues negatively affects model predictability without providing
much additional insight beyond that given by other underper-
forming sites. To address the disproportionate influence of a
small subset of values, we consider the 5 % of sites with the
most negative target KGE values to be outliers, reducing our
dataset from 4614 to 4383 sites. Random forest model anal-
yses and development were performed using the TreeBagger
function in MATLAB 2024.

2.3 Shapley values

Shapley values are derived from cooperative game theory
and they aim to assess how coalitions form and how these
coalitions impact the payout of a game (Shapley, 1953). In
the context of interpretable machine learning, they are a
model-agnostic approach that attributes each feature an im-
portance value for a prediction, indicating the marginal ben-
efit that the inclusion of the feature provides to the over-
all prediction (Lundberg et al., 2020; Lundberg and Lee,
2017). Thus, Shapley values explain the inner workings of
a model, with influential features receiving large attribution
of credit, whereas non-influential features may receive little
or no credit for the model prediction. The Shapley value is
also the only distribution of gain among features (e.g., pre-
dictor variables) that satisfies four properties: (1) efficiency,
(2) symmetry, (3) linearity, and (4) null player (Shapley,
1953). These properties respectively ensure that (1) the to-
tal prediction is fully allocated to features, (2) features that
contribute the same to the prediction should receive identical
credit, (3) the feature attribution for a model that combines
several sub-models should be the sum of the attributions from
each sub-model, and (4) a feature contributing nothing to the
prediction should receive no allocation.

The Shapley value (ψ) of the ith feature (catchment at-
tribute) for the query point x (KGE) can be calculated by the
characteristic value function (v) as

ψi (vx)=
1
M

∑
S⊆N/{i}

|S| !(M − |S| − 1) !
(M − 1) !

[vx (S ∪ {i})− vx (S)] , (2)

where M is the number of features, N is the set of all fea-
tures, S is a set or coalition of features, |S| is the number
of elements in the coalition, and vx(S) is the value function
of the features in the coalition for the query point x (Shap-
ley, 1953). The value of vx(S) represents the “worth” or the
expected contribution of the features in S to the cooperative
prediction for the query point x. Leveraging the additive (lin-
ear) nature of Shapley values, we calculate them for each ob-

servation for all trees in the random forest and then average
respective feature results across trees for a more robust statis-
tic. All Shapley value analyses were performed in MATLAB
2024 using the TreeSHAP algorithm with an interventional
value function (Lundberg et al., 2020). The interventional
value function calculates the expected output of the model
when the values for the features in a specific coalition S are
set to those of the model instance being explained, while the
values for the features not in the coalition are sampled from
the full dataset. This approach aims to isolate the impact of
the feature coalition by breaking potential dependencies with
features outside the coalition, effectively simulating an inter-
vention where only the features in S are known and fixed,
and the others vary according to their marginal distributions.

To aid in interpretation of Shapley values, we provide
a brief example. The random forest model described in
Sect. 2.2 is trained to predict the KGE of the NWM (or
NHM) at 4383 sites in the analysis (Fig. 1). In short, “how
accurate is the NWM at a particular site?” The random forest
model answers this question by transforming 48 catchment
attribute features into a prediction of KGE. In the absence
of Shapley values, the process by which the catchment at-
tributes are transformed to create the KGE prediction is un-
certain. Shapley values (ψ) elucidate the marginal contribu-
tion of a feature to the random forest prediction, which is
defined as how much the predicted KGE at a site increases
(+ψ) or decreases (−ψ) when a feature is included in the
model. In this way, sensitive features will have a high Shap-
ley value magnitude, |ψ |, as the predicted KGE is sensitive
to the value that the feature takes. Thus, Shapley values help
to distinguish the catchment attributes that cause variation
in predicted KGE across space. Although the full range of
Shapley values for the 48 catchment attribute features are in-
formative, we highlight and discuss the most impactful fea-
ture negatively affecting model performances at each site.
The most impactful feature is the one having the lowest Shap-
ley value (min ψ) at a site, meaning it reduces the predicted
KGE more than any other feature.

We used the Ecoregions of North America as a way of
grouping clusters of catchments in order to facilitate the dis-
cussion of similarities (or dissimilarities) between the drivers
of model performance across broad areas (Omernik, 1987).
Ecoregions are defined by “perceived patterns of a combi-
nation of causal and integrative factors including land use,
land-surface form, potential natural vegetation, and soils”
(Omernik, 1987). Results from individual catchments were
aggregated to the ecoregion level for comparison of gen-
eral trends. A catchment was assigned to an ecoregion based
on the greatest area of an ecoregion contained within the
drainage boundary of a catchment.

Hydrol. Earth Syst. Sci., 29, 4457–4472, 2025 https://doi.org/10.5194/hess-29-4457-2025



A. Husic et al.: Interrogating process deficiencies in large-scale hydrologic models with ML 4461

Figure 3. Evaluation of the random forest model prediction of
Kling–Gupta efficiency (KGE) at NWM and NHM sites. Results
are shown for the out-of-bag (testing) samples. The density scatter
plot displays the count of data points in each partitioned bin. For
visual clarity, predicted and observed KGE values less than 0 are
not plotted, although they are included in the calculation of R2 for
each model. NWM=National Water Model, NHM=National Hy-
drologic Model, R2

= coefficient of determination.

3 Results

Because general results for both the NWM and NHM were
broadly similar, we focus the main text discussion on the
NWM and note instances where the two models differ (de-
tailed results from NHM analysis can be found in the Sup-
plement). R2 values for the testing predictions of KGE for
the random forest model are shown in Fig. 3. The random
forest model explains 47 % (43 %) of the variance encoded
in the KGE metric for NWM (NHM) simulations at 4383
gauges. Given the considerable variability in the processes
influencing hydrologic model performance across CONUS,
we consider this model performance “satisfactory” as accept-
ability criteria for R2 vary with the complexity of a dataset
(Legates and McCabe, 1999). We proceed with interpretable
machine learning to understand how catchment attributes in-
fluence KGE values of streamflow for the NWM and NHM.

We investigated the local structure of Shapley values (ψ)
at three sites that have been selected to demonstrate various
controls on KGE prediction (Fig. 4). We report how the Shap-
ley values explain random forest model predictions of KGE,
but it is important to note that these explanations are not
necessarily causal but rather reflect correlations identified by
the algorithm. The directionality and extent of influence by
each predictor are indicated by the magnitude and sign of the
predictor’s Shapley value (±ψ). Each waterfall plot shows
how Shapley values (ψ) of features help to distinguish one
site, f (x), from the mean of all sites, E[f (x)]. These three
sites were selected to demonstrate various catchment con-
trols, such as climate at Tucannon River, WA; hydrology at
Seboeis River, ME; and soils and geology at Timpas Creek,
CO. At Tucannon River, the relatively high values of actual
evapotranspiration and aridity index at the site cause a de-
crease (−ψ) in the prediction of KGE at that site. At Seboeis
River, the large lake area percentage causes a decrease (−ψ)

in KGE prediction, but the high soil water content causes an
increase (+ψ) in KGE prediction. At the final site, Timpas
Creek, the most influential feature is the low soil water con-
tent, which has a considerable negative contribution (−ψ) to
KGE prediction. With an understanding of how Shapley val-
ues operate at an individual gauge (local scale), we proceed
to a global perspective by assessing the aggregate Shapley
value results of all 4383 sites.

The global structure of Shapley values (ψ) for six im-
portant catchment attributes is shown (Fig. 5): soil water
content, snow cover maximum, road density, precipitation,
lake area, and irrigated area. The marginal contribution of
the soil water content variable (ψsoil water content) is positive
(+ψ) in areas with high soil water content (east of the 98th
meridian and in the Pacific Northwest) and negative (−ψ)
in areas with lower soil water content (Great Plains, Inter-
mountain West, and California). The Shapley dependence
plot identifies 210 mm soil water content as a threshold from
when ψsoil water content increases (+ψ) versus decreases (−ψ)
the prediction of KGE. The ψsnow cover max. values are posi-
tive in the Rocky Mountains and the upper Midwest. Snow
cover maximum has little effect on KGE predictions until
a threshold of 40 % is exceeded, at which point maximum
snow coverage increases KGE prediction. The ψroad density
values are negative in urban centers, when road density
exceeds 5 km km−2, suggesting that high road density de-
creases the accuracies of model predictions. Otherwise, the
presence of roadways has little impact on KGE predictions at
lower road densities. A threshold of 900 mm yr−1 in precip-
itation emerges; precipitation values lower than this thresh-
old lower KGE (−ψprecipitation) and values greater than this
threshold increase KGE (+ψprecipitation). The ψlake area val-
ues are generally close to zero except for when lakes consti-
tute a substantial portion of a watershed (> 10 %), such as
in Minnesota and Wisconsin and the northeast region. For
ψirrigated area, watersheds with less than 3 % irrigated area are
unaffected by the variable, but beyond a threshold of around
10 %, the presence of irrigation decreases KGE predictions.

Shapley value swarm charts show the directionality and
magnitude of feature importance for all 48 predictors
(Fig. 6). Globally, the most impactful features (greatest
|ψ |) for KGE prediction are ψsoil water content, ψaridity index,
ψactual ET, and ψprecipitation. Regarding directionality, higher
catchment-scale values of soil water content, aridity index,
actual ET, and precipitation increase KGE prediction (+ψ),
whereas smaller values decrease KGE prediction (−ψ). Al-
though these are globally the most influential variables, they
are not necessarily the most influential at each individual site.
We plot the spatial distribution of the most impactful feature
group leading to poor KGE scores at each site – that is, the
predictor group having the greatest negative Shapley value
(min ψ) at a site. The most impactful feature groups at in-
dividual sites were climate (n= 761), hydrology (n= 1290),
and soils and geology (n= 1447). Soils and geology features,
most frequently low soil water contents, reduced KGE most
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Figure 4. Local structure of Kling–Gupta efficiency (KGE) prediction for the National Water Model (NWM) as illustrated by Shapley value
(ψ) waterfall plots at three demonstration sites, indicated by US Geological Survey station numbers associated with stream gauges and two-
letter state abbreviations. Each plot begins with the expected value of the model prediction for all sites, E[f (x)], which undergoes marginal
alteration (±ψ) by each of the 48 predictor features. The final model prediction, f (x), is equal to E[f (x)] plus the cumulative sum of all
marginal contributions. Undeveloped vegetation is abbreviated as Und. Veg.
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Figure 5. Spatial distribution of Shapley values (ψ) for selected influential features and their impact on Kling–Gupta efficiency (KGE)
prediction for the National Water Model (NWM). The color bar represents the magnitude of ψ . The partial dependence plot of each feature is
shown. Feature value distributions are represented with a heatmap. A moving average of feature values is indicated by a line to show general
trends.

often in the Great Plains and Intermountain West. Hydrology
features, typically large values of lake and reservoir storage,
reduce modeled KGE in the Midwest. Climate features did
not have strong spatial coherence. Next, we assess the dis-
tribution of KGE values grouped by most impactful feature
(Fig. 7). For the NWM, sites where the most impactful fea-
tures were soils and geology as well as urban land use had
the lowest median KGE values. The results for NHM were
similar to NWM except that areas controlled by climate have
lower median KGE values for NHM than NWM.

We map the spatial linkage between ecological regions in
the US and the influential features controlling KGE scores
at sites contained within these regions (Fig. 8). The ecore-
gions containing the most stream gauges are Eastern Temper-
ate Forest, Great Plains, Northwestern Forested Mountains,

and North American Deserts. Streams in the Eastern Tem-
perate Forest ecoregions are most frequently influenced by,
in decreasing order, hydrology, climate, urban, and soils and
geology features. For the Great Plains, the most frequent con-
trolling features are soils and geology, followed distantly by
hydrology. The Northwestern Forested Mountains are influ-
enced by soils and geology, climate, hydrology, and topog-
raphy. Lastly, the North American Desert streams are con-
trolled almost exclusively by soils and geology features.

4 Discussion

We investigate the relative importance of catchment at-
tributes for streamflow model performance to diagnose de-
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Figure 6. (a) Map of Kling–Gupta efficiency (KGE) for the National Water Model. (b) Map and histogram of the most impactful feature
causing poor model performance at each site, i.e., the predictor group having the greatest negative Shapley value (ψ) at a site. (c) Swarm
chart of Shapley values for KGE prediction showing feature importance for 48 predictors. The staircase plot on the right axis indicates the
mean absolute Shapley value (|ψ |) of all observations for a predictor. The predictor value is the magnitude of the catchment attribute.

Figure 7. Kling–Gupta efficiency (KGE) performance grouped by the most important variable at each site as identified by Shapley values
for the National Water Model (NWM) and National Hydrologic Model (NHM).

Hydrol. Earth Syst. Sci., 29, 4457–4472, 2025 https://doi.org/10.5194/hess-29-4457-2025
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Figure 8. Map of study stream gauges (black markers) and the Ecoregions of North America (as defined in Omernik, 1987). Sankey diagram
showing the pairing of ecoregions and impactful feature classes for the National Water Model (NWM) for the Kling–Gupta efficiency
(KGE) evaluation metric. Ecoregion classifications are defined using the following superscripts: 1 Atlantic Highlands, 2 Mixed Wood Shield,
3 Ozark, Ouachita–Appalachian Forests, 4 Mixed Wood Plains, 5 Central US Plains, 6 Southeastern US Plains, 7 Mississippi Alluvial and
Southeast US Coastal Plains, 8 Everglades, 9 Temperate Prairies, 10 West-Central Semi-Arid Prairies, 11 South Central Semi-Arid Prairies,
12 Texas–Louisiana Coastal Plain, 13 Tamaulipas–Texas Semi-Arid Plain, 14 Cold Deserts, 15 Warm Deserts, 16 Western Sierra Madre
Piedmont, 17 Upper Gila Mountains, 18 Western Cordillera, 19 Marine West Coast Forest, and 20 Mediterranean California.

ficiencies in how the hydrologic models represent physical
processes. Compared to other parameter-based continental-
scale sensitivity analyses (e.g., Mai et al., 2022), our ap-
proach provides a post hoc assessment of model sensitivity.
That is, perturbing the parameterization of the original mod-
eling framework is not necessary to identify model sensitiv-
ities. Rather, sensitivities are deduced (learned) through the
identification of the marginal contribution of predictor fea-
tures to model performance. In this way, our approach iden-
tifies how catchment attributes may impact KGE – rather
than how model parameters directly impact KGE. The in-
terpretable machine learning approach we present is flexible
and model-agnostic, meaning it can be applied to any mod-
eling framework.

4.1 Model diagnostics with interpretable machine
learning

The Shapely value approach used in our study is able to make
both local (Fig. 4) and global (Fig. 5) inferences from the
same model. Shapley dependence plots allow us to infer the
individual (marginal) contribution of a feature to the overall
model as a function of the feature’s magnitude. Compared to

traditional sensitivity analyses, which perturb model param-
eters and observe the resulting impact on a performance eval-
uation metric (Pianosi et al., 2016), this approach identifies
spatial patterns in where models perform well and where they
do not and relates that pattern to the spatial variation in catch-
ment attributes. This indirect approach to model sensitivity
allows for the identification of attributes that show a high de-
gree of influence on model performance. This approach can
serve as an interrogation tool for prioritizing which processes
should be better represented within the evaluated hydrologic
model structure. Below, we highlight both local and global
structures that emerge from our analysis and that allow for
the interrogation of NWM and NHM performance.

Local structures emerge whereby a few sensitive attributes
can dominate the overall KGE prediction at a site (Fig. 4).
This can manifest as a catchment attribute decreasing or
increasing prediction accuracies (as measured by KGE) of
NWM or NHM. For example, at an arid site on the Tucannon
River (WA), the NWM performance is lower at this site than
the nationwide average of NWM for all sites because of high
actual evapotranspiration and low precipitation conditions.
Conversely, at Seboeis River (ME), the higher humidity and
soil water content contribute to higher NWM prediction ac-
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curacy compared to the nationwide site average. In some in-
stances, multiple competing attributes offset their negative
and positive contributions to KGE prediction. At the Seboeis
River, the positive contribution to KGE from high soil wa-
ter content is offset by the negative contribution of a large
lake area percentage. Another way to interpret this would be
that in the absence of lakes in the basin, the NWM would
produce more accurate streamflow predictions at this site –
that is, a higher KGE. Therefore, although the model’s rep-
resentation of soil water content at this site increases stream-
flow prediction accuracy, the simulation of lake water storage
(or lack thereof) is inhibiting streamflow prediction. Impor-
tantly, the Shapley value approach can also identify features
that are not influential for KGE. For example, for all three
sites investigated in Fig. 4, the natural vegetation and agri-
cultural variables have a limited influence on KGE. By elu-
cidating the local structure of catchment controls on model
performance, this approach allows for inference about which
processes are not well-represented by the model. Addressing
these processes could be prioritized in further iterations of
models to facilitate large increases in model accuracy.

Global structures emerge whereby the Shapley value ap-
proach can identify thresholds at which features become in-
fluential (Fig. 5). Because our approach considers all sites
simultaneously, we can make conclusions about the spatial
coherence of influential attributes across regions (Mai et al.,
2022). A few variables, most prominently soil water content,
are highly influential regardless of whether the variable takes
a small or large value. However, some variables have little in-
fluence until certain thresholds are crossed (Fig. 5), such as
snow cover, road density, irrigation area, and lake area. The
ability to resolve threshold behavior in model performance
allows for better parameterization of models and identifica-
tion of areas where increased data collection could improve
model calibration (Zehe and Sivapalan, 2009).

This model diagnostic approach provided intuitive results
that match the general understanding of streamflow controls
across ecoregions (Figs. 6 and S5). The features that com-
monly decreased model accuracy the most at individual sites
(min ψ) were related to soils and geology, hydrology, and
climate predictor groups (Fig. 6). The influence of other
predictor groups is more variable. For example, urban fea-
tures (urban extent, road density, population count and den-
sity, and human footprint index) are influential in catchments
near large metropolitan areas, such Chicago, New York, and
Boston, but their influence is largely absent elsewhere. Ur-
ban features are the most influential predictors for just 7.7 %
of all gauges, but these urban-controlled sites have low KGE
values that are similar to sites controlled by the most influen-
tial variable group (soils and geology, Fig. 7). In this way,
Shapley values show utility in interrogating process-based
models by allowing for the identification of overarching con-
trols across all sites in a dataset while not obscuring unique,
local controls.

4.2 Natural and anthropogenic drivers of NWM and
NHM performance

4.2.1 Climate

Climate processes are of central importance to the goodness
of fit for the NWM for many sites (Fig. 6), as indicated by
large absolute Shapley values (|ψ |) for climate variables.
These results align with results of multiple studies focused on
climate processes as drivers for streamflow processes, such
as non-perennial streamflow (Hammond et al., 2021; Price et
al., 2021; Zipper et al., 2021) and peak streamflow (McMil-
lan et al., 2018). Shapley value results show that climate pro-
cesses that are related to low water availability (i.e., low val-
ues of precipitation, aridity, and ET) decrease the predictive
capacity of the NWM (Fig. 5). The inverse is also true, in that
streamflow can be simulated more accurately at sites with
higher precipitation and lower ET (Fig. 6). Thus, while the
NWM is recognized to have poor performance in arid loca-
tions (Johnson et al., 2023a), our results show that it is well-
suited for prediction in humid locations.

Soil water content, actual ET, and precipitation are the
most influential features for determining KGE, all of which
are highly seasonal (Elnashar et al., 2021). For example, the
spatial map of KGE performance (Fig. 6) is broadly related
to precipitation amount and the Shapley value for precipita-
tion (Fig. 5). In areas where climate may have a lower degree
of variance throughout the year, NWM accurately simulates
streamflow because of the predictability of the hydrologic re-
sponse in a basin. As an example, we find that the presence
of a considerable snow cover (> 40 %; Fig. 5) can improve
model predictability; this has been noted elsewhere (John-
son et al., 2023a) and may be related to the predictability of
seasonal snowmelt, which can dominate the water balance
in cold regions. These results highlight the ability of Shap-
ley values to elucidate the relationships between climate and
streamflow and provide important insights into careful pa-
rameterization of climate forcings to increase model accu-
racy.

4.2.2 Hydrology

Of the variables in the hydrology category, we observed the
largest effect on KGE in the NWM from lake area and up-
stream reservoir storage relative to annual flow volume (the
degree of regulation), with KGE decreasing as lake area and
the degree of regulation increase (Figs. 3 and 4). The mod-
eling of pond and lake storage and release is a known defi-
ciency in large-scale hydrologic modeling, and recent param-
eterizations have been developed to enhance representation
of surface-water depression storage (Costigan and Daniels,
2012; Hay et al., 2018; Hodgkins et al., 2024).

The negative impact of lake and reservoir features on
model accuracy is greater on the NHM (Fig. S3) than on the
NWM (Fig. 5). As noted earlier, the NHM framework does
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not simulate any kind of reservoir operations, water with-
drawals, or stream releases (Regan et al., 2019). On the other
hand, the NWM framework models passive reservoir routing
(Cosgrove et al., 2024) to mitigate the confounding effects
of lake and reservoir volume on model performance. The
Shapley value approach was able to successfully determine
that the model without any provision for reservoirs (NHM)
is more negatively affected by the presence of reservoirs than
the model with routing capability (NWM), underscoring that
the method can produce intuitive results that match our con-
ceptual models.

4.2.3 Physiography (topography, soils, and geology)

Hydrologic connectivity controls many facets of the natu-
ral flow regime and determines the ability of a watershed
to store and release water (Michalek et al., 2023). Parame-
terizations of soils, geology, and other basin characteristics
are highly heterogeneous and mediate many facets of con-
nectivity, many of which are poorly resolved in large-scale
hydrologic models (Li et al., 2023). For example, soil water
content was the most impactful predictor for KGE accord-
ing to the Shapley value analysis (Fig. 5), with low values
of soil water content greatly impacting the KGE. Accurate
simulation of soil moisture patterns, particularly in arid loca-
tions, is a well-recognized challenge in the NWM, which can
be mitigated by the integration of soil moisture data into the
model calibration process (Araki et al., 2025). Other factors
that contribute to a high degree of hydrologic connectivity,
including a high percent of sand and a low percent of clay
(Fig. 6), also highlight the inability of the NWM to resolve
storage dynamics, which likely results from inadequate pa-
rameterization of areas that have highly seasonal soil water
content (Hughes et al., 2024) and the inability of the current
generation of NWM to represent losing streams (Jachens et
al., 2021; Lahmers et al., 2021).

We also identified predictor variables commonly associ-
ated with the physiography of headwater systems as impor-
tant predictors of KGE (Fig. 6), such as drainage area and
mean elevation. Headwater systems are defined as “surface-
water catchment areas and groundwater zones that contribute
water, material, and energy to a headwater stream” (Brinker-
hoff et al., 2024; Golden et al., 2025). Headwater streams
typically have smaller drainage areas and higher mean eleva-
tions, which our approach found were associated with lower
KGE values for NWM predictions, possibly because NWM
simulates atmospheric states and fluxes on a 1× 1 km2 grid
cell and can misrepresent processes that are on the scale of
headwater systems. These headwater systems are low-order
and highly variable in their flow regimes (Rojas et al., 2020),
both of which are inadequately represented in NWM.

4.2.4 Anthropogenic processes

Of the variables related to anthropogenic influence, we note
that urban features, such as urban extent, road density, pop-
ulation count, population density, and human footprint, typi-
cally decrease KGE values for modeled streamflows (Figs. 5
and S4). The construction of urban drainage networks has
been recognized to increase the connectivity of water, so-
lutes, and sediment and to add additional pathways of trans-
port through the artificial routing of water (Zarnaghsh and
Husic, 2021). In a continental-scale analysis of the NWM, ur-
ban areas exhibited some of the largest bias (Johnson et al.,
2023a), in part due to the presence of constructed drainage
networks. Notwithstanding this limitation, the NWM has
shown some success in simulating hydrology when artifi-
cial urban channels, which differ from natural flow paths,
are manually delineated within the flow grid (Pasquier et al.,
2022). However, manual delineation is not feasible for appli-
cations intended for regional or continental scales, such as
NWM and NHM.

Our model identifies a threshold of around 5 km km−2 for
roadways as the initiation point whereby the presence of
roadways decreases the accuracies of NWM and NHM pre-
dictions (Figs. 4 and S3). The sensitivity of the roadway den-
sity feature may indicate other associated infrastructure, the
configuration of proximal impervious areas, and the relative
amount of human alternation of surface flow generation and
routing mechanisms not picked up by considering imperious
area alone. Population and population density similarly likely
indicate associated infrastructure that alters the flow timing
and magnitude of water delivery to rivers (Hopkins et al.,
2019). For example, leaky infrastructure can result in ele-
vated low flows beyond natural background levels (Bhaskar
et al., 2020). Regarding agriculture, irrigation return flows
have been shown to be important to flow generation pro-
cesses, particularly in lower-elevation, arid rivers (Putman et
al., 2024). These urban and agricultural features can decrease
model accuracy when present, but the absence of these fea-
tures does not necessarily increase model accuracy (Fig. 6).

4.3 Limitations and future research

Our interpretable modeling approach has provided several in-
sights into interrogating process deficiencies in the NWM
and NHM. Although the inferences we derived from the
Shapley values are robust, interpretable, and intuitive, the
analysis approach itself is not causative (Lundberg et al.,
2020). Thus, some inferences may occur due to indirect cor-
relation (Heskes et al., 2020). We took precautions to mit-
igate the effect of feature correlations while constructing
the random forest model, such as random exclusion of fea-
tures during tree construction and out-of-bag sampling (Fox
et al., 2017). Our approach provides confidence because, as
we noted earlier, many of the inferences we derived with the
Shapley values match the causative and mechanistic model
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assessments performed by others (Hodgkins et al., 2024;
Hughes et al., 2024; Jachens et al., 2021; Pasquier et al.,
2022).

The interpretable modeling approach has its own set of
limitations. First, predictions made by Shapley values are a
function of (1) the set of sites considered, in this case 4383
stream gauges in the United States used in NWM and NHM
assessment, and (2) the choice and performance of the pre-
dictive model, which in this case was a reasonably accurate
random forest model (R2

≥ 0.43). With regard to the first
point, if our analysis approach were applied to interpreting
the KGE values for streamflow predictions made by apply-
ing the Soil Water and Assessment Tool (SWAT) to Europe
(Abbaspour et al., 2015), the order and magnitude of influ-
ence by various features would undoubtedly change. To the
second point, although our random forest model is reason-
ably accurate, it only explains 47 % of the variance in KGE
prediction for the NWM (and 43 % for the NHM). While our
model effectively captures dominant global trends and local
structures, it still leaves more than half of the variance in
KGE predictions unexplained. Future studies could explore
ways to further explain this variance. Additionally, we con-
sider only the KGE goodness-of-fit metric in this study, but
if we were to interpret other goodness-of-fit metrics, such as
the Nash–Sutcliffe efficiency, there is potential that inferred
controls on model performance may change. This is because
all goodness-of-fit metrics encode for – and are biased by –
various information contained within streamflow time series
(Clark et al., 2021). Nonetheless, of the common evaluation
metrics presently applied in the hydrologic literature, use of
the KGE is increasing because of its lower overall bias and
provision for balanced results during low- and high-flow con-
ditions (Althoff and Rodrigues, 2021).

Several opportunities exist for overcoming limitations and
making improvements to the data inputs and model out-
puts. First, the spatial extent and resolution of the catch-
ment attribute dataset may be too coarse, particularly for
smaller basins. Of the 48 catchment attributes derived from
the BasinATLAS dataset (Linke et al., 2019), spatial resolu-
tions range from 3 arcsec for elevation to 5 arcmin for land
use. At 40° N, the median latitude of the CONUS, these
arc values correspond to ∼ 85 m and ∼ 7 km, respectively.
These datasets were aggregated to 15 arcsec (∼ 350 m), and
thus the calculated attributes for smaller basins are more un-
certain due to a smaller sample size of attribute estimates
contained within basin bounds. A second data limitation is
that the catchment attribute dataset represents a snapshot-
in-time value for all basins (Linke et al., 2019). However,
catchments and their characteristics, particularly land use,
may change substantially over time. The hydrologic models
are simulated over multiple decades (1984 to 2016), during
which change may occur and be captured within the process-
based representation of the models but not in the catchment
attribute dataset. Improved spatial resolution and temporal
evolution of catchment attributes could provide deeper in-

sights into identifying NWM and NHM process deficiencies.
There is potential that latent factors not explicitly included
as attributes in BasinATLAS, such as wastewater effluent or
groundwater pumping, exert control on NWM and NHM per-
formance. Finally, the process-based models used here vary
in their spatial and physical representation of hydrologic pro-
cesses. Process-based model differences in routing schema,
spatial groupings (hydrologic response unit vs. grid-based),
and subsurface properties could result in local differences
in model performance. While these specific model struc-
tural variations are less likely to dominate the explanation
of broad, CONUS-scale patterns identified in our analysis,
they can contribute to residual unexplained variance.

Looking forward, the National Oceanic and Atmospheric
Administration (NOAA), the developers of NWM, are ex-
panding modeling capacity with their Next Generation Wa-
ter Resources Modeling Framework (NextGen; Ogden et al.,
2021). In addition to a uniformly applied national hydrologic
model, there will be tools for identifying the best model/pa-
rameterization for each individual location and then model-
ing regions as patchworks of individual/local models (Cos-
grove et al., 2024). In addition to assessing overall flow per-
formance, this approach could be used for specific compo-
nents of the flow regime, such as high and low flows. For ex-
ample, studies that have focused on individual components of
non-perennial drying regimes have used a random forest ap-
proach coupled with partial dependency analysis (e.g., Price
et al., 2021). The Shapley value approach used in this study
could be used in a similar way to evaluate magnitude and
directionality of impact between predictor values and flow
regimes across systems. Further, modules are planned for
purely data-driven approaches, like long short-term memory
models (Frame et al., 2021, 2025). Our interpretable model-
ing approach provides a starting point to inform the parame-
terization of local-scale and regional-scale applications in the
next generation of hydrologic models.

5 Conclusions

The interpretable machine learning technique we present is
flexible and model-agnostic. We use the technique to iden-
tify potential process-based deficiencies in two continental-
scale hydrologic models: the National Water Model and the
National Hydrologic Model. Compared to other parameter-
based continental-scale sensitivity analyses, our approach
provides a post hoc assessment of model sensitivity. This
method allows for the identification of thresholds after which
a feature begins to negatively impact streamflow model per-
formance. Globally, soil water content was the most com-
mon feature influencing the accuracies of streamflow simu-
lations, followed by aridity, evapotranspiration, and precipi-
tation. We interpret the results to indicate that the present for-
mulations of NWM and NHM have limited ability to resolve
soil water storage and release, particularly in arid locations.
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Locally, the presence of lakes and reservoirs was related to
decreased model accuracy as was the presence of roadways
and irrigation canals. Our results suggest that further refining
how these influential processes are represented in large-scale
hydrological models would result in the largest increases
in model accuracies. This study demonstrates the utility of
interrogating process-based models using data-driven tech-
niques and interpretable machine learning, which has broad
applicability and potential for improving simulation of large-
scale hydrology and water quality.
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