
Supplement of Hydrol. Earth Syst. Sci., 29, 4251–4279, 2025
https://doi.org/10.5194/hess-29-4251-2025-supplement
© Author(s) 2025. CC BY 4.0 License.

Supplement of

Enhancing inverse modeling in groundwater systems through
machine learning: a comprehensive comparative study
Junjun Chen et al.

Correspondence to: Zhenxue Dai (dzx@jlu.edu.cn) and Shangxian Yin (yinshx03@126.com)

The copyright of individual parts of the supplement might differ from the article licence.

2

Contents of this file

Implementation procedures and theoretical foundations for the four metaheuristic algorithms (MHA S1 to
MHA S4).

Table S1 to Table S3

Figures S1 to S44

Introduction

MHA S1 Particle swarm optimization algorithm (PSO)

MHA S2 Genetic algorithm (GA)

MHA S3 Simulated Annealing (SA)

MHA S4 Differential evolution (DE)

Table S1 is the optimal hyperparameters for MSVR by four metaheuristic algorithms

Table S2 and S3 are RMSE(All) and RAll
2 values of FC-DNN with different number of hidden layers

Table S4 is the RMSE values of estimated log-permeability fields for the four metaheuristic
algorithms and the TNNA algorithm under Scenario 1-4.

Fig.S1. to Fig.S2 are detail architectures of LeNet and ResNet.

Fig.S3. to Fig.S6. are pair-wise comparisons for four surrogate modeling methods.

Fig.S7. to Fig.S10. are spatial distributions of log-permeability field estimation results and absolute errors
by four metaheuristic algorithms for Scenarios 1~4

Fig.S11. to Fig.S14. are spatial distributions of log-permeability field estimation results and absolute errors
by the TNNA method for Scenarios 1~4

Fig.S15. to Fig.S44. are spatial distributions of calibrated numerical simulation results and absolute errors
for solute concentrations using the TNNA algorithm and four metaheuristic algorithms (from day 2 to day 60
recorded every two days).

3

MHA S1 to MHA S4 Metaheuristic algorithms
Here, we briefly introduce the main steps of the four metaheuristic algorithms used in this study. In the following methods,

the symbol m denotes the model parameters to be optimized, and Fobj(·) represents the objective function for inversion.

MHA S1 Particle swarm optimization algorithm (PSO)

PSO is a population-based intelligent optimization algorithm inspired by the foraging behavior of birds (Eberhart and

Kennedy, 1995). It is realized through the following steps:

Step 1: Initialize a population with 𝑁𝑁𝑀𝑀𝑀𝑀 particles of a 𝑁𝑁𝑚𝑚 -dimensional space m=(m1, m2,…,mNMe). For an arbitrary

particle mi , denote its position, velocity and best position at the k-th iteration as mi
k=(mi1

k ,…,miNm
k), Vi

k=(vi1
k ,…,viNm

k), and

Pi
k=(pi1

k ,…,pim
k), respectively.

Step 2: Calculate the best solution for each particle mi,pbest
k according to equation (S1):

mi,pbest
k = �

mi,pbest
k−1 , Fobj(mi

k)≥Fobj(mi,pbest
k−1)

mi
k, Fobj(mi

k)<Fobj(mi,pbest
k−1)

(S1)

where Fobj(·) is the objective function, also known as the fitness function.

Step 3: Calculate the best position of the population mi,gbest
k according to equation (S2).

 mgbest
k =argmin{Fobj(m1

k),…, Fobj(mNMe
k)} (S2)

Step 4: Updated the velocity and position for each particle (i) according to equations (S3) and (S4):

Vi
k+1=wiVi

k+r1c1(mi,pbest
k − mi

k)+r2c2(mgbest
k − mi

k) (S3)

mi
k+1=mi

k+Vi
k+1 (S4)

where c1 and c2 are learning parameters, generally taken as two equal non-negative constants and are set to 0.5 and 0.1 here; r1

and r2 are two random values within the range of [0, 1]; wi is the inertia weight and set to 0.8 for this study.

MHA S2 Genetic algorithm (GA)

GA is initially introduced by Holland John (1975). It draws inspiration from natural evolution and genetics, where

individuals within a population are selected or eliminated based on their adaptability to the environment. The GA is realized

through the following steps:

Step 1: Generate an initial population m=(m1, m2,…,mNMe) randomly.

Step 2: Perform binary encoding on all individuals in the population X to obtain their respective binary symbol strings.

These binary symbol strings are called chromosomes, and each value (“0” or “1”) on a symbol string is called a gene.

Step 3: Crossover: Perform crossover operations on randomly paired combinations of individuals in X. The essence of

crossover is to exchange some values in the symbol strings of a pair of individuals.

Step 4: Mutation: Perform mutation operations on some random individuals in m by changing some values of their symbol

strings.

Step 5: Selection: Perform selection operations based on the fitness values of each individual (mi) to generate the next

generation population. This step is realized through the roulette wheel selection method, where individuals with higher fitness

values are more likely to be selected.

Step 6: Determine whether the current results satisfy the iteration termination condition. If not, return to step (2); otherwise,

output the optimal individual in the current population as the final result.

4

MHA S3 Simulated Annealing (SA)

The SA method is a Monte Carlo-based stochastic optimization algorithm proposed by Metropolis et al. (1953) and

initially applied to combinational optimization problems by Kirkpatrick et al. (1983). The realization steps for SA method are

as follows:

Step 1: Set the starting temperature as T0 and draw an initial optimal solution as mi.

Step 2: Generate a new solution mj Xj from the neighborhood of the current solution mi.

Step 3: Calculate the objective function values Fobj(mi) and Fobj(mj). If Fobj(mi) ≥Fobj(mj), then mj becomes the current

solution mi; otherwise, mj becomes the current solution mi with a probability calculated as:

P(mi→mj)= exp (
 Fobj(mi)-Fobj(mj)

atT0
) (S5)

where t is the current time and a is the temperature decay constant.

Step 4: Under the current temperature conditions, repeat steps (2) and (3) until reaching the predetermined number of

internal iterations. Then, update the temperature and time as follows: set t=t+1 and Tt=atT0, then proceed to the next step.

Step 5: Return to step (2) and continue the iteration according to the new temperature (Tt) and time (t) until the termination

conditions are met. The iterations in this step can be considered outer iterations, distinguished from step (4).

MHA S4 Differential evolution (DE)

DE is another evolutionary algorithm proposed by Storn and Price (1997). Similar to GA, DE also employs mutation,

crossover and selection operators, but they update uncertain model parameters in different ways (Tran et al., 2022). The detailed

steps for realizing DE are as follows:

Step 1: Generate the initial population m=(m1, m2,…,mNMe) randomly.

Step 2: Perform encoding for each individual in X. The encoding method used in DE is floating-point real encoding, rather

than binary encoding used in GA.

Step 3: Mutation: After completing individual encoding, DE performs mutation operations to generate new individuals

according to equation (S6):

mperturbed
(g+1) =mrand1

(g) +FDE×(mrand2
(g) −mrand3

(g)) (S6)

where mrand1, mrand2 and mrand3 are randomly selected individuals among the candidate solutions of the current population and

must be different from each other. FDE is a scaling parameter within the range of [0,1], controlling differential variations. g

represents the sequence number of iterations.

Step 4: Crossover: Perform crossover operations to generate the trial vector by combining the mutant and target vectors.

The formula for this step is as follows:

mj
(g+1,trail)= �

mperturbed, j
(g+1) if 𝑃𝑃𝑗𝑗≤CR

mj
(g) if 𝑃𝑃𝑗𝑗>CR

(S7)

where Pj is a random number in the range of [0,1], CR is the crossover rate. If some variables of the trial vector have the same

values, keep one of them and reset the others with random integer numbers in the range [1, 𝐷𝐷].

Step 5: Selection: Evaluate the objective function Fobj(∙) for both the new trail vector mj
(g+1,trail) and the original vector

mj
(g). The candidate solution replaces its parent only if it yields a better (lower) objective function value.

Step 6: Return to step 3 until the convergence criteria are met.

5

Table S1 Optimal hyperparameters for MSVR by four metaheuristic algorithms
Training data number Optimal algorithms C ɛ σ MSE

200

GA 18.640 6.0117E-03 0.398 6.2652E-02
DE 27.526 4.8503E-03 0.391 6.2498E-02

PSO 27.526 4.8503E-03 0.391 6.2498E-02
SA 35.533 8.3451E-06 0.334 6.2499E-02

500

GA 54.278 4.9071E-03 0.509 4.9246E-02
DE 39.979 3.0950E-03 0.867 4.9729E-02
PSO 48.596 3.5939E-03 0.706 4.9215E-02
SA 32.241 5.5964E-03 0.615 4.8987E-02

1000

GA 23.296 4.2424E-03 0.724 4.3391E-02
DE 40.680 3.9406E-03 0.585 4.3556E-02
PSO 25.317 6.1069E-03 0.820 4.3510E-02
SA 71.104 4.0023E-05 0.561 4.3777E-02

2000

GA 61.888 1.1828E-03 0.918 3.5188E-02
DE 53.579 1.6516E-03 0.964 3.5137E-02

PSO 50.431 9.4148E-04 0.921 3.5120E-02
SA 50.307 9.0781E-03 1.033 3.5265E-02

Note: The rows in bold represent the optimal hyperparameter configurations corresponding to the
smallest MSE values.
Table S2 RMSE(All) values of FC-DNN with different number of hidden layers

Training data number Hidden layer number
1 2 3 4 5 6 7

200 0.07588 0.05882 0.06870 0.17916 0.16125 0.13690 0.13340
500 0.07050 0.04308 0.03788 0.03786 0.05824 0.09567 0.10229

1000 0.05118 0.03571 0.02703 0.02732 0.02866 0.04213 0.07825
2000 0.03936 0.02944 0.02090 0.02168 0.02580 0.03064 0.06887

Note: The bold values represent the smallest MSE values among the considered seven hidden layer
numbers.

Table S3 RAll
2 values of FC-DNN with different number of hidden layers

Training data
number

Hidden layer number
1 2 3 4 5 6 7

200 0.94140 0.96479 0.95197 0.67332 0.73539 0.80926 0.81890
500 0.94942 0.98111 0.98540 0.98541 0.96548 0.90685 0.89351
1000 0.97334 0.98703 0.99256 0.99240 0.99164 0.98194 0.93768
2000 0.98424 0.99118 0.99555 0.99522 0.99323 0.99045 0.95173

Note: The bold values represent the largest RAll
2 values among the considered seven hidden layer

numbers.

6

Table S4. RMSE values of estimated log-permeability fields for the four metaheuristic algorithms and the TNNA algorithm
under Scenario 1-4.

Scenarios
Metaheuristic algorithms

TNNA
 GA DE PSO SA

Scenario 1
NPC=100 0.7844 0.5984 0.9423 0.7720 epoch=200 0.4895
NPC=500 0.8246 0.7639 0.6379 0.8980 epoch=1000 0.4748

NPC=1000 0.6659 0.6391 0.7127 0.8012

Scenario 2
NPC=100 0.9554 0.5223 0.8785 0.6987 epoch=200 0.4317
NPC=500 0.6164 0.4925 1.0293 1.1549 epoch=1000 0.4271

NPC=1000 0.5389 0.5322 0.9686 0.6288

Scenario 3
NPC=100 0.5386 0.3892 0.5486 0.5647 epoch=200 0.3161
NPC=500 0.4339 0.4271 0.5762 0.5714 epoch=1000 0.2970

NPC=1000 0.4060 0.5042 0.6295 0.5558

Scenario 4
NPC=100 0.4436 0.3841 0.5723 0.6459 epoch=200 0.2749
NPC=500 0.4265 0.3971 0.3770 0.5654 epoch=1000 0.2328

NPC=1000 0.3653 0.3459 0.5367 0.5033

7

Fig.S1. Detailed architecture of a LeNet based CNN. The input matrix data (1×NCell×NCell) are obtained according to
Figure 2(c) and subjected to feature extraction through a sequence of two convolutional and pooling layers, subsequently
connected to the output layer using a flatten layer and two fully connected layers.

Fig.S2. Detailed architecture of a ResNet based CNN. The input matrix data (1×NCell×NCell) are obtained according to
Figure 2(c). “Res Block-1” and “Res Block-2” are two different types of residual blocks used in this ResNet. Eight
residual blocks in four stages are designed in this ResNet. “Stage i (j)” represents the jth residual block used in stage i.
Note: In Stage 4, when dimensions cannot be evenly divided, the results are rounded up to the nearest integer (e.g., 5/2
is rounded up to 3).

8

Fig.S3. Performance of MSVR based surrogate models for the solute concentration and hydraulic head prediction. (a~d)
are pair-wise comparisons based on surrogate models trained by 200, 500, 1000, and 2000 training samples, respectively.

Fig.S4. Performance of FC-DNN based surrogate models for the solute concentration and hydraulic head prediction.
(a~d) are pair-wise comparisons based on surrogate models trained by 200, 500, 1000, and 2000 training samples,
respectively.

9

Fig.S5. Performance of LeNet CNN based surrogate models for the solute concentration and hydraulic head prediction.
(a~d) are pair-wise comparisons based on surrogate models trained by 200, 500, 1000, and 2000 training samples,
respectively.

Fig.S6. Performance of ResNet CNN based surrogate models for the solute concentration and hydraulic head prediction.
(a~d) are pair-wise comparisons based on surrogate models trained by 200, 500, 1000, and 2000 training samples,
respectively.

10

Fig.S7 Spatial distributions of log-permeability field estimation results (row 1, 3, and 5 for NPC=100, 500, and 1000,
respectively) and absolute errors (row 2, 4, and 6 for NPC=100, 500, and 1000, respectively) for Scenario 1, achieved by
four metaheuristic algorithms.

Fig.S8 Spatial distributions of log-permeability field estimation results (row 1, 3, and 5 for NPC=100, 500, and 1000,
respectively) and absolute errors (row 2, 4, and 6 for NPC=100, 500, and 1000, respectively) for Scenario 2, achieved by
four metaheuristic algorithms.

11

Fig.S9 Spatial distributions of log-permeability field estimation results (row 1, 3, and 5 for NPC=100, 500, and 1000,
respectively) and absolute errors (row 2, 4, and 6 for NPC=100, 500, and 1000, respectively) for Scenario 3, achieved by
four metaheuristic algorithms.

Fig.S10 Spatial distributions of log-permeability field estimation results (row 1, 3, and 5 for NPC=100, 500, and 1000,
respectively) and absolute errors (row 2, 4, and 6 for NPC=100, 500, and 1000, respectively) for Scenario 4, achieved by
four metaheuristic algorithms.

12

Fig.S11. Spatial distributions log-permeability field estimation results and absolute errors for Scenario 1, achieved by
the TNNA inversion algorithm.

Fig.S12. Spatial distributions log-permeability field estimation results and absolute errors for Scenario 2, achieved by
the TNNA inversion algorithm.

Fig.S13. Spatial distributions log-permeability field estimation results and absolute errors for Scenario 3, achieved by
the TNNA inversion algorithm.

Fig.S14. Spatial distributions log-permeability field estimation results and absolute errors for Scenario 4, achieved by
the TNNA inversion algorithm.

13

Fig.S15. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=2
day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S16. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=4
day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S17. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=6
day) using the TNNA algorithm and four metaheuristic algorithms.

14

Fig.S18. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=8
day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S19. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=10 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S20. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=12 day) using the TNNA algorithm and four metaheuristic algorithms.

15

Fig.S21. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=14 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S22 Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=16
day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S23 Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=18
day) using the TNNA algorithm and four metaheuristic algorithms.

16

Fig.S24 Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=20
day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S25. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=22 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S26. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=24 day) using the TNNA algorithm and four metaheuristic algorithms.

17

Fig.S27. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=26 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S28. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=28 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S29. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=30 day) using the TNNA algorithm and four metaheuristic algorithms.

18

Fig.S30. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=32 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S31. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=34 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S32. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=36 day) using the TNNA algorithm and four metaheuristic algorithms.

19

Fig.S33. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=38 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S34. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=40 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S35. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=42 day) using the TNNA algorithm and four metaheuristic algorithms.

20

Fig.S36. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=44 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S37. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=46 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S38. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=48 day) using the TNNA algorithm and four metaheuristic algorithms.

21

Fig.S39. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=50 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S40. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=52 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S41. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=54 day) using the TNNA algorithm and four metaheuristic algorithms.

22

Fig.S42. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=56 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S43. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=58 day) using the TNNA algorithm and four metaheuristic algorithms.

Fig.S44. Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations
(t=60 day) using the TNNA algorithm and four metaheuristic algorithms.

