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Abstract. Continuous high-quality meteorological informa-
tion is needed to describe and understand extreme hydro-
climatic events, such as droughts and floods. Observation-
based information of the highest quality is often only avail-
able on a national level and for a few meteorological
variables. As an alternative, large-scale climate reanalysis
datasets that blend model simulations with observations are
often used. However, their performance can be biased due
to coarse spatial resolutions, model uncertainty, and data as-
similation biases. Previous studies on the performance of re-
analysis datasets either focused on the global scale, on single
variables, or on a few aspects of the hydro-climate. There-
fore, we here conduct a comprehensive spatio-temporal eval-
uation of different precipitation, temperature, and snowfall
metrics for four state-of-the-art reanalysis datasets (ERA5,
ERA5-Land, CERRA, and CHELSA-v2.1) over complex ter-
rain. We consider the climatologies of mean and extreme cli-
mate metrics, daily to inter-annual variability, as well as con-
sistency in long-term trends. Further, we compare the repre-
sentation of extreme events, namely, the intensity and sever-
ity of the 2003 and 2018 meteorological droughts as well as
the 1999 and 2005 heavy precipitation events that triggered
flooding in Switzerland. The datasets generally show a sat-
isfactory performance for most of these characteristics, ex-
cept for the representation of snowfall (solid precipitation)
and the number of wet days in ERA5 and ERA5-Land. Our
results show that there are clear differences in the representa-
tion of precipitation among datasets, with CERRA showing
a substantial improvement in the representation of precipita-
tion compared to the other datasets. In contrast to precipita-

tion, temperature is more comparable across datasets, with
CERRA and CHELSA showing smaller biases but a clear in-
crease in bias with elevation. All the datasets were able to
identify the 2003 and 2018 drought events; however, ERA5,
ERA5-Land, and CHELSA overestimated their intensity and
severity, while CERRA underestimated them. The 1999 and
2005 floods were overall well represented by all the datasets,
with CERRA showing the best agreement with observations,
and the other datasets overestimating the spatial extent of the
events. We conclude that, overall, CERRA is the most reli-
able dataset and suitable for a broad range of analyses, partic-
ularly for regions where snow processes are relevant and for
applications where the representation of daily to inter-annual
precipitation variability is important.

1 Introduction

Continuous and high-quality gridded meteorological datasets
are crucial for describing, understanding, and monitoring ex-
treme hydro-climatic events, such as droughts and floods.
However, identifying suitable meteorological datasets for hy-
drological applications is challenging, especially over com-
plex terrain, where climate is influenced by orographic ef-
fects (Napoli et al., 2019), and high-quality information is
available only from a few observational stations. Many dif-
ferent types of datasets exist, ranging from gauge-based data
and gridded products interpolated from these station data to
satellite-derived products, reanalysis products, and products
that merge information from multiple sources (Roca et al.,
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2019; Vidal et al., 2009; Soci et al., 2016). Among these,
gauge-based and interpolated observations are often seen as
“ground truth” or benchmark datasets (Sun et al., 2018) and
offer the best source of meteorological data for hydrologi-
cal modeling (Tarek et al., 2020), especially in regions with
dense station networks and long homogeneous records. Such
gridded observation-based products provide temperature and
precipitation fields by spatially interpolating point informa-
tion from measurement stations onto a grid using different
deterministic interpolation schemes of varying complexity
(e.g., Hofstra et al., 2008; Daly et al., 2008; Rauthe et al.,
2013; Frei, 2013). While of high quality, these observation-
based products are often only available on the national level
(e.g., Frei, 2013; Krähenmann et al., 2016), or for some
trans-boundary catchments (e.g., Rauthe et al., 2013; Lus-
sana et al., 2019; Isotta et al., 2013), and most of them are
only available for a limited number of meteorological vari-
ables (i.e., precipitation and/or temperature). However, con-
sistent data across larger scales and for multiple variables are
desirable, as droughts and floods often extend across large re-
gions. Reanalysis datasets, unlike purely observation-based
datasets, are available over larger domains and provide phys-
ically consistent information on multiple variables, includ-
ing precipitation and temperature (e.g., Hersbach et al., 2020;
Gelaro et al., 2017).

Reanalysis datasets use numerical models (Dee et al.,
2014) to create a realistic representation of past atmospheric,
ocean, and land-surface states. Reanalysis systems utilize
various data assimilation schemes to integrate observed sur-
face and atmospheric conditions (e.g., pressure, humidity,
temperature, and wind) to constrain simulations to large-
scale observed Earth system states (Hersbach et al., 2020;
Ridal et al., 2024). For example, in the case of a large-scale
drought event caused by a stable high-pressure system, the
reanalysis system will simulate a comparable blocking-type
weather regime, based on the assimilated pressure and wind
fields. Further, the associated precipitation anomalies will be
simulated as a response to the modeled system states. Given
that, for example, precipitation processes are unresolved on
coarse model scales, and hence depend on the internal model
structure and implemented physical equations (i.e., parame-
terization), they will suffer from model uncertainties. There-
fore, simulated precipitation and temperature fields can dif-
fer from local observations and vary greatly across reanalysis
datasets relying on different modeling systems (Alexander
et al., 2020; Sun et al., 2018).

As it is computationally expensive to run reanalyses on the
continental and global scale, large-domain simulations often
use a limited spatial resolution. The current generation of
the most widely used global reanalysis datasets have spatial
resolutions between 31 and 60 km. These include the fifth-
generation European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis dataset (ERA5, ≈ 31 km;
Hersbach et al., 2020), the Modern-Era Retrospective anal-
ysis for Research and Applications, Version 2 (MERRA-

2, ≈ 50 km; Gelaro et al., 2017), and the Japanese 55-year
Reanalysis (JRA-55, ≈ 79 km; Kobayashi et al., 2015). Be-
cause of their coarse spatial resolutions, these datasets fail
to deliver information at impact-relevant scales. To provide
higher-resolution climate information, and to better represent
water and energy cycles over land, ECMWF has produced an
offline land-surface model simulation forced with bilinearly
interpolated atmospheric fields from ERA5, resulting in the
ERA5-Land dataset at a ≈ 9 km spatial resolution (Muñoz-
Sabater et al., 2021). At continental scales, even higher-
resolution regional reanalysis products can be produced by
dynamically downscaling global reanalysis information over
a limited area with or without an additional data assimilation
scheme (Bollmeyer et al., 2014). Thereby, the regional re-
analysis system is one-way nested within the global reanaly-
sis, which means that the global reanalysis delivers the large-
scale boundary and initial conditions for the higher resolution
numerical model over the target region. Examples of such re-
gional reanalysis products include the Copernicus European
Regional Reanalysis (CERRA) at 5.5 km horizontal resolu-
tion (Ridal et al., 2024) and the COSMO-REA6 by the Ger-
man Weather Service at 6 km resolution (Bollmeyer et al.,
2014). Because many applications require even higher reso-
lution data (Karger et al., 2023; Brun et al., 2022; Willkofer
et al., 2020), there have been many efforts to statistically
downscale global reanalysis datasets in a physically mean-
ingful way, for example, the Climatologies at High resolu-
tion for the Earth’s Land Surface Areas (CHELSA) datasets
(Karger et al., 2017, 2021b) provide refined information at
an approximately 1 km resolution.

The main advantage of global and regional climate reanal-
yses is that they provide continuous and physically consis-
tent time series of many surface and atmospheric variables
across space and time. Therefore, they are increasingly used
to study and model hydro-climatic extremes. Choosing a
suitable dataset for a particular hydrological application is
not a straightforward process, owing to the wide range of
available data products (by various providers) at different
temporal and spatial resolutions and with different spatial
domains. Choosing a dataset would require information on
dataset performance with respect to key climatic variables,
including temperature and precipitation. In other words, thor-
ough comparisons of reanalysis datasets and gridded obser-
vations are required, as both are used as climatic reference
conditions in various applications, including those pertaining
to understanding the drivers of hydrological drought (e.g.,
Bakke et al., 2020; Brunner et al., 2023); tracking the prop-
agation of drought from the atmosphere to the hydrosphere
(Brunner and Chartier-Rescan, 2024); simulating streamflow
with hydrological models to understand the risk of floods
(e.g., Brunner and Fischer, 2022; Willkofer et al., 2020); ana-
lyzing elevation-dependent trends in mean and extreme pre-
cipitation across mountain regions (Ferguglia et al., 2024);
and evaluating climate model performance and bias adjust-
ment (e.g., Vautard et al., 2021; Tootoonchi et al., 2022).
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There is ample evidence that the choice of reanalysis
dataset can influence the results and conclusions of hydro-
logical impact studies (e.g., Kotlarski et al., 2017; Gampe
et al., 2019; Tarek et al., 2021. Therefore, several studies
have compared different sets of reanalysis datasets with re-
spect to various climate characteristics. For example, Band-
hauer et al. (2021) evaluated precipitation in ERA5 for three
mountain regions in Europe, while Lavers et al. (2022) ex-
amined extreme precipitation across 5637 precipitation sta-
tions quasi-globally. Both studies concluded that ERA5 has
deficiencies in modeling precipitation characteristics, such as
means and wet day frequency and extremes, compared to
high-resolution gridded observations and station data. Ge-
brechorkos et al. (2024) assessed ERA5-Land precipitation
for streamflow simulations worldwide, concluding that it per-
forms better than other datasets, but that there is not one
single global precipitation dataset that performed best in all
catchments. Tarek et al. (2020) assessed the value of ERA5
in North American catchments, showing that ERA5 leads to
improved hydrological performance compared to its prede-
cessor, ERA-Interim, but that observations remain the best
source of precipitation data for hydrological modeling. Mc-
Clean et al. (2023) evaluated the capabilities of global re-
analysis products for flood risk modeling in river catch-
ments in Northern England and showed that the higher res-
olution ERA5-Land has lower errors compared to coarser
resolution reanalysis datasets. Dura et al. (2024) analyzed
seven gridded precipitation products, including ERA5-Land
and CERRA-Land, for their suitability to estimate precipita-
tion enhancement with altitude in France. They found that
ERA5-Land underestimates annual precipitation gradients
for mid-range mountains and even more so in high-altitude
regions, while CERRA-Land strongly correlates with annual
observed precipitation, but it is slightly biased in some re-
gions, and the bias may change the sign according to eleva-
tion. Monteiro and Morin (2023) compared ERA5, ERA5-
Land, and CERRA-Land, among other datasets, conclud-
ing that CERRA-Land performs better in terms of modeling
snow depth and snow seasonality in the European Alps, than
ERA5 and ERA5-Land.

Most studies evaluating reanalysis datasets focused on one
specific aspect, for example, the representation of precip-
itation. In addition, they stratified their analyses into very
large spatial units, for example, the entire globe or mesoscale
catchments and regions, which can hide dataset differences.
Further, only a few of these studies provide information on
reanalysis dataset performance with respect to the represen-
tation of extreme events, daily to interannual variability, and
temporal trends. Therefore, while all of these studies provide
valuable insights with respect to certain climatic characteris-
tics for specific regions, it remains unclear how well differ-
ent datasets perform in mountain regions in terms of repre-
senting temperature and precipitation characteristics. How-
ever, good performance in mountain regions is essential for
climate monitoring, as they are hotspots of climate and hy-

drological change (Adler et al., 2022). A thorough reanaly-
sis dataset comparison is needed in these regions, because
dataset performance may vary greatly depending on eleva-
tion (Monteiro and Morin, 2023; Dura et al., 2024). Fur-
thermore, an accurate representation of both temperature and
precipitation as well as their interplay is crucial in these re-
gions, because it determines the partitioning of liquid and
solid precipitation and hence the build-up of snow storage.
Along the climate-hydrological modeling chain, a misrep-
resentation of either of these variables can lead to a mis-
representation of hydrological extremes including floods and
droughts. Therefore, the representation of all of these com-
ponents is crucial for hydro-climatic impact studies, in par-
ticular, in regions with complex topography.

To understand which reanalysis products are most suitable
for hydrological impact studies in the mountainous regions
of Europe, we compare four state-of-the-art and widely used
global and regional reanalysis datasets with gridded observa-
tions with respect to climate variables that are crucial to de-
scribing hydrological behavior, namely temperature and pre-
cipitation. Our analysis is focused on Switzerland because
it shows a large climatic gradient owing to its complex to-
pography, and because high-quality observation-based grid-
ded datasets are available for benchmarking. To account for
the variety in available reanalysis datasets, we compare the
global ERA5 reanalysis dataset, its higher-resolution version
over land (ERA5-Land), the regional reanalysis dataset for
Europe (CERRA), and a statistically downscaled global re-
analysis dataset (CHELSA). We evaluate these datasets by
quantifying the differences between model simulations and
gridded observations for different climate metrics, includ-
ing mean and extreme climate metrics (Sects. 4.1, 4.2); pre-
cipitation and temperature variability across various tem-
poral scales (Sect. 5.1); consistency in long-term trends
(Sect. 5.2); snowfall estimates as a result of precipitation–
temperature dependence (Sect. 4.3); and the spatial and tem-
poral representation of observed severe droughts (Sect. 6.1)
and heavy precipitation events that led to flooding in Switzer-
land (Sect. 6.2).

2 Datasets

For our comparison, we use temperature and precipitation
data from four reanalysis products as well as two gridded
observational datasets, which we use as our benchmarks
(Table 1). We limit our comparison to the period 1986–
2020, based on the dataset with the shortest temporal cov-
erage, i.e., the Copernicus European Regional ReAnalysis
(CERRA). Although some reanalysis products provide data
at a sub-daily time resolution, the comparison is performed
at a daily resolution, which is the resolution of the observa-
tional benchmark dataset. As the datasets provide climate in-
formation at various grid resolutions and grid specifications,
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we quantify dataset differences based on catchment averages
(Fig. 1).

2.1 Gridded observations

We use two gridded observational products from the
Swiss Federal Office of Meteorology and Climatology
(MeteoSwiss) as our benchmark products. These products
use daily observations from measurement stations, which
are spatially interpolated onto a 75 arcsec grid (≈ 2 km)
over Switzerland. We use daily mean temperature (TabsD),
which is based on data from 90 high-quality stations (Me-
teoSchweiz, 2021b; Frei, 2013), and precipitation (RhiresD),
which provides total precipitation over a day, starting from
06:00 UTC, and is based on data from 650 measurement sta-
tions (MeteoSchweiz, 2021a; Schwarb, 2000). Here, these
gridded MeteoSwiss products serve as a purely observation-
based reference for comparing with the reanalysis datasets.

2.2 Reanalysis datasets

We selected the newest generation of reanalysis products
with a high resolution, that is, the ERA5 suite (i.e., ERA5
and ERA5-Land) and two of its derivatives (CERRA and
CHELSA). The datasets CERRA and CHELSA were chosen
as they are expected to soon be extended back in time, of-
fering a valuable tool at an even higher resolution. We chose
to exclude other widely used global reanalysis products (i.e.,
MERRA2 or JRA-55), as they are only available at a very
coarse spatial resolution (> 50 km).

2.2.1 ERA5 and ERA5-Land

We use two reanalysis datasets from the ERA5 product fam-
ily, namely, ERA5 and ERA5-Land. ERA5 is a global reanal-
ysis dataset produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF), with a spatial reso-
lution of 31 km and hourly temporal resolution (Hersbach
et al., 2020). It is the coarsest resolution dataset that we
consider. ERA5 is created with the Integrated Forecasting
System Cy41r2 and covers the period from 1940 until the
present. ERA5-Land uses linearly interpolated atmospheric
forcing from ERA5 data to run the CHTESSEL (Carbon
Hydrology-Tiled ECMWF Scheme for Surface Exchanges
over Land) land-surface model at a spatial resolution of 9 km
(Muñoz-Sabater et al., 2021). The dataset provides improved
and additional land-surface variables (e.g., soil moisture,
snow, or hydrological variables) compared to ERA5. The
ERA5-Land precipitation data are provided as linearly inter-
polated fields from ERA5 without any adjustments – by lin-
ear interpolation onto the ERA5-Land grid (Muñoz-Sabater
et al., 2021)– and accumulated to 24 h, whereas ERA5-Land
temperature data were interpolated and adjusted using daily
lapse rates – to account for the altitude differences between
the ERA5 and ERA5-Land grids (Dutra et al., 2020; Muñoz-

Sabater et al., 2021) – and are provided at an hourly time
step.

2.2.2 CERRA

In addition to the two global reanalyses products, we
use Copernicus European Regional ReAnalysis (CERRA),
which provides data for Europe for the period from mid-
1984 until mid-2021. The CERRA reanalysis system com-
prises multiple datasets, from which we use the CERRA
high-resolution dataset for temperature (Schimanke et al.,
2021; Ridal et al., 2024), which has a 5.5 km resolution and a
3-hourly temporal resolution, and the CERRA-Land dataset
(Verrelle et al., 2022) for precipitation, which has a 5.5 km
resolution and daily accumulation. CERRA is a classic re-
analysis system based on the HARMONIE-ALADIN model
(Bengtsson et al., 2017; Termonia et al., 2018), which utilizes
data assimilation for atmospheric and surface conditions.
Since it is a regional reanalysis system, it requires lateral
boundary conditions, which are based on ERA5 model sim-
ulations (Ridal et al., 2024). CERRA-Land is a standalone
simulation of the land-surface model, SURFEX v8.1, which
delivers additional land-surface variables. SURFEX is driven
by atmospheric variables from the CERRA high-resolution
simulations and uses precipitation from the regional precip-
itation analysis system, MESCAN (Soci et al., 2016; Ridal
et al., 2024). The MESCAN regional precipitation analysis
system uses precipitation fields from the CERRA simula-
tions as a first guess and incorporates additional in-situ obser-
vational rain gauge data through optimal interpolation (Soci
et al., 2016). Because of this additional precipitation data as-
similation, we use the CERRA-Land precipitation product
instead of the CERRA product. We will refer to this dataset
composed of CERRA temperature and CERRA-Land precip-
itation as CERRA.

2.2.3 CHELSA

Climatologies at High resolution for the Earth’s Land Sur-
face Areas (CHELSA) products are statistically downscaled
versions of large-scale reanalysis datasets, provided on a high
resolution 30 arcsec grid (≈ 1 km at the Equator) (Karger
et al., 2017, 2021b, 2023). Here, we use precipitation and
temperature data from CHELSA version 2.1 (Karger et al.,
2023, 2021a), which is based on a statistical downscaling of
the W5E5 global reanalysis dataset (original spatial resolu-
tion of 0.5°) (Cucchi et al., 2020). W5E5 is a bias-adjusted
version of ERA5 over land. The CHELSA high-resolution
temperature data are based on an atmospheric lapse-rate
downscaling (Karger et al., 2017), accounting for differences
in orography between the 30 arcsec CHELSA topography –
based on global multi-resolution terrain elevation data from
GMTED2010 (Danielson and Gesch, 2011) – and the W5E5
topography, as well as lapse rates determined for different
atmospheric pressure levels in ERA5. The precipitation data
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Table 1. Overview of the datasets used in this study.

Dataset Type Spatial resolu-
tion

Spatial cover-
age

Temporal cov-
erage

Reference

ERA5 Reanalysis 31 km Global 1940–present Hersbach et al. (2020)

ERA5-Land Reanalysis 9 km Global 1940–present Muñoz-Sabater et al. (2021)

CERRA(-
Land)

Reanalysis 5.5 km Europe mid 1984–
mid 2021

Schimanke et al. (2021);
Verrelle et al. (2022)

CHELSA Downscaled reanalysis 30 arcsec
(≈ 1 km)

Global 1979–present Karger et al. (2023)

TabsD/RhiresD Gridded observations 75 arcsec
(≈ 2 km)

(Hydrological)
Switzerland

1961–present MeteoSchweiz (2021a, b)

CAMELS-CH Catchment outlines and
elevations

Hydrological
Switzerland

Höge et al. (2023b)

are based on a downscaling algorithm that uses spatial wind
fields and boundary layer thickness to account for orographic
wind effects (Karger et al., 2021b). The precipitation fluxes
are thereby preserved at the 0.5° grid of the parent W5E5
dataset.

2.3 Catchments CAMELS-CH

For the calculation of catchment averages, we rely on catch-
ment delineations from the CAMELS-CH dataset (Catch-
ment Attributes and MEteorology for large-sample Studies
– Switzerland; Höge et al., 2023b). CAMELS-CH is a large
sample hydro-meteorological dataset providing catchment
outlines and static attributes for 331 catchments in Switzer-
land and neighboring countries (i.e., hydrological Switzer-
land). We limit the analysis to 97 non-overlapping headwa-
ter catchments within the political borders of Switzerland.
While all the reanalysis datasets provide data beyond the bor-
ders of Switzerland, the gridded temperature observations
are limited to political Switzerland. For the analysis of el-
evation dependence, we use catchment elevation from the
CAMELS-CH dataset. The selected catchments cover the
three elevation bins, low (≤ 1000 m, n= 32), mid (1000–
2000 m, n= 36), and high (> 2000 m, n= 29), with a com-
parable number of catchments in each bin.

3 Methods

To describe and identify the most important differences be-
tween datasets, we compare the four reanalysis datasets to the
gridded observations for a broad range of precipitation, tem-
perature, and snowfall metrics calculated (Sect. 3.1) at the
catchment level. First, our comparison focuses on both the
absolute and relative differences between the climate met-
rics derived from the reanalysis datasets and from the grid-
ded observations. Second, we use these climate metrics to
analyze the temporal consistency of precipitation and tem-
perature variability (Sect. 3.2.1) as well as the consistency in

long-term trends (Sect. 3.2.2). Last, we use catchment time
series of precipitation to compare the spatial and temporal
representation of two severe droughts (2003 and 2018) and
two heavy precipitation events that led to severe floods in
Switzerland (1999 and 2005) (Sect. 3.3).

To calculate metrics on the catchment level, we use two
complementary approaches: a time-series-based approach,
which first calculates time series of daily catchment aver-
ages and then calculates the metric of interest; and a metric-
based approach, which first calculates the metric on the na-
tive dataset grid before averaging over the catchment. The
time-series-based perspective provides information about the
average state of the catchment from a hydrology perspective,
while the metric-based perspective allows us to compare the
average behavior of the index at the catchment scale.

3.1 Climate metrics

First, we compare general climatic characteristics, such as
the long-term mean daily precipitation and temperature at the
annual and seasonal scales, which are based on catchment av-
erage time series of daily precipitation and temperature (i.e.,
the time-series-based approach). To compare dataset differ-
ences, we calculate relative (%, precipitation metrics) and
absolute differences (°C, temperature metrics) between the
metrics of the reanalysis datasets and gridded observations
for each catchment. Further, we check whether these differ-
ences are elevation dependent, i.e., vary with catchment ele-
vation.

Second, we calculate a selection of univariate annual ex-
treme and non-extreme precipitation and temperature metrics
using the metric-based approach. To describe non-extreme
precipitation characteristics, we consider the annual num-
ber of wet days (wetdays) within a year. To describe ex-
treme precipitation characteristics, we use the annual max-
imum accumulated precipitation over 1 d (Rx1d), 2 d (Rx2d),
and 5 d (Rx5d) and the fraction of the total annual accumu-
lated precipitation falling on very wet days (R99pTot). To de-
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Figure 1. Mean annual climatology for 1986–2020 for the five datasets at their original grid resolution. (a) Mean annual precipitation
for the gridded observations, ERA5 reanalysis, ERA5-Land reanalysis, CERRA reanalysis, and CHELSA reanalysis (upper left to bottom
right panels). (b) Mean annual temperature for the five datasets. Plots are overlaid with the outline of the 97 headwater catchments of the
CAMELS-CH dataset (solid) and Swiss country borders (dotted). The observations in (a) and (b) are further overlaid with the catchment
outlets (solid dots).

scribe temperature, we consider the annual number of cold
days (colddays), the annual maximum daily mean tempera-
ture (tg_max), and the annual minimum daily mean tempera-
ture (tg_min). All above metrics are based on a calendar year
(Jan-Dec).

Lastly, we compare the datasets with respect to their rep-
resentation of snowfall (i.e., solid precipitation), which is in-
fluenced by the interdependence of precipitation and tem-
perature. While ERA5, ERA5-Land, and CERRA explicitly
represent snow, CHELSA and observations do not. There-
fore, we consistently approximate snowfall using a com-
mon temperature threshold for all reanalysis datasets and

the observations. We separate precipitation into liquid and
solid precipitation using 0 °C as a threshold, with liquid
precipitation and solid precipitation falling above and be-
low 0 °C, respectively. Our analysis focuses on the repre-
sentation of total accumulated solid precipitation (solidprcp-
tot) and the fraction of solid to total accumulated precipi-
tation (liquid+ solid) – both computed for the hydrological
year (October–September) and following the metric-based
approach.

A complete list of the metrics used for the comparison and
their definitions are provided in Table 2. All climate metrics
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were calculated with the xclim Python package (Bourgault
et al., 2023b).

3.2 Temporal consistency

3.2.1 Daily to annual variability

To compare the temporal consistency, we analyze the repre-
sentation of daily, monthly, seasonal, and inter-annual tem-
perature and precipitation variability. We define variability as
the standard deviation of daily, monthly, and annual anoma-
lies. Anomalies (absolute anomalies (K) for temperature, and
relative anomalies (%) for precipitation) are computed using
the 1986–2020 climatology of each dataset. Daily anomalies
are calculated for each day of the year with a 30 d window
centered on the day of interest for the climatology quantifi-
cation. For monthly anomalies, we first calculate monthly
means and then calculate anomalies based on the monthly
climatology. Similarly, seasonal anomalies are calculated for
winter (DJF), spring (MAM), summer (JJA), and fall (SON).
Annual anomalies are based on annual means or extreme
metrics (i.e., Rx1d, Rx5d, tg_max, tg_min) and their respec-
tive annual climatology. To compare datasets, we calculate
the relative (%, precipitation metrics) and absolute differ-
ences (K, temperature metrics) between the variability of the
reanalysis datasets and gridded observations for each catch-
ment.

3.2.2 Trends

Next, we analyze the consistency of significant long-term
trends and their trend magnitudes in various metrics across
the different datasets and assess how well trends in the re-
analysis match observed trends. For trend significance, we
apply the Mann–Kendall test (Mann, 1945; Kendall, 1975)
using 0.05 as the significance level. Further, as precipita-
tion trends are typically masked by large internal variabil-
ity (Wood and Ludwig, 2020; Wood, 2023), we additionally
consider trends as weakly significant if the p-value lies be-
tween 0.05 and 0.1. Trends with p-values above 0.1 are con-
sidered non-significant and are labeled as “no trend”. The
trend magnitude and sign are estimated using the Theil-Sen
slope estimator (Sen, 1968). To assess the spatial consis-
tency of trends, we compare the trends of each reanalysis
dataset with trends in observations and test for each catch-
ment whether the two datasets agree on the significance and
sign of the trend. We label the test as true when both datasets
show a significant trend and the same sign or when both
datasets show no significant trend. The test is labeled false
when either the observations show a significant trend and the
reanalysis dataset shows no trend or vise versa, or when both
datasets show a significant trend but they do not agree on the
sign.

3.3 Extreme event analysis

Lastly, we compare the reanalysis datasets with respect to
their ability to represent observed extreme events. Specifi-
cally, we analyze the consistency among the datasets for two
distinct extreme event types – meteorological droughts and
extreme precipitation. We compare the spatial and temporal
representation of the 2003 and 2018 droughts as well as the
extreme precipitation events in 1999 and 2005 that triggered
floods in Switzerland. For both event types, we compare the
severity – expressed by standardized precipitation values –
and the intensity of the events, expressed by cumulative 6-
month precipitation deficits (for droughts) or 2 d precipita-
tion sums (for extreme precipitation).

3.3.1 Meteorological drought

In the summers of 2003 and 2018, Switzerland was affected
by severe drought conditions (Brunner et al., 2019). In 2003,
the drought resulted in reduced streamflow in the Rhine
(−46 % of normal summer flow) and in the Aare catch-
ments (−38 %) (Zappa and Kan, 2007). In 2018, Switzer-
land, on average, only received 57 % of its normal precipita-
tion amount between April and September (MeteoSchweiz,
2019).

We analyze differences in drought intensity across the
datasets by comparing the cumulative precipitation deficits
from March until August in 2003 (2018). Deficits are calcu-
lated as the differences from the long-term mean of cumu-
lative sums (March–August) in 1986–2020. The severity of
the events is compared based on the widely used Standard-
ized Precipitation Index (SPI) for a 6-month accumulation
period (March–August), which we computed by transform-
ing the 6-month sums to a standard normal distribution using
a Gamma distribution (Lloyd-Hughes and Saunders, 2002;
Stagge et al., 2015). The reference for the SPI-6 are all 6-
month sums (March–August) in the period 1986–2020.

3.3.2 Extreme precipitation

In May 1999 and August 2005, Switzerland was affected by
multiple extreme precipitation events, which triggered severe
flooding in different parts of the country. For the May 1999
flood, we compare two precipitation events that occurred
within 10 d of each other (11–12 and 21–22 May) and caused
flooding in the Swiss Midlands (Hilker et al., 2009). For the
August 2005 flood, we compare the single two-day precip-
itation event on 21–22 August, which affected the northern
slopes of the Swiss Alps and caused widespread flooding
in Central Switzerland and the Bernese Oberland (Beniston,
2006; Hilker et al., 2009). Similar to the drought analysis,
we compare the representation of these events in terms of
their intensity and severity. Intensity is defined as the 2 d pre-
cipitation sum during each of the events, and the severity is
described using standardized precipitation. In contrast to the
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Table 2. Definition of precipitation and temperature metrics

Acronym Metric name Definition Unit

Precipitation prcptot Total accumulated precipitation Total accumulated precipitation (liquid & solid) mm
(univariate) Pmean Annual mean daily precipitation Annual mean of daily mean precipitation mm

Rx1d Maximum 1 d precipitation Annual maximum 1 d accumulated precipitation amount mm
Rx2d Maximum 2 d precipitation Annual maximum 2 d accumulated precipitation amount mm
Rx5d Maximum 5 d precipitation Annual maximum 5 d accumulated precipitation amount mm
R99pTot Fraction of precipitation due to extremely wet days Fraction of total annual precipitation amount due to wet days

with daily precipitation > 99th percentile
%

wetdays Number of wet days Number of wet days per year with daily precipitation
≥ 1 mm d−1

days

Precipitation solidprcptot Total accumulated solid precipitation Total accumulated solid precipitation approximated by
(multivariate) precipitation on days with daily mean temperature below 0 °C mm

liquidprcptot Total accumulated liquid precipitation Total accumulated liquid precipitation approximated by precip-
itation on days with daily mean temperature above 0 °C

mm

solidprcpratio Fraction of solid precipitation to total precipitation The fraction of solidprcptot to prcptot. %

Temperature tg_max Maximum of daily mean temperature Annual maximum of daily mean temperature °C
(univariate) tg_min Minimum of daily mean temperature Annual minimum of daily mean temperature °C

Tmean Annual mean daily temperature Annual mean of daily mean temperature °C
colddays Number of cold days Number of days with daily mean temperature ≤ 0 °C days

SPI-6 calculation for droughts, we apply standardization to
all 2 d rolling precipitation sums in May or August. To also
include extreme events from the adjacent months, we include
±15 d of the previous/past month to the rolling window cal-
culation. Here, we fitted a generalized extreme value distri-
bution prior to the transformation to a standard normal distri-
bution to retrieve the 2 d SPI values. Precipitation sums less
then 1 mm were excluded from the standardization to reduce
the influence of the large number of zero precipitation days.

4 Mean and extreme precipitation and temperature
climatology

4.1 Mean climatology

The four reanalysis datasets differ only slightly in terms of
their annual and seasonal precipitation and temperature cli-
matology; however, on the catchment level, biases exist with
respect to the observations (Fig. 2). Simulated mean daily
precipitation is generally overestimated across catchments by
most reanalysis datasets – except for CERRA, which shows
median biases around 0 % – both at an annual and seasonal
time scale (Fig. 2a). In general, precipitation biases do not
show a clear elevation dependence; however, they can show
slightly higher biases in lower and higher elevated catch-
ments (see black markers in Fig. 2a). In summer, all the re-
analysis datasets overestimate precipitation with respect to
observations. The positive reanalysis biases are more pro-
nounced in catchments at high and low elevations (> 2000
and ≤ 1000 m a.s.l.), and they are less pronounced in catch-
ments at mid-elevations (1000–2000 m a.s.l.) for all reanaly-
sis datasets (Figs. 2a and S1).

In contrast, simulated mean daily temperature is gener-
ally slightly underestimated by most reanalysis datasets, or
it matches observations well, and most datasets show com-

parable biases, except for ERA5 (Fig. 2b). ERA5 generally
has a warm bias – except for winter – while the other re-
analysis datasets have a slight cold bias of less than 1 °C
(median bias). In winter, all the reanalyses show clear cold
biases, with median catchment biases of at least−1 °C. They
also show a strong elevation dependence, with larger biases
at higher elevations (see Fig. 2b (black markers)). ERA5 and
CERRA show smaller winter biases (median) than the other
datasets. In summer, ERA5-Land, CERRA, and CHELSA
show small biases (median biases around 0 °C) across most
catchments, while ERA5 shows median biases of more than
1 °C, with a clear elevation dependence (i.e., warmer bi-
ases with higher elevation). In the other seasons (spring and
fall) and annually, ERA5 shows warm biases without a clear
elevation dependence and spatial pattern (Fig. S2), while
the other datasets show comparably small cold biases and
partially larger biases at higher elevations. In CERRA and
CHELSA, biases generally show a pronounced dependence
on elevation (i.e., higher biases at higher elevation) in most
seasons with varying strength.

4.2 Extreme climatology

While reanalysis datasets only slightly vary in terms of
mean climatology, they can substantially differ for certain
extreme metrics, meaning that some products show stronger
biases compared with observations than others (Fig. 3).
These biases are strongest for extreme precipitation met-
rics, namely, mean annual maximum 1 d precipitation (Rx1d;
Fig. 3a), fraction of total precipitation related to very wet
days (R99pTot; Fig. 3b), and mean number of wet days per
year (wetdays; Fig. 3c). All of these metrics are on aver-
age under- or overestimated by all reanalysis products, ex-
cept by CERRA, which shows lower biases across all catch-
ments. Rx1d, Rx5d, and R99pTot are underestimated by
ERA5, ERA5-Land, and CHELSA across all elevation zones
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Figure 2. Differences in the mean daily precipitation and temperature at the annual and seasonal scale between the catchment means of
the reanalysis datasets and observations. Boxplots show the differences at the catchment level of (a) precipitation (relative in %) and (b)
temperature (absolute in °C) for the entire year (all) and the four meteorological seasons (winter: December–February, spring: March–May,
summer: June–August, fall: September–November). Boxplots are overlaid with median catchment biases by elevation bin (high: > 2000 m
(triangle), mid: 1000–2000 m (square), low: ≤ 1000 m (circle)). Gray shading indicates biases of ±10 % (a) and ±1 °C (b). Whiskers of the
boxplots show min/max.

(Figs. 3a–c, S3 and S4), as precipitation is distributed across
too many days with moderate precipitation intensity in all
of these products, especially in catchments at higher eleva-
tions (Figs. 3d, S5). In contrast, CERRA captures both pre-
cipitation intensity (Rx1d and R99pTot) and the number of
wet days well on average across all catchments, with slightly
higher dry biases but too many wet days in high-elevation
catchments (Figs. 3, S3, S4, and S5).

Biases in extreme temperature indicators are much less
pronounced across all catchments and datasets than those re-
lated to extreme precipitation metrics (Fig. 3e–h). Mean an-
nual maximum daily temperature is slightly overestimated by
ERA5, with larger biases at high elevations, and it is underes-
timated by the other datasets. CERRA shows larger biases at
higher elevations, while the biases of the other two datasets
are less related to elevation (Figs. 3 and S6). ERA5 and
ERA5-Land show a large spread of positive (low elevation)
and negative (high elevation) biases in mean annual mini-
mum daily temperatures. CERRA and CHELSA generally
underestimate tg_min, especially at high elevations (Figs. 3f,
S7). The number of cold days is underestimated by ERA5
and overestimated by ERA5-Land, CERRA, and CHELSA,
with generally larger biases in high-elevation catchments
(Figs. 3g, S8).

4.3 Solid precipitation

The fraction of solid to total precipitation and the total
amount of solid precipitation are best represented by CERRA
and CHELSA, which show high agreement with observa-
tions, especially in catchments below 1500 m. Thereby, the
biases in CERRA seem to be catchment-specific, while
CHELSA shows a slight overestimation of solid precipita-
tion with elevation. ERA5 generally underestimates both the
fraction and total amount of snowfall with a clear increase
in biases with elevation, while ERA5-Land clearly overesti-
mates solid precipitation at all elevations.

The estimated fraction of solid to total (liquid+ solid) pre-
cipitation in observations increases linearly from up to 10 %
in the low-elevation catchments (≤ 1000 m.a.s.l) to 40 %
and more in the high-elevation catchments (≥ 2000 m.a.s.l)
and up to 70 % in the highest catchments above 2500 m
(Fig. 4e). Analogously, the total amount of solid precipita-
tion increases from an average of less than 100 mm yr−1 in
the low-elevation catchments to above 1250 mm in the high-
elevation catchments (Fig. 4e). ERA5 generally underesti-
mates the fraction of solid precipitation and shows a clear
increase in bias, from lower biases at lower elevations (up to
10 percentage points) to larger biases of up to 20 percent-
age points at higher elevations (Fig. 4a). Such elevation de-
pendence – although reversed – is also apparent when look-
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Figure 3. Differences in selected precipitation (a–d) and temperature (e–g) metrics between the catchment means of the reanalysis datasets
and observations. Boxplots show differences at the catchment level for: (a) Rx1d (relative in %), (b) Rx5d (relative in %), (c) R99pTot
(absolute in %pts), (d) wetdays (absolute in days), (e) tg_max (absolute in °C), (f) tg_min (absolute in °C), and (g) colddays (absolute in
days). Boxplots are overlaid with median catchment biases by elevation bin (high: > 2000 m (triangle), mid: 1000–2000 m (square), low:
≤ 1000 m (circle)). Whiskers of the boxplots show min/max.

ing at the relative biases in the mean annual amount of solid
precipitation, with a clear underestimation of up to 100 % in
the low-elevation catchments and up to 50 % in the middle-
to high-elevation catchments (Fig. 4a, coloring of dots). In
contrast, ERA5-Land overestimates the fraction of solid pre-
cipitation by 10–20 percentage points with no clear eleva-
tion bias (Fig. 4b). As a result, the total amount of solid
precipitation is largely overestimated by ERA5-Land, espe-
cially at lower elevations (> 100 % dark purple) compared
to higher elevations (25 %–75 %, blues). This difference be-
tween ERA5 and ERA5-Land is also apparent when looking
at the number of cold days, which is overestimated by ERA5-
Land but not by ERA5 (Fig. 3). CERRA and CHELSA show
small biases for the estimated fraction of solid precipitation
compared to the estimated fraction in observations, espe-
cially at low elevations. Both datasets show slightly larger
biases with increasing elevation, but they remain well be-
low the biases of ERA5 and ERA5-Land. While CERRA
shows no clear elevation dependence for an over- or underes-
timation of the fraction of solid precipitation – differences
rather seem to be catchment dependent. CHELSA shows
slightly larger biases in catchments above 1500 m. The bi-
ases in the total amount of solid precipitation are compara-
bly low in CERRA and vary between over- and underestima-
tion depending on the catchment. CHELSA also shows good
agreement with respect to the fraction of solid precipitation
with very low differences at lower elevations and slightly
larger biases at higher elevations. CHELSA generally overes-
timates the total amount of solid precipitation by up to 75 %.

5 Temporal consistency

5.1 Precipitation and temperature variability

The representation of precipitation variability is clearly best
in CERRA across all timescales and seasons, while all other
datasets (ERA5, ERA5-Land, and CHELSA) underestimate
precipitation variability (Fig. 5). Daily variability is under-
estimated by all reanalysis datasets with higher biases at
higher elevations (Fig. 5a). While ERA5, ERA5-Land, and
CHELSA clearly underestimate daily variability, CERRA is
closer to observations. The observations show a considerably
higher spread of variability across catchments than all of the
reanalysis datasets. For monthly variability, CERRA shows a
very similar median variability across catchments compared
to observations (Fig. 5b), but it shows slightly larger biases
at higher elevations. The other datasets clearly underestimate
variability and also show higher biases at higher elevations.

At the inter-annual timescale (Fig. 5c), ERA5, ERA5-
Land, and CHELSA continue to underestimate precipita-
tion variability – without any elevation dependence – and
CERRA is again closest to observations (i.e., median biases).
However, CERRA overestimates variability in many catch-
ments. If we look at the year-to-year variability in the differ-
ent seasons (Fig. 5d–g), then the general picture prevails that
ERA5, ERA5-Land, and CHELSA underestimate variability,
while CERRA matches observed variability well. CERRA
shows median biases around zero in winter and spring, and it
only slightly underestimates variability in summer and fall.
Only in fall CERRA shows an elevation dependent under-
estimation. The other reanalyses show a pronounced eleva-
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Figure 4. Absolute differences in the fraction of solid (solidprcptot) to total precipitation (prcptot) (x-axes of a–d) and mean relative dif-
ference in solidprcptot (coloring of dots in a–d) for the four reanalysis datasets [(a) ERA5, (b) ERA5-Land, (c) CERRA, (d) CHELSA]
compared to observations. Differences are plotted against the respective catchment mean elevation on the y-axis. (e) Shows the fraction of
solidprcptot to prcptot for the observations on the x-axis and the mean annual solidprcptot as dot colors. Solid precipitation is estimated in
all reanalysis datasets and observations by the same temperature threshold.

tion dependent underestimation in winter and summer. Sur-
prisingly, ERA5, ERA5-Land, and CHELSA better represent
inter-annual variability of the wettest day of the year (i.e.,
Rx1d) (Fig. 5h) than annual and seasonal variability, espe-
cially because these datasets clearly underestimate the mag-
nitude of Rx1d (see Fig. 3a). CERRA is again closer to ob-
servations, but it also slightly underestimates variability. We
find similar results for the variability of the maximum 5 d
precipitation (Rx5d, Fig. 5i).

In contrast to precipitation variability, all datasets are
more consistent with observations regarding temperature
variability (Fig. 6), especially on inter-annual timescales.
ERA5, CERRA, and CHELSA show comparable biases,
while ERA5-Land often shows larger negative biases. On
daily to monthly time scales, all datasets show an underes-
timation of variability compared to observations (Fig. 6a–b).
The inter-annual temperature variability is well represented
by all datasets, and only ERA5 and CHELSA show a slight
overestimation of variability (Fig. 6c). All reanalysis datasets
agree with observations on the seasonal course of variabil-
ity and show considerably lower biases – except for winter
(Fig. 6d–g). In winter, all datasets underestimate temperature

variability, with ERA5-Land showing the strongest underes-
timation. In spring, ERA5-Land also clearly underestimates
year-to-year variability, while all other datasets are compara-
ble with observations (median biases around 0°C). In sum-
mer and fall, all datasets are more or less consistent with ob-
servations. Looking at the inter-annual variability of the max-
imum (minimum) daily mean temperature, all datasets are
closer to observations on the warmest day (tg_max, Fig. 6h)
than on the coldest day of the year (tg_min, Fig. 6i), whose
temperature is underestimated by all datasets. For the vari-
ability of the coldest day, all datasets show increasing biases
with elevation, and ERA5, ERA5-Land, and CHELSA show
a large spread of biases across catchments.

In summary, CERRA best represents precipitation vari-
ability across all temporal scales and seasons. ERA5, ERA5-
Land, and CHELSA feature similar precipitation variability,
which is considerably lower than in CERRA and observa-
tions. In contrast, all datasets are more consistent with ob-
servations in terms of temperature variability, and no sin-
gle datasets is clearly better than the others. Only ERA5-
Land shows a generally lower temperature variability than
observations and all other datasets. All datasets show a bet-
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Figure 5. Relative differences in daily to inter-annual precipitation variability at the catchment level of the respective variability metric in
the reanalysis dataset compared to the variability of the gridded observations. Boxplots with (a) daily, (b) monthly, and (c) inter-annual
precipitation variability. (d)–(i) Show inter-annual variability for different seasons [(d) DJF, (e) MAM, (f) JJA, (g) SON] and the extreme
metrics (h) Rx1d and (i) Rx5d. The different reanalysis datasets are indicated by the colors. Boxplots are overlaid with median catchment
biases by elevation bin (high: > 2000 m (triangle), mid: 1000–2000 m (square), low:≤ 1000 m (circle)). Individual panels can show different
scaling of the y-axis. Gray shading indicates biases of ±10 %.

ter agreement for the variability of the warmest day of the
year (tg_max) than for the coldest day (tg_min), compared
to observations.

5.2 Trends

The presence of significant trends and trend magnitudes in
precipitation and temperature metrics are best represented by
CERRA, while the other datasets show inconsistent precip-
itation trends compared with observations. While CERRA
shows the highest agreement with observed trends, it also
tends to overemphasize the number of significant trends com-
pared to observations and the other reanalysis datasets. Over
the period 1986–2020, the observations show a general de-
crease in annual mean daily precipitation (Fig. 7a), with
approximately 20 % of catchments showing significant (or
weakly significant) trends (see Fig. 7e, blue), and 80 % of
catchments showing no significant trend (see Fig. 7e, gray).
ERA5, ERA5-Land, and CHELSA show no significant neg-
ative trends in any catchment (Fig. 7e). Therefore, they cor-
rectly identify all no trend catchments according to observa-
tions (see Fig. 7e, non-hatched gray bar) and fail to represent
trends for the 20 % of catchments that do show significant

trends according to observations (see Fig. 7e, hatched blue
bar). CERRA shows a general decrease in mean precipita-
tion over time, with significant trends being detected in many
catchments. About 50 % of the catchments with a signifi-
cant observed decreasing trend also show significant trends
in CERRA (Fig. 7e). CERRA shows a considerably larger
spread in trend magnitudes across catchments than observa-
tions and the other reanalysis datasets. As a result, it shows
overall more catchments with significant trends (Fig. S18)
where observations show no trend, which leads to an overall
lower percentage of catchments where CERRA and observa-
tions agree on the sign and significance of trends (see Fig. 7e,
number above the bar). These results are also consistent on
the seasonal scale (see Fig. S9).

The observed annual maximum 1 d precipitation sum
(Rx1d) shows a considerably larger spread in trend magni-
tudes across all catchments compared to mean precipitation
(Fig. 7b). Depending on the catchment, we find positive or
negative trends in observed extreme precipitation. However,
approximately only 20 % of the catchments show a signif-
icant (or weakly significant) decreasing trend in the obser-
vations (Fig. 7f). ERA5, ERA5-Land, and CHELSA show
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Figure 6. Absolute differences in daily to inter-annual temperature variability at the catchment level of the respective variability metric in
the reanalysis dataset compared to the variability of the gridded observations. Boxplots with (a) daily, (b) monthly, and (c) inter-annual
temperature variability. (d)–(i) Show inter-annual variability for different seasons [(d) DJF, (e) MAM, (f) JJA, (g) SON] and the extreme
metrics (h) tg_max and (i) tg_min. The different reanalysis datasets are indicated by the colors. Boxplots are overlaid with median catchment
biases by elevation bin (high: > 2000 m (triangle), mid: 1000–2000 m (square), low:≤ 1000 m (circle)). Individual panels can show different
scaling of the y-axis. Gray shading indicates biases of ±0.1 °C.

only little agreement with the significant trends in the ob-
servations (Fig. 7f). They show a few individual catchments
with significant positive trends (opposed to observations), but
they largely agree on the catchments with no trend. Over-
all, they show a lower spread in trend magnitudes across
catchments than observations, with a median around zero
(Fig. 7b). CERRA agrees with the trends in observations for
the majority of catchments; however, it shows the largest pro-
portion of catchments with false trends, but also with cor-
rect significant decreasing trends. For the trends in mean an-
nual solid precipitation (Fig. 7c, g) and the number of wet
days (Fig. 7d, h), this overall pattern remains: CERRA shows
both the largest agreement in significant trends as well as the
largest proportion of catchments with different trends than
those in the observations, while ERA5, ERA5-Land, and
CHELSA show no overlap with catchments with significant
trends in the observations. For solid precipitation, all datasets
– except for ERA5-Land, which shows no change – represent
the decreasing trends found in observations and the eleva-
tion pattern of these trends (Fig. 7c, markers). For the num-
ber of wet days, neither ERA5, ERA5-Land, nor CHELSA
show clear increases or decreases, which might be a reflec-

tion of the poor representation of wet days in these datasets
(Fig. 3d). In contrast, observations and CERRA tend to show
a decrease in the number of wet days with larger decreases at
lower elevations.

All the datasets agree on a significant increase in mean
daily temperature (Fig. 7i, m) and the temperature of the
warmest day of the year (tg_max; Fig. 7j, n) for all catch-
ments, but not for the temperature of the coldest day (tg_min;
Fig. 7k, o). ERA5-Land shows slightly weaker trends in
mean temperature compared to observations, while ERA5,
CERRA, and CHELSA show stronger trends. The trend mag-
nitudes of temperature on the warmest day is comparable
across all datasets. For the temperature of the coldest day,
trend magnitudes in ERA5, CERRA, and CHELSA are com-
parable with observations, while ERA5-Land underestimates
the trend magnitudes. However, trends in temperature on
the coldest day are largely non-significant: only 20 % of
catchments in the observations show a significant increase
(Fig. 7k, o). Among all datasets, CERRA agrees the most
with observed temperature trends, as it shows both similar
trend magnitudes and a high agreement in true trends as well
as only a small number of false or undetected trends.
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The number of cold days (Fig. 7l, p) decreases in all re-
analysis datasets and observations, and this trend is signif-
icant in the majority of catchments. ERA5, CERRA, and
CHELSA show good agreement for catchments with a signif-
icant trend in observations and only a small proportion of un-
detected trends. However, all three datasets overestimate the
number of significant trends and trend magnitude compared
to observations. ERA5-Land shows the weakest decrease in
the number of cold days as well as the lowest agreement with
observations, as it shows a larger number of catchments with
undetected trends.

The general findings that CERRA has the highest agree-
ment with observations with respect to the number of catch-
ments with significant trends, false trends, as well as the best
match in terms of trend magnitude, also applies for seasonal
trends in mean precipitation and temperature (Fig. S9).

6 Representation of extreme events

6.1 Meteorological drought

The observed drought events in 2003 and 2018 show con-
siderable differences in their spatial patterns, which all the
reanalysis datasets are able to capture (Figs. 8, 9). While
ERA5, ERA5-Land, and CHELSA overestimate drought
severity and intensity, CERRA underestimates them. The
drought in 2003 is characterized by many catchments show-
ing dry (SPI6 ≤−1) to very dry conditions (SPI6 ≤−2) in
the observations (Fig. 8a), varying between −0.9 and −3.1
across catchments (e.g., Fig. 8c, x-axis). The central and
southern parts of Switzerland especially show low SPI6 val-
ues and the largest cumulative precipitation deficits of more
than 400 mm (Fig. 8a, b). In contrast, the drought of 2018
affected fewer catchments (Fig. 9a) and is characterized by a
large spread of SPI6 values from 0.4 (no drought) to −2.8
(severe drought) across catchments (e.g., Fig. 9c, x-axis).
The center of the drought lay over the central and north-
eastern parts of Switzerland, where cumulative precipitation
deficits for several catchments were above 400 mm in the ob-
servations (Fig. 9b). The southern, eastern, and northern parts
of Switzerland were less affected by the 2018 drought. All
the reanalysis datasets capture these differences between the
two drought events – that is, the large spatial drought extent
and small SPI6 spread across catchments in 2003 (Fig. 8c–f)
and the smaller drought extent and large SPI6 spread in 2018
(Fig. 9c–f).

The reanalysis datasets ERA5, ERA5-Land, and CHELSA
show a high agreement with observations for the 2003
drought in terms of widespread drought conditions (SPI6≤
−1) (Fig. 8c, d, f). However, they show a smaller catch-
ment spread in SPI values than observations and have a ten-
dency to overestimate drought severity (i.e., lower SPI6 val-
ues; points below the 1 : 1 line). Catchments that show an
overestimation of SPI6 in the reanalysis datasets also show

an overestimation of the precipitation deficit compared to
the observed deficit by generally 20 %–80 %, which can ex-
ceed 100 % in individual catchments (Fig. 8c, d, f, coloring
of dots). CERRA generally underestimates drought severity
and shows a larger spread of SPI6 values across catchments
than observations. Furthermore, CERRA estimates SPI6 val-
ues above −1 for several catchments, indicating no drought,
contrary to observations (Fig. 8e). Although most catchment
averages in CERRA agree with the observations on drought
conditions, and differences in the cumulative precipitation
deficit are between±20 %, several catchments underestimate
precipitation deficits by more than 40 % compared to obser-
vations.

The 2018 drought is reasonably captured by ERA5,
ERA5-Land, and CHELSA, which show a similar spread of
minimum and maximum SPI6 values as the observations, and
a good match for catchments with low to high drought sever-
ity (Fig. 9c, d, f). CERRA underestimates drought severity
and shows a larger spread of SPI6 values (−3 to 1.3) than
the observations (Fig. 9e). A large number of catchments in
CERRA shows undetected drought conditions (data points in
the upper left quadrant; Fig. 9e) or even a precipitation sur-
plus (indicated by blue coloring). Catchments that show no
drought condition in the observations also show no drought
condition in CERRA, which shows some overall agreement
despite some large deviations in event magnitude and several
undetected drought occurrences.

Beyond the two drought years of 2003 and 2018, all the
reanalysis datasets agree well with the full distribution of
observed SPI6 values (Fig. S10), which indicates a correct
temporal match of drought and no-drought conditions despite
some apparent biases.

In summary, all four datasets capture the differences be-
tween the two drought events, with the 2003 drought be-
ing better represented than the one in 2018. ERA5, ERA5-
Land, and CHELSA overestimate drought severity and in-
tensity in 2003 and partly under- and overestimate it in 2018,
while CERRA overall underestimates the magnitude of both
drought events.

6.2 Extreme precipitation

The intensity, severity, and spatial structure of the three ex-
treme precipitation events in 1999 and 2005 are captured by
all the reanalysis datasets, with CERRA showing the highest
agreement with observations, and the other datasets show-
ing larger spatial extents than the observations and some
overestimation and underestimation of event intensity lo-
cally. The 1999 extreme precipitation event was a sequence
of two consecutive extreme precipitation events occurring
only 10 d apart, with major flood peaks observed during the
second event. Both of these events were centered on the
north-eastern part of Switzerland (Fig. 10a–d). The first event
on 12 May (end of accumulation period) covered a larger
area, with catchments showing standardized precipitation in-
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Figure 7. Comparison of trend magnitudes and trend significance in precipitation and temperature metrics. (a, e) mean daily precipitation
(Pmean; mm), (b, f) maximum 1 d precipitation (Rx1d; mm), (c, g) mean annual amount of solid precipitation (solidprcptot; mm), (d, h)
annual number of wet days (wetdays; days), (i, m) mean daily temperature (Tmean; °C), (j, n) annual maximum of daily mean temperature
(tg_max; °C), (k, o) annual minimum of daily mean temperature (tg_min; °C), and (l–p) number of cold days (colddays; days). Boxplots
show trend magnitudes (Theil–Sen slopes; 1986–2020) in observations (gray) and reanalysis datasets (colors) across all catchments. Boxplots
are overlaid with median trend slopes for the three elevation bins (high: > 2000 m (triangle), mid: 1000–2000 m (square), low: ≤ 1000 m
(circle)). The bar plots show the percentage of catchments in observations with significant negative trends (blue), no significant trends (gray),
and significant positive trends (red) for the respective metric. Each stacked bar is repeated for the reanalysis datasets and is overlaid with the
percentage of catchments matching (non-hatched) or not matching (hatched) the observed trend in sign and significance. The number above
the bars indicates the percentage of catchments where the reanalysis and the observations agree on the sign and significance of trends.

dices above 2 (Fig. 10a) and precipitation intensities of 100–
160 mm (Fig. 10b). The second event (22 May) had a smaller
extent and was less intense (Fig. 10c, d). All the datasets
are generally able to reproduce this event sequence in 1999.
The catchments showing high-intensity rainfall in the obser-
vations are also shown to be affected by extreme precipita-
tion in all four reanalysis datasets (see the large number of
points in the upper-right corner of Fig. 11a–h). Thereby, the
first precipitation event in 1999 (Fig. 11a–d) is represented

well by all datasets, with only a few catchments showing ex-
treme precipitation instead of moderate or low precipitation
(upper-left quadrant in Fig. 11), or vice versa (lower-right
quadrant). CERRA generally matches the observations well,
but it shows a clear underestimation of severity and intensity
over the southern-most catchments, which only received little
to no precipitation (see Fig. S13a). The second precipitation
event in 1999 is partly overestimated by ERA5, ERA5-Land,
and CHELSA, which show a larger number of catchments
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Figure 8. Comparison of the severity and intensity of the 2003 drought event for the different reanalysis datasets. (a) Shows the SPI6
catchment values (March–August) of the observations (i.e., severity). (b) Shows the cumulative precipitation deficit (mm) of the observations
for the same period (i.e., intensity). The scatterplots in panels (c)–(f) show the four reanalysis datasets (y-axis) compared to the gridded
observations (x-axis) for the period 1986–2020 and all catchments. The location of the dots shows the SPI6 values, and the coloring of the
dots shows the relative differences in the cumulative precipitation deficit (in percent compared to observed deficits). Orange and red coloring
highlight larger deficits in the reanalysis, yellow coloring shows smaller deficits in the reanalysis, and blue coloring shows a surplus of
precipitation rather than a deficit compared to observations. The dashed vertical and horizontal line indicate an SPI6≤−1, which indicates
moderate to severe drought conditions. The solid black line indicates the 1 : 1 line. (c) ERA5, (d) ERA5-Land, (e) CERRA, and (f) CHELSA.

with standardized precipitation above 1.5 than the observa-
tions (Fig. 11e, f, h). In catchments with the highest event
severity in observations, all three reanalyses (ERA5, ERA5-
Land, and CHELSA) slightly underestimate event severity
and intensity, while precipitation in catchments with low and
moderate precipitation in the observations is largely overes-
timated (Fig. 11e, f, h). They show a larger spatial extent for
the precipitation event than the observations (see Fig. S16),
mainly in the south-east (towards the Engadin) and the south
(Ticino) (see Fig. S13b). CERRA clearly shows a better
match with observations than the other datasets (Fig. 11g). It
matches the geographical center of the event very well (see
Fig. S13b) and only shows very small biases in the severity
and intensity of the event.

The extreme precipitation event in 2005 was severe in
most parts of Switzerland except the south, with intensities
of 160 mm and more in large parts of central Switzerland,
and slightly lower intensities in the west and east (Fig. 10e,
f). CERRA shows very good agreement with observations in
terms of severity and intensity (Fig. 11k) as well as the geo-

graphical location of the center of the event (see Fig. S13c).
ERA5, ERA5-Land, and CHELSA slightly underestimate
event severity but overestimate spatial extent compared to
observations. All three datasets slightly underestimate event
intensity and severity in those catchments that show the high-
est severity in observations, and they overestimate the sever-
ity and intensity in locations with low to moderately high pre-
cipitation (with an approximate standardized precipitation of
1.5).

In summary, CERRA shows the smallest biases among
all four datasets for flood-triggering extreme precipitation,
in particular, for the most severe intensities. While ERA5,
ERA5-Land, and CHELSA tend to overestimate the stan-
dardized precipitation and precipitation accumulation for
catchments with low to moderate precipitation, CERRA
seems to slightly underestimate precipitation in these catch-
ments. The spatial event extents are best represented by
CERRA and overestimated by ERA5, ERA5-Land, and
CHELSA compared to observations (see Figs. S13, S16).
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Figure 9. Same as Fig. 8 but for the 2008 drought.

7 Discussion

7.1 Climate metrics best represented in high-resolution
datasets

Our results show that CERRA clearly improves the repre-
sentation of precipitation metrics compared to the other re-
analysis datasets (Figs. 2, 3, 12), likely due to the assimi-
lation of data from additional precipitation stations within
the MESCAN regional precipitation analysis. In contrast to
CERRA, the other reanalysis products are not assimilating
any precipitation observations, except for ERA5, which in-
cludes a regionally and temporally limited precipitation as-
similation over the contiguous U.S.A. through a radar gauge
product since 2010 (Hersbach et al., 2020). This highlights
how closely model performance is linked with the availabil-
ity of high quality data and dense station networks. Even
though CERRA, among all the reanalysis datasets, best rep-
resents most of the precipitation metrics, it shows some de-
ficiencies in representing the studied drought events in 2003
and 2018 (Figs. 8, 9, 12, S16). While the large-scale SPI pat-
tern over Switzerland is simulated quite well, CERRA seems
to simulate spurious local-scale precipitation events over re-
gions with complex topography, which can locally alleviate
large-scale drought signals (Fig. S11). This is an issue across
the European domain, including Switzerland and the Apen-
nine Mountains in Italy, where CERRA suffers from precipi-

tation artifacts with bubble structures (Fig. S12). We believe
that these artifacts result from a lack of sufficient data for data
assimilation over complex terrain, leading to a stronger re-
liance on the underlying numerical weather prediction model
(HARMONIE-ALADIN). In the context of droughts, a few
short and heavy precipitation events can offset the presence
of a drought locally, as seen in CERRA. Similar performance
deficiencies of CERRA over regions with scarce station net-
works have also been highlighted by Le Moigne et al. (2021)
for northern and eastern Europe.

Our finding that CERRA represents snowfall metrics well
and ERA5-Land does not (Figs. 4, 12, S14) is in agreement
with Monteiro and Morin (2023), who, in contrast to our re-
sults, found a good performance for ERA5. This difference
may be related to the scale difference between the two anal-
yses or that they used the snow outputs from the reanaly-
sis directly, while we approximated snow from precipitation
and temperature. While our comparison focused on small-
to medium-sized catchments, Monteiro and Morin (2023)
looked at four large regions in the Alps, where higher res-
olution might be less crucial than at the catchment scale. Our
results show strong differences between ERA5 and ERA5-
Land in terms of temperature-derived snowfall characteris-
tics. While ERA5 clearly underestimates solid precipitation,
ERA5-Land clearly overestimates it. These differences are
likely driven by the considerable temperature differences be-
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Figure 10. Maps of the severity and intensity of extreme precipita-
tion events related to selected major floods in Switzerland based on
gridded observations. The maps show the two extreme precipitation
events in May 1999 (11–12 May 1999, a–b; 21–22 May 1999, c–d)
and the single event in August 2005 (21–22 August 2005, e–f). Pan-
els (a), (c) and (e) show the severity of the events expressed as the
standardized 2 d precipitation sums. Panels (b), (d) and (f) show the
intensity of the events expressed as the 2 d precipitation sum (mm).

tween the two datasets, as the differences in precipitation
are marginal. Generally, ERA5-Land shows lower temper-
atures and temperature variability than ERA5 and observa-
tions, especially in winter and spring. Further, ERA5-Land
shows larger biases at lower and higher elevations and simu-
lates more cold days than ERA5, which explains the overes-
timation of solid precipitation. Even though CHELSA shows
similar biases as ERA5 for many of the climate metrics, the
higher resolution of CHELSA seems to clearly improve the
representation of snowfall compared to ERA5 (Fig. 4). The
snowfall overestimation by CHELSA at higher elevations
might not be as severe as quantified, because the benchmark
observations are known to underestimate solid precipitation
at higher elevations (> 1500 m) by up to 30 % (Bandhauer
et al., 2021).

All the reanalysis datasets, except CERRA, clearly un-
derestimate precipitation variability across all time scales
(Fig. 5). On daily timescales, this might be explained by the
overestimation of low to moderate precipitation by the re-
analysis datasets and the underestimation of heavy precipita-
tion intensities, which leads to a smaller range of daily pre-
cipitation variance or a flattening of the intensity curve. How-

ever, this explanation is not likely to be valid for the underes-
timation of monthly and inter-annual variability. The reasons
for the underestimation of monthly to inter-annual variabil-
ity could instead be model-driven and caused by deficiencies
in representing orographic effects or uncertainties in data as-
similation. Monteiro and Morin (2023) show no underesti-
mation of precipitation variability by any of the datasets at
the scale of the entire Alps. This suggests that the datasets
agree well with observations at larger scales but not at local
scales, where temporal variability is underestimated by most
datasets.

Our results show that the studied extreme precipitation
events have a larger spatial extent in ERA5 and ERA5-
Land than in the other reanalyses datasets and the observa-
tions (Figs. 11, 12, S13, S16). This might result from their
coarser grid resolution, which has the effect that single grid
cells influence the precipitation averages of multiple catch-
ments. However, CHELSA, which has a much finer spa-
tial resolution, shows the same behavior, likely because the
CHELSA downscaling approach conserves the mass of pre-
cipitation fluxes at the original coarser grid resolution of the
W5E5. This means that when we average CHELSA values
over catchments, we move closer to the original coarser grid
resolution. This highlights that the actual spatial scales of
these datasets are likely coarser than their grid spacing, espe-
cially for the interpolated or statistically downscaled datasets
(ERA5-Land and CHELSA). This also applies to the grid-
ded observations, which, depending on the number of sta-
tions, have an effective resolution of 15–20 km rather than
2 km (MeteoSchweiz, 2021a) or an even coarser resolution
for intense convective precipitation (Frei and Isotta, 2019).
Further, the results suggest that the spatial resolution of the
ERA5 products is still not refined enough for heavy precip-
itation events, especially in complex terrain. Lavers et al.
(2022) have found similar overestimation of the spatial ex-
tent of the heavy precipitation event during storm Alex in
October 2020 on the northern side of the Alps, which they
attributed to a poor representation of the orography in ERA5,
leading to a larger moisture influx from the south.

7.2 Differences due to varying modeling techniques

As all reanalysis datasets depend to varying degrees on the
ERA5 reanalysis but use different modeling techniques to
enhance the spatial representation and accuracy of ERA5,
we can hypothesize whether these modeling choices may
lead to a better performance. CHELSA and ERA5-Land use
statistical downscaling with varying complexity to enhance
the spatial resolution of ERA5, while CERRA uses a com-
bination of dynamical downscaling and additional data as-
similation to enhance spatial resolution and the representa-
tion of precipitation. Statistical downscaling did not substan-
tially improve the representation of temperature and precipi-
tation metrics compared to ERA5 and observations (Figs. 2,
3, 12). However, the statistical downscaling technique em-
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Figure 11. Comparison of the severity and intensity of extreme precipitation events related to selected major floods in Switzerland. Scat-
terplots compare the two extreme precipitation events in May 1999 (11–12 May 1999, a–d; 21–22 May 1999, e–f) and the single event in
August 2005 (21–22 August 2005, i–l). Event severity is expressed as the standardized 2 d precipitation sums of the four reanalysis datasets
(y-axis) and is compared to the respective standardized precipitation of observations (x-axis, values from Fig. 10a, c, e). Dot locations in
the scatterplots show the standardized precipitation. For illustration purposes, the +1.5 standard deviation is indicated by the dashed verti-
cal/horizontal lines, demonstrating heavy to extreme precipitation events, and the 1 : 1 line, showing a perfect match. The coloring of dots
in all panels shows the relative difference (%) in the 2 d precipitation sums compared to observations (values from Fig. 10b, d, f). Brown
colors indicate less precipitation than observed, gray precipitation in the range of ±20 %, and green and pink colors the values above. Each
dot represents one catchment.

ployed by CHELSA improved the representation of snow-
fall metrics (Fig. 4), likely due to the refinement of reso-
lution (1 km). This allows for the representation of locally
varying elevation features, which play a key role in snow
formation. ERA5-Land, which partly uses interpolated me-
teorological variables from ERA5, shows that a pure inter-
polation without any additional adjustments does not lead
to any improvements in the representation of precipitation
metrics, compared to statistical downscaling with additional

adjustments. In addition, the 9 km resolution of ERA5-Land
might still be too coarse to refine the topography. In contrast
to precipitation, ERA5 and ERA5-Land show considerable
differences for temperature, which might be explained by
the lapse-rate adjustment in ERA5-Land (Dutra et al., 2020),
but might also be influenced by differences in soil-moisture
interactions affecting evapotranspiration and energy fluxes,
which in turn influence temperature (Hersbach et al., 2020;
Muñoz-Sabater et al., 2021; Scherrer et al., 2022). Our anal-
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Figure 12. Summary of results and dataset limitations for mean and extreme metrics and the two extreme event types. Orange colors indicate
an overestimation and purple colors an underestimation by the datasets compared to observations. The color intensity reflects biases ranging
from slight, moderate, to large over-/underestimation (see Figs. S14–S16 for the related quantitative biases). Biases in mean metrics and
extreme metrics are stratified for low, mid, and high elevation catchments and all catchments. The quality of the datasets for meteorological
droughts and heavy precipitation linked to floods are shown for the individual events and the average across events (all). The quality is
divided into detection – event is detected in the same catchments in both observations and the reanalysis; intensity – bias in the intensity of
the event; and extent – overall number of catchments showing an extreme event.

yses do not allow for clear conclusions on the isolated ef-
fect of dynamical downscaling, because the analyzed precip-
itation data from CERRA in our study (i.e., CERRA-Land)
relies on dynamical downscaling and additional precipita-
tion assimilation. However, CERRA(-Land) clearly shows

that combining information from a reanalysis dataset with
observations benefits the overall representation of climate
metrics even when the resolution remains the same. To dis-
entangle the influence of the dynamical downscaling from
the influence of the MESCAN regional precipitation system
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in CERRA(-Land), future work would need to include the
precipitation data from the CERRA high-resolution dataset,
for which no additional precipitation information has been
assimilated, and compare it to the precipitation data from
CERRA with precipitation assimilation (i.e., CERRA-Land).
The results from Ridal et al. (2024) suggest that the dy-
namical downscaling, even without precipitation assimila-
tion (i.e., CERRA), leads to a clear improvement in the
skill of precipitation with a lower false alarm rate and lower
RMSE values compared to ERA5. Further, they show that the
precipitation from CERRA-Land, i.e., as used in our analy-
sis, yields even greater skill compared to ERA5. This sug-
gests that the overall improvement by CERRA-Land likely
results from the combination of the added-value of the dy-
namical downscaling and the post-processing of the regional
precipitation analysis, MESCAN. Similarly, Bollmeyer et al.
(2014) suggested that another dynamically downscaled re-
gional reanalysis – the COSMO-REA6 – can show an im-
proved representation of precipitation compared to its par-
ent global reanalysis datasets (i.e., ERA-Interim) and that the
added-value is especially pronounced when the regional re-
analysis includes additional data assimilation.

7.3 Performance in high-elevation versus low-elevation
catchments

Since we have low to high elevated catchments, we can com-
pare whether the performance of the reanalyses is dependent
on elevation. Generally, all reanalysis datasets show compa-
rable performance in low-, mid-, and high-elevation catch-
ments. However, for a few metrics and datasets, we can see
larger biases in high-elevation or low-elevation catchments
(Fig. 12). Temperature metrics related to the cold season par-
ticularly show larger biases in the high-elevation catchments.
For example, in high-elevation catchments, mean daily win-
ter temperature is colder in all datasets compared to ob-
servations (Figs. 2, 12); CERRA and CHELSA especially
show clear elevation-dependent biases. The coldest day of
the year (tg_min) is colder in high-elevation catchments and
in all datasets compared to observations (Figs. 3, S7). Also,
the number of cold days is overestimated by CERRA and
CHELSA at high elevations (Fig. 3, S8). Otherwise, we find
larger biases in higher elevation catchments for mean pre-
cipitation and annual maximum precipitation, especially for
ERA5, ERA5-Land and CHELSA (Fig. 12).

7.4 Limitations

We acknowledge that the 35-year time period studied (1986–
2020) may be too short to robustly estimate the real spread
of inter-annual variability and to robustly detect trends. Espe-
cially for precipitation but also for temperature, a large num-
ber of samples is needed to adequately gauge inter-annual
variability (Wood et al., 2021; Maher et al., 2020). However,
as the reanalysis datasets are constrained by observations, the

reanalyses and observations should both represent the same
large-scale variability, and this constraint can partly be ne-
glected. Nevertