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Abstract. Sustainable management of blue and green water
resources is vital for the stability and sustainability of wa-
tershed ecosystems. Although there has been extensive at-
tention paid to blue water (BW), which is closely related to
human beings, the relevance of green water (GW) to ecosys-
tem security is typically disregarded in water resource evalu-
ations. Specifically, comprehensive studies are scarce on the
detection and attribution of variations of blue and green water
in the Dongjiang River basin (DRB), an important source of
regional water supply in the Guangdong–Hong Kong–Macao
Greater Bay Area (GBA) of China. Here we assess the vari-
ations of BW and GW scarcity and quantify the impacts of
climate change and land use change on BW and GW in DRB
using the multi-water-flux calibrated Soil and Water Assess-
ment Tool (SWAT). Results show that BW and green water
storage (GWS) in DRB increased slowly at rates of 0.14 and
0.015 mm a−1, respectively, while green water flow (GWF)
decreased significantly at a rate of −0.21 mm a−1. The de-
gree of BW and GW scarcity in DRB is low, and the per
capita water resources in more than 80 % of DRB exceed
1700 m3 per capita per year. Attribution results show that
88.0 %, 88.5 %, and 39.4 % of changes in BW, GWF, and
GWS result from climate change. Both climate change and
land use change have decreased BW, while climate change
(land use change) has decreased (increased) GWF in DRB.
These findings can guide the optimization of the allocation
of blue and green water resources between upper and lower

reach areas in DRB and further improve the understanding of
blue and green water evolution patterns in humid regions.

1 Introduction

Land use and land cover change (LUCC) and climate vari-
ability may alter hydrological processes in watersheds (Bere-
zovskaya et al., 2004; Chagas et al., 2022; Konapala et al.,
2020; Tan et al., 2022a), which successively affect variations
of regional water resources (Hoek van Dijke et al., 2022;
Pokhrel et al., 2021; Stocker et al., 2023; Suzuki et al., 2021),
potentially leading to ecosystem degradation and severe wa-
ter shortage crises (Aghakhani Afshar et al., 2018; Zuo et
al., 2015). With the development of society and the econ-
omy, there is an increasing need for water resources to ac-
commodate human water utilization, encompassing agricul-
tural, domestic, and industrial water usage. Water scarcity
and spatiotemporal mismatch between regional water supply
and demand in certain regions are becoming increasingly se-
vere, significantly affecting sustainable development in these
regions (Cook et al., 2014). Quantifying water resources in
a changing environment is crucial for guiding efficient and
sustainable water use.

Previous studies on water resource assessment explored
the effects of climate change and anthropogenic factors on
available water resources, including streamflow (Ahiablame
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et al., 2017; Tan et al., 2023), baseflow (Ficklin et al., 2016;
Tan et al., 2020), lake water (Acero Triana and Ajami, 2022;
Tao et al., 2020), and groundwater (Han et al., 2020). Falken-
mark and Rockström (2006) introduced a novel perspec-
tive on water resource assessment by categorizing water re-
sources as blue water (BW) or green water (GW). BW is
the total of deep aquifer recharge and river streamflow, such
as water in lakes and rivers. Water users such as industries,
agriculture, and municipal users can directly utilize BW.
By contrast, GW is the portion of precipitation that is not
drained to the river for streamflow generation. GW is tem-
porarily retained in the soil before eventually being released
back into the air by evapotranspiration (ET). GW encom-
passes both green water flow (GWF) and green water stor-
age (GWS) (Veettil and Mishra, 2018; Zang and Liu, 2013).
Traditional water resource assessments concentrate on avail-
able water resources and only consider BW while neglecting
GW (Dai et al., 2022), although GW is also essential. GW
supplies about 80 % of the total water resources, sustaining
crop growth and the sustainable development of forest and
grassland ecosystems in arid regions or during dry seasons
(Li et al., 2018; Schuol et al., 2008). Green water scarcity
can lead to ecosystem degradation and intensify competition
between human needs and ecosystems for water resources
(Falkenmark et al., 2003; Veettil and Mishra, 2018). Com-
pared to traditional streamflow assessment methods, water
resource scarcity assessment methods based on the frame-
work of BW and GW are more appropriate for maintaining
sustainable water resource management (Cooper et al., 2022;
Liu et al., 2017). Recently, some studies characterized water
scarcity by assessing variations of BW and GW. For exam-
ple, Veettil and Mishra (2020) assessed blue water scarcity
and green water scarcity to show the water security status of
counties in the United States. Hoekstra et al. (2012) used the
concept of the BW footprint to study water scarcity issues.
Schyns et al. (2019) used the GW footprint to investigate
green water scarcity and found that the increasingly severe
shortage of GW poses a significant threat to natural ecosys-
tems.

The impacts of climate change and human activities on
the hydrological cycle processes in watersheds have attracted
widespread attention (Ahiablame et al., 2017; Chouchane et
al., 2020; Cooper et al., 2022; Tan et al., 2022b; Veettil and
Mishra, 2016). Changes in land use alter the underlying sur-
face conditions. For example, afforestation or deforestation
may exacerbate or alleviate global or regional climate change
and thus affect hydrological cycle processes (Bai et al., 2020;
Lian et al., 2020; Qiu et al., 2023). Changes in land use often
lead to alterations in land–atmosphere interactions, and veg-
etation cover changes are essential for regulating climate sys-
tems and land ecosystems (Foley et al., 2005; Huang et al.,
2020). Large-scale greening could modify geophysical inter-
actions between the atmosphere and the ground, impacting
larger or local regional hydrological cycles. Land degrada-
tion (Walters and Babbar-Sebens, 2016), deforestation (Lee

et al., 2011), and urbanization (Mohan and Kandya, 2015;
Zhang et al., 2018) also have far-reaching effects on the cli-
mate and hydrological cycle.

Climate change is also crucial to the variations in BW
and GW resources. Precipitation is the source of BW and
GW, and factors such as temperature, solar radiation, and po-
tential evapotranspiration significantly influence the changes
in BW and GW in watersheds, especially in GWF (Pandey
et al., 2019; Schewe et al., 2014). For a single watershed,
BW depends directly on precipitation and evapotranspira-
tion (GWF) (Shen et al., 2017; Vano et al., 2012). Further-
more, precipitation intensity can have a significant impact on
the redistribution of precipitation, BW, and GW by altering
infiltration and runoff generation processes (Eekhout et al.,
2018; Nearing et al., 2005). Therefore, it is crucial to quan-
tify the effects of climate change and LUCC on BW and GW
resources in a watershed for effective water resource plan-
ning and management.

Water resource management is the primary issue to be
addressed for water security. Hydrological models are im-
portant tools for meeting various needs in water resource
management. Hydrological model simulation is an effective
method for evaluating changes in blue and green water re-
sources. As a widely used semi-distributed parametric hydro-
logical model, the SWAT (Soil and Water Assessment Tool)
model is increasingly being used in water resource manage-
ment at the watershed scale. Based on the SWAT model, re-
searchers simulated the spatiotemporal changes in blue and
green water resources in Iran (Ahiablame et al., 2017), the
Yangtze River basin (Nie et al., 2023), the Poyang Lake basin
(Liu et al., 2023), and India (Sharma et al., 2023). Some stud-
ies have also used model simulations to analyze the effects
of climate change and human activities on water resource
changes in the Meki River basin (Hordofa et al., 2023), China
(Liu et al., 2022), and Ningxia (Ahiablame et al., 2017).
However, most of the hydrological models used in the study
were calibrated and validated using only observed stream-
flow data without checking the accuracy of other simulated
water variables, which can lead to uncertainties in modeling
soil moisture and evapotranspiration (Nie et al., 2023).

The Dongjiang River basin (DRB) is a crucial water source
region for core cities in the Greater Bay Area (GBA), such as
Shenzhen, Hong Kong, and Huizhou. Given the significant
BW demand from agriculture, domestic utilization, and in-
dustry as well as the GW demand from over 18 000 km2 of
forested land, the water resource stress in DRB is extremely
high, although DRB is located in wet South China (Liu et al.,
2018). The growing mismatch between increasing water de-
mand and decreasing water supply, along with seasonal and
pollution-induced water scarcity issues, is becoming increas-
ingly prominent (Yang et al., 2018). However, the majority of
current studies on water resources of DRB focus on changes
and scarcity of surface water and groundwater (BW) while
overlooking the critical role and spatiotemporal variations of
GW (Huang et al., 2022; Jiang et al., 2023; Wu et al., 2021).
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With the high-intensity urbanization and climate change in
DRB, changes in BW and GW resources in DRB remain un-
known.

This study aims to analyze the influence of climate change
and LUCC on BW and GW in DRB. The objectives of this
study are (a) to build the SWAT model for DRB hydrologi-
cal simulation, (b) to quantitatively evaluate the spatial and
temporal variation of BW and GW in DRB, (c) to assess the
status of water scarcity in DRB using the framework of BW
and GW resources, and (d) to estimate the effects of climate
change and LUCC on BW and GW in DRB.

2 Materials and methods

2.1 Study area

The Dongjiang River is an important tributary of the
Pearl River, located between longitude 113°25′–115°52′ E
and latitude 22°26′–25°12′ N. It originates in Xunwu
County, Jiangxi Province, flows through Jiangxi and Guang-
dong provinces, and goes across major cities, including
Longchuan, Heyuan, Dongguan, and Shenzhen. The trunk
stream of the Dongjiang River has a total length of 562 km.
DRB covers a watershed area of 3.5×104 km2. DRB is in the
subtropical monsoon climate zone with adequate precipita-
tion and high temperatures. The average annual precipitation
ranges from 1500 to 2400 mm, and the average temperature
of the basin is 21°C (Wu et al., 2019a). The altitude of the
basin decreases from the northeast to the southwest. Regions
of the upper reaches of DRB are dominated by mountains
and hills, those of the middle reaches of DRB are dominated
by hills and plains, and those of the lower reaches of DRB
are dominated by plains.

Previous hydrological simulation studies of DRB mainly
used the Boluo hydrometric station as the outlet of the wa-
tershed (He et al., 2013; Wu et al., 2019a), so this study
only analyzes the area of DRB where water flows to the
Boluo station (Fig. 1). The Boluo hydrometric station is the
main control station in the lower reaches of the Dongjiang
River. The Boluo hydrometric station occupies a drainage
area of 25 325 km2, which is 71.7 % of the total area of DRB.
Since the 1950s, more than 896 reservoirs, ponds, dams, and
other water conservancy facilities have been constructed in
DRB. Among them, the Baipenzhu Reservoir, Fengshuiba
Reservoir, and Xinfengjiang Reservoir are the three largest
reservoirs in the basin, with a cumulative storage capacity
of 17048× 106 m3. The Dongjiang–Shenzhen Water Supply
Project constructed in 1964 diverts water from the Dongjiang
River to Shenzhen and Hong Kong to provide freshwater re-
sources for municipal use. Over 70 % of Hong Kong’s fresh-
water supply comes from the Dongjiang River. Therefore, it
is crucial to comprehend the shifts in water resources within
DRB for projecting future available water resources for the
development of GBA.

2.2 Methodology

2.2.1 SWAT model

The SWAT model was adopted to simulate hydrological pro-
cesses and estimate the amount of BW and GW for DRB
(Arnold et al., 1998; Neitsch et al., 2002). The SWAT model
is widely applied to simulate streamflow and surface runoff
(Arshad et al., 2022; Martínez-Salvador and Conesa-García,
2020; Nie et al., 2023). The SWAT model is also widely uti-
lized for exploring changes in BW and GW (Dai et al., 2022;
Liang et al., 2018; Schuol et al., 2008).

In SWAT modeling, DRB was divided into 63 subbasins
(Fig. S1 in the Supplement), and each subbasin was then cat-
egorized into hydrological response units (HRUs) depending
on land use, soils, and slope. The Soil Conservation Service
(SCS) curve number method was used for flow partitioning
according to land use, soil type and antecedent soil moisture.
The Penman–Monteith method was used to calculate poten-
tial evapotranspiration, which comprehensively considered
various climatic factors such as solar radiation, air temper-
ature, wind speed, and relative humidity (Arnold et al., 1998;
Neitsch et al., 2002).

2.2.2 Model calibration and validation

To reduce the influence of hydraulic engineering, the SWAT
model was calibrated and validated by utilizing monthly re-
stored natural streamflow at the Boluo and Heyuan hydro-
metric stations. The optimum model parameters are shown
in Table 1. All the selected parameters are automatically cal-
ibrated with 500 simulations via SWAT-CUP. The warmup
period for model simulations is the first 2 years of the simula-
tion period. Reconstructed natural streamflow in 1970–1979
was used to calibrate the model, and monthly time series
of reconstructed natural streamflow, ET from Global Land
Evaporation Amsterdam Model (GLEAM) and soil moisture
data from ERA5 during 1980–1989 were used to validate
the model. The calibration period for this study was 1970–
1979, and the validation period was 1980–1989. Three met-
rics, i.e., the determination coefficient (R2), the percentage
bias (PBIAS), and Nash–Sutcliffe efficiency (NSE), were ap-
plied to evaluate the simulation performance of the SWAT
model:

NSE= 1−

n∑
i=1

(Qnat−Qsim)2

n∑
i=1

(Qnat−Qave)
2
, (1)

PBIAS=
Qsim−Qave

Qave
× 100, (2)
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Figure 1. Location and characteristics of the study area: (a) location of the watershed, spatial distribution of the hydrometeorological stations,
and digital elevation model (Farr et al., 2007). (b) Land use map (Xu et al., 2018).

R2
=


n∑

i=1
(Qnat−Qave)

(
Qsim−Qsim

)
√

n∑
i=1

(Qnat−Qave)
2

n∑
i=1

(
Qsim−Qsim

)


2

, (3)

where Qnat, Qave, Qsim, and Qsim are monthly natural
streamflow, mean monthly natural streamflow, simulated
streamflow, and mean monthly simulated streamflow, respec-
tively. n is the total number of time steps.

This study reconstructed the natural monthly streamflow
series of the basin by combining the inflow and outflow of the
three major reservoirs (Xinfengjiang Reservoir, Fengshuba
Reservoir, and Baipenzhu Reservoir) in DRB, based on the
watershed water balance (Tu et al., 2018):

Qnat =Qo+1Q=Qo+Qin−Qout, (4)

where 1Q is the total reduced water volume and Qo, Qin,
and Qout are the observed streamflow, reservoir inflow, and
reservoir outflow, respectively.

Table 1. Range of the main parameters and their optimal values
obtained from the model calibration.

Parameter Calibration Initial Best
type range calibrated

value

GW_REVAP.gw V 0.19–0.2 0.199
GWQMN.gw V 493–1247 916.493
SLSUBBSN.hru R 2.6–5.7 2.804
ESCO.hru V 0.89–0.97 0.901
CN2.mgt R 0.14–0.27 0.209
CH_K2.rte V 0.38–1.16 0.926
ALPHA_BNK.rte V 0.12–0.18 0.165
SOL_AWC.sol R 0.3–0.6 0.598
SOL_K.sol R 0.32–0.69 0.669
CH_K1.sub V 0–0.15 0.0295

Note: the symbols V and R denote a replacement and a relative change to the
default parameter value.
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2.3 Calculation of blue and green water and water
security indicators

2.3.1 Calculation of blue and green water

BW is calculated from the sum of water yield (SWAT output
WYLD) and groundwater storage. The former refers to the
amount of water that leaves the HRU and enters the chan-
nel. The latter represents the net amount of water recharged
to aquifers (SWAT output GW_RCHG) and the amount of
aquifer water discharged to the main channel (SWAT output
GW_W) during a time step (Hordofa et al., 2023). GW can
be divided into two components, i.e., GWF, which is the ac-
tual evapotranspiration (SWAT output ET) from the HRU,
and GWS, which is the soil water moisture (SWAT output
SW) (Nie et al., 2023; Veettil and Mishra, 2018). The cal-
culation of the Green Water Index (GWI) involves dividing
the quantity of GW by the sum of BW and GW (Ding et al.,
2024).

2.3.2 Blue and green water scarcity

Blue water scarcity (BWSC) is determined by the quotient
of BW withdrawal and availability. The estimation of BW
withdrawals (BWWs) in this study involved the multiplica-
tion of the aggregate population in each subbasin by the com-
bined water consumption per person (Liang et al., 2020). The
population of each subbasin was extracted from the popu-
lation raster data. Blue water availability (BWA) represents
the quantity of water that can be utilized without negatively
impacting the river ecosystems. Exhaustive exploitation of
BW in rivers may adversely impact river ecosystems. Pre-
vious studies have generally used environmental flow re-
quirements (EFRs) as a suitable metric for sustaining robust
ecosystems (Honrado et al., 2013). According to the studies
of Richter (2010) and Richter et al. (2012), extracting more
than 20 % of the water from rivers may result in ecological
degradation. Therefore, 20 % of streamflow can be deemed
BW and used for water supply (Veettil and Mishra, 2016).
The calculations of EFR, BWA, and BWSC are as follows:

EFR(a,t) = 0.8×Qmean(a,t)
, (5)

where EFR(a,t) is the EFR for subbasin “a” during time “t”;
Qmean is the long-term monthly average streamflow.

BWA(a,t) =Q(a,t)−EFQ(a,t) (6)
BWSC= BWW/BWA (7)

Green water scarcity (GWSC) is defined as the ratio be-
tween green water footprint (GWFO) and green water avail-
ability (GWA). GWFO denotes the actual evapotranspira-
tion from the watershed. GWA is the soil moisture that is
available for evapotranspiration and vegetation transpiration
and is equal to the initial soil moisture (Liang et al., 2020).
GWSC can be formulated as

GWSC(a,t) = GWFO(a,t)/GWA(a,t), (8)

Table 2. Scenario settings for the simulation of effects of climate
change and LUCC on blue and green water.

Scenario Land Climate Combined Land use Climate
use period effects change change

effects effects

S1 1980 1970–1993
S2 1980 1994–2017 S2–S1
S3 2015 1994–2017 S3–S1 S3–S2

where GWSC is the green water scarcity, GWFO(x,t) is the
actual evapotranspiration, and GWA(a,t) is the initial soil
moisture.

Based on the blue water scarcity and green water scarcity,
the water scarcity of a region is categorized as mild scarcity,
moderate scarcity, severe scarcity, and extreme scarcity, with
thresholds set at 100 %, 150 %, and 200 %, respectively.

2.3.3 Regional water stress

The Falkenmark index (FLK) (Falkenmark et al., 1989) is a
widely used measure of water stress, defined as the propor-
tion of BWA to the overall population. The Falkenmark index
is classified as no stress, stress, scarcity, and absolute scarcity
based on per capita water use. Absolute scarcity is regarded
as occurring in areas where the indicator threshold is lower
than 500 m3 per capita per year, and no stress is thought to
occur in areas where the threshold is higher than 1700 m3 per
capita per year.

2.4 Calculation of relative contributions

2.4.1 Scenario design and simulation

Three scenarios were constructed to assess the impacts of cli-
mate change and LUCC on BW and GW by changing climate
conditions (land use) while keeping land use (climate condi-
tions) for the three scenario simulations (Table 2). The land
use map was fixed when simulating the influences of climate
change on blue and green water (S2–S1), while climate con-
ditions were fixed when simulating the influences of LUCC
on blue and green water (S3–S2). The climate conditions and
the land use were altered when assessing the joint influences
of climate change and LUCC on blue and green water (S3–
S1).

2.4.2 Relative contribution rate calculation

The influences of climate change and LUCC on the changes
in blue and green water in different periods are evaluated uti-
lizing the relative contribution (RC) in this study (Li et al.,
2021).

The climate change contribution to BW and GW change is
estimated by
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RCC =
|X2−X1|

|X2−X1| + |X3−X2|
× 100%, (9)

where X1, X2, and X3 are the amounts of water including
BW, GWF, and GWS, respectively, for scenarios S1, S2,
and S3.

The contributions of LUCC to changes in BW and GW are
estimated by Eq. (11).

RCL =
|X3−X2|

|X3−X2| + |X2−X1|
× 100% (10)

2.5 Data

The dataset used in this study consists of three parts: (1) hy-
drometeorological data; (2) geospatial data encompassing
DEMs, soil types, and land uses; and (3) socioeconomic data
encompassing per capita water consumption and population
data.

Observed monthly streamflow data of the two hydrologi-
cal stations in the study were collected for the years 1970–
2000 from the Boluo station and Heyuan station, and the ob-
served streamflow time series of these two hydrological sta-
tions have no missing data. Monthly inflow and outflow data
of the three major reservoirs in DRB were also collected.
All the hydrological data were obtained from the Guangdong
Provincial Hydrological Bureau. Meteorological daily pre-
cipitation, temperature, and other data for 1968–2017 from
21 meteorological stations in the watershed were obtained
from the National Meteorological Information Center of the
China Meteorological Administration. Monthly actual ET
data for SWAT model validation were obtained from the
Amsterdam Evapotranspiration Model dataset with a spatial
resolution of 0.25°× 0.25° (Martens et al., 2017). Monthly
soil moisture data for SWAT model validation were obtained
from the European Centre for Medium-Range Weather Fore-
casts ERA5-Land dataset with a spatial resolution of 0.1°×
0.1° (Hersbach et al., 2023). The actual evapotranspiration
and soil moisture of the watershed equal the average of all
grids included in DRB.

The 90 m resolution DEM data and 30 m resolution land
use data at 10-year intervals (i.e., 1980, 1990, 2000, 2010,
and 2015) are obtained from the Resource and Environment
Science and Data Platform of the Chinese Academy of Sci-
ences (Xu et al., 2018). Soil data are obtained from the 1 km
resolution Harmonized World Soil Database from the Food
and Agriculture Organization of the United Nations (Fischer
et al., 2008).

The annual per capita integrated water consumption data
of DRB from 2000 to 2017 were acquired from the Water
Resources Bulletin of Guangdong Province. The population
data in 2000, 2005, 2010, and 2015 were obtained from the
1×1 km spatial raster data of the Resource and Environment
Science and Data Center of the Chinese Academy of Sci-
ences (Xu, 2017b).

3 Results

3.1 Model performance

3.1.1 Streamflow reconstruction

The difference between the monthly average observed
streamflow and the monthly average natural streamflow is
small (Fig. 2). The monthly average measured streamflow
and natural streamflow at the Heyuan station are 492.1 and
507.9 m3 s−1, respectively, while the monthly average mea-
sured streamflow and natural streamflow at the Boluo station
are 768.4 and 796.7 m3 s−1, respectively. The difference be-
tween the measured streamflow and the natural streamflow
mainly occurs in November, December, January, and Febru-
ary (when the measured streamflow is greater than the natu-
ral streamflow) and in May, June, and July (when the mea-
sured streamflow is less than the natural streamflow) (Fig. 2a
and c).

3.1.2 Model calibration and verification

The SWAT model shows sufficient accuracies in simulat-
ing streamflow, actual evapotranspiration, and soil moisture
changes in DRB and can better simulate both seasonal and
interannual changes in streamflow. During the calibration pe-
riod, both stations achieved R2 above 0.9, a NSE exceed-
ing 0.8, and a PBIAS of less than 14 % (Fig. 3). Both stations
had a simulated streamflow R2 of greater than 0.8 during the
validation period. The NSE values for streamflow simula-
tion at the Heyuan station and Boluo station of the validation
were 0.81 and 0.74, respectively. The model performs well
in simulating the ET and soil moisture. Since the GLEAM
ET data and ERA5 soil moisture data are raster data with a
spatial resolution of 0.25× 0.25°, considering the influence
of data accuracy on the results, this study uses the water-
shed scale to validate the simulation results of ET and soil
moisture. In the validation period, the R2 and NSE for the
simulation of evapotranspiration were 0.92 and 0.8, respec-
tively (Fig. S2), while the R2 and the NSE for the soil mois-
ture simulation were both greater than 0.6. These validation
results show that the model can be used to simulate hydro-
logical regimes in DRB.

3.2 LUCC and climate variability in DRB

The LUCC in DRB is mainly the decrease in cultivated land
and the increase in urban land. The land use in DRB pri-
marily consisted of forest land (18 875–18 833 km2), which
forms more than 70 % of DRB. From 1980 to 2015, the
urban land and water areas showed increases of 469.4 km2

(137 %) and 17.4 km2 (2.8 %), while the grassland, cultivated
land, and forest land showed decreases of 41.3 km2 (4.3 %),
487.5 km2 (10.8 %), and 42.1 km2 (0.2 %), respectively (Ta-
ble 3).
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Figure 2. Observed streamflow and natural streamflow processes at the Heyuan and Boluo stations from 1970 to 2000. (a) Annual distribution
of streamflow at the Heyuan station, (b) streamflow process at the Heyuan station, (c) annual distribution of streamflow at the Boluo station,
and (d) streamflow process at the Boluo station.

