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Abstract. Hydrological models are essential tools for as-
sessing changes in the hydrological cycle, enabling detailed
quantification of runoff (Q), total water storage (TWS), and
actual evapotranspiration (AET). Precipitation (P ) and po-
tential evapotranspiration (PET) are the two major drivers in
modeling these components, with the influence of P more
extensively studied than PET. This study evaluates the impact
of PET method selection on AET,Q, and TWS using 12 PET
formulations categorized as temperature-based, radiation-
based, and combinational. We applied the mesoscale Hy-
drological Model (mHM) to simulate 40 years of hydro-
logical components across 553 European catchments. PET
effects were analyzed through trend analysis and the data
concurrence index (DCI) across three catchment categories:
energy-limited, mixed, and water-limited. Our results in-
dicate that annual and seasonal trends are variably sensi-
tive to method choice, depending on each component and
catchment category. While PET shows strong agreement in
trend direction, trend magnitudes vary among different PET
methods. Jensen–Haise consistently produces the highest an-
nual and seasonal PET trend magnitudes, whereas no sin-
gle method consistently yields the lowest. AET trends gen-
erally align with PET but are weaker in magnitude on an an-
nual scale. Seasonally, only energy-limited catchments show
AET trends similar to PET. For Q and TWS, most European
catchments exhibit strong trend agreement across PET meth-
ods. As expected, summer is the primary contributor to an-
nual PET trends, while for AET, its influence is most notable
in energy-limited catchments. Looking at statistically signif-

icant trends, there is general agreement for PET and AET,
which decline for the other hydroclimatic variables. On an
annual scale, varying patterns of hydrological cycle intensi-
fication (increases in P , AET, Q, and TWS) are observed
across European catchments, highlighting the influence of
PET method selection. Overall, this study highlights how the
PET method selection affects the quantification of hydrolog-
ical trends, emphasizing the importance of method selection
for robust assessment of AET, Q, and TWS.

1 Introduction

Potential evapotranspiration (PET) is the potential to evapo-
rate water from the land surface to the atmosphere without
any limitation to water availability. Although the concept has
been in use for centuries, Thornthwaite (1948) was the first to
formally introduce the term “potential evapotranspiration” in
the scientific literature. A related but distinct concept is “ref-
erence crop evapotranspiration”, which is sometimes used in-
terchangeably with PET. However, these terms differ in their
conceptual basis and applications. Reference crop evapotran-
spiration specifically estimates the water requirements of a
standardized reference crop under ideal conditions, whereas
potential evapotranspiration provides a broader representa-
tion of water and energy exchange processes over diverse
landscapes and large regions (Xiang et al., 2020). PET is
used in diverse research fields. In environmental studies,
PET is used for aridification research and investigating ex-
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treme events, including meteorological, agricultural, and hy-
drological droughts (Park et al., 2018; Zhou et al., 2023; Shi
et al., 2023a). In hydrology, it is used to determine the long-
term states of catchments, such as energy-limited and water-
limited catchments, and it plays a key role in the Budyko
framework for estimating long-term changes in hydrological
components (Reaver et al., 2022). Furthermore, PET is ex-
tensively used in hydrological modeling to define the max-
imum rate of possible water loss through evaporation and
transpiration. It is used as one of the important input vari-
ables to simulate key hydrological components, such as ac-
tual evapotranspiration (AET), runoff (Q), and total water
storage (TWS).

Since Thornthwaite’s study, more than 100 empirical PET
equations have been developed, ranging from simple to
complex types (Proutsos et al., 2023). They can be clas-
sified mainly into three categories based on input data.
(1) Temperature-based methods utilize temperature as input
(Shaw and Riha, 2011). Due to their simplicity and minimal
data requirement, these are widely used in hydrological mod-
eling (Arnold et al., 1998; Liu et al., 2008). (2) Radiation-
based methods require solar radiation (shortwave or net ra-
diation) (Xu and Singh, 2000). (3) The combinational type
requires temperature, radiation, wind speed, relative hu-
midity, vapor pressure, etc. (Vicente-Serrano et al., 2014;
Allen, 1998). Out of these 100+ methods, the majority are
temperature-based methods (40+), followed by radiation-
based methods (30+) and combination-based methods (10+)
(Proutsos et al., 2023). Many of these empirical methods
were initially developed and tested for particular regional
scales or climatic conditions. For instance, the Thornth-
waite method is most suitable for humid climates, while the
Hargreaves–Samani method is particularly effective in arid
and semi-arid regions. Similarly, the Hamon method is suit-
able for all climates. All methods in these three categories in-
corporate several assumptions (climatic conditions and data
availability), resulting in significant differences in their esti-
mates (Lu et al., 2005).

PET influences AET and consequently impacts the esti-
mation of infiltration, Q and TWS in hydrological models.
PET can have direct as well as indirect influence on AET. In
hydrological models, AET is estimated by either separately
determining water surface evaporation, soil evaporation, and
vegetation transpiration and then combining these based on
land use patterns or by first assessing potential evapotranspi-
ration and subsequently adjusting it to actual evapotranspira-
tion using the soil moisture extraction function (Zhao et al.,
2013). The mesoscale Hydrological Model (mHM) explicitly
represents interception, where a portion of AET is derived
from interception evaporation. This process is estimated as a
fraction of PET using a power function derived from Dear-
dorff (1978) and Liang et al. (1994). When the evaporative
demand exceeds the intercepted water, the interception stor-
age is fully depleted. Interception storage in the mHM is es-
timated as a function of leaf area index (LAI) that varies de-

pending on vegetation type and season. AET in the mHM is
mainly contributed by canopy evaporation, soil evaporation,
and open water evaporation. AET, being a key component of
the water balance, affects the estimation of other water bal-
ance components (Q and TWS). While Q remains relatively
insensitive, AET and TWS are more responsive to the choice
of PET method (Bai et al., 2016). Hence, uncertainty in PET
estimation influences the quantification of change in water
cycle components.

Many studies have investigated the sensitivity of the hy-
drological model output to PET. Oudin et al. (2005) evalu-
ated 27 PET methods with 4 hydrological models, conclud-
ing that PET is insensitive to runoff generation, with similar
conclusions made by Aouissi et al. (2016) and Birhanu et al.
(2018). Assessment of four PET methods with two monthly
hydrological models reported that runoff is unaffected by the
PET method, whereas AET and total water storage depend
on the PET method (Bai et al., 2016). The study also con-
cluded that calibration against the runoff is the main cause
of PET insensitivity, and AET and total water storage com-
pensate for it. In contrast to previous studies, Ndiaye et al.
(2024) compared 21 PET methods for runoff estimation with
three conceptual lumped hydrological models (GR4J, GR5J,
and GR6J) in the Senegal River Basin, stating that better
performance is shown by combination-type methods. Sim-
ilarly, Pimentel et al. (2023) compared three PET methods
for their accuracy in simulating runoff and AET in the large-
scale hydrological model (HYPE model). They found that
Hargreaves–Samani performed best in the Amazonas, central
Europe, and Oceania, and Priestley–Taylor performed best in
higher latitudes. These studies focus on the sensitivity and
choice of PET methods in estimating hydrological compo-
nents. While these findings reveal how PET methods can im-
pact the magnitude of hydrological components, the impact
of PET method selection on changes in these hydrological
components is not often investigated. Temporal changes in
these hydrological components are crucial for climate change
mitigation, water availability, energy availability, and agri-
cultural produce.

Trends in PET and its implication for hydrological compo-
nents (AET) are examined by Anabalón and Sharma (2017).
They compare trends in six PET and AET datasets, mainly
estimated by the Penman–Monteith or Priestley–Taylor PET
methods. They found that PET trends were highly corre-
lated with AET trends in energy-limited regions, while the
AET trends were closely correlated with precipitation trends
in water-limited regions. Additionally, they reported that
PET and AET trends were inversely related in certain cases,
mainly due to the prevailing influence of precipitation trends
on AET trends. Similarly, Liu et al. (2022) identified a strong
positive relationship between PET and AET changes in most
global regions and an inverse relationship with total wa-
ter storage change. The study is limited by using only the
Penman–Monteith approach for PET and global datasets for
AET and total water storage change. The inconsistency and
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lack of coherence between existing PET and AET datasets
often necessitate using a single PET method compared to var-
ious AET datasets. Furthermore, previous studies have pri-
marily focused on one-to-one trend comparisons than com-
prehensive analysis of all hydrological cycle components, in-
cluding Q and TWS. Thus, research is needed to explore the
impact of changes in PET methods on changes in different
hydrological components of hydrological models.

In this study, our objective is to assess the trends of
PET using 12 different PET methods and their influence on
the trend of hydrological components (AET, Q, and TWS)
across 553 European catchments. We further evaluate the
agreement among PET methods by applying the data concur-
rence index (DCI) to the trends of each corresponding hydro-
logical cycle component (AET,Q, and TWS). The mesoscale
Hydrological Model (mHM) is used to evaluate the influence
of changes in different PET methods, from simple to most
advanced approaches, on hydrological components across a
range of European catchments. We chose a concurrency in-
dex to assess agreement between the PET method and hy-
drological components at each catchment. The data concur-
rency index is used to compare directions between different
datasets (Anabalón and Sharma, 2017). In our research, we
use it to examine directional changes in PET estimates, AET,
Q, and TWS across each catchment.

2 Methods and data

2.1 Study area and catchment classification

This study includes 553 European catchments ranging in
size from 500 km2 to 252 000 km2. Catchments were selected
based on the following criteria: first, a minimum area of
500 km2; second, at least 10 years of observed discharge
data from GRDC database; and third, a closed water balance
condition ((P −Q)/P < 1). The selected catchments are di-
vided into three categories based on the aridity index: energy-
limited, mixed, and water-limited (Fig. 1a). This classifica-
tion is based on the aridity index (AI), estimated as the ra-
tio of mean PET to mean precipitation, a widely used metric
that quantifies the dry or wet state of the catchment (Zhang
et al., 2016; Massari et al., 2022). In our approach, which in-
volves the application of multiple PET methods, a catchment
is considered energy-limited if the AI is less than one for all
the PET methods. Similarly, a catchment is water-limited if
all PET methods report AI greater than one. If AI values ap-
pear to be both above and below one, depending on the PET
method used, then the catchment is assigned to the mixed cat-
egory (Fig. 1b). Three representative catchments from each
category are indicated by dark-black lines in Fig. 1a and are
plotted in Fig. 1b. This classification allows us to distinguish
the differences in magnitudes of PET and the other key hy-
drological components among the catchments (Fig. 1c). By
employing this methodology out of 553 catchments, we find

that 189 catchments are energy-limited, 34 are water-limited,
and the remaining 330 belong to the mixed category.

2.2 Meteorological and geomorphological data

The Ensemble Meteorological Dataset for Planet Earth (EM-
Earth; Tang et al., 2022) and ERA5-Land (Muñoz-Sabater
et al., 2021) were used to calculate different PET esti-
mates and run the mesoscale Hydrological Model (mHM;
Samaniego et al., 2010; Kumar et al., 2013b). The EM-Earth
dataset (Tang et al., 2022) is derived from observed SC-
Earth station data (Tang et al., 2021) and ERA5 data (Hers-
bach et al., 2020). It incorporates a novel optimal interpo-
lation technique and considers the temporal inconsistencies
between the station and reanalysis data (Tang et al., 2022).
ERA5-Land dataset is a reanalysis data product created by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) and has been widely used in numerous hydro-
logical modeling studies (Muñoz-Sabater et al., 2021). Both
datasets are available at 0.1°× 0.1° spatial resolution, but
EM-Earth has an hourly as well as daily time step, while
ERA5-Land is at the hourly scale. Meteorological forcings,
particularly precipitation and temperature from EM-Earth,
have been found to be more accurate based on comparisons
with several datasets in data-rich regions (Tang et al., 2022).

In our analysis, we use daily temperature and precipita-
tion from EM-Earth and radiation (long- and shortwave), sur-
face pressure, and wind components (U and V ) from ERA5-
Land for the period 1980–2019 (Table 1). The EM-Earth
dataset provides high-quality precipitation and temperature
data and has been shown to perform well over Europe (Tang
et al., 2022). It has undergone climatology-based bias cor-
rection and accounts for precipitation undercatch. However,
since EM-Earth does not include all necessary variables for
PET estimation, we utilize ERA5-Land as a complementary
dataset. ERA5-Land has been demonstrated to perform bet-
ter than other reanalysis datasets, including ERA5 and ERA-
Interim (Muñoz-Sabater et al., 2021). Nonetheless, its limita-
tions in hydrological modeling have been acknowledged by
Clerc-Schwarzenbach et al. (2024) and Tarek et al. (2020).
Several recent global studies follow a similar strategy, com-
bining precipitation and temperature from EM-Earth with ra-
diation, wind speed, and other meteorological variables from
ERA5-Land (Tang et al., 2023; Yin et al., 2024; Rakovec
et al., 2023). These meteorological data combinations, along
with the simulated hydrological components derived from
them, demonstrate lower uncertainty across Europe (Tang
et al., 2023). These are homogenized to daily temporal scale
and 0.125°× 0.125° spatial scale to be compatible with the
previous simulations run by the mHM (Pohl et al., 2023;
Fang et al., 2024). Homogenization using the nearest neigh-
bor technique and necessary mathematical operations (ap-
propriate unit conversion of datasets) is performed using the
climate data operator (CDO; Schulzweida, 2022).
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Figure 1. Catchment classification into energy-limited, mixed, and water-limited categories. (a) Spatial location of catchments; black borders
indicate a representative catchment of each category. (b) Classification example within the Budyko space for the representative catchments.
Colored points represent three representative catchments, with each set of 12 points per color corresponding to different PET methods of
representative catchments. (c) Annual time series of simulated hydrological components corresponding to each representative catchment
and PET estimation method (TH: Thornthwaite; BR: Baier–Robertson; BC: Blaney–Criddle; OD: Oudin; MB: McGuinness–Bordne; HM:
Hamon; HS: Hargreaves–Samani; JH: Jensen–Haise; MD: Milly–Dunne; PT: Priestley–Taylor; PM: Penman–Monteith; CO2: Penman–
Monteith[CO2].). All units are in mm yr−1.

Morphological data such as leaf area index (LAI), soil
properties, and terrain characteristics (such as flow direc-
tion, flow accumulation, slope, and aspect) are sourced from
the mHM European database (Rakovec et al., 2016). This
database originally utilized data from different sources, such
as soil properties from the International Soil Reference and
Information Centre (ISRIC), terrain characteristics from the
US Geological Survey (USGS) and the National Geospatial-
Intelligence Agency (NGA), LAI from Global Inventory
Modeling and Mapping Studies (GIMMS), and land cover
from Global Land Cover (GlobCover) by the European Space
Agency (ESA). CO2 concentration is sourced from Cheng

et al. (2022) and is reconstructed from the Carbon Dioxide
Information Analysis Center (CDIAC) data.

2.3 Methodology

2.3.1 PET methods/formulations

We incorporate 12 PET methods at a daily scale from
all three categories of estimation: temperature, radiation,
and combinational methods (Table 2). Temperature-based
methods require temperature data, which can include aver-
age temperature, minimum temperature, or maximum tem-
perature. Additionally, PET methods that incorporate ex-
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Table 1. Summary of meteorological and morphological data. P is precipitation; Tavg is average air temperature; Trange is the temperature
range, which is the difference between maximum and minimum air temperature; Tdew is dew point temperature of air; SW is shortwave
radiation; LW is longwave radiation; U is the eastward component of wind speed at 10 m; V is the northward component of wind speed at
10 m; and ConCO2 is CO2 concentration.

Variable Temporal scale Spatial scale Record length Source Reference

Meteorological data

P Hourly/daily 0.1°× 0.1° 1950–2019 EM-Earth Tang et al. (2022)
Tavg Hourly/daily 0.1°× 0.1° 1950–2019 EM-Earth Tang et al. (2022)
Trange Hourly/daily 0.1°× 0.1° 1950–2019 EM-Earth Tang et al. (2022)
Tdew Hourly/daily 0.1°× 0.1° 1950–2019 EM-Earth Tang et al. (2022)
SW Hourly 0.1°× 0.1° 1950–2022 ERA5-Land Muñoz-Sabater et al. (2021)
LW Hourly 0.1°× 0.1° 1950–2022 ERA5-Land Muñoz-Sabater et al. (2021)
U Hourly 0.1°× 0.1° 1950–2022 ERA5-Land Muñoz-Sabater et al. (2021)
V Hourly 0.1°× 0.1° 1950–2022 ERA5-Land Muñoz-Sabater et al. (2021)

Other data

ConCO2 Annual 0.1°× 0.1° 1950–2022 – Cheng et al. (2022)
LAI Monthly 1/512° Static GIMMS Tucker et al. (2005)
Soil properties – 1/512° – SoilGrids ISRIC – World SoilInformation (2017)
Land cover Static 1/512° Static GlobCover Arino et al. (2012)
DEM (+ derivatives) Static 1/512° Static GMTED2010 USGS and NGA (2018)
Geology Static 1/512° Static GLiM Hartmann and Moosdorf (2012)

traterrestrial radiation are also considered under this cate-
gory. Combinational-based methods require a larger number
of variables compared to temperature- and radiation-based
methods to estimate various physical terms, such as wind
speed and surface pressure (Table 2). Most temperature-
based methods use only daily average temperature (Thornth-
waite, Oudin, Hamon, Jensen–Haise, McGuinness–Bordne,
and Blaney–Criddle), while Baier–Robertson employs both
minimum and maximum daily temperatures. Some of these
methods also include an extraterrestrial radiation term in
their formulation. However, since this radiation term is cal-
culated based on latitude and follows a consistent annual cy-
cle varying only with the calendar date, only temperature
data are needed for PET calculation. We utilize only one
radiation-based method, Milly–Dunne PET, which requires
only net radiation data to estimate PET. The combinational
methods, such as Penman–Monteith and Priestley–Taylor,
have a stronger physical basis. In our analysis, all these phys-
ical terms are estimated following Allen (1998). Addition-
ally, within the combinational category, we employ the mod-
ified Penman–Monteith (CO2) method, which accounts for
temporal variations in changing carbon dioxide concentra-
tions. Formulation details, including mathematical equations
and associated constants for each PET method, are provided
in Table A1.

2.3.2 The mesoscale Hydrological Model (mHM)

The mHM is a hydrological model which explicitly accounts
for sub-grid variability in hydrological processes (Samaniego

et al., 2010; Kumar et al., 2013b; Thober et al., 2019). The
mHM has been successfully applied and tested in more than
1000 European basins ranging in size from 4 km2 to more
than 100 000 km2 at various spatial resolutions and grid cell
sizes (1–100 km) (Samaniego et al., 2010; Kumar et al.,
2013b; Rakovec et al., 2016, 2019; Shrestha et al., 2024). Ad-
ditionally, the model is currently applied at the global scale
with comparable and sometimes even improved model per-
formance with respect to other large-scale hydrological mod-
els (Samaniego et al., 2019). The mHM demonstrates robust
performance and applicability across Europe (Kumar et al.,
2020). It is also one of the several large-scale hydrological
models used by the WMO for their annual State of Global
Water Resources reports (World Meteorological Organiza-
tion (WMO), 2023).

We run the mHM (v5.12.0) over 553 European catch-
ments, using the meteorological data from EM-Earth and
the 12 different PET estimation methods. Overall, 6636
(12× 553) mHM simulations are performed for all the study
basins. The model was set up for each catchment at a daily
temporal resolution and a 0.125°× 0.125° spatial scale. All
meteorological forcings were kept constant with only varying
PET estimates. To calculate TWS, we aggregate soil mois-
ture at different layers, canopy interception storage, snow-
pack, groundwater levels, sealed area reservoirs, and unsat-
urated zone reservoirs at each grid cell and time step. The
hydrological components (AET, Q, and TWS) and PET are
averaged over the catchment area and monthly time steps. In
this research default parametrization is used for model setup.
The default parameterization of the mHM has been shown
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Table 2. List of PET methods and required input data. Tmax is maximum air temperature (°C), Tmin is minimum air temperature (°C), Pr is
surface pressure (pa), Rn is net radiation (J m−2), u2 is the wind speed at 2 m from the surface (m s−1), and ConCO2 is CO2 concentration
(ppm).

Type Method name Method Required input References
abbreviation

Temperature Hargreaves–Samani HS Tmax, Tmin, Tavg Hargreaves and Samani (1985)
Thornthwaite TH Tavg Thornthwaite (1948)
Oudin OD Tavg Oudin et al. (2005)
Hamon HM Tavg Hamon (1961)
Baier–Robertson BR Tmax, Tmin Bai et al. (2016)
Jensen–Haise JH Tavg Jensen and Haise (1963)
McGuinness–Bordne MB Tavg McGuinness and Bordne (1972)
Blaney–Criddle BC Tavg Blaney (1950)

Radiation Milly–Dunne MD Rn Milly and Dunne (2016)

Combinational Priestley–Taylor PT Tavg, Pr, Rn Priestley and Taylor (1972)
Penman–Monteith PM Tmax, Tmin, Tavg, Tdew, Pr,

u2, Rn

Penman (1948)

Penman–Monteith[CO2] CO2 Tmax, Tmin, Tavg, Tdew, Pr,
u2, Rn, ConCO2

Yang et al. (2019)

to perform well in previous studies (Kumar et al., 2013a;
Rakovec et al., 2016). Furthermore, it has been demon-
strated as one of the best-performing configurations com-
pared to other large-scale hydrological models (Samaniego
et al., 2019). Additionally, our assessment of model perfor-
mance is consistent with the findings of Samaniego et al.
(2019). Our model evaluation against discharge shows that
the median Kling–Gupta efficiency (KGE) ranges from 0.60
to 0.75 across most PET methods (Fig. S1 in the Supple-
ment).

2.3.3 Trend analysis

We use Theil–Sen’s slope method to calculate the magnitude
and direction of linear change in PET, AET, Q, and TWS
(Sen, 1968). The Mann–Kendall trend test is used to test the
statistical significance of the observed trend (Kendall, 1948).
A trend is considered statistically significant at the 5 % level
(p ≤ 0.05). Sen’s slope is non-parametric and insensitive to
outliers and types of distribution. Due to its robust applica-
tion, this method is widely used in hydrology-, climate-, and
environment-related studies (Anabalón and Sharma, 2017;
Thackeray et al., 2022). It accounts for all possible pairs of
data points from a time series and finds the median value as
the slope magnitude. Equations (1) and (2) show the calcula-
tion steps of Sen’s slope:

Sk =
Xj −Xi

tj − ti
where 1≤ i < j ≤ n (1)

Smed =


S[ n+1

2

] if n is odd

S[ n2 ]+S
[
n+2

2

]
2 if n is even,

(2)

where Sk is the linear slope for pair Xi and Xj , Smed is the
median slope, Xi and Xj are data points from periods ti and
tj , and n is the number of data points in the time series. Pos-
itive Smed represents a positive trend, with the magnitude in-
dicating the rate of increase. Similarly, negative Smed repre-
sents a negative trend, with the magnitude indicating the rate
of decrease.

Here, we use the trend R package to estimate Sen’s slope
over a 40-year period from 1980 to 2019 at annual and sea-
sonal (winter, spring, summer, and autumn) scales for each
catchment. The units of trend at the annual scale are ex-
pressed as mm yr−1, while at the seasonal scale, they are rep-
resented as mm per season per year. For instance, a summer
season trend of 1 mm per season per year indicates that each
year, an additional 1 mm is added to the summer season. The
trends of each PET method were analyzed exclusively within
seasons (for example winter season compared with winter
season), without cross-seasonal comparisons.

2.3.4 Data concurrence index (DCI)

The data concurrence index quantifies the level of concur-
rence between the significant trends in different datasets of
the same variable (Anabalón and Sharma, 2017). DCI is ap-
plied in two forms in this study. The first is the original for-
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mulation, which includes only statistically significant trends.
It is used to evaluate agreement among PET methods that
yield significant changes in hydrological cycle components.
The second is a modified version that considers all detected
trends, regardless of significance. This captures the overall
agreement across all PET methods for each catchment and
each hydrological component. The detailed formulations for
both cases are described in Eq. (3):

DCI=


1
N
∑N
i=1δi ×

Si
|Si |

for statistically significant trends
1
N
∑N
i=1

Si
|Si |

for all trends

with δi =

{
1, if Si is statistically significant
0, otherwise

, (3)

where DCI is the data concurrence index, N denotes the
number of datasets, and Si is the magnitude of the slope.

The positive DCI represents a higher number of positive
slopes than negative slopes and vice versa. For instance, a
DCI of 1 for AET and Q implies positive change for all the
PET methods. Similarly, a DCI of−1 for AET andQ implies
a negative change for all the PET methods. A DCI of 0.5 indi-
cates that 9 out of 12 methods, or 75 % of the methods, show
a positive change, and similarly, a DCI of−0.5 indicates that
9 out of 12 methods show a negative change, or 75 % of the
methods. A DCI of zero denotes an equal number of positive
and negative slopes (six positive and six negative). Our anal-
ysis estimates DCI from PET, AET, Q, and TWS slopes at
annual as well as seasonal scales.

3 Results

3.1 Trend comparison of PET methods at annual scales

By applying the Theil–Sen slope method, we observe that
changes in PET depend on the choice of PET estimation
formulation (Fig. 2). Considerable variability is observed
among the PET methods, with median slopes ranging from
slightly positive to 6 mm yr−1 during the 1980–2019 period.
The Jensen–Haise method shows the highest change among
all methods across different catchment categories and also
has the highest absolute average PET across European catch-
ments (Fig. S2). Generally, changes in PET are higher in
water-limited than in energy-limited catchments. This differ-
ence arises since temperature-based methods depend on tem-
perature changes. Conversely, combinational methods are in-
fluenced by more than one meteorological variable (temper-
ature, wind speed, radiation, etc.). When we consider only
statistically significant trends (p < 0.05), we observe that
temperature-based PET methods consistently demonstrate
statistically significant positive trends for most of the catch-
ments (Table S2). Radiation-based and combinational meth-
ods account for fewer catchments than temperature-based
PET methods (Table S2), implying that they generate weaker

trends compared to the temperature-based PET methods. In
addition, overall trend variability among the PET methods
decreases from energy-limited to water-limited catchments,
irrespective of trend significance.

AET trends generally align with PET trends in energy-
limited catchments but with smaller magnitudes (Fig. 2). In
these catchments, all PET methods lead to a positive AET
trend in terms of median value. However, a few catchments in
this category reveal a slight negative change for the Blaney–
Criddle, Jensen–Haise, Milly–Dunne, and Priestley–Taylor
methods. For mixed catchments, the median AET trend is
positive for all PET methods except Blaney–Criddle. The
negative AET trends are similar to those in energy-limited
catchments. Overall, the AET trend patterns (high and low
trends) for energy-limited and mixed catchments are similar
to the trends in PET for these catchments, regardless of trend
magnitude, with a few exceptions, such as Blaney–Criddle
and Jensen–Haise (Fig. 2). In water-limited catchments, both
positive and negative trends in AET are observed. The pattern
remains similar to PET trends with a few exceptions, such as
Blaney–Criddle. Across all PET methods, statistically signif-
icant positive AET trends were found in 162 energy-limited,
217 mixed, and 2 water-limited catchments (Fig. S3). Among
these significant trends, Jensen–Haise yields the highest AET
trend estimates in energy-limited and mixed catchments.
These statistically significant trends closely follow the over-
all AET trend patterns in these catchment categories.
Q trends exhibit lower sensitivity to PET methods in

energy-limited and mixed catchments compared to PET
trends when considering all trends (Fig. 2). Despite the pos-
itive median, a substantial fraction of catchments exhibit a
negative trend in energy-limited catchments. In contrast, for
mixed catchments, most PET methods produce negative Q
trends, though some catchments maintain positive trends. In
water-limited catchments, there is variability in PET meth-
ods; for instance, Milly–Dunne has a larger trend, whereas
Blaney–Criddle shows the lowest trend. Even though PET
methods are insensitive in Q, variability exists among the
PET methods within each catchment category. Overall, one-
third of the catchments (183) show statistically significant Q
trends: 28 energy-limited, 154 mixed, and one water-limited.
All energy-limited catchments show positive Q trends, ex-
cept those estimated with Jensen–Haise. In mixed catch-
ments, all statistically significant trends are negative, with
the exception of Blaney–Criddle. Despite fewer catchments
with statistically significant trends, the variability inQ trends
across PET methods persists, particularly in energy-limited
and mixed catchments.

TWS trends are sensitive to PET methods in water-limited
and mixed catchments, but energy-limited catchments re-
main largely unaffected (Fig. 2). Despite a consistent neg-
ative median trend across PET methods in energy-limited
catchments, few catchments still exhibit positive trends.
Mixed catchments display a similar pattern. Among PET
methods, temperature-based approaches show greater vari-
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ability than radiation or combinational types in mixed catch-
ments. In water-limited catchments, trends span positive
to near-zero negative, with Blaney–Criddle, Hargreaves–
Samani, and Milly–Dunne showing notable positive trends.
The Blaney–Criddle method also yields higher variability
in trend estimates, especially in mixed and water-limited
catchments. When focusing on statistically significant trends,
TWS has a similar distribution to Q (30/172/1). Most PET
methods show decreasing trends in energy-limited and mixed
catchments, with the exception again of Blaney–Criddle
(Fig. S3). Compared to the full trend set, statistically sig-
nificant trends reveal stronger inter-method differences, with
Jensen–Haise showing the steepest decline and Thornthwaite
the weakest.

Hydrological trend estimates for AET, Q, and TWS vary
across PET methods and catchment types, regardless of
whether all trends or only statistically significant trends
are considered. Statistically significant trends reveal greater
divergence between methods in energy-limited and mixed
catchments. AET trends, though weaker in magnitude than
PET trends, show similar spatial patterns, particularly in
energy-limited and mixed regions. No single PET method
stands out as consistently dominant across all components.
For the trends beyond the statistically significant threshold a
stronger pattern emerges. Approximately 70 % of the catch-
ments exhibit statistically significant AET trends, compared
to only 33 % for Q and 36 % and TWS. Despite widespread
statistical insignificance for Q and TWS, distinct regional
patterns appear. For instance, northern catchments display a
mix of increasing and decreasing trends, while southern re-
gions, especially the Iberian Peninsula, consistently demon-
strate positive Q trends.

3.2 Trend comparison of PET methods at seasonal
scales

Hydrological cycle components exhibit considerable sea-
sonal variability in trend magnitude. During summer (JJA),
nearly all PET methods exhibit positive trends, with the ex-
ception of Milly–Dunne in water-limited catchments (Fig. 3).
Jensen–Haise consistently shows the highest trend and great-
est variability across all catchments. Notable variability is
observed among PET methods in water-limited catchments.
These patterns persist in statistically significant trends, de-
spite a smaller number of catchments per category (Fig. S4).
Winter records the weakest PET trends, while spring trends
are comparable to those in summer (Supplement Sect. S2).
The summer season is the primary contributor to the annual
trends in PET across all catchment categories (Fig. S5). The
distribution of statistically significant trends aligns with these
findings, with the highest catchment count in spring (460)
and the lowest in winter (66).

In summer, AET exhibits an overall positive trend in
energy-limited and mixed catchments for all trends and for
statistically significant trends only (Figs. 3, S4). The Jensen–

Haise method exhibits greater variability for energy-limited
and mixed catchments. In water-limited catchments, despite
positive PET trends, AET trends are negative across all PET
methods, with Baier–Robertson showing the strongest de-
cline, followed by Jensen–Haise (Fig. 3). In spring, AET
increases across methods, with the highest trends observed
for Jensen–Haise in energy-limited and Baier–Robertson in
mixed catchments. Combinational methods show consistent
trends across both types (Fig. S6). This pattern is maintained
for statistically significant trends (Fig. S7), with all PET
methods showing positive median trends in autumn (Figs. S8,
S9). Summer primarily drives annual trends in energy- and
water-limited catchments, while spring and summer con-
tribute jointly in mixed catchments depending on the PET
method (Fig. S5).
Q remains generally insensitive to PET method variation

across all seasons and catchment types, with minor variabil-
ity among methods within each category (Figs. 3, S6, S8,
S10). In energy-limited catchments, trends remain close to
zero across PET methods. Mixed catchments show broadly
negative Q trends across methods, with Blaney–Criddle ex-
hibiting the weakest decline. In water-limited regions, Q
trends are similarly insensitive, though radiation and com-
binational methods tend to exhibit positive median trends,
unlike temperature-based methods, which exhibit mixed re-
sults. Statistically significant Q trends reveal limited sea-
sonality in water-limited catchments, with notable excep-
tions like Blaney–Criddle, which contributes fewer catch-
ments (Figs. S4, S7, S9, S11). In energy-limited and mixed
catchments, statistically significant Q trends demonstrate
higher seasonal magnitude as weaker trends fail to surpass
the significance threshold. No single PET method consis-
tently dominates in trend magnitude, though Jensen–Haise
and Blaney–Criddle frequently yield the highest number of
statistically significant catchments. Spring emerges as the
dominant contributor to annualQ trends in mixed and water-
limited catchments, while in energy-limited areas, winter and
summer are most influential, depending on the PET method
(Fig. S5).

TWS trends across seasons show minimal sensitivity
to PET method in energy-limited and mixed catchments
under all-trend conditions, though slight variability ex-
ists among PET methods (Fig. 3). Water-limited catch-
ments, however, display a mixed response. Median trend
patterns are generally stable, but Blaney–Criddle consis-
tently shows greater variability than other methods across
all seasons and catchment categories. Statistically significant
trends are uncommon in water-limited catchments, but trend
magnitudes increase notably in energy-limited and mixed
catchments during spring, summer, and autumn. In win-
ter, temperature-based methods demonstrate positive trends,
with Blaney–Criddle and Jensen–Haise showing the low-
est values (Fig. S11). Slight variability across methods is
also seen in non-winter seasons (Figs. S4, S7, S9). Seasonal
contributions to annual trends vary by catchment category:
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Figure 2. Boxplots represent the annual trends (mm yr−1) of different PET methods for PET, AET,Q, and TWS across various categories of
catchments. The whiskers represent the 10th and 90th percentiles, and the box encompasses the 25th and 75th percentiles, with the median
represented by the middle line of the box. Abbreviations used for different PET methods are TH: Thornthwaite; BR: Baier–Robertson; BC:
Blaney–Criddle; OD: Oudin; MB: McGuinness–Bordne; HM: Hamon; HS: Hargreaves–Samani; JH: Jensen–Haise; MD: Milly–Dunne; PT:
Priestley–Taylor; PM: Penman–Monteith; CO2: Penman–Monteith[CO2].

spring contributes most in energy-limited catchments, sum-
mer in mixed catchments and in water-limited catchments.
The dominant season depends on the PET method; summer
leads for several methods (TH, BR, HM, PM, and CO2),
while spring dominates for the remaining methods.

3.3 Catchment-wise DCI distribution across annual
and seasonal scales

Even though there is a strong agreement across different PET
methods in annual PET and AET trends, substantial vari-
ation exists in Q and TWS responses (Fig. 4). All catch-
ments exhibit strong positive DCI for PET, indicating that
at least 75 % of methods report a positive trend. AET fol-
lows a similar pattern, with high positive DCI values across

northern (Scandinavia), central, western, eastern, southeast-
ern (Balkans), and parts of southern (Iberian Peninsula) Eu-
rope, except for a few southern catchments with low as
well as negative DCI. In contrast, Q reflects strong positive
agreement in southern regions but mostly negative DCI in
northern and eastern Europe. Central and western European
catchments are marked by both strong positive and nega-
tive DCI, with few catchments showing disagreement among
PET methods. TWS shows widespread disagreement, espe-
cially in southern, western, central, southeastern, and north-
ern European catchments. Most central, eastern, and northern
catchments show strong negative agreement for TWS. Over-
all, PET methods show high directional consistency for PET
and AET but diverge notably for Q and TWS.
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Figure 3. The boxplot represents summer season (JJA) trends of different PET methods for AET andQ across three categories of catchments:
energy-limited, mixed, and water-limited. The whiskers represent the 10th and 90th percentiles, and the box encompasses the 25th and
75th percentiles, with the median represented by the black line within the box. Abbreviations used for different PET methods are TH:
Thornthwaite; BR: Baier–Robertson; BC: Blaney–Criddle; OD: Oudin; MB: McGuinness–Bordne; HM: Hamon; HS: Hargreaves–Samani;
JH: Jensen–Haise; MD: Milly–Dunne; PT: Priestley–Taylor; PM: Penman–Monteith; CO2: Penman–Monteith[CO2]. Trend units are in mm
per season per year.

The above findings appear consistent when the selection
of PET methods becomes balanced to eight methods: four
temperature-based, one radiation-based, and three combina-
tional methods. The latter two are fixed across all 70 pos-
sible method combinations. All the 70 combination results
are consistent with the previous findings. For TWS, only
a few catchments in southern and western Europe show
strong negative DCI, consistent with earlier areas of dis-
agreement (Figs. S12, S13). To assess the impact of weaker
trends, we applied the DCI using only statistically signifi-
cant trends. PET shows similar agreement patterns to the all-
trend analysis, with minor disagreement in western Europe.
For AET, disagreement emerges in most southern catchments
and some in western, central, and eastern Europe, which pre-

viously showed agreement. Q and TWS exhibit widespread
disagreement, largely due to weak trends across PET meth-
ods. Catchments with strong agreement under statistically
significant trends align well with those under all-trend anal-
ysis. PET and AET trends remain predominantly positive in
both statistically significant and all-trend evaluations.

To better understand the annual changes in the level of
concurrence between all PET method trends, we decompose
them into sub-seasonal values. Figure 5 shows strong positive
agreement for PET and AET across all seasons, whileQ and
TWS exhibit predominantly negative agreement in central
Europe, with evident regional variation. PET demonstrates
high positive DCI in most catchments during spring, summer,
and autumn, indicating consistent upward trends. In winter,
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agreement is highest in central, eastern, and southern Europe,
but weaker elsewhere. AET shows strong seasonal agreement
in central Europe, particularly in winter, spring, and summer,
while disagreement emerges in northern and western regions
during winter and in several southern and central catchments
during autumn. AET also exhibits strong negative agreement
in southern Europe during summer. Q consistently reflects a
negative DCI across central Europe in all seasons, although
southern catchments show positive agreement in spring and
autumn. TWS trends show persistent negative DCI in central
Europe across seasons, while southern Europe sees a shift
from strong positive agreement in spring to strong negative
agreement in summer, with weak agreement in winter and
autumn. Northern Europe shows a mix of agreement and dis-
agreement across all seasons.

Comparing sub-seasonal concurrence based on statisti-
cally significant trends (Fig. S14) highlights both consisten-
cies and divergences compared to the all-trend results. Strong
positive DCI for PET and AET is observed in most catch-
ments during spring, which aligns with the findings from
all trends. In summer, PET shows strong agreement in cen-
tral and southern regions. In contrast, Q and, TWS exhibit
substantial disagreement across all seasons, with most catch-
ments showing low concurrence among PET methods. Sim-
ilar inconsistencies are observed for PET and AET in win-
ter. Some central and eastern catchments consistently exhibit
strong negative DCI forQ and TWS in both spring and sum-
mer, reflecting similar patterns in the all-trend case. Apply-
ing statistical significance thresholds often shifts catchments
from strong agreement (positive or negative) to disagree-
ment, primarily because trends are no longer significant. No-
tably, no catchments switch from strong positive to strong
negative DCI (or vice versa), confirming the consistency be-
tween statistically significant and all-trend results.

3.4 PET methods and patterns of hydrological cycle at
annual and seasonal scales

In the previous section, we compare PET methods and their
influence on individual hydrological components (P , AET,
Q, and TWS), including agreement among PET methods.
Here, we assess the influence of PET methods on patterns of
key hydrological components across European catchments,
identifying the most prevalent trend patterns where compo-
nents (P , AET, Q, and TWS) concurrently increase or de-
crease. For instance, one pattern involves all components
showing positive trends. Figure 6 summarizes these patterns,
presenting the average and total number of catchments asso-
ciated with each PET method. The analysis includes only the
five most frequent patterns, covering the majority of catch-
ments and excluding those patterns with minimal representa-
tion.

Most European catchments exhibit increasing trends
across all hydrological components. The second-most com-
mon pattern involves a decrease in P , Q, and TWS, with

Figure 4. Spatial distribution of annual-scale data concurrence in-
dex (DCI) for PET, AET, Q, and TWS. PET represents poten-
tial evapotranspiration, AET represents actual evapotranspiration,
Q represents runoff at the outlet of the catchment, and TWS repre-
sents total water storage.

an increase in AET. Temperature-based PET methods gener-
ally account for a larger number of catchments for these pat-
terns than radiation and combinational methods, though ex-
ceptions exist, such as Baier–Robertson and Blaney–Criddle.
Catchment distributions are spatially consistent across meth-
ods for these two patterns (Fig. S15), with Blaney–Criddle
showing the highest counts for patterns involving uniform
increases or decreases. In the case of statistically significant
trends, only the all-positive pattern is prominent (Fig. S16),
with an average of 80 catchments. This pattern reveals no-
table differences between temperature-based and combina-
tional methods. Overall, PET methods differ in the number
of catchments assigned to each pattern; however, combina-
tional methods consistently demonstrate similar catchment
counts across most patterns.

Seasonal analyses reveal distinct PET method prefer-
ences across hydrological component patterns. During win-
ter, spring, and autumn, the prevailing pattern involves de-
creasing P , Q, and TWS with increasing AET (Figs. S17,
S18, S20). In contrast, summer is characterized by increased
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Figure 5. Spatial distribution of seasonal-scale (winter (DJF), spring (MAM), summer (JJA), and autumn (SON)) DCI for PET, AET,Q, and
TWS, where DCI represents data concurrence index, PET represents potential evapotranspiration, AET represents actual evapotranspiration,
Q represents runoff at the outlet of the catchment, and TWS represents total water storage.

P and AET and decreased Q and TWS. Substantial varia-
tion is observed among PET methods for each hydrologi-
cal cycle pattern across all seasons. For instance, for a pat-
tern where all components exhibit positive trends, Baier–
Robertson captures the fewest catchments, while Blaney–
Criddle captures the most. The pattern reverses for the com-
bination of decreased P , Q, and TWS with increased AET.
Blaney–Criddle consistently represents the highest number
of catchments in all-positive and all-negative patterns during
spring, summer, and autumn. Combinational methods gen-
erally show stable catchment counts, whereas temperature-
based methods exhibit greater variability. Statistically signif-

icant trends, however, are associated with very few catch-
ments, and no single pattern dominates.

3.5 Relationship of PET and precipitation

Precipitation is an important component of the hydrological
cycle. Figure 7 shows the changes in precipitation (P ) with-
out considering statistical significance. Annually, positive P
trends dominate northern, western, southern, and southeast-
ern catchments, while central Europe shows mixed positive
and negative trends. In western Europe, a few catchments
exhibit decreasing P trends (Fig. 7a). Seasonally, southern
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Figure 6. Pattern of different hydrological cycle components and
the corresponding influence of PET methods on an annual scale.
Panel (a) represents different patterns of hydrological cycle compo-
nents. Each vertical column in this table corresponds to one pattern
of hydrological cycle components. For example, the first column is
filled with “+” signs, indicating that all hydrological components
(P , AET, Q, and TWS) exhibit positive changes. The “+” and “−”
signs denote positive and negative changes in the respective com-
ponents. In panel (b), each bar represents the average number of
catchments for each hydrological cycle pattern. Panel (c) shows the
number of catchments associated with each PET method for the
corresponding hydrological cycle patterns. The color of each cell
represents a specific PET method, and each column aligns with the
hydrological cycle pattern represented in the corresponding column
of panel (a), where P is precipitation, AET is actual evapotranspi-
ration, Q is runoff, and TWS is total water storage. Abbreviations
used for different PET methods are TH: Thornthwaite; BR: Baier–
Robertson; BC: Blaney–Criddle; OD: Oudin; MB: McGuinness–
Bordne; HM: Hamon; HS: Hargreaves–Samani; JH: Jensen–Haise;
MD: Milly–Dunne; PT: Priestley–Taylor; PM: Penman–Monteith;
CO2: Penman–Monteith[CO2].

catchments experience increased P in winter, spring, and au-
tumn but declines in summer. Southeastern Europe shows
consistent P increases across all seasons, while eastern Eu-
rope exhibits negative P trends in summer and autumn and
positive trends in winter and spring (Fig. 7a). P demonstrates
a higher correlation with Q and TWS across all catchment
categories (Fig. 7c). This suggests that P has a greater influ-
ence onQ and TWS than PET. In energy-limited catchments,
AET is mainly driven by PET. In mixed catchments, both
P and PET contribute to AET. In water-limited catchments,
AET is mainly influenced by P . When we consider statisti-
cally significant P trends, only 129 catchments show signif-
icant trends at the annual scale. Across seasons, the number

of statistically significant catchments varies from 20 to 61
(Fig. S21). Despite the limited number of statistically signif-
icant catchments, our findings regarding the influence of P
and PET on AET, Q, and TWS remain consistent with all
trends.

4 Discussion

4.1 Trends in P , PET, AET, Q, and TWS across
Europe

PET methods consistently exhibit upward annual trends
across European catchments (Fig. 2), aligning with find-
ings by Anabalón and Sharma (2017), who reported simi-
lar increases using diverse PET datasets. Among the meth-
ods, Jensen–Haise consistently produces the highest abso-
lute values, a pattern observed in various regions by other
studies (Kingston et al., 2009; Hanselmann et al., 2024;
Seiller and Anctil, 2016). This method relies on tempera-
ture and extraterrestrial radiation data, with the latter re-
maining constant annually. Thus, the observed trends are
primarily temperature-driven. Shi et al. (2023b) found that
Jensen–Haise trends align closely with Penman–Monteith,
which is used as a benchmark for evaluating other PET
methods. In our study, we observe a notable distinction be-
tween the Jensen–Haise and Penman–Monteith PET meth-
ods, primarily driven by differences in meteorological forc-
ings. While temperature is the dominant factor in Jensen–
Haise, Penman–Monteith is more influenced by radiation,
followed by temperature, vapor pressure deficit, and wind
speed (Maček et al., 2018). Conversely, the Milly–Dunne
method consistently shows the lowest trends in water-limited
catchments, with lower net radiation-driven trends in south-
ern Europe (Pfeifroth et al., 2018). Sensitivity analyses of
each PET method with meteorological forcings are beyond
the scope of this research.

The AET trend is proportional to the PET trend in energy-
limited and mixed catchments. In water-limited regions,
there is not enough water to evaporate, and it is mainly gov-
erned by available water (P ) (Bruno and Duethmann, 2024).
This results in a notable decline in AET when compared
to PET. Anabalón and Sharma (2017) similarly reported
stronger correlations between AET and PET in energy-
limited regions, while AET in water-limited areas aligned
more closely with precipitation. Notably, their study did
not differentiate between PET methods but relied on exist-
ing datasets. In our analysis, AET exhibits the same direc-
tional changes as precipitation at both annual and seasonal
scales in water-limited catchments (Fig. 7). Despite differ-
ences among catchment categories, PET methods demon-
strate strong positive or negative agreement in AET trends.

Runoff trends vary with PET method selection in water-
limited catchments but remain largely insensitive to PET
methods in energy-limited and mixed catchments. This
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Figure 7. Spatial variation in precipitation (P ) trends and their relationship with other hydrological components across catchment categories.
Panel (a) shows the spatial distribution of increasing and decreasing annual P trends. Panel (b) illustrates the seasonal variation in increasing
and decreasing P trends. Panel (c) represents the median correlation between P and AET, Q, and TWS, as well as between PET and AET,
Q, and TWS, for each catchment category across all PET methods.

aligns with previous findings (Bai et al., 2015; Oudin et al.,
2005; Seiller and Anctil, 2016), which reported insensitiv-
ity of runoff to PET formulations. This insensitivity is of-
ten attributed to hydrological model calibration, where PET
impacts are counterbalanced by parameterization. Notably,
despite the absence of individual PET method calibration in
our study, runoff in energy-limited and mixed catchments
remained insensitive to PET variation. This is likely due
to the strong correlation between precipitation and runoff
trends (Fig. 7c), which often outweighs the impact of PET
(Berghuijs et al., 2017; Anabalón and Sharma, 2017). The
strong negative agreement among PET methods for runoff
in central European catchments is similarly related to their
strong correlation with precipitation (Fig. 7a).

Total water storage (TWS) appears to be insensitive in
energy-limited and mixed catchments, while it exhibits vari-
ability in the trend of different PET methods in water-limited
catchments. Bai et al. (2016) observed that TWS in energy-
limited catchments is more strongly impacted by PET than in
water-limited catchments, though their study focused solely
on Chinese catchments. More recently, Boeing et al. (2024)
reported a decline in TWS over Germany, consistent with our

findings that TWS decreases in energy-limited and mixed
catchments for all PET methods. In hydrological models,
TWS compensates for long-term changes; i.e., higher PET
results in lower TWS in energy-limited catchments, whereas
water-limited catchments are primarily governed by precip-
itation (Bai et al., 2016). This is in line with our findings
on the opposite TWS trends relative to AET and a stronger
agreement among PET methods in energy-limited and mixed
catchments.

Precipitation generally increases across most catchments,
with annual and seasonal patterns largely consistent. Excep-
tions occur in summer for the southern catchment and spring
for eastern catchments, consistent with findings by Caloiero
et al. (2018) and Markonis et al. (2019). Precipitation has
a stronger influence on the hydrological cycle than AET in
low- and mid-latitude regions compared to higher latitudes
(Zhang et al., 2019). This spatial distribution explains the
stronger correlations observed in mixed and energy-limited
catchments, predominantly located in mid-latitudes and high
latitudes. Globally, Q is more sensitive to P than PET, sup-
porting the observed decline in Q despite rising PET across
many catchments (Berghuijs et al., 2017).
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4.2 Methodological sensitivity of PET estimation
methods

PET methods vary in both absolute values and trends, even
within the same category, due to structural and empirical dif-
ferences in their formulations. For instance, while Jensen–
Haise and Hargreaves–Samani both incorporate extraterres-
trial radiation and air temperature, Hargreaves–Samani in-
cludes a diurnal temperature range term absent in Jensen–
Haise. Thornthwaite, in contrast, relies solely on a heat in-
dex derived from monthly temperature. Among combina-
tional methods, Penman–Monteith and its modified version
differ by the inclusion of a CO2 concentration term. Struc-
turally similar methods like McGuinness–Bordne, Oudin,
and Jensen–Haise diverge primarily due to empirically de-
rived constants tailored to specific regions or climates (Prout-
sos et al., 2023). Moreover, catchment size does not sig-
nificantly influence the overall findings related to PET and
hydrological components (Fig. S22), consistent with Tang
et al. (2023), who observed that spatial averaging over larger
catchments reduces uncertainty and enhances reliability.

Even though our study’s experimental design varies from
the global analysis of Pimentel et al. (2023), both utilize
large-scale hydrological models at the basin scale. Pimentel
et al. (2023) evaluated three PET methods to identify the
optimal approach for estimating PET, AET, and Q across
the globe. Across Europe, they reported that Jensen–Haise
in northern Europe (energy-limited), Hargreaves in central
(mixed), and Priestley–Taylor alongside Hargreaves–Samani
in southern Europe (water-limited) perform better in PET es-
timation. For AET estimation, Jensen–Haise remains the pre-
ferred method in northern Europe, with Hargreaves–Samani
leading in central Europe and Priestley–Taylor in south-
ern Europe. Priestley–Taylor was also deemed the most ef-
fective for runoff estimation. In contrast, our findings in-
dicate a consistent distinction between Jensen–Haise and
Penman–Monteith for PET across all catchment types. Sim-
ilarly, for AET, Jensen–Haise consistently shows higher
trends than Penman–Monteith in both energy-limited and
water-limited catchments. For runoff, Priestley–Taylor and
Penman–Monteith exhibit similar patterns in energy-limited
and mixed catchments; however, in water-limited catch-
ments, Priestley–Taylor yields more pronounced changes
than Penman–Monteith.

4.3 Patterns of hydrological cycle components

When we look at the combination of changes among the hy-
drological cycle components (P , AET, Q, TWS) across Eu-
ropean catchments, two dominant patterns of changes are ob-
served: a water cycle intensification pattern of simultaneous
increase in all components and an aridification pattern of si-
multaneous decline in all except AET. These two patterns
can be seen in over 60 % of European catchments. However,
when focusing only on significant trends, the pattern of inten-

sification becomes more dominant, declining approximately
to 15 % (80 catchments) compared to 0.4 % (2 catchments)
aridification. The intensification pattern aligns with findings
by Teuling et al. (2019), who reported rising P , AET, and Q
in central–western Europe and declines in these components
in the Mediterranean. Their analysis, based on the Penman–
Monteith method, also indicated fewer catchments classified
under this pattern compared to temperature-based methods,
which show stronger responses. This is a vivid example of
how PET method selection could amplify or dampen our es-
timates about hydrological cycle intensification.

In contrast, the aridification pattern (decrease in P , Q,
and TWS and increase in AET) suggests that water reserves
are being depleted to sustain evapotranspiration, a mecha-
nism particularly evident in water-limited regions. Bruno and
Duethmann (2024) noted that rising atmospheric demand,
without sufficient water supply, results in reduced Q and
TWS. Massari et al. (2022) similarly reported that increasing
AET contributes to Q reductions in water-limited regions.
Even with decreasing P and Q, continued declines in TWS
appear to support increases in AET (Massari et al., 2022).
For Europe, this is also very relevant to the compound warm
season droughts that have been reported to increase since the
beginning of the century (Markonis et al., 2021), as well as
to the conditions that favor the onset and propagation of flash
droughts (Shah et al., 2023). Since the evaporative demand
is expected to further increase in the future (Rakovec et al.,
2022), it is essential to acknowledge the uncertainties due to
PET method selection.

4.4 Implications of PET method selection for
hydroclimatic regime classification

The selection of PET methods significantly influences the hy-
droclimatic classification of catchments. Traditionally, catch-
ments are categorized as water-limited or energy-limited
based on the aridity index. However, our study introduces
a third category, termed “mixed”, which lacks a physical ba-
sis but highlights the critical role of PET method selection in
defining catchment types. This is when a PET method that
consistently estimates higher values may shift a catchment
from energy-limited to water-limited, whereas a method with
lower estimates could reverse this shift. This underscores the
importance of method selection, where variations in PET es-
timates can alter the hydroclimatic classification. Similarly,
Zhang et al. (2016) introduced a less common classification
termed “equitant”, which applies a single PET method to cal-
culate the aridity index. Such methodological differences can
lead to inconsistencies in catchment classification. For in-
stance, Kuentz et al. (2017) use the Jensen–Haise method,
Ajami et al. (2017) utilize the Priestley–Taylor method, and
Zhang et al. (2016) adopt the Penman method for aridity in-
dex estimation. In our analysis, excluding PET methods that
consistently estimate higher PET values, such as Blaney–
Criddle, Jensen–Haise, and McGuinness–Bordne, resulted
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in 42 % of catchments transitioning from the mixed to the
energy-limited category (Fig. S23). Detailed catchment shifts
based on various combinations are outlined in Table S1.

4.5 Limitations and future research

Our study comes with certain limitations that pave the way
for future research. One key limitation is the uncertainty as-
sociated with the input data used to calculate PET methods.
Previous studies have shown that temperature-based meth-
ods are sensitive to temperature; radiation-based methods to
radiation; and combinational methods to multiple variables,
including temperature, radiation, relative humidity, and wind
speed (Hua et al., 2020; Guo et al., 2017). In addition, we
use a monthly time step, which tends to mask the influence of
PET method selection on AET extremes. These extremes can
behave differently from the mean state of AET, potentially
leading to different implications for changes in hydrologi-
cal cycle fluxes compared to those based on mean AET val-
ues (Markonis, 2025). Finally, we limited our analysis to one
precipitation product to isolate the specific impact of the PET
method. However, precipitation is widely recognized as the
most sensitive meteorological input, with extensive studies
highlighting its uncertainties (Mazzoleni et al., 2019; Marko-
nis et al., 2024). Our findings also confirm its dominant influ-
ence over PET in certain catchment categories (Fig. 7). This
identifies a potential gap for exploring the combination of
precipitation with PET for more accurate simulations of hy-
drological cycle components. Although we selected meteo-
rological datasets with comparatively lower uncertainty, data
quality, whether from observational or reanalysis sources, re-
mains an issue for hydrological assessments. While our fo-
cus was on methodological comparisons among PET meth-
ods, future research could benefit from multi-source assess-
ments to enhance the robustness and reliability of hydrologi-
cal modeling.

Large-scale hydrological models, including the mHM,
typically rely on default parameterization. In the mHM, these
parameters were initially developed using German basins,
as outlined by Samaniego et al. (2010) and Kumar et al.
(2013a). Since then, the mHM has been extensively tested
across various basins and hydrological variables (Rakovec
et al., 2016; Samaniego et al., 2019; Boeing et al., 2024).
For instance, Rakovec et al. (2016) evaluated discharge sim-
ulations across 400 European catchments using 36 param-
eter sets, demonstrating consistent model performance re-
gardless of parameterization, thereby reinforcing confidence
in the model’s reliability. Similar approaches have been ap-
plied in global water models; Beck et al. (2017) employed
ensemble parameters derived from 10 catchments, while Ku-
mar et al. (2013a) tested default parameters from European
basins across 80 American catchments with varying climatic
conditions. While these studies demonstrate the robustness
of default parameterization, investigating how PET-specific
calibration affects hydrological trends could provide valu-

able insights for future research. Notably, the Hargreaves–
Samani PET method, used in developing these parameters in
the mHM, demonstrated the best model performance in this
study but did not consistently stand out compared to other
PET methods in trend analysis across hydrological compo-
nents. Moreover, the study is confined to temperate Euro-
pean catchments, leaving a gap in the assessment of arid and
tropical climates, where distinct patterns may emerge, while
the Penman–Monteith[CO2] did not exhibit substantial dif-
ferences compared to the Penman–Monteith method, indicat-
ing the need for further exploration of this method. It would
be interesting to assess their impact under changing climate
conditions and their implications for trend assessments.

5 Summary and conclusions

Twelve PET methods were used to evaluate their impacts
on changes in the components of the hydrological cycle us-
ing the mesoscale Hydrological Model (mHM). These meth-
ods were applied across 553 European catchments, which
vary in size and include different European climate types.
These catchments were classified as water-limited, energy-
limited, and mixed catchments based on their aridity in-
dex. Changes in PET and hydrological components were as-
sessed using Sen’s slope for trend magnitude and the Mann–
Kendall test for statistical significance. We analyzed our re-
sults using two cases: first, using all trends, and second, using
only statistically significant trends. To assess the agreement
between different PET methods, we used the data concur-
rence index for the period 1980 to 2019. The results demon-
strate that the choice of PET method can substantially affect
changes in AET, Q, and TWS, especially in water-limited
and mixed catchments, with smaller changes and greater
variability observed in water-limited catchments on an an-
nual scale. Seasonal variations in changes and agreement be-
tween PET methods were also observed, as discussed in de-
tail in Sect. 3.2 and 3.3. In general, there is agreement among
the different methods that, since 1980, PET and AET are in-
creasing over Europe, while runoff and total water storage
exhibit mixed fluctuations depending on the method used
and the catchment latitude. The key findings of our study are
summarized as follows:

1. PET is increasing across European catchments. The ma-
jority of the PET methods indicate a positive trend in all
categories of catchments, but the increase rates differ
among the methods employed.

2. At the annual scale for all trends, the Jensen–Haise PET
method stands out by consistently showing the high-
est trends for PET and AET across all catchment cate-
gories. The Milly–Dunne (energy-based) method is no-
table as the only one to exhibit a negative trend for
water-limited catchments. Regarding Q and TWS, the
PET methods display different changes and variability,
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with no method consistently showing either the low-
est or highest trends for these hydrological components.
Conclusions remain consistent when considering only
statistically significant trends.

3. The trend patterns between PET and AET are similar
across all methods for the hydrological cycle compo-
nents. However, Q and TWS do not exhibit the same
pattern and appear to be less sensitive to choice of PET
methods. Most PET methods agree on the trend direc-
tion for PET and AET, but in a few catchments, the
trends for Q and TWS show an opposite direction. The
negative trends inQ and TWS are primarily due to neg-
ative precipitation trends, which have a stronger impact
on these components in all catchment categories.

4. At the seasonal scale, PET methods reveal different
trends for PET, with no method consistently showing
the highest or lowest trends across all seasons. How-
ever, the Jensen–Haise method shows the highest PET
trends during spring, autumn, and summer. AET trends
follow a similar pattern to PET in all seasons. The PET
methods show strong agreement on trend direction for
central and southern European catchments, especially
for PET, but there is less agreement for northern catch-
ments in winter. Strong negative agreement is found for
Q and TWS in summer and spring, while disagreement
is observed for AET in central and southern catchments
during autumn.

5. The summer season contributes more to the annual PET
trends than any other season across all catchment cat-
egories. Similarly, for AET, the summer season has a
higher contribution to the annual AET trend in energy-
limited and water-limited catchments. For runoff (Q),
the spring season contributes more in mixed and water-
limited catchments. For TWS, the spring season has a
higher contribution in energy-limited catchments.

6. Overall, the magnitude of trends varied between PET
methods for PET and the hydrological components
(AET, Q, and TWS). The use of a specific PET method
in a hydrological model can notably affect studies fo-
cused on the hydrological cycle.

7. Precipitation primarily governs trends in all hydrologi-
cal components and catchment types, except for AET in
energy-limited catchments, which is largely influenced
by the choice of PET variations.

8. The choice of PET method substantially influences
hydrological patterns across European catchments on
both annual and seasonal scales. Combinational meth-
ods generally account for fewer catchments than
temperature-based methods in dominant hydrological
patterns. This observation remains consistent for statis-
tically significant trends as well.

9. In the case of statistically significant trends, the con-
clusions remain consistent with those from the all-trend
analysis. The only difference is the reduced number of
catchments, primarily omitted due to weaker trends.

Our research demonstrates the critical role of PET method
selection and its implications for quantifying fluctuations
in the hydrological cycle. Our findings reveal that two
methods notably deviate from the others. Specifically, the
Jensen–Haise method shows higher trend values, while the
Milly–Dunne method exhibits lower trends in water-limited
catchments. Consequently, we recommend exercising cau-
tion when applying these methods as they appear to be out-
liers. Despite these variations, the PET methods generally
agree that atmospheric moisture demand is increasing across
Europe, reflecting recent shifts in temperature and radiation.
The observed variability in trend magnitudes emphasizes the
importance of careful PET method selection to ensure robust
and representative assessments of hydrological trends.
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Appendix A: Potential evapotranspiration formulation

Table A1. Formulations of PET methods, where Re is extraterrestrial radiation (MJ m−2 d−1), λ is the latent heat of vaporization (MJ kg−1),
ρ is water density (= 1000 kg m−3), da is air density (kg m−3), Ta is air temperature (°C), Td is dew point temperature (°C), Tmax is maximum
air temperature (°C), Tmin is minimum air temperature (°C), 1 is the slope of the vapor pressure curve (kPa °C−1), γ is the psychrometric
constant (kPa °C−1), es is saturation vapor pressure (kPa), ea is actual vapor pressure (kPa), u2 is wind speed 2 m above the soil surface
(m s−1), Rs is net shortwave radiation (MJ m−2 d−1), Rn is net incoming solar radiation (MJ m−2 d−1), G is soil heat flux (MJ m−2 d−1),
RH is relative humidity ( %), DL is day length (h d−1), I is annual heat index, and CO2 is carbon dioxide concentration (ppm). The following
abbreviations are used throughout the paper to refer to the respective PET methods: TH (Thornthwaite), BR (Baier–Robertson), BC (Blaney–
Criddle), OD (Oudin), MB (McGuinness–Bordne), HM (Hamon), HS (Hargreaves–Samani), JH (Jensen–Haise), MD (Milly–Dunne), PT
(Priestley–Taylor), PM (Penman–Monteith), and CO2 (Penman–Monteith[CO2]).

Method Formulation Reference

Hargreaves–Samani 0.0023× Re
λ×ρ ×

√
tmax− tmin× (tavg+ 17.8)× 1000 Hargreaves and Samani (1985)

McGuinness–Bordne 1000× Re
λ×ρ ×

Ta+5
68 McGuinness and Bordne (1972)

Hamon k× 0.165× 216.7× DL
12 ×

es
tavg+273.3 Hamon (1961)

Oudin 1000× Re
λ×ρ ×

tavg+5
100 Oudin et al. (2005)

Baier–Robertson 0.157× tmax+ 0.158(tmax− tmin)+ 0.109×Re− 5.39 Bai et al. (2016)
Blaney–Criddle 0.825× (0.46× tavg+ 8.13)× 100×DL

365×12 Blaney (1950)

Thornthwaite 16× DL
360 ×

(
10×tavg
I

)k
Thornthwaite (1948)

Jensen–Haise 1000× Re
λ×ρ ×

Tavg
40 Jensen and Haise (1963)

Priestley–Taylor 1.26×1×(Rn−G)
λ×ρ×(1+γ )

Priestley and Taylor (1972)
Milly–Dunne 0.8× (Rn−G) Milly and Dunne (2016)

Penman–Monteith
0.408×1×(Rn−G)+γ×

(
900

Tavg+273

)
×u2×(es−ea)

1+γ×(1+0.34×u2)
Penman (1948)

Penman–Monteith[CO2]
0.408×1×(Rn−G)+γ×

(
900

Tavg+273

)
×u2×(es−ea)

1+γ×
(
1+0.34×(u2+2×10−4

×([CO2]−300))
) Yang et al. (2019)
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