Hydrol. Earth Syst. Sci., 29, 4251-4279, 2025
https://doi.org/10.5194/hess-29-4251-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydrology and
Earth System
Sciences

Enhancing inverse modeling in groundwater systems through
machine learning: a comprehensive comparative study

Junjun Chen'?, Zhenxue Dai*>?, Shangxian Yin*, Mingkun Zhang’, and Mohamad Reza Soltanian

6

INational and Local Joint Engineering Laboratory of Internet Application Technology on Mine,

China University of Mining and Technology, Xuzhou, 221008, China

2College of Construction Engineering, Jilin University, Changchun, 130026, China

3School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 273400, China
4College of Safety Engineering, North China Institute of Science and Technology, Langfang, 065201, China
>Shandong Ruyi Technology Group Co., Ltd., Jinan, 250000, China

®Departments of Geosciences and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45220, USA

Correspondence: Zhenxue Dai (dzx @jlu.edu.cn) and Shangxian Yin (yinshx03@ 126.com)

Received: 12 October 2024 — Discussion started: 6 December 2024
Revised: 9 June 2025 — Accepted: 16 June 2025 — Published: 10 September 2025

Abstract. Tandem neural network architecture (TNNA) is a
machine learning algorithm that has recently been proposed
for estimating uncertain parameters with inverse mappings.
However, its reliability has only been validated in limited re-
search scenarios, and its advantages over conventional meth-
ods remain underexplored. This study systematically com-
pares the performance of the TNNA algorithm to four tra-
ditional metaheuristic algorithms across three heterogeneity
scenarios, each employing a specific inversion framework:
(i) a surrogate model coupled with an optimization algo-
rithm for cases with eight homogeneous parameter zones,
(i1) Karhunen-Loeve expansion (KLE)-based dimensionality
reduction combined with a surrogate model and an optimiza-
tion algorithm for a high-dimensional Gaussian random field,
and (iii) generative machine-learning-based dimensionality
reduction integrated with a surrogate model and an optimiza-
tion algorithm for a high-dimensional non-Gaussian random
field. Additionally, we evaluate algorithm performance un-
der two different noise-level conditions (multiplicative Gaus-
sian noise with standard deviations of 1% and 10 %) for
normalized hydraulic head and solute concentration data in
the non-Gaussian random field scenario, which exhibits the
most complex parameter characteristics. The results demon-
strate that both the TNNA algorithm and the metaheuristic
algorithms achieve inversion results that satisfy the conver-
gence accuracy within these machine-learning-based inver-
sion frameworks. Moreover, under the 10 % high-noise con-

dition in the non-Gaussian random field, the inversion results
remain robust when sufficient constraints are imposed. Com-
pared to metaheuristic approaches, the TNNA method yields
more reliable inversion results with significantly higher com-
putational efficiency, highlighting the considerable advan-
tages of machine learning in advancing groundwater system
inversions.

1 Introduction

Numerical models are essential for quantifying flow and
mass transport dynamics within aquifers, providing signifi-
cant insights into hydrological and biogeochemical processes
(Steefel et al., 2005; Sanchez-Vila et al., 2010; Sternagel
et al., 2021; Xu et al., 2022). However, directly measuring
aquifer parameters, such as permeability fields, remains chal-
lenging due to limitations in the current hydrogeological ex-
ploration techniques and budgetary constraints (Yeh, 1986;
Kool et al., 1987; Beven and Binley, 1992; McLaughlin and
Townley, 1996; Dai and Samper, 2004; Castaings et al., 2009;
Chen et al., 2021). Inverse modeling has become a key ap-
proach for estimating these uncertain model parameters, im-
proving the accuracy of numerical simulations (Ginn and
Cushman, 1990; Carrera and Glorioso, 1991; Hopmans et al.,
2002; Zheng and Samper, 2004; Zhou et al., 2014; Bandai
and Ghezzehei, 2022; Abbas et al., 2024; Giudici, 2024).
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Inverse modeling within Bayesian theorem-based data
assimilation frameworks has garnered significant attention
from the hydrogeological community over the past few
decades (Scharnagl et al., 2011; Chen et al., 2013; Zhang
et al., 2018; Xia et al., 2021). Methods based on the mini-
mization of objective functions or the maximization of pos-
terior distributions require the application of optimization
techniques (Tsai et al., 2003; Blasone et al., 2007; Sun,
2013; Vrugt, 2016). One type is local optimization algo-
rithms, which update model parameters from initial guesses
towards optimal solutions according to gradient directions,
such as the Gaussian—-Newton method (Dragonetti et al.,
2018; Qin et al., 2022) and the Levenberg—Marquardt method
(Schneider-Zapp et al., 2010; Nhu, 2022). These methods
are highly efficient but may converge to local optima when
dealing with non-convex inversion problems. Another cat-
egory is to achieve global optima solutions through meta-
heuristic searches, which typically incorporate processes of
exploration (to search the entire parameter space for a di-
verse range of estimates) and exploitation (to leverage lo-
cal information to refine estimates). Popular metaheuristic
algorithms include the genetic algorithm (GA) (Ines and
Droogers, 2002; Lindsay et al., 2016), simulated annealing
(SA) (Kirkpatrick et al., 1983; Jaumann and Roth, 2018),
differential evolution (DE) (Li, 2019; Yan et al., 2023),
and particle swarm optimization (PSO) (Rafiei et al., 2022;
Trava$ et al., 2023). Nevertheless, their computational ef-
ficiency may be reduced by extensive exploration and ex-
ploitation processes in achieving globally optimal inversion
results. The efficiency of optimization algorithms can be en-
hanced by integrating them with adjoint methods, particu-
larly when extended to high-dimensional parameter spaces.
Adjoint methods are capable of efficiently computing gradi-
ents for all parameters simultaneously through solving ad-
joint equations derived from the original forward model
(Plessix, 2006). This gradient information can directly ac-
celerate local optimization algorithms (Epp et al., 2023)
and facilitate gradient-enhanced global optimization meth-
ods (Kapsoulis et al., 2018), significantly improving effi-
ciency in complex inverse problems. However, the practical
implementation of adjoint methods remains challenging due
to the complexity associated with deriving adjoint equations,
especially for highly non-linear system models (Xiao et al.,
2021; Ghelichkhan et al., 2024). The accurate and efficient
estimation of uncertain model parameters across various sce-
narios remains one of the most significant challenges for de-
veloping inversion frameworks.

In recent years, machine learning has experienced rapid
developments and demonstrated significant performance in
addressing complex problems characterized by high di-
mensionality and non-linearity (Hinton and Salakhutdinov,
2006; LeCun et al., 2015; Bentivoglio et al., 2022; Shen et
al., 2023). Integrating conventional inversion methods with
cutting-edge machine learning techniques has become in-
creasingly popular in addressing the challenges of inversion
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studies. One effective strategy is constructing surrogate mod-
els to accelerate forward simulations, ensuring that inversion
algorithms perform comprehensive searches across the entire
parameter space more efficiently (Razavi et al., 2012). For in-
stance, Zhan et al. (2021) identified lithofacies structures by
utilizing a deep octave convolution residual network to con-
struct a surrogate model for predicting solute concentrations
and hydraulic heads in heterogeneous aquifers. Wang et al.
(2021) constructed a subsurface flow surrogate model under
heterogeneous conditions through physically informed neu-
ral network methods, specifically for uncertainty quantifica-
tion and parameter inversion. Liu et al. (2023) constructed
a convolutional neural network (CNN) surrogate model to
combine with a hierarchical homogenization method to es-
timate the effective permeability of digital rocks. More re-
lated studies can also be found in recent reviews (Yu and Ma,
2021; Luo et al., 2023; Zhan et al., 2023). Additionally, due
to their inherent differentiability and continuity, deep neu-
ral network (DNN)-based surrogate models can be integrated
with adjoint equations, enabling efficient gradient computa-
tions and significantly facilitating their practical implementa-
tion in high-dimensional and complex scenarios (Xiao et al.,
2021).

In addition to surrogate models, parameter optimization
through machine-learning-based reverse mapping represents
another significant advancement in inversion techniques.
Previous studies have outlined at least two strategies to
achieve reverse mapping models. The first strategy is the
data-driven approach, where reverse regressions are trained
using datasets that comprise pairs of model outputs and in-
puts. For example, Sun (2018) developed a regression model
from hydraulic heads to heterogeneous conductivity fields
using a CNN-based generative adversarial network (GAN)
approach. Kuang et al. (2021) succeeded in the real-time
identification of earthquake focal mechanisms by training
a DNN regression on seismic waveform data. Yang et al.
(2022) established the relationship between gravity data and
CO; plumes to perform real-time inversion for geologic car-
bon sequestration. Another strategy is to train a reverse net-
work in tandem neural network architecture (TNNA), inte-
grated with a pre-trained surrogate model (i.e., forward net-
work). The TNNA method was introduced with the advent
of deep learning and has been successfully applied in com-
puted tomography reconstruction (Adler and Oktem, 2017),
nanophotonic structure inverse design (Liu et al., 2018; Ye-
ung et al., 2021), and photonic topological state inverse de-
sign (Long et al., 2019). Our previous research expanded the
application of the TNNA algorithm in groundwater science,
evaluating its performance in reactive transport inverse mod-
eling and improving inversion results by incorporating an
adaptive update strategy to reduce local predictive errors of
surrogate models. The findings indicated that accurate sur-
rogate model predictive results for the actual parameter val-
ues yield dependable TNNA inversion outcomes (Chen et al.,
2021).
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The TNNA algorithm demonstrates a fundamental advan-
tage by requiring only a single forward simulation to up-
date parameters in each iteration. In contrast, conventional
metaheuristic algorithms typically necessitate multiple for-
ward simulations. Despite the innovation of this approach,
its applicability in more general groundwater numerical sce-
narios and its performance compared to conventional meta-
heuristic algorithms remain uncertain. This study consid-
ers three cases with different heterogeneity characteristics to
compare the performance of the TNNA algorithm to four
conventional metaheuristic algorithms. In case 1, the do-
main is divided into a finite number of homogeneous zones.
The other two cases focus on high-dimensional parameter
fields based on the spatial variability of the aquifer. These
two cases are essential for revealing the dynamic behav-
iors of the groundwater system at the discrete grid scale.
Depending on the spatial variability of the aquifer struc-
ture, the two high-dimensional numerical cases character-
ize the heterogeneity of aquifer parameters using a Gaus-
sian random field (i.e., case 2) and a non-Gaussian random
field (i.e., case 3). The Gaussian random field is suited to
aquifers with a single lithofacies and relatively uniform phys-
ical structures, where the spatial variation of the parameter
values is quite smooth. In contrast, the non-Gaussian ran-
dom field accounts for the existence of a nugget effect in the
aquifer structure, such as when it contains multiple lithofa-
cies with varying hydraulic properties (Mariethoz and Caers,
2014). For a comparative study of the three cases, surro-
gate models will be used to accelerate the forward simula-
tion. Additionally, dimensionality reduction techniques are
necessary for the two high-dimensional cases to reduce the
computational complexity associated with high-dimensional
parameter spaces. Specifically, the Karhunen—Loeve expan-
sion (KLE) method is feasible for Gaussian random fields.
It reconstructs the Gaussian random field through a linear
combination of orthogonal basis functions, achieving dimen-
sionality reduction by retaining the dominant modes cor-
responding to the largest eigenvalues (Loeve, 1955; Zhang
and Lu, 2004; Mariethoz and Caers, 2014). However, the
second-order statistics relied upon by KLE are insufficient
to fully represent complex characteristics for non-Gaussian
random fields. In recent years, generative machine learning
methods have demonstrated outstanding performance in pa-
rameter field reconstruction (Mo et al., 2020; Zhan et al.,
2021; Guo et al., 2023). These methods can establish re-
lationships between low-dimensional standard distributions
(e.g., uniform distribution) and high-dimensional distribu-
tions, effectively representing non-Gaussian random fields
as low-dimensional latent vectors (i.e., parameters after di-
mensionality reduction). Thus, extending the TNNA frame-
work by integrating KLE and generative machine learning
methods, respectively, is a potentially feasible approach for
solving the high-dimensional heterogeneous aquifer param-
eter inversion problems presented in case 2 and case 3. In
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summary, the primary contributions of this study are as fol-
lows:

1. A novel inversion framework is proposed that inte-
grates the TNNA algorithm with dimensionality reduc-
tion techniques, including KLE for Gaussian stochas-
tic processes and generative machine learning methods
for non-Gaussian stochastic processes, thereby extend-
ing its applicability to high-dimensional heterogeneous
fields.

2. A comprehensive comparative analysis is conducted be-
tween the TNNA algorithm and four conventional meta-
heuristic algorithms across three case scenarios, high-
lighting the advantages of DNN-based reverse mapping
over metaheuristic stochastic search strategies for in-
verse estimation under different heterogeneous condi-
tions.

The sections of this paper are structured as follows: Sect. 2
introduces the fundamental principles of the methodology in-
volved in this study. Section 3 provides detailed information
on numerical models for the three cases. Section 4 presents
the results and discussions. Finally, Sect. 5 presents a sum-
mary and conclusions derived from this research, along with
recommendations for future studies.

2 Methodology

The inversion framework, based on non-linear optimiza-
tion theory, generally consists of two aspects: (1) construct-
ing non-linear constraints for the optimization of uncertain
model parameters and (2) establishing optimization algo-
rithms to search for the model parameters that satisfy these
constraints. The general form of the non-linear optimization
model in this paper is as follows:

obs 1 . o1
m = mind 1yl 31011
y =Fugp(m) @

mt <m<mY,

where yps € RVo»s*! and § € RVobs*! represent the ob-
served data vector and the corresponding model simulation
output vector, respectively. y ., [i] and y[i] refer to the ith
element of the observed and simulated vectors, respectively,
and o; denotes the standard deviation of the ith observed
data. m represents the vector of model parameters to be op-
timized; m* denotes the optimal parameter vector obtained
through optimization; and m" and mY are the vectors repre-
senting the lower and upper limit values of the model param-
eters, respectively. Fyr(-) represents the high-fidelity numer-
ical model.
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In this study, three different inversion frameworks are de-
veloped to compare the TNNA algorithms to four meta-
heuristic algorithms. In a low-dimensional parameter sce-
nario, a surrogate model Frorwara(+) is constructed to approx-
imate high-fidelity numerical prediction outputs. Therefore,
the objective function of the inversion framework integrated
with a surrogate model is as follows:

Nobs
m* = min Y — [ Yousli] = Frorwara (m)[i 11 )

i=1 "t

In high-dimensional parameter scenarios, directly optimizing
the model parameter m can lead to computational difficul-
ties due to its high dimensionality. To mitigate this issue, in
addition to constructing a surrogate model Fropwara(+) to im-
prove the computational efficiency of forward simulations,
dimensionality reduction algorithms are also integrated into
the inversion frameworks. Let m = G(z) represent an op-
erator for parameter dimensionality reduction, where z is a
low-dimensional vector whose parameter space is commonly
defined as an easily sampled probability distribution (e.g.,
standard Gaussian or uniform distribution). Specifically, the
Karhunen-Loeve expansion (KLE) and the octave convolu-
tion adversarial autoencoder (OCAAE) are used for repre-
senting Gaussian random fields and non-Gaussian random
fields, respectively. Once the low-dimensional vector repre-
sentation of the high-dimensional parameter is obtained, the
high-dimensional parameter m can be indirectly optimized
by estimating the low-dimensional vector z:

& =min) " °*f—[y0bg[z ~ Frorward(G)[i 117

m* = G(z%).

3

The basic mathematical theories of surrogate models, dimen-
sionality reduction techniques, and optimization algorithms
are introduced in Sect. 2.1-2.3, respectively.

2.1 Surrogate modeling methods

In this study, surrogate models Frorward(+) are developed us-
ing a data-driven strategy, as shown in Fig. 1. The process
begins by sampling model parameters from prior distribu-
tions. The corresponding system responses for these param-
eter samples are simulated using a high-fidelity numerical
model. Then, a training dataset consisting of paired model
parameters and responses is obtained, which is subsequently
used to construct surrogate models via supervised machine
learning. Specifically, four popular machine learning models
with distinct architectural differences are evaluated for surro-
gate modeling. These are multi-output support vector regres-
sion (MSVR), a kernel-based architecture for data mapping;
a fully connected deep neural network (FC-DNN), composed
of stacked fully connected layers; LeNet, a classical CNN
architecture proposed by Yann LeCun; and a deep residual
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convolutional neural network (ResNet), which incorporates
residual connections into the CNN structure.

The detailed principles of MSVR and the three deep-
learning-based methods are illustrated in the following two
subsections. The predictive accuracy of four surrogate mod-
eling approaches will be compared in this study, and the best-
performing approach among them will subsequently be se-
lected for inversion computations. Before constructing surro-
gate models, the training datasets are normalized separately
for each simulation component using min—-max normaliza-
tion, in which each component is scaled independently based
on its minimum and maximum values, ensuring that all nor-
malized values fall within the range [0, 1].

2.1.1 Multi-output support vector regression

MSVR is developed from the original support vector ma-
chine (SVM) for realizing multivariate regression (Pérez-
Cruz et al., 2002; Tuia et al., 2011). The mathematical ex-
pression is given as follows:

3 = Fusyr(m) = ¢(m)"W + B, )

where Fymsvr(+) denotes the dataset regression model opera-
tor constructed based on MSVR and ¢(m) is a non-linear re-
gression function that implicitly maps the input vector m into
a high-dimensional feature space. Its inner product defines
the kernel function K (m, m;). (Here, we use the Gaussian ra-
dial basis function (RBF) kernel with a bandwidth parameter
o: K(m,m;) =om)To(m;)=exp(—0.5 | m —m;|*/o?);
m; denotes the ith model parameter vector from the sur-
rogate model training dataset.) Assuming Ngmples denotes
the number of surrogate model training samples, the regres-
sion coefficients W = [w!, ..., wNobs]T g RNobs*Nsamples gpnd

= [bl, oy bNovs|T ¢ RNobs X1 gre determined by minimiz-
ing the structural risk, as outlined in Egs. (5) and (6):

W, B = argmin L(W, B)

1 No S / Nsam es
=52 el I+ CY 0 M L),

where C is a penalty parameter; and L(u) is a quadratic &-
insensitive loss function, expressed as

®)

u<e

0,
L) = { , ©)
(u _8) )

u287

where u; = ||e;|| = ,/eiTei; eiT = yiT — ¢ (m;)W — BT. For
e =0, this problem is equivalent to an independent regular-
ized kernel least squares regression for each component. For
e # 0, it becomes feasible to develop individual regression
functions for each dimension based on the model outputs
and to generate their corresponding support vectors. Solv-
ing the optimization problem directly is challenging, and the
desired solutions for W and B are determined using an itera-
tive reweighted least squares IRWLS) procedure, employing
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(a) The framework for data driven based surrogate model construction
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Figure 1. The framework for data-driven surrogate model construction and the machine learning models employed. Note that for CNN-based
surrogate models, the initial processing module is activated only for low-dimensional scenarios, whereas in high-dimensional scenarios, the
parameter matrix (1 X Ncepp X Ncep) is directly input into the CNN architecture.

the quasi-Newton approach. During the IRWLS process, the
term L(u) in Eq. (5) is first transformed into a discrete first-
order Taylor expansion, and the corresponding quadratic pro-
gramming approximation is constructed. Meanwhile, a lin-
ear expression is derived based on the principle that the first-
order derivatives of the objective function with respect to W
and B are zero. Finally, the optimal values of W and B are
obtained through a line search. Further details on the IRWLS
procedure can be found in Sanchez-Fernandez et al. (2004).

The performance of the MSVR model is influenced by
three hyperparameters: C, o, and ¢ (Ma et al., 2022). This
study optimizes these hyperparameters by minimizing the
root mean square error (RMSE) using the four metaheuris-
tic algorithms introduced in this study.

2.1.2 Deep-learning-based surrogate models
(1) DNN architectures

The three DNN models are all feedforward neural networks,
which are generally constructed by stacking multiple hidden
layers. The structure can be expressed as Fpnn(m, 0pnn) =
Sran G- f1( .. f1(m))). Specifically, Fpnn(-) and pnn rep-
resent the DNN-based surrogate model operator and the cor-
responding trainable parameters, respectively. fj(-) denotes
the non-linear transformation function of the /th layer, and
Lnn indicates the total number of neural network layers.
In DNN model construction, various neural network layers
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can yield diverse DNN models, resulting in different predic-
tive performances (LeCun et al., 2015). For the DNN mod-
els adopted in this study, the involved neural network types
are the fully connected layer, the convolutional layer, and the
residual block layer.

In fully connected layers, both input and output layers are
in vector forms. Assume Xinput € R™*! is the input vector
and Xoutput € R™*1 g the output vector of the /th fully con-
nected layer fj(-). The transformation in this fully connected
layer is expressed as

Xoutput = fl(Xinput’ 0) = fo—l (WDNNXinput +Bpnw), (1)

where f,_;(-) is a non-linear active function, Wpnn € R™*”
is the weight matrix, and Bpnn € R”*! is the bias vector.

In a convolutional layer, both the input and output are in
matrix forms. A convolutional layer transfers information
through sparse connections by several convolution kernels,
essentially small matrices. The mathematical formula of a
convolutional layer is as follows (Wang et al., 2019; Jardani
etal., 2022):

g ¥
R = fooi | YD wl xurivrj+0 |, ®)

i=1j=1

where x, , is the pixel value at position (u, v) of the input
matrix and hz,v (xu,v) 1s the output feature calculated by em-
ploying the gth (g =1, ..., Noy) convolutional kernel filter
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w? e Rk;Xk;’ . In a convolutional layer with Ny filters, the
output matrix contains Ny feature layers. The output size
(Sout) of each convolutional layer is determined by the input
size (Sin) and the hyperparameters (i.e., zero padding p, ker-
nel size k’, and stride s). A pooling layer is often used after
a convolutional layer to remove redundant information from
the extracted features and to improve the efficiency of model
training (Chen et al., 2021).

The residual block is a fundamental component of residual
networks (ResNets), designed primarily to mitigate the van-
ishing and exploding gradient problems commonly encoun-
tered during DNN training. A residual block learns a residual
mapping, defined as

R(Xinput, 0r) = H(Xinput) - T(Xinput)v 9

where @ r represents the trainable parameters of a residual
block, R(-) is the residual function, H(-) denotes the target
mapping that the residual block aims to approximate, and
T'(-) is chosen as an identity transformation (i.e., T Xjnput) =
Xinput) or another suitable transformation depending on the
network architecture. The output of the residual block is
computed as

Xoutput = fo—R(R(Xinputy Or)+ T(Xinput)), (10)

where f;_gr(-) is the activation function of the rectified lin-
ear unit (ReLU). Such a design ensures that the output of
the residual block at least approximates the input, effectively
addressing the vanishing gradient problem. When stacking
multiple residual blocks, the relationship between the Lth
residual block in a deeper layer and the /th residual block
is expressed as follows (He et al., 2016):

L—1

Xoutput(z) = Xinput() + Y RXoutput(i)» 0 k(1) an
i=l

where Xinputi) and 0g(;) denote the input data and train-
able parameters of the ith residual block, respectively, and
Xoutput(z) Tepresents the output from the Lth residual block.
According to the chain rule in derivatives, the gradient of the
loss function Jres with respect to Xjnputy can be given by

aJ Res aJ Res
Gl Xinput(l ) d Xoutput(L)

9 L-1
o~ Roupuy 7))
X< +3Xinput(l)zzl Xoupuci R(‘))>

12)

This formulation highlights two key properties of the residual
network. First, the gradient does not vanish during network
training processes because the term

9 L—1
BXinput(l) ; input(i) @)
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is never equal to —1. Second, the gradient of the deepest
residual block dJRes/dXoupu(z) can directly affect all pre-
ceding layers, ensuring the effective transmission of gradi-
ents throughout the network (Chang et al., 2022).

Based on the three unique network layer structures de-
scribed above, the FC-DNN, LeNet, and ResNet models are
constructed. The FC-DNN of this study is constructed using
fully connected layers, and each hidden layer consists of 512
neurons. The activation function for the output layer is the
Sigmoid function, which constrains outputs within the range
of 0 to 1. Note that other activation functions whose outputs
ranges include [0, 1] as a subset, such as the hyperbolic tan-
gent (—1 to 1) and ReL.U (0 to +00), could also be adopted.
However, we specifically selected the Sigmoid function to
strictly constrain initial model outputs within the target range
(0 to 1), thereby reducing the risk of occasional extreme
or anomalous predictions, particularly in the early stages of
training. For hidden layers, the Swish activation function is
adopted due to its smooth form with non-monotonic and
continuously differentiable properties, which helps to im-
prove the DNN training procedures (Elfwing et al., 2018).
The performance of the FC-DNN is sensitive to the number
of hidden layers, whose optimal value is determined based
on specific case studies presented in the application section.
For the LeNet and ResNet models, when dealing with low-
dimensional scenarios, an initial processing module consist-
ing of a fully connected layer followed by a reshaping op-
eration is added to convert the input vector into a fixed-size
matrix. In contrast, for high-dimensional parameter scenar-
ios, the discrete grid matrix of the parameter field is directly
input into the CNN architecture (see Fig. 1b). Specifically,
LeNet consists of two convolutional blocks and two fully
connected layers. Each convolutional block consists of a con-
volutional layer followed by a max-pooling layer. The fully
connected layers have 1024 and 512 neurons, respectively.
ResNet consists of four stages, and two different Res blocks
are adopted. The first stage includes two residual units with-
out down-sampling, while the remaining three stages each
have one residual unit with down-sampling and one resid-
ual unit without down-sampling. Activation functions in all
layers are rectified linear units (ReLUs), except for the output
layer, where Sigmoid activation is used. Detailed architecture
information for LeNet and ResNet is provided in Figs. S1
and S2 in the Supplement, respectively.

(2) DNN model training

The surrogate models are trained by minimizing the differ-
ence between the predicted outputs y; = Fpnn(m;, OpNN)
and the corresponding numerical model outputs y; in the
training datasets (i = 1,..., Nsamples). Following prior stud-
ies (Mo et al., 2019, 2020; Chen et al., 2021), the L1 norm-
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based loss function is adopted and formulated as

. Neamples
* samples
OpNN = argmin ] Zi:l [FoNN (i, ODNN) — ;]
samples

w
+ 7d9ENN0DNN,
(13)

where wq is the weight decay to avoid overfitting, referred
to as the regularization coefficient. It should be noted that the
L2 norm can also be employed as a loss function in construct-
ing surrogate model tasks. Due to its squared-error formula-
tion, the L2 norm provides smoother gradients and more sta-
ble parameter updates near convergence compared to the L1
norm; however, this formulation also makes it more sensitive
to extreme outliers. When the sampled parameters sparsely
cover the parameter space, adopting the L1 norm loss func-
tion can improve the robustness of surrogate model predic-
tions. This study implemented the DNN models using Py-
Torch (https://pytorch.org/, last access: 10 September 2024).
The neural network weights were initialized using the de-
fault initialization method of PyTorch and optimized using
the stochastic gradient descent method via the Adam algo-
rithm. Specifically, the hyperparameter of weight decay can
be set directly in the Adam optimizer without including it
explicitly in the loss function.

When conducting DNN training, the hyperparameter se-
lection primarily influences the update process of trainable
parameters. Besides the weight decay mentioned above, the
learning rate and the number of epochs are two other cru-
cial hyperparameters directly affecting the training stability
and convergence speed. A higher learning rate accelerates
initial convergence but may lead to oscillations near the opti-
mal solution, whereas a lower learning rate tends to improve
final accuracy but requires more epochs to achieve conver-
gence. In this study, we first set a relatively high number of
epochs to ensure that the trainable parameters are adequately
updated. Subsequently, appropriate learning rates and weight
decay values for different scenarios are determined through
a trial-and-error approach.

2.2 Dimensionality reduction methods

2.2.1 Karhunen-Loeve expansion for Gaussian
random field

Let Yg(s) ~ N(pg(s)C(:,-)) represent a Gaussian random
field, where g denotes the mean of the random field
and C(-,-) represents the exponential covariance function
between two arbitrary spatial points s = (sy,s,) and s’ =
(8%, s/y). The covariance function for these two spatial loca-

tions is given by
s0\°
s ) . (14

2
C(s,s') =cexp| — S5 =S + el
’ G Ax Ay
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where ¢ is the variance and A, and A, are the correlation
lengths along the x and y directions, respectively. Since the
covariance matrix is symmetric and positive definite, the ex-
ponential covariance function in Eq. (14) can be decomposed
into an eigenvalue-eigenfunction representation. By solving
the second-kind Fredholm integral equation and performing
eigenvalue decomposition, the Gaussian random field can be
expressed through the Karhunen-Loeve expansion (KLE) as
follows:

Ya(s) = ng) + Y _zivAigi(s), (15)

i=1

where z; represents a random variable following a Gaussian
distribution of z; ~ N(0, 1), also known as a KL term; and
¢;(s) and A; denote the eigenfunction and eigenvalue, respec-
tively. For discretized numerical models, the index i takes
values from 1 to n, representing the number of discrete grid
points (e.g., in Eq. 15, oo is replaced by n). Dimensional-
ity reduction using KLE is achieved through a truncated ex-
pansion (Loeve, 1955; Zhang and Lu, 2004; Mariethoz and
Caers, 2014).

2.2.2 Octave convolution adversarial autoencoder for
non-Gaussian random field

The octave convolutional adversarial autoencoder (OCAAE)
is a generative machine learning approach that combines
the variational autoencoder (VAE) with adversarial learning,
leveraging octave convolution neural networks (Zhan et al.,
2021). It consists of three main components: an encoder,
a decoder, and a discriminator. The encoder maps a high-
dimensional parameter field m; to a low-dimensional latent
vector z;. The distribution of the latent vectors {z1,...,Zn},
obtained by mapping the N prior model parameter samples
{my,...,mpy}, is denoted as z ~ q(z). Specifically, the en-
coder outputs two low-dimensional vectors: the mean vec-
tor g, and the log-variance vector ln(ag) of the latent vec-
tor z. Then, a vector z’ is randomly drawn from a stan-
dard normal distribution N(0, I), and the latent vector is pro-
duced as z = p,+0, xz'. The decoder reconstructs the high-
dimensional parameter field m by taking the latent vector z
as input. The discriminator enforces adversarial training, en-
suring that the encoded latent vector distribution z ~ q(z)
approximates a prior Gaussian distribution z ~ p(z). It re-
ceives input from the latent vectors generated by the encoder
Z ~ ¢(z) or from the prior distribution z ~ p(z), and it dis-
criminates which distribution the input latent vector origi-
nates from.

This adversarial framework enhances the generative capa-
bility and ensures smooth transitions between different field
realizations. In the adversarial autoencoder method, the en-
coder G(-) (which also acts as the generator of the adversarial
network), decoder, and discriminator D(-) are trained jointly
in two phases during each iteration: the reconstruction phase
and the regularization phase.
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In the reconstruction phase, the encoder and decoder are
updated using the following loss function:

I N -
Lep =NZZ.=1 m; —m;]l;

1
— Waay (NZL 1 log{D[g<m,->]}) ,

where w,qy is a weight balancing the reconstruction and ad-
versarial losses (set to 0.01 in this study), m; is the recon-
structed sample of m;, and N is the number of training sam-
ples.

In the regularization phase, the discriminator is trained
to distinguish real latent vectors from the prior distribution
based on the following loss function:

(16)

1 N
Lo=— ;{log[D(Zi)] +log[1 — D1[G (m;)]}. )

This loss function helps the discriminator to distinguish be-
tween the latent vector z; (from the true distribution p(z))
and the fake latent vector produced by the encoder G(m;).

The constraint loss functions in the adversarial au-
toencoder framework ensure that the reconstructed high-
dimensional parameter field m closely matches the origi-
nal field m, while also making sure that the distribution
of the low-dimensional latent vector z approximates a pre-
defined standard normal distribution p(z). After finishing
the training process, it is possible to sample from the low-
dimensional space of p(z) and to use the decoder to gener-
ate corresponding high-dimensional parameter fields. Then,
the high-dimensional parameter field can be reconstructed
by indirectly estimating the low-dimensional latent vectors
(Makhzani et al., 2015; Mo et al., 2020).

2.3 Optimization algorithms
2.3.1 Metaheuristic algorithms

The four metaheuristic algorithms used in this paper es-
sentially update model parameters through distinct heuris-
tic stochastic search strategies. Specifically, particle swarm
optimization (PSO) updates the model parameters m based
on the personal best position of the particles and the global
best position of the swarm (Eberhart and Kennedy, 1995).
Genetic algorithm (GA) encodes the initial model parame-
ter samples using binary encoding, then iteratively updates
them through crossover (combining portions of encoded so-
lutions to generate new candidate solutions), mutation (ran-
domly altering encoded information to introduce diversity),
and selection (choosing candidate solutions based on objec-
tive function evaluations) (Holland John, 1975). Differential
evolution (DE) initializes a population of real-valued param-
eter vectors and iteratively updates them through differential
mutation (generating trial solutions based on vector differ-
ences among population members), crossover (probabilisti-

Hydrol. Earth Syst. Sci., 29, 4251-4279, 2025

cally combining components from original and mutated vec-
tors), and greedy selection (retaining solutions with better
objective function values) (Storn and Price, 1997; Tran et al.,
2022). Simulated annealing (SA) starts from a random ini-
tial solution and iteratively explores neighboring solutions,
accepting them probabilistically based on the Metropolis cri-
terion, while gradually decreasing the temperature parameter
until convergence (Metropolis et al., 1953; Kirkpatrick et al.,
1983).

A common characteristic of all the methods described
above is that each iterative update of model parameters re-
quires multiple evaluations of the objective function, and suf-
ficient iterations are necessary to balance local exploitation
and global exploration. Detailed implementation procedures
and theoretical foundations of these methods are provided in
the supplementary materials. The metaheuristic algorithms
used in this study were implemented using the open-source
Python package scikit-opt (https://scikit-opt.github.io/, last
access: 10 September 2024).

2.3.2 TNNA algorithm

The TNNA algorithm aims to obtain a reverse network
FRreverse (+) that maps the observation vector to model param-
eters, as shown in Eq. (18).

m = Freverse (Vobs» OReverse)» (18)

where OReverse 18 the trainable parameters of Freyerse. Since
m also serves as the input to the established surrogate model
Frorward(+), by substituting the parameter m in the inver-
sion objective function of Eq. (2) with the expression from
Eq. (18), we obtain the objective function constraint for
OReverse (1.€., the loss function for training Freverse):

N WVobs | ,
OReverse =argmin Zi:l; o [Yobs[i]1 — FForward (19)
i

X (FRreverse (Yobs» OReverse)) [i]]z .

After obtaining the optimal trainable parameters 6§, erce
through backpropagation-based stochastic gradient descent
within the PyTorch framework, the final inversion re-
sults for the model parameters can be computed by m* =
Freverse (Yobs 0§everse). The required training data here are
the normalized observation data. Specifically, the reverse net-
work for this study is designed using an FC-DNN with three
hidden layers, each containing 512 neurons.

During the reverse network training processes, each iter-
ation of updating the trainable parameters @Rreyerse involves
two main steps: first, the observation vector y, is input into
the reverse network FRreyerse to Obtain the parameter predic-
tion vector m. Next, the predicted parameter m is input into
the forward network Fporward to generate corresponding for-
ward prediction results. Subsequently, the trainable parame-
ters @Reverse Of the reverse network are updated through stan-
dard DNN model training based on the error feedback from
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the loss function in Eq. (19). This process demonstrates that
FRreverse and Frorward are integrated through a tandem con-
nection, which is why this method is named TNNA. Upon
completing the training of Freyerse, the final optimal parame-
ters are predicted by inputting observation data into Freyerse-
Further details on TNNA can be found in Chen et al. (2021).

In the above process, each backpropagation step involves
only a single forward calculation of the loss function. Af-
ter establishing the computational graph, gradients of the
trainable parameters @Rreyerse are computed through back-
propagation combined with automatic differentiation. These
gradients are then used to update the trainable parameters
OReverse- Thus, only one forward simulation is executed dur-
ing each epoch of the reverse network Freyerse training pro-
cedure. This presents a marked computational advantage of
TNNA compared to the four selected metaheuristic algo-
rithms, which require numerous forward simulations for pa-
rameter updates at each iteration.

3 Case study

This study considers three synthetic cases based on previous
research, covering different model sizes and hydraulic gradi-
ent combinations (Jose et al., 2004; Zhang et al., 2018; Mo
et al., 2019) to evaluate the performance of the TNNA al-
gorithm against conventional metaheuristic algorithms. Both
case 1 and case 2 are approximately tens of meters in size,
with a simulation time of 60d. Their hydraulic gradients
are 0.05 and 0.1, respectively. These scenarios are typically
found in large sand tank experiments, aquifers with natu-
ral slopes, or in-situ experimental areas where flow condi-
tions are enhanced through pumping wells. Case 3 simu-
lates contaminant plume migration, with a size of approxi-
mately 1 km and a simulation time of several years (up to
30 years). It uses a hydraulic gradient of 0.00625, repre-
senting a smaller natural gradient typically found in alluvial
aquifers. Regarding the differences in heterogeneity condi-
tions among these cases, case 1 features a low-dimensional
zoned permeability field scenario, case 2 involves a high-
dimensional Gaussian random permeability field parameter-
ized through the Karhunen-Loeve expansion (KLE), and
case 3 uses a high-dimensional non-Gaussian binary random
permeability field parameterized by a decoder trained with
OCAAE. The numerical models of the three cases are es-
tablished using TOUGHREACT, which employs an integral
finite difference method with sequential iteration procedures
and adaptive time stepping to solve the flow and transport
equations. In all the three cases, the relative error tolerance
for the conservation equations was uniformly set to 107>, en-
suring that the maximum imbalance of conserved quantities
within each discrete grid cell remains below 1 part in 100 000
of the total quantity in that cell. Dispersion effects are inher-
ently incorporated through molecular diffusion and numeri-
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cal dispersion induced by upstream weighting and grid dis-
cretization (Xu et al., 2011).

After developing numerical models for the three scenar-
ios, we first evaluate four surrogate models in case 1, and the
optimal surrogate model will be integrated into the inversion
framework. Subsequently, hypothetical observation scenar-
ios are used to systematically compare the inversion accu-
racy of TNNA against four metaheuristic algorithms across
the three cases. The observation data (hydraulic heads and
solute concentrations) for the model parameter inversion are
generated by adding Gaussian noise perturbations to the nu-
merical model simulation results. Specifically, observational
noise is introduced by multiplying the min—max normalized
simulated data by the random noise factor € ~ N(1,02),
where o represents the ratio of observational noise to the
observed values. In this study, we conduct a comparative
analysis of inversion performance across the three cases un-
der a noise level of o =0.01. Additionally, our previous
study (Chen et al., 2021) examined the effects of higher ob-
servational noise levels (¢ = 0.05 and 0.1) and real-world
noise conditions on inversion accuracy in low-dimensional
parameter scenarios. To further investigate the impact of
increased observational noise on inversion performance in
high-dimensional parameter scenarios, we conducted an ex-
tended analysis on case 3 — the most complex scenario — by
increasing the noise level to 10 % (o = 0.1). This analysis
also provides insights into the stability of the TNNA algo-
rithm when integrated with a generative machine-learning-
based inversion framework for high-dimensional parame-
ter estimation. Here, we applied the multiplicative noise to
ensure that all perturbed observation values remain non-
negative, which is particularly important in regions near
plume boundaries where concentrations are close to zero.
Generally, observation errors are assumed to be indepen-
dent of the measured values, whereas the multiplicative noise
model introduces value-proportional perturbations, resulting
in a positive correlation between the standard deviation of
observation noise and the true values. This type of error de-
pendence may also exist in real-world studies when certain
measurement techniques are used. For example, in hydraulic
head monitoring, pressure transducers may exhibit drift (i.e.,
a persistent deviation in output not caused by actual pressure
changes) due to the aging and fatigue of components such
as the diaphragm or strain gauge, leading to reduced mea-
surement accuracy (Sorensen and Butcher, 2011). A varia-
tion in hydraulic pressure can lead to different levels of drift
among transducers, with those installed at higher pressure
(i.e., higher hydraulic head) environments tending to experi-
ence more significant drift, which in some cases may result
in elevated observation noise. For the analysis of solute con-
centrations in laboratory settings, when the concentrations of
water samples exceed the detection range of the instrument,
a common approach is to dilute these samples prior to mea-
surement. While analytical instruments may introduce addi-
tive errors at a relatively fixed level, the rescaling process fol-
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Figure 2. Flow domain of the solute transport model for the low-dimensional scenario.

lowing dilution (i.e., multiplying the measured value by the
dilution factor) amplifies these errors. As a result, the final
measurement error becomes approximately proportional to
the original solute concentration (Kabala and Skaggs, 1998).
Given that the goal of this study is to evaluate the robustness
of five inversion algorithms under different noise levels, both
additive and multiplicative noise models are suitable for rep-
resenting observational uncertainty. Prior work by Neupauer
et al. (2000) demonstrated that the choice between these two
noise types has minimal influence on the comparative perfor-
mance of inversion methods. The details of these three cases
are provided in Sects. 3.1-3.3.

3.1 Case 1: low-dimensional zoned permeability field
scenario

As shown in Fig. 2, the numerical model for the low-
dimensional scenario focuses on conservative solute trans-
port in a zoned permeability field. The model domain is
a two-dimensional rectangular area measuring 10m x 20m.
The left and right boundaries feature Dirichlet boundary
conditions, with a hydraulic head difference of 1 m. The
heterogeneous permeability is divided into eight homoge-
neous permeability zones, denoted as ki to kg. The prior
range for these eight permeabilities is from 1 x 10712 to
9.9 x 10712 m?. The contaminant source is located at the left
boundary, with a fixed release concentration ranging from
1 x 1073 to 1 molL~". The simulation area is uniformly dis-
cretized into 3200 (40 x 80) cells, and the simulation time is
set to 20d.

According to these model conditions, there are nine model
parameters to be estimated: eight permeability parameters
(k1 to kg) and the source release concentration. As shown
in Fig. 2, these parameters will be estimated using the ob-
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servation data of hydraulic heads and solute concentrations
collected from 25 locations, denoted by black stars. Addi-
tionally, observation data from another 24 locations, denoted
by orange hexagons and not included in the calibration pro-
cess, will be used to evaluate the prediction accuracy of the
calibrated numerical model.

3.2 Case 2: high-dimensional Gaussian random
permeability field scenario

The numerical model for the high-dimensional scenario fea-
tures a domain size of 10m x 10m, with impervious upper
and lower boundaries and constant head boundaries on the
left (1 m) and right (Om) sides. The domain is discretized
into 4096 (64 x 64) cells. The log-permeability field follows
a Gaussian distribution, and the permeability value of the ith
mesh is defined as follows:

ki = atjkeer, (20)

where krr is the reference permeability, set to 2 x 10~ B m2,
The heterogeneity of k; is controlled by the modifier «;.
The geostatistical parameters for this Gaussian field are m =
0, aé =2, and A, =i, =2.5m. Under this heterogeneous
condition, 100 KLE terms are used to preserve more than
92.67 % of the field variance. Consequently, estimating the
permeability field is equivalent to identifying these 100 KLE
terms.

The observational data used for inverse modeling include
hydraulic heads from a stationary flow field and solute con-
centrations measured every 2d over 40d, starting from the
second day to the 40th day (day: t =2i, i =1,...,20). It
should be noted that in high-dimensional parameter sce-
narios, the increased degrees of freedom typically result in
greater parameter uncertainty. Insufficient observational in-
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Figure 3. The reference log-permeability field and locations of observation stations for five scenarios. The observation stations are repre-

sented by black stars.

formation may fail to effectively constrain parameter esti-
mation, resulting in potential uncertainty and equifinality
(Beven and Binley, 1992; McLaughlin and Townley, 1996;
Zhang et al., 2015; Cao et al., 2025). Therefore, this study
includes actual permeability values at observed locations as
regularization constraints to mitigate inversion errors aris-
ing from equifinality. Since identical regularization condi-
tions are uniformly applied across all algorithms, introduc-
ing these constraints ensures the stability and robustness of
the inversion outcomes without affecting the inherent per-
formance characteristics of the five optimization algorithms
compared in this study.

As the degrees of freedom significantly increase in high-
dimensional models, the influence of observation data on in-
version results becomes increasingly significant. Five sce-
narios with different monitoring networks are considered to
comprehensively evaluate the performance of different inver-
sion algorithms using various observations. Figure 3 displays
the monitoring station locations for each scenario.

3.3 Case 3: high-dimensional non-Gaussian random
permeability field scenario

This case focuses on an estimation of a binary non-Gaussian
permeability field. The numerical model features a domain
size of 800m x 800m, with impervious upper and lower
boundaries and constant head boundaries on the left (5m)
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and right (O m) sides. The domain is discretized into 6400
(80 x 80) cells. The permeability field is a channelized ran-
dom field composed of two lithofacies, with permeability
values of 1.0 x 10™!3 and 5.46 x 1012 m? for the two media,
respectively. The reference field (Fig. 4b) is generated from
a training image (Fig. 4a) using the direct sampling (DS)
method proposed by Mariethoz et al. (2010). The contam-
inant release source is located on the entire left boundary,
with a concentration of 1 molL~!. The observational data
used for inversion are generated through numerical simula-
tion, including steady-state hydraulic head data and solute
concentration data at 12 time points (from 2 to 24 years, with
2-year intervals). This case focuses on a high-dimensional
binary inverse problem aimed at identifying the lithofacies
type of each discrete grid cell within the domain. Note that
the permeability values of the two lithofacies in this case are
fixed.

To achieve a low-dimensional representation of perme-
ability fields, a training dataset comprising 2000 stochas-
tic realizations is generated using multi-point statistics
(MPS). Then, an octave convolution adversarial autoencoder
(OCAAE) is developed, where the decoder network learns
non-linear mapping from 100-dimensional Gaussian latent
vectors to 6400-dimensional binary non-Gaussian perme-
ability fields. Thus, the non-Gaussian permeability field is
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Figure 4. (a) The training image used to generate random realizations of the permeability field. (b) The reference field of the synthetic case

(white symbols indicate observation locations).

indirectly reconstructed by estimating the 100-dimensional
latent vector.

4 Results and discussion
4.1 Surrogate model evaluations

Surrogate models were first compared using case 1, with
a low-dimensional parameter. For this scenario, the in-
put parameters for the surrogate models consist of a nine-
dimensional vector, including eight permeability parame-
ters and the contaminant source release concentration. The
output consists of the simulated hydraulic heads and so-
lute concentrations at 25 observation points. Four training
datasets Dyain = {Mirain, Ytrain} With 200, 500, 1000, and
2000 samples (represented as Dyain-200, Dirain-5005 Dirain-10005
and Dypin-2000, respectively) and a testing dataset Diegy =
{Miest, Yiest} with 100 samples (represented as Diegi-100) are
prepared. These datasets were generated using Latin hyper-
cube sampling (LHS) and numerical simulations. The pre-
dictive accuracy of the surrogate models was quantitatively
evaluated using root mean square error (RMSE) and deter-
mination coefficient (R2) metrics (Chen et al., 2022).

For solute transport inverse modeling problems, it is cru-
cial to consider the observations of both hydraulic heads and
solute concentrations simultaneously. Therefore, the surro-
gate model within an inversion framework should have ac-
curate predictive capabilities for hydraulic heads and solute
concentrations. This study calculates the RMSE and R? val-
ues separately for hydraulic heads, solute concentrations, and
all model response data, resulting in the following evaluation
criteria: RMSE1 1. and RiLL for overall data, RMSEg and
REI for hydraulic heads, and RMSE¢ and R(z: for solute con-
centrations. Additionally, it should be noted that the above
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RMSE and R? metrics are computed based on the normal-
ized hydraulic head and solute concentration data.

Figures 5 and 6 display the RMSE and R? values of each
surrogate model, and Figs. S3—S6 in the Supplement present
the pairwise comparison results. The optimal values for C, o,
and ¢ in the MSVR method are provided in Table S1 in the
Supplement. For the FC-DNN, the optimal number of hid-
den layers was separately determined for each of the four
datasets. The candidate range for the number was set from 1
to 7. According to the RMSE,) and Rﬁu values in Tables S2
and S3 in the Supplement, the optimal number of hidden lay-
ers in the FC-DNN for Dy4in-200, Dtrain-500> Dirain-1000, and
Dyrain-2000 are two, four, three, and three, respectively. When
training the FC-DNN, LeNet, and ResNet for case 1, the hy-
perparameters for batch size and learning rate were consis-
tently set to 50 and 1 x 10™#, respectively. The weight decay
values for LeNet and ResNet were both set to 1 x 1072 , while
FC-DNN used a weight decay of 0. The number of training
epochs was uniformly set to 500 for all three models.

According to the performance criteria in Figs. 5 and 6, the
prediction accuracy of each surrogate model significantly im-
proves with an increasing number of training samples. Based
on the RMSE;; and Rin values, their performance ranks as
follows: ResNet, LeNet, FC-DNN, and MSVR. The MSVR
method accurately predicts hydraulic heads but performs the
worst in predicting solute concentration. Training MSVR
with the four prepared datasets, the RMSEy values are below
0.02, and the RIZ{ values are near 1. Notably, with a training
sample size of 200, the prediction accuracy of MSVR for hy-
draulic heads is higher than that of FC-DNN and LeNet, as
indicated by their RMSEg and R%, values, closely matching
that of ResNet. However, when using 200 training samples,
the RMSE¢ value for MSVR exceeds 0.08, and the Ré value
falls below 0.85. Even with a dataset size of 2000, the en-
hancement in the MSVR-based surrogate model is limited, as
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Figure 5. The RMSE results of surrogate model predictions. Panels (a)—(c) show respectively the RMSE values of hydraulic heads, solute

concentrations, and all model outputs.
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Figure 6. The R? results of surrogate model predictions. Panels (a)—(c) show respectively the R? values of hydraulic heads, solute concen-

trations, and all model outputs.

the RMSE(c value remains at around 0.05, and the R% value
stays below 0.95. FC-DNN demonstrates a significant advan-
tage over MSVR in predicting solute concentration, particu-
larly with larger training sample sizes of 1000 or 2000. How-
ever, there are still some obvious biases between some sur-
rogate modeling results and their numerical modeling results
(see Fig. S2d). When adopting CNN-based surrogate models
(LeNet and ResNet), the prediction accuracy for solute con-
centrations significantly improves (see Figs. 5b and 6b). With
training datasets of 2000 samples, LeNet and ResNet achieve
RMSE values below 0.02 and R? values close to 1. It is worth
noting that ResNet performs well even with smaller sample
sizes. For example, with 200 training samples, the RMSEc
and R% values for LeNet are around 0.06 and 0.9, respec-
tively, while these criteria values for ResNet are around 0.04
and 0.95 (see Figs. 5b and 6b). As the number of training
samples increases, the advantages of ResNet become more
apparent. According to Fig. S4d, when the training sam-
ple size reaches 2000, the prediction results of ResNet are
closely consistent with the numerical simulation results for
both hydraulic heads and solute concentrations.

The comparison results of the surrogate models reflect a
trend of enhanced robustness attributable to advancements
in machine learning methodologies. Different machine learn-
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ing approaches employ distinct strategies for achieving non-
linear mappings in developing surrogate models. Generally,
deeper or larger models contain more trainable parameters,
resulting in higher degrees of freedom to capture more robust
non-linear relationships. The essence of machine learning de-
velopment lies in addressing the challenge of training these
complex DNNs. Current state-of-the-art machine learning
techniques have demonstrated proficiency in training each
of the four selected surrogate modeling methods. With suf-
ficient training samples, a surrogate model of greater com-
plexity exhibits enhanced capability in representing higher
levels of non-linearity (LeCun et al., 2015; He et al., 2016).
This also explains why, despite having a sufficient num-
ber of training samples, the improvement in prediction ac-
curacy of the MSVR for solute concentration is limited. In
CNNs, sparse connections and weight sharing in convolu-
tional layers reduce redundant weight parameters in DNNs,
enhancing the feature extraction of hidden layers. Conse-
quently, LeNet demonstrates better performance than FC-
DNN. ResNet, which employs residual blocks in conjunc-
tion with convolutional layers, effectively addresses the is-
sues of gradient vanishing and exploding, making the suc-
cessful training of deeper CNNs possible.
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According to Chen et al. (2021), a more globally accurate
surrogate model can enhance the performance of TNNA in-
version results. Thus, we selected the ResNet trained with
2000 samples for the subsequent inversion procedure. In
the low-dimensional scenario, its RMSE values for hy-
draulic head and solute concentration data are less than
0.02, with R? values greater than 0.99. We further extended
ResNet for the surrogate model construction of both Gaus-
sian and non-Gaussian random field scenarios. In the two
high-dimensional scenarios, the input parameters for the sur-
rogate models are single-channel matrix data representing
the heterogeneous parameter field, while the output con-
sists of a vector formed by flattening the multi-channel ma-
trix data, representing the simulated hydraulic heads and so-
lute concentrations at predefined time steps within the sim-
ulation domain. The training and testing datasets for these
two case scenarios consist of 2000 and 500 samples, re-
spectively. For ResNet training in case 2 (Gaussian random
field), the hyperparameters were set as follows: batch size =
100, learning rate = 1 x 10™#, and weight decay = 1 x 107°.
For case 3 (non-Gaussian random field), the corresponding
values were batch size = 50, learning rate = 1 x 10_3, and
weight decay = 1 x 10~8. In both cases, the number of train-
ing epochs was also set to 500. The RMSE values for hy-
draulic head and solute concentration data range from ap-
proximately 0.01 to 0.03, and the R? values exceed 0.99 (as
shown in Table 1). This level of accuracy indicates that the
surrogate model meets the predictive accuracy requirements
for inversion simulations in both of the designed Gaussian
and non-Gaussian random field cases.

4.2 Parameter inversion method comparison results

4.2.1 Inversion results of the low-dimensional
parameter scenario

For the low-dimensional parameter scenario, the perfor-
mance of optimization algorithms is thoroughly evaluated
across 100 parameter scenarios using the Monte Carlo strat-
egy. The observation data for these scenarios are derived
from the testing dataset after adding multiplicative Gaussian
random noise € ~ N (1,0.01%). The population sizes of GA,
DE, and PSO, along with the chain length in SA, are set in
four distinct scenarios: 20, 40, 60, and 80. (These population
size or chain length values are represented as Npc in sub-
sequent discussions.) These settings determine the number
of forward modeling calls required for each iteration, signif-
icantly influencing the convergence rate and computational
efficiency of optimization procedures. Maximum iterations
for these four metaheuristic algorithms are set to 200. The
learning rate, epoch number, and weight decay for the TNNA
algorithm are set to (6 x 107>), 1000, and 1 x 107, respec-
tively.

The performance of the five optimization algorithms is
evaluated according to three aspects: average convergence
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efficiency and accuracy in inversion procedures, predictive
accuracy of calibration models for hydraulic heads and so-
lute concentrations, and statistical analysis of the estimated
errors for each model parameter. Figure 7 presents the log-
arithmic average convergence curves (i.e., log;, of the aver-
age objective value as a function of the inversion iterations)
of four metaheuristic algorithms and the TNNA algorithm
throughout 100 parameter scenarios. Specifically, panels (a)—
(d) represent the Npc values for metaheuristic algorithms set
at 20, 40, 60, and 80, respectively. These figures clearly il-
lustrate the average convergence speed and accuracy of five
optimization algorithms. Figure 8 displays the comparison
between simulated and observed values across all 100 pa-
rameter scenarios for both calibration and spatial predictive
evaluation. Panels (a) and (b) illustrate the comparative pre-
diction fit at the 25 observation locations used for model cal-
ibration, whereas panels (c) and (d) display the comparative
prediction fit at the 24 independent observation locations. In
this figure, distinct symbols are used to represent the five op-
timization algorithms. It should be noted that the Npc values
for the four metaheuristic algorithms are uniformly set to 80
during this comparison. Figure 9 illustrates the probability
density curves of the estimation errors for nine model pa-
rameters across 100 parameter scenarios, with different col-
ors representing the five optimization algorithms.

The results in Fig. 7 demonstrate that the TNNA algorithm
achieves the best convergence accuracy, with its convergence
logarithmic objective function value (approximately —4.4)
being smaller than those of the other four metaheuristic al-
gorithms across these Npc settings. The influence of Npc
on the convergence speeds of these four metaheuristic algo-
rithms is not significant, exhibiting a distinct transition from
rapid to slower convergence around the 75th iteration. As
Npc increased from 20 to 80, each metaheuristic algorithm
showed distinct improvements in the accuracy of the final
objective function. The DE algorithm showed the least im-
provement in final convergence accuracy as the Npc value
increased from 20 to 80, with the logarithmic value of its
objective function dropping from just above —4.0 to slightly
below —4.0. The SA algorithm also showed limited improve-
ment, with its logarithmic average convergence value in-
creasing from around —4.1 at Npc = 20 to slightly below
—4.3 at Npc = 80, close to that of the TNNA algorithm.
Among the four metaheuristic algorithms, SA exhibited the
highest average convergence accuracy. Contrary to the SA
and DE algorithms, the PSO and GA algorithms significantly
enhanced average convergence accuracy as Npc increased.
Specifically, as Npc increased from 20 to 80, the logarithmic
convergence values of PSO and GA decreased by more than
0.5. While increasing Npc values may help metaheuristic al-
gorithms to reduce the gap in average convergence accuracy
compared to the TNNA algorithm, larger Npc settings also
require additional computational burdens. The above results
indicate that the TNNA algorithm has a significant efficiency
advantage over the four metaheuristic algorithms in param-
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Table 1. The RMSE and R? values for surrogate model predictions in five designed high-dimensional scenarios.

RMSE \ R?
RMSEy RMSEc RMSE.; | R} RE R},
Gaussian scenario 1 0.0108 0.0174 0.0172 | 0.9990 0.9980 0.9982
Gaussian scenario 2 0.0102 0.0138 0.0136 | 0.9995 0.9989  0.9990
Gaussian scenario 3 0.0120 0.0165 0.0163 | 0.9991 09981 0.9983
Gaussian scenario 4 0.0123 0.0161 0.0159 | 0.9990 0.9984 0.9985
Gaussian scenario 5 0.0137 0.0156 0.0155 | 0.9989 0.9985 0.9986
Non-Gaussian scenario 0.0181 0.0280 0.0273 | 0.9952 0.9931 0.9932
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Figure 7. Comparative convergence trends (log;, of the average objective value) of five optimization algorithms across 100 parameter
scenarios. Panels (a)—(d) compare the four metaheuristic algorithms and TNNA under Npc = 20, 40, 60, and 80, respectively; TNNA was
executed only once on the same 100 parameter scenarios, and its curve is identical across all panels. Markers indicate convergence values

every 10 iterations.

eter optimization. For instance, when conducting the opti-
mization procedure based on scikit-opt, the DE algorithm
requires 32000 forward model realizations (80 x 2 x 200)
when Npc is set to 80, while the other three metaheuris-
tic algorithms (PSO, GA, and SA) each require 16000 re-
alizations (80 x 200). In significant contrast, the TNNA algo-
rithm requires only one forward model realization per itera-
tion, resulting in 200 realizations. These comparisons illus-
trated that the TNNA method is more effective than the other
four metaheuristic algorithms in achieving robust conver-
gence results. It is worth noting that the five optimization al-
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gorithms rely on stochastic processes for parameter updates.
Therefore, the objective function values are not guaranteed
to decrease monotonically with each iteration. According to
Fig. 7, the DE algorithm exhibits more noticeable fluctua-
tions compared to other algorithms. Nevertheless, these fluc-
tuations remain within a reasonable range. For example, at
Npc = 80, the objective function values after 150 iterations
range between 9.05x 107> and 1.32x 10~ (corresponding to
the logarithmic values between —4.04 and —3.88 in Fig. 7d).
Fluctuations between consecutive iterations typically remain
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Figure 8. Comparison of predictive accuracy for hydraulic heads and solute concentrations simulated using parameters estimated by the four
metaheuristic inversion algorithms (DE, SA, GA, PSO) and the TNNA method. Panels (a) and (b) show predictive comparisons at the 25
observation locations used for model calibration and panels (c) and (d) show predictive comparisons at the other 24 independent observation

locations.

within 1 x 107> (mostly around 3 x 10_6), which is consid-
ered reasonable for optimization algorithms.

The results presented in Fig. 8 indicate that, among the
five optimization algorithms, the TNNA algorithm achieves
the smallest RMSE and R? values closest to 1.0 for both hy-
draulic heads and solute concentration during model calibra-
tion and spatial predictive evaluation. Furthermore, the distri-
bution of comparison points demonstrates that the modeling
results obtained from both calibration and independent pre-
diction using the TNNA algorithm match the observed values
more accurately than those of the other four metaheuristic al-
gorithms, particularly for solute concentrations. Among the
four metaheuristic algorithms, SA and DE outperform GA
and PSO regarding RMSE and R? values. During model cal-
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ibration and predictive evaluation, PSO exhibits the worst
predictive accuracy, recording the highest RMSE and R? val-
ues for both hydraulic heads and solute concentrations. It is
noteworthy that the RMSE and R? values for SA during hy-
draulic head calibration are 0.0085 and 0.9992, respectively,
while those for DE during solute concentration calibration
are 0.0112 and 0.9969. These values are almost equal to those
of the TNNA algorithm. The robustness of an inversion algo-
rithm is determined by its accuracy in both calibration and
predictive evaluation for hydraulic heads and solute concen-
trations. However, DE and SA demonstrate appropriate cal-
ibration accuracy for only one of the two simulation com-
ponents. Overall, the TNNA algorithm provides more robust
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Figure 9. Probability density curves of estimation errors for nine model parameters using five optimization methods. Each curve represents
the distribution of estimation errors across 100 parameter scenarios, with their mean error values indicated in the legends.

model calibration and predictive evaluation results than the
other four metaheuristic algorithms.

Figure 9 indicates that the estimated error distributions
for the nine model parameters derived from the TNNA al-
gorithm are more concentrated than those obtained from the
four metaheuristic algorithms. The mean estimated error val-
ues for the nine numerical model parameters using the TNNA
algorithm are also the lowest. These results highlight the high
accuracy and reliability of the TNNA inversion algorithm.
Among the four metaheuristic algorithms, DE and SA out-
perform GA and PSO. This is because the probability den-
sity curves of estimation errors for the nine parameters using
DE and SA are more concentrated around zero, with mean
values lower than those of GA and PSO. The DE algorithm
shows a more concentrated distribution of around zero for
the overall estimation errors of parameters k| to kg. In con-
trast, the SA reveals reduced estimation errors for the Cy pa-
rameter in most cases, ranking just behind the TNNA algo-
rithm. GA outperforms PSO in estimation accuracy for seven
of the nine model parameters, with PSO matching its proba-
bility density curves to that of GA only for parameters k» and
k4. As a whole, the statistical results of the estimated model
parameter errors illustrate that the machine-learning-based
TNNA algorithm exhibits enhanced inversion performance
compared to the four metaheuristic optimization algorithms.
However, the findings also reveal that none of the five algo-

https://doi.org/10.5194/hess-29-4251-2025

rithms consistently offers completely reliable inversion solu-
tions across all scenarios. For example, the TNNA algorithm,
despite its generally better performance, demonstrates esti-
mation errors as high as 0.4 for parameters k4 and kg in some
scenarios. Such results are likely because the provided obser-
vational data cannot ensure equifinality in some scenarios. In
these cases, it is essential to introduce additional regulariza-
tion constraints to attenuate the equifinality (Wang and Chen,
2013; Arsenault and Brissette, 2014). These findings empha-
size the importance of employing the Monte Carlo method in
comparative studies of inversion algorithms to ensure com-
prehensive evaluations and to avoid misleading conclusions.

The above comparison results indicate that the machine-
learning-based TNNA algorithm outperforms the other four
metaheuristic algorithms in both inversion accuracy and
computational efficiency. The primary advantage of the
TNNA algorithm over the four metaheuristic algorithms is its
well-defined updating direction of model parameters, guided
by the loss function, which serves as the objective function
for inverse modeling. Research on machine learning applica-
tions indicates that DNNs can approximate continuous func-
tions by adjusting weights and biases (LeCun et al., 2015;
Goodfellow et al., 2016). The TNNA algorithm leverages
this capability by transforming the model parameter inver-
sion issue into the training of a reverse network to achieve
reverse mappings. By establishing a loss function based on
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inversion constraints from the Bayesian theorem, the TNNA
algorithm ensures that training the reverse network brings
each parameter update closer to the optimal solution during
each epoch, thereby improving accuracy and convergence
speed. In contrast, the four metaheuristic algorithms require
numerous forward simulations for each parameter update.
The optimization direction for model parameters is deter-
mined by evaluating the objective function. This process is
governed by the exploration and exploitation strategies inher-
ent in metaheuristic algorithms. However, these approaches
introduce randomness in the direction of model parameter
updates, making it challenging to ensure that updates move
towards the direction of fastest convergence under specific
hyperparameter settings. This also explains why the TNNA
algorithm can update model parameters more efficiently and
achieve higher convergence accuracy despite requiring only
one forward realization in each training epoch.

4.2.2 Inversion results of the high-dimensional
Gaussian scenario

For estimating the permeability field under five designed ob-
servational scenarios, the iteration number for the four meta-
heuristic algorithms was set at 200, with Npc values of 100,
500, and 1000. The learning rate and weight decay for train-
ing reverse networks within the TNNA framework were set
to 1 x 1073 and 1 x 107%, respectively.

Figures 10 and 11 illustrate the log-permeability field es-
timation results and error distributions for the four meta-
heuristic algorithms and the TNNA algorithm under the most
densely observed scenario (i.e., scenario 5). The correspond-
ing results for scenarios 14 are presented in Figs. S7-S14
in the Supplement. Figure 12 compares the RMSE values
for the log-permeability fields estimated by the four meta-
heuristic algorithms and the TNNA algorithm across all five
scenarios. These detailed RMSE values can be found in Ta-
ble 2 (scenario 5) and Table S4 in the Supplement (scenar-
ios 1-4). For scenario 5, the accuracy of permeability es-
timations by each metaheuristic algorithm improves as the
Npc value increases (see Fig. 10 and Table 2). Notably, the
GA achieves the best results with an Npc of 1000, recording
an RMSE of 0.1057. The DE and SA algorithms yield their
most accurate permeability estimations with RMSE values of
0.1597 (Npc = 100) and 0.1549 (Npc = 1000), respectively.
The PSO method is the least effective, achieving an RMSE of
0.3334 at Npc = 1000. As shown in Fig. 11 and Table 2, the
TNNA algorithm provides inversion results with an RMSE
of 0.1063 after training the reverse network for 200 epochs.
This suggests that the TNNA algorithm can estimate high-
dimensional permeability fields with accuracy comparable
to that of the GA method (Npc = 1000), with significantly
fewer forward model realizations (200 compared to 200 000),
reducing the computational burden by 99.9 % and improving
inversion efficiency by a factor of 1000. Increasing the train-
ing epochs of the reverse network to 1000 further reduces
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the RMSE of the TNNA method to 0.0595, demonstrating
its advantages over the four metaheuristic algorithms in this
scenario. Across all scenarios, the accuracy of the estimated
permeability fields correlates positively with the density of
observation wells, and estimation errors are generally higher
in areas not covered by monitoring wells (see Figs. S7-S14).
Figure 12 further demonstrates that the RMSE values for per-
meability estimation using the TNNA algorithm are consis-
tently lower than those of the four metaheuristic algorithms
across scenarios 1-4, indicating that the TNNA algorithm ex-
hibits greater robustness compared to the metaheuristic algo-
rithms in all five scenarios.

To evaluate the predictive performance of the numerical
model calibrated by various inversion methods, simulations
of hydraulic heads and solute concentrations were conducted
over 60d, starting on the second day with recordings every
2d, using the permeability fields with the lowest RMSE val-
ues identified by each inversion method. Observation data
from the second day to the 40th day were used for model
calibration, while additional data from the 42nd to the 60th
day were employed to evaluate the future predictions of the
calibrated numerical models. The RMSE values for the cali-
brated hydraulic heads and time series solute concentrations
are presented in Table 3 and Fig. 13. Figure 14 displays the
spatial distribution of the calibrated numerical simulation re-
sults and errors for hydraulic heads and solute concentration
simulation results at three specific times (f = 4th, 20th, and
52nd days). Results for the entire 60d period are presented
in Figs. S15-S44 in the Supplement. Note that in Fig. 14,
Yy and y¢ represent the simulated spatial distributions of
hydraulic heads and solute concentrations based on the es-
timated permeability fields through inverse modeling, while
yu and yc represent the spatial distributions simulated using
the true permeability field.

According to Fig. 14a, the calibrated simulation errors
for hydraulic heads did not exceed 0.02m for the TNNA
method and three of the four considered metaheuristic algo-
rithms, except the PSO method, which exhibited hydraulic
head errors larger than 0.06 m in certain areas. Among the
four metaheuristic algorithms, the GA method achieved the
lowest RMSE in hydraulic head simulations, with a value
of 7.4837 x 10~%. For solute concentrations, the GA algo-
rithm consistently has the highest prediction accuracy among
the metaheuristic algorithms, with RMSE values generally
around 0.005 (Fig. 13). The TNNA algorithm achieved a sim-
ilar level of accuracy to GA in the calibrated numerical model
predictions. Specifically, during the initial 10d and from
the 41st day to the 60th day, the TNNA algorithm showed
slightly higher prediction accuracy than the GA-calibrated
model. However, during the intermediate period from the
10th day to the 40th day, the GA-calibrated model had a
slight advantage over the TNNA algorithm. The normalized
absolute errors in the solute transport simulation results ob-
tained using the TNNA algorithm remained consistently be-
low 0.02 throughout the simulation period (Fig. 14b and c).
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(a) Log-permeability field estimated results and errors by GA
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Figure 10. Spatial distribution of log-permeability field estimation results (row 1, 3, and 5 for Npc = 100, 500, and 1000, respectively) and
absolute errors (row 2, 4, and 6 for Npc = 100, 500, and 1000, respectively) for scenario 5, achieved by four metaheuristic algorithms (panels

a—d correspond to GA, DE, PSO, and SA, respectively).

(a) Log-permeability result (TNNA-1000) (b) Error distribution (TNNA-1000)

(¢) Log-permeability result (TNNA-200)
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Figure 11. Spatial distribution of log-permeability field estimation results and absolute errors for scenario 5, achieved by TNNA. Panels (a)
and (c) show the log-permeability fields estimated using 1000 (TNNA-1000) and 200 (TNNA-200) training samples, respectively; panels (b)

and (d) present the corresponding absolute error distributions.

These results indicate that in high-dimensional settings, the
TNNA algorithm provides inversion outcomes that enable
the calibrated model to deliver simulation results compara-
ble to those of the best-performing metaheuristic algorithm.
Overall, the TNNA method also demonstrates advantages
over the four metaheuristic optimization algorithms in the
designed high-dimensional scenarios, excelling in both in-
version efficiency and accuracy.
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4.2.3 Inversion results of the high-dimensional
non-Gaussian scenario

In this scenario, the iteration number for the four metaheuris-
tic algorithms was set at 200, with Npc values of 1000. For
the TNNA method, the reverse network is trained for 1000
epochs. Thus, each metaheuristic algorithm had 100 times
more forward model evaluations than the TNNA algorithm.
Figures 14 and 15 show the permeability fields estimated by
the five optimization algorithms and their error distributions
compared to the true field (i.e., the error fields). Figures 16a
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Table 2. RMSE values of estimated log-permeability fields for the four metaheuristic algorithms and the TNNA algorithm under scenario 5.

Metaheuristic algorithms ‘ TNNA
GA DE SA |
Npc = 100 0.1940 0.1597 0.5399 0.2071 | epoch =200 0.1063
Npc =500 0.1142  0.1904 0.3810 0.1781 | epoch =1000 0.0595
Npc =1000 0.1057 0.1748 0.3334 0.1549
(b) PSO - 12 (c) SA

== TNNA (epoch=1000)
= = TNNA (epoch=200)

Metaheuristic Algorithms (iter=100)
Metaheuristic Algorithms (iter=500)

Metaheuristic Algorithms (iter=1000)

Figure 12. Comparison of RMSE in estimating log-permeability fields using four metaheuristic algorithms and the TNNA algorithm across

the five scenarios (S-1 to S-5).
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Figure 13. RMSE values of calibrated solute concentrations over
60 d for the four metaheuristic algorithms and the TNNA algorithm.

and 17a present the comparison between calibrated simula-
tions and hydraulic head observations, as well as solute con-
centration observations. Figures 16b and 17b compare the
solute concentration simulations for the 26th, 28th, and 30th
years based on the estimated parameter field and the designed
true field.

According to Figs. 15 and 16, the binary channel fields
reconstructed by each inversion algorithm are highly con-
sistent with their corresponding true fields, with the esti-
mated errors primarily concentrated at the interfaces between
high-permeability channels and low-permeability regions. It
is found that increasing the observation noise level from 1 %
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to 10 % does not lead to a noticeable increase in the num-
ber of grid cells exhibiting differences between the estimated
parameter fields and the true field. One potential reason for
this is that the least squares objective function used in the
inversion framework of this study is based on the assump-
tion that the observation noise follows a zero-mean Gaussian
distribution. With adequate regularization constraints, such
as the dense monitoring network design used in this study,
the model responses corresponding to the optimal parameter
estimates obtained through global optimization algorithms
statistically converge to the mean of the observed data. It
can also be evaluated by the calibration simulations. Specifi-
cally, the pairwise scatter plots in Figs. 17a and 18a indicate
that the calibrated simulation results from different methods
are closely distributed around the reference diagonal. This
suggests that even with increased observational noise, the
inversion-derived calibration results do not exhibit noticeable
bias. Furthermore, the predictions based on inversion results
remain highly consistent with those of the true permeability
field (Figs. 17b and 18b). The RMSE4; and Ri“ values for
the predictions beyond the observational period range from
0.018 to 0.044 and from 0.962 to 0.994, respectively. This
indicates that even under relatively high Gaussian noise con-
ditions, the non-linear inversion framework used in this study
can reliably reconstruct the non-Gaussian permeability field,
ensuring high predictive accuracy. Nevertheless, it is impor-
tant to note that while the inversion accuracy at a 10 % noise
level remains comparable to that in the 1 % noise scenario,
increasing the observational noise inevitably raises the con-
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Table 3. RMSE values of calibrated hydraulic heads for the four metaheuristic algorithms and the TNNA algorithm.

TNNA DE

GA PSO SA

RMSE 6.8537 x 1074  1.2181 x 1073

7.4837 x 1074

2.1683x 1073 1.0316 x 103

vergence value of the least squares loss function. This trend
is evident from the RMSE values in Figs. 17a and 18a. More-
over, since the observational noise here is assumed to follow
a Gaussian distribution, real-world scenarios with more com-
plex noise characteristics may further exacerbate equifinality
in the inversion results. In such cases, incorporating addi-
tional system information such as regularization constraints
is essential to enhance the robustness of the objective func-
tion and to mitigate ill-posedness.

Compared to the four metaheuristic algorithms, TNNA
demonstrates advantages in computational efficiency and ac-
curacy for non-Gaussian random field inversion. In the low-
noise scenario, TNNA achieves an inversion convergence
accuracy with an RMSE,y of 0.021 and an Rill of 0.996
(Fig. 17a). In contrast, the two best-performing metaheuris-
tic methods, GA and SA, yield RMSE4 values of 0.027
and 0.029, with Riu values of 0.994 and 0.993, respec-
tively (Fig. 17a). Moreover, TNNA achieves the highest fit-
ting accuracy for predictive results among the five optimiza-
tion algorithms, with an RMSE of 0.018 and an R? of 0.994
(Fig. 17b). Even in high-noise scenarios, TNNA continues
to exhibit an advantage over the four metaheuristic algo-
rithms in both inversion convergence accuracy (Fig. 18a) and
predictive accuracy (Fig. 18b). Additionally, considering the
number of forward simulation calls required by each inver-
sion algorithm, TNNA proves to be a more efficient approach
in this case study.

4.3 Parameter inversion method comparison results

This study evaluates the computational efficiency and inver-
sion reliability of the TNNA algorithm under three differ-
ent heterogeneous conditions. In optimization-based inver-
sion studies, the primary challenge is to establish non-linear
inversion constraints and design efficient algorithms to find
optimal parameter solutions. The main difference between
cases lies in how the constraint conditions are formulated,
while the optimization algorithm itself remains generally ap-
plicable across different optimization tasks if these condi-
tions are properly defined. Therefore, the fundamental chal-
lenge in applying well-performing inversion methods to real-
world cases lies in whether robust non-linear optimization
constraints can be effectively established for inversion tasks.
Given the complexities of subsurface systems, three key as-
pects should be considered to extend the TNNA method
to real-world applications: (1) representing complex hetero-
geneous model parameter fields, (2) maximizing the effec-
tive observational information while optimizing monitoring

https://doi.org/10.5194/hess-29-4251-2025

costs, and (3) integrating multi-source data and accounting
for uncertainties in the model process to better address com-
plex observational noise scenarios and uncertainties in phys-
ical mechanisms. Detailed considerations for these issues are
as follows.

— Heterogeneity in aquifer parameter structures. This
study developed a dimensionality-reduction framework
using OCAAE for high-dimensional parameter field in-
version. Generative machine learning methods, includ-
ing state-of-the-art variants, have the potential to char-
acterize complex non-Gaussian fields. However, obtain-
ing representative parameter field datasets that accu-
rately capture the spatial variability and heterogeneous
geostatistical characteristics of the target aquifer re-
mains challenging in practical research. For instance,
spatial variations in non-stationary stochastic aquifer
systems may result in significant discrepancies in geo-
statistical parameters across sampling windows (Mari-
ethoz and Caers, 2014). Therefore, developing appro-
priate generator-training strategies is essential for these
practical scenarios.

— Monitoring network optimization. The inversion perfor-
mance of the TNNA and four metaheuristic algorithms
is evaluated based on a non-linear optimization model
with dense distributed monitoring networks. This mon-
itoring strategy is commonly employed in the evalua-
tion of inversion algorithms to ensure sufficient observa-
tional information, thereby reducing non-uniqueness in
parameter inversion results (Bao et al., 2020; Mo et al.,
2020; Zhang et al., 2024). Such monitoring strategies
for comparing inversion methods also aim to minimize
external interferences, ensuring that differences in per-
formance are primarily determined by inversion algo-
rithms themselves. However, the number and locations
of monitoring stations are constrained by financial bud-
gets. Thus, optimizing the monitoring network design to
minimize monitoring costs without compromising con-
straint information quality is indispensable for practical
applications (Keum et al., 2018; Chen et al., 2022; Cao
et al., 2025).

— Considering multi-source data and uncertainties in
model processes. This study considers only hydraulic
head and solute concentration data, assuming ideal
white Gaussian noises. However, in real-world scenar-
ios, observational noise is often more complex and
may exhibit non-Gaussian characteristics. For instance,
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Figure 14. Spatial distribution of calibrated numerical simulation results and absolute errors for hydraulic heads and solute concentrations at
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(a) Binary channelized non-Gaussian random field estimation results

:

(b) Estimated error distribution

Figure 15. Reconstructed non-Gaussian binary channelized fields and their error distributions (1 % observation noise).

(a) Binary channelized non-Gaussian random field estimation results

TNNA

(b) Estimated error distribution

some solute concentrations cannot be measured in situ,
and unavoidable perturbations may be included dur-
ing sample collection and laboratory analysis. Simi-
larly, hydraulic head measurements may be influenced
by other factors, including meteorological conditions,
human groundwater extraction, and engineering distur-
bances, among others. Moreover, all observational data
in this study are constrained by a single predetermined
process model. However, if significant uncertainties ex-
ist in the actual aquifer model processes or if the con-
ceptual model deviates substantially from real-world
conditions, even an advanced optimization algorithm
may produce incorrect inversion results. Therefore, it
is crucial to integrate multi-source data (e.g., geophysi-
cal measurements or isotope data) and to develop multi-

https://doi.org/10.5194/hess-29-4251-2025

Figure 16. Reconstructed non-Gaussian binary channelized fields and their error distributions (10 % observation noise).

process coupled models to establish more robust inver-
sion frameworks (Dai and Samper, 2006; Botto et al.,
2018; Chang and Zhang, 2019). Specifically, parame-
terizing model process uncertainties to enable the si-
multaneous identification of both model processes and
unknown parameters could be a promising direction for
real-world studies.

5 Summary and conclusions

This study systematically evaluates the performance of tan-
dem neural network architecture (TNNA) in comparison
to four widely used metaheuristic algorithms (GA, PSO,
DE, and SA) across three inversion frameworks designed
for different heterogeneous groundwater conditions. The re-
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(a) Comparison of calibrated simulations with observations
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Figure 17. Pair-wise comparison between the calibrated simulation results and the

predictions (1 % observation noise).
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Figure 18. Pair-wise comparison between the calibrated simulation results and the

predictions (10 % observation noise).

sults demonstrate that TNNA consistently outperforms the
four conventional metaheuristic algorithms across the de-
signed scenarios, covering both low-dimensional and high-
dimensional cases. It provides more accurate inversion re-
sults while significantly reducing computational costs. More-
over, it has been verified that the TNNA algorithm con-
sistently delivers reliable inversion results with just a sin-
gle forward simulation per iteration step in scenarios featur-
ing various complex and uncertain model parameters. This
characteristic offers a practical approach to balancing explo-
ration and exploitation with a reduced computational bur-
den, contrasting with conventional metaheuristic algorithms
that require increasing forward simulations as the inversion
problem grows more complex. Furthermore, this study intro-
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10

observational data (a); and the true parameter-based

duces a novel framework that integrates TNNA, along with
optimization algorithms, with generative machine-learning-
based parameterization methods for dimensionality reduc-
tion in complex heterogeneous parameter fields.

In summary, training reverse network through the TNNA
method provides significant advantages over conventional
metaheuristic algorithms. The proposed integrated frame-
work, which combines the TNNA method with dimension-
ality reduction techniques, further enhances its applicabil-
ity and demonstrates strong potential for high-dimensional
inversion problems. Developing specialized inversion algo-
rithm frameworks based on state-of-the-art machine learn-
ing methods tailored to specific problem scenarios represents
a promising research direction. Furthermore, hyperparame-
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ters can significantly influence neural network performance
in certain scenarios. It is necessary for future research to ex-
plore hyperparameter optimization and sensitivity analysis to
identify the optimal neural network structures and training
strategies, ultimately enhancing model performance across
diverse hydrological conditions.
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