Table 3. Land use transfer matrix in DRB from 1980 to 2015.

Land use type 2015 1980

Grassland Urban Cultivated Forest Water Unused Total
land land land area land (km2)

(km2) (km2) (km2) (km2) (km2) (km2)

1980

Grassland 795.6 29.9 18.3 123.5 2.5 0.0 969.7
Urban land 0.6 319.6 12.4 7.6 2.3 0.0 342.4
Cultivated land 19.0 269.8 3771.7 427.9 40.4 0.03 4528.8
Forest land 110.7 183.7 226.2 18278.7 33.1 0.02 18 832.5
Water area 2.5 8.9 12.7 36.8 551.0 0.00 611.9
Unused land 0.0 0.0 0.02 0.03 0.00 0.45 0.51

2015 total 928.4 811.9 4041.3 18874.5 629.2 0.51 25 285.8

DRB exhibited significant regional differences in multi-
year average precipitation, temperature, and potential evapo-
transpiration. The precipitation exhibited an increasing trend
from the center to the south and north of DRB. The tem-
perature and potential evapotranspiration showed an overall
distribution pattern of greater values in the south and minor
values in the north of DRB (Fig. 4). The multiyear average
precipitation for the entire DRB was 1790.1 mm, with an-
nual precipitation ranging from 1236.2 to 2567.5 mm. The
regions with the highest multiyear average annual precipi-

tation are located in the southeast of DRB, where annual
precipitation exceeds 2200 mm, while the regions with the
lowest precipitation are in the northeast of the watershed.
The average annual temperature in DRB ranged from 19.5
to 21.3 °C, and the average annual potential evapotranspira-
tion ranged from 1101.5 to 1320.6 mm. The south of DRB
is predominantly urban and characterized by the urban heat
island effect, while the north of DRB is mountainous with
higher elevations, leading to the spatial distribution of tem-
peratures.
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Figure 3. Simulated and observed monthly streamflow at the (a) Heyuan and (b) Boluo gauge stations during the calibration and validation
periods.

The average temperature and potential evapotranspiration
at DRB meteorological stations exhibited significant varia-
tions, while precipitation showed a relatively minor trend
(Fig. 4). Overall, basin-averaged precipitation and potential
evapotranspiration showed a nonsignificant decreasing trend,
while temperatures showed a significant increasing trend.
There was no significant change trend of precipitation for all
stations in DRB (Fig. 4a). Twenty out of 21 meteorological
stations in the region showed statistically significant increas-
ing trends in average temperature, indicating a warming trend
(Fig. 4b). Nine stations showed a significant decreasing trend
in potential evapotranspiration that was primarily located in
northern DRB (Fig. 4c).

The mean precipitation, temperature, and potential evap-
otranspiration of DRB can be obtained from the precipi-
tation, temperature, and potential evapotranspiration of sta-
tions using the Tyson polygon method. The interannual vari-
ation of annual precipitation in DRB showed an insignificant
decreasing trend (−0.51 mm a−1). The annual mean temper-
ature showed a significant increasing trend (0.024 °C a−1).
The annual potential evapotranspiration showed a significant
decreasing trend (−0.38 mm a−1) (Fig. S3).

3.3 Blue and green water resources

The average annual BW and GW were 1240.8 and 840.7 mm,
respectively. The DRB water resources were dominated by

BW, representing 60.1 % of the total water resources, and
BW was 1.48 times higher than that of GW resources. The
average GWF and GWS were 689.3 and 151.4 mm, respec-
tively.

The annual BW resources in the subbasins of DRB ranged
from 893.7 to 1990 mm, showing an increasing trend from
the center to the south and north of DRB, aligning with
the spatial distribution of precipitation (Fig. 5a). The re-
gions with abundant BW resources are located in the cen-
tral and southeastern parts of DRB (> 1300 mm), and the
BW in the upper reaches is comparatively low (< 1100 mm).
Differences in the spatial distribution of BW are primarily
caused by differences in the spatial distribution of precip-
itation. Overall, the GWF and GWS are more evenly dis-
tributed in the subbasins than BW. The annual GWF in the
subbasins of DRB ranged from 573.6 to 923.6 mm. The sub-
basins with higher GWF are primarily located in the Xin-
fengjiang Reservoir area in the middle reaches (> 700 mm),
while the low GWF subbasins are located in the southwest
of DRB (< 600 mm) (Fig. 5b). The land use in the subbasins
where the Xinfengjiang Reservoir is located is primarily wa-
ter areas, with a higher water evaporation rate than other re-
gions, resulting in a greater GWF in this area than in the other
regions. The annual GWS in the subbasins of DRB ranged
from 126 to 190.6 mm. The subbasins with higher GWS
are mainly located in the lower part of DRB (> 150 mm)
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Figure 4. Spatial distribution of the annual mean (a) precipitation, (b) temperature, and (c) potential evapotranspiration in DRB from 1960
to 2017. Each triangle represents the Mann–Kendall test result at a meteorological station.

(Fig. 5c). The distribution pattern of GWS resources has a
close relationship with the soil type of the watershed. The
upper reaches and the northwestern part of the watershed are
mostly red soil, while the middle and lower reaches are dom-
inated by reddish soil. Reddish soil has a smaller water stor-
age capacity than red soil, loses water faster, and has weaker
water conservation and water supply performance than red
soil. This is the primary factor in the north–south discrep-
ancies in the number of GWS resources in DRB. In addi-
tion, the southern region mostly has large- and medium-sized
cities. As urban construction land expands, the land use type
in the region gradually changes to urban land and industrial
land and the solidification of road surfaces reduces the area
of bare soil in the region, resulting in a decrease in GWS re-
sources. The annual GWI (Fig. 5d) showed a spatial pattern
opposite to BW, decreasing from 0.45 in the upper reaches
to 0.3 in the lower reaches. The highest GWI is found in
the upper reaches, which is due to the relatively low rain-
fall in the upper reaches and the lush vegetation with signifi-
cant plant interception and transpiration, resulting in a higher
proportion of total evapotranspiration than in the middle and
lower reaches. The central part of the basin has the highest
precipitation, leading to a lower GWI. The southern part of
the watershed has the highest temperature, and the evapotran-
spiration is high. Meanwhile, the lower reaches have a large
proportion of agricultural and urban land, and crop irrigation
can increase evapotranspiration.

In DRB, there was no significant increasing trend in either
BW or GWS, while GWF exhibited a significant decreasing
trend. The annual trend rate of BW in DRB was 0.14 mm a−1,
with an annual fluctuation range of 713.6–2017.5 mm during
1970–2017. The minimum BW occurred in 1991, while the
maximum BW was recorded in 2016 (Fig. 6a). The GWF
in DRB from 1970 to 2017 exhibited a significant decreas-
ing trend (−0.57 mm a−1) (Fig. 6b). The minimum GWF oc-

Figure 5. Spatial distribution of the mean (a) BW, (b) GWF,
(c) GWS, and (d) GWI in DRB over 1970–2017.
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curred in 2005 (603.1 mm), while the maximum GWF was
recorded in 1974 (721.3 mm). In contrast, the GWS in DRB
from 1970 to 2017 has been slowly increasing at a rate of
0.015 mm a−1 (Fig. 6c). The annual fluctuation in GWS was
smaller than BW and GWF. The GWI in DRB from 1970
to 2017 showed no significant decreasing trend at a rate of
−0.0003 % a−1 (p > 0.05) (Fig. 6d), implying that the redis-
tribution of precipitation in DRB might change slowly.

3.4 Blue and green water scarcity

The average blue water scarcity level in DRB was low
(22.4 %) during 1970–2017. The blue water scarcity levels
in various subbasins ranged from 0.1 % to 206 %. The mul-
tiyear average blue water scarcities, except for one subbasin
in the southwest, were all low (< 100 %) (Fig. 7a). This in-
dicates that blue water scarcity is not common in DRB at the
annual scale. Regions with relatively high blue water scarcity
(> 20 %) are mostly situated in the upper reaches of various
tributaries within the watershed, where river streamflow is
relatively low. The area with the highest blue water scarcity
(206 %) is located in the 63rd subbasin of Shenzhen and
Huizhou, reaching a moderate level of blue water scarcity.
This region has a large population, with a much higher blue
water demand than other areas. Additionally, this subbasin is
situated in the upper reaches of the primary tributary of DRB,
resulting in a limited supply of BW resources. Although the
northern parts of subbasins 55, 56, and 61 have large popu-
lations, these subbasins are situated downstream of the main
Dongjiang River with a higher streamflow, leading to lower
BWSC levels. The average GWSC in the entire basin from
1970 to 2017 was low (41.4 %). The blue water scarcity lev-
els in the various subbasins ranged from 31 % to 104 %. The
vegetation cover in DRB is high, and DRB thus has rela-
tively high rates of vegetation transpiration and interception
evaporation. The basin experiences a GWSC of nearly 50 %,
indicating a potential occurrence of GWSC. The areas with
higher GWSC are primarily situated in the middle reaches
for DRB (Fig. 7b), where water surface evaporation is high,
resulting in their GWSC exceeding 100 %. The evaporated
water in these areas originates from the reservoirs, not the
soil, leading to an overestimation of the GWSC in these sub-
basins.

Furthermore, the FLK index was used to quantify
population-driven water resource scarcity. F1–F4 represent
absolute scarcity, scarcity, stress, and no stress, respectively.
The results showed that most regions in DRB have no water
scarcity pressure (Fig. 7c). However, the 63rd subbasin expe-
rienced absolute water scarcity and the 52nd subbasin expe-
rienced water scarcity. There were six lower-reach subbasins
and four upper-reach subbasins facing water stress. DRB re-
ceives ample precipitation, resulting in a relatively large river
flow and generally leading to a higher FLK index. As a result,
the basin faces lower water resource pressure.

This study also further identified hotspots of BWSC and
GWSC in DRB using hierarchical clustering of BWSC and
GWSC in each subbasin. Figure 8 shows the clustering tree
results for BWSC and GWSC. When the standardized dis-
tance was set to 500, all the subbasins could be divided into
four categories according to blue water scarcity: (1) the first
category consisted of 27 subbasins, such as 32, 56, and 28,
where the blue water scarcity level was lowest (< 20 %).
(2) The second category comprised subbasin 63, which has
the most severe blue water scarcity (206 %). (3) The third cat-
egory comprised seven subbasins, such as 52, 58, and 60, all
located in the lower reaches, with relatively high blue water
scarcity levels (40 %–100 %). These subbasins are mostly lo-
cated in the tributaries of the lower reaches, with a relatively
large population and smaller river streamflow compared to
the mainstem of the Dongjiang River. (4) The fourth category
consisted of 28 subbasins, such as 59, 62, and 8, with blue
water scarcity levels ranging from 20 % to 40 %. Similarly,
hierarchical clustering was conducted for GWSC. When the
standardized distance was set to 500, GWSC in the subbasins
could be divided into three categories: (1) the first category
consisted of 56 subbasins, such as 37, 56, and 29, with rel-
atively low GWSC levels, all below 50 %, indicating low
GWSC. (2) The second category consisted of subbasins 32
and 33, where the predominant land use type was water ar-
eas, leading to higher GWSC due to high water surface evap-
oration. (3) The third category consisted of subbasins 47, 31,
54, 30, and 36, where the water area proportion in these sub-
basins was larger than in the others, leading to significant
influences from water surface evaporation. Figure S4 shows
the annual variation of blue water scarcity and green water
scarcity in the basin. Except for some subbasins, the blue
and green water scarcity in most of them is less than 50 %.
The degree of green water scarcity is higher than that of blue
water scarcity in most of the subbasins. Only subbasin 63
downstream experienced a severe blue water scarcity.

The interannual variations in BWSC and GWSC in DRB
showed distinct regional differences. The BWSC in the basin
slowly increased at a rate of 0.3 % a−1 (Fig. 9a). The BWSC
in the lower reaches slowly increased at a rate of 1.1 % a−1,
while the BWSC in the upper and middle reaches slowly de-
creased at −0.47 % a−1 and −0.1 % a−1, respectively. The
GWSC in the upper, middle, and lower reaches of DRB
showed a decreasing trend, with the basin-scale GWSC de-
creasing significantly at a rate of −0.04 % a−1 (Fig. 9b). De-
spite the acceleration of urbanization and a significant in-
crease in population in the middle and lower reaches of the
watershed, blue water availability and the amount of obtain-
able BW have been increasing. Additionally, the annual per
capita water consumption in the basin has decreased from
481.0 m3 in 2000 to 245.0 m3 in 2020. As a result, the rate of
increase in BWSC in the watershed has been relatively small.
In contrast, the GWF in DRB demonstrated a significant de-
creasing trend, and the GWS increased slowly. Therefore, the
GWSC in DRB demonstrated a significant decreasing trend.
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Figure 6. Interannual variation of (a) BW, (b) GWF, (c) GWS, and (d) GWI in DRB during 1970–2017.

Figure 7. Spatial distribution of the mean (a) BWSC, (b) GWSC, and (c) FLK index in DRB over 1970–2017.

Meanwhile, the FLK index of the watershed showed a signif-
icant decreasing trend (−285.3 m3 yr−1), which means that
the per capita water resources in the watershed have signifi-
cantly decreased (Fig. 9c). This is due to the rapid population
growth in the watershed and the slow increase in available
water resources.

3.5 Impacts of LUCC and climate change on blue and
green water

To examine the impacts of climate change and LUCC on
BW and GW change, this study set three climate conditions
and land use scenarios to explore this effect by comparing
the scenarios (Table 3). The combined impacts of climate

change and LUCC on BW and GWS in DRB were super-
imposed, and the combined effect on GWF was a negatively
synergistic effect. Figure 10 shows the variations in BW
and GW under the impacts of climate change (S2–S1) and
LUCC (S3–S2), their combined effects (S3–S1), and the rel-
ative contributions of climate change and LUCC to the BW
and GW changes in DRB during 1970–2017. Under the joint
influences of climate change and LUCC, BW decreased by
4.5 mm a−1. Of this decrease, climate change resulted in a
loss in BW of 3.9 mm a−1, contributing 88.0 %, while LUCC
led to a loss in BW of 0.5 mm a−1, contributing 12.0 %
(Fig. 10a). The effect of climate change on BW variation is
much greater than that of LUCC at the basin scale. Under
the combined influences of climate change and LUCC, GWF
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Figure 8. Hierarchical clustering tree of (a) BWSC and (b) GWSC.

decreased by 17.0 mm a−1. Of this decrease, climate change
accounted for a decrease in GWF of 19.5 mm a−1, contribut-
ing 88.5 % to the decrease, while LUCC led to an increase in
GWF of 2.5 mm a−1, contributing 11.5 % (Fig. 10b). Overall,
the influence of climate change on GWF changes in the wa-
tershed is significantly more pronounced than that of LUCC.
Under the joint influences of climate change and LUCC,
GWS increased by 0.7 mm a−1. Of this increase, climate
change contributed to an increase in GWS of 0.3 mm a−1, ac-
counting for 39.4 %, while LUCC contributed to an increase
in GWS of 0.4 mm a−1, accounting for 60.6 % (Fig. 10c).
DRB is situated in a humid region with high GWS, result-
ing in small fluctuations of GWS in response to precipitation
changes. The fluctuations of GWS are primarily influenced
by soil properties and land use. In general, the effect of cli-
mate change on the GWS change in DRB is smaller than the
effect of LUCC.

Under the coupled influences of climate change and
LUCC, the BW and GW resources in DRB have changed.
However, there were differences in the joint impacts of cli-
mate change and LUCC on BW and GW. Both climate
change and LUCC have led to the decrease in BW in the
watershed, and the combined effect of climate change and

LUCC on BW equals the sum of their individual effects. Cli-
mate change, such as a decrease in potential evapotranspira-
tion, has resulted in a decrease in GWF in DRB, while LUCC
has led to an increase in GWF. Therefore, the joint impacts
of climate change and LUCC on GWF were partially offset,
resulting in the joint impacts of climate change and LUCC
on GWF being less than the sum of their absolute individ-
ual effects. Both climate change and LUCC have led to an
increase in GWS in DRB, and the joint impacts of climate
change and LUCC on GWS equal the sum of their individual
effects.

4 Discussion

This study used the SWAT model to simulate changes in BW
and GW resources in DRB over the past 5 decades and their
responses to climate change and LUCC. It also assessed wa-
ter resource security in the basin. The findings revealed that
GWF exhibited a decreasing trend and that BW and GWS ex-
hibited an increasing trend. Liu et al. (2010) similarly found
an increasing trend in annual surface runoff in DRB. Poten-
tial evapotranspiration in DRB showed a decreasing trend,
which may be the main cause of the significant decrease
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Figure 9. Interannual variation of (a) BWSC, (b) GWSC, and (c) the FLK index in DRB during 1970–2017.

in GWF in the basin (Fig. S3), and similar conclusions are
drawn in He et al. (2013).

We show that water resources in DRB are dominated by
BW with a mean annual GWI of 0.4, which is the same as
what many studies show in humid areas (Nie et al., 2023).
Although the GWI in humid areas is much smaller than that
in arid areas, the ratio of GW in DRB still reaches 40 %, so it
is imperative to incorporate GW into the water resource as-
sessment system. The GWI in the upper and middle reaches
of DRB exceeded 0.4, while that in the lower reaches was
only about 0.3. These results mean that, to ensure the appro-
priate utilization of water resources, effective water manage-
ment in the upper and middle reaches of DRB should con-
sider GW planning, while water management in the lower
reaches should mainly consider BW. The assessment results
of BWSC and GWSC in DRB similarly illustrate this issue.
The GWSC in the upper and middle reaches was bigger than
that in the lower reaches of DRB, while the BWSC in the
lower reaches of DRB was bigger than in the upper and mid-
dle reaches (Fig. 9).

There are robust correlations between BW and precipita-
tion, GWF, and potential evapotranspiration in DRB. Climate
change plays a dominant role in variations of BW and GWF.
BW is more sensitive to precipitation and potential evapo-
transpiration. GWF shows sensitivity to changes in potential

evapotranspiration, and GWS is influenced by both precipita-
tion and potential evapotranspiration (Ahiablame et al., 2017;
He et al., 2015). Of course, some studies in arid regions show
that GWF is mainly affected by precipitation (Ahiablame et
al., 2017), which may be linked to the hydrothermal condi-
tions of the basin. There is sufficient precipitation in DRB,
where the GWF changes are mainly energy-limited and the
effect of precipitation on GWF is smaller.

Although BW and GW are mainly affected by climate
change, the influences of LUCC on them cannot be ignored.
The reaction of water resources to LUCC is exceedingly in-
tricate and involves various hydrological processes, includ-
ing runoff yield, infiltration, and groundwater (Cuo, 2016;
Zhang and Shangguan, 2016). As there is a strong compen-
satory effect of diverse land use in the hydrological sys-
tem, particularly in expansive watersheds, this could create
a strong resistance to GW and BW conversion (Lin et al.,
2015). A decrease in forest land or an increase in cultivated
and urban land could lead to a rise in BW and a decline
in GW in the watershed. Veettil and Mishra (2018) demon-
strated that there is a 10 % rise in forest land cover and a
1.4 % drop in BW, indicating a negative elasticity between
the two. However, the effect of urban land on streamflow
in different periods showed the opposite effect. On the one
hand, the increase in urban land results in increases in imper-
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Figure 10. Effects and relative contribution of climate change and
LUCC to the changes in (a) BW, (b) GWF, and (c) GWS in DRB
during 1970–2017.

meable area and thus surface runoff in the basin, but at the
same time the increase in urban land may also reduce ground-
water discharge to streamflow. At the same time, LUCC often
results in changes in vegetation. Vegetation variations affect
the water cycle by altering canopy interception (Shao et al.,
2018; Wu et al., 2019b), transpiration (Chen et al., 2023),
and canopy evaporation and ameliorating soil structure (Qiu
et al., 2022). Therefore, increasing vegetation often increases
infiltration and soil moisture and reduces surface runoff.

There are several limitations and uncertainties in this
study. (1) Since the quantity of the BW and GW is derived
from the output results of the model simulations, including
water yield, ET, soil moisture, and groundwater, the preci-
sion of the outcomes depends largely on the precision of the
model simulations. Given the absence of observed evapotran-
spiration and soil moisture data for DRB, this study cali-
brated and validated the SWAT model using only monthly
streamflow, which may weaken these results to some extent.
To enhance the credibility of the model, this study also uti-
lized widely used actual evapotranspiration data (GLEAM)

and soil moisture (ERA5-Land) during model validation at
a basin scale. The findings indicated that the simulation per-
formance is relatively good and meets the accuracy require-
ments for simulation. (2) Climate change, LUCC, and large
reservoir operation are the primary factors influencing the
changes in hydrological conditions in DRB. The contribu-
tions of reservoir regulation, LUCC, water resource utiliza-
tion, and climate change to the distribution of intra-annual
flow are 33.5 %, −9 %, 4.5 %, and 1 %, respectively, during
1956–2009 (Tu et al., 2015). The operation of reservoirs, in-
cluding large reservoirs like the Xinfengjiang Reservoir, is
one important reason for hydrological changes in DRB (Lin
et al., 2014; Zhang et al., 2015). The reservoir module was
not established when constructing the SWAT model in this
study. To obtain natural BW and GW volumes in the water-
shed and mitigate the impact of hydraulic engineering, re-
constructed natural streamflow based on observed flow was
utilized for model calibration and validation. However, hy-
draulic engineering significantly influences the annual allo-
cation of BW. The flow restoration considered the impacts of
the three major reservoirs on the Dongjiang River and did not
consider the impacts of other minor hydraulic projects and
human water consumption. (3) The calculations of BWSC
and the FLK index both include environmental flows. This
study represented the proportion of environmental flow in
streamflow as 80 %. Some studies have suggested that as-
suming environmental flow to be 80 % of the total water
resources in a basin may overestimate water scarcity (Liu
et al., 2017; Richter et al., 2012). Therefore, we varied the
proportion of environmental flow and assessed the degree of
BWSC using 60 % and 70 % proportions. Results show that
only the 63rd subbasin changed from severe BWSC to mod-
erate to high BWSC, while other subbasins remained with
low BWSC. Therefore, the threshold for environmental flow
has a minor impact in this paper. The assessment of BWSC
and per capita water resources did not take into account the
water demand of cities such as Shenzhen and Hong Kong, al-
though the water supply for these cities primarily comes from
the Dongjiang River through the Dongjiang–Shenzhen Water
Supply Project. (4) The hydrological modeling approach uti-
lized in this study is a frequently used method for quantitative
analysis of attribution. Nevertheless, it implies independence
between climate change and LUCC and does not adequately
distinguish between the impacts of these two components.
Such restrictions are diffusely recognized as existing (Dey
and Mishra, 2017). Despite this recognized limitation, hydro-
logical modeling methods have been widely used in numer-
ous similar studies, yielding credible results (Li et al., 2021;
Nie et al., 2023).

5 Conclusion

This study analyzed the spatiotemporal evolution of BW and
GW, assessed the water security, and evaluated the effects of
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climate change and LUCC on BW and GW in DRB using the
SWAT model. The conclusions can be outlined as follows:

1. During 1970–2017, grassland, cultivated land, and for-
est land in DRB decreased by 4.3 %, 10.8 %, and 0.2 %,
respectively, while urban land and water areas increased
by 137 % and 2.8 %, respectively. The annual precipi-
tation and potential evapotranspiration showed a non-
significant decreasing trend, while the annual average
temperature showed a significantly increasing trend.

2. The annual BW, GWF, and green storage in DRB
from 1970 to 2017 were 1240.8, 840.7, and
151.4 mm, respectively. BW (0.14 mm a−1) and
GWS (0.015 mm a−1) in DRB showed no significant
increasing trend, and GWF (−0.57 mm a−1) showed a
significant decreasing trend.

3. The levels of the annual BWSC and GWSC in DRB
were low, and per capita water resources exceeded
1700 m3 per capita per year. BWSC displayed a non-
significant increasing trend, while GWSC and the FLK
index displayed a significant decreasing trend, espe-
cially in the lower reaches.

4. Climate change was the major driving factor of changes
in BW and GWF, and LUCC was the major driving fac-
tor of GWS change. Climate change contributed 88.0 %,
88.5 %, and 39.4 % of the changes in BW, GWF, and
GWS in DRB. Both climate change and LUCC decrease
(increase) BW (GWS), while climate change (LUCC)
decreases (increases) GWF in DRB.
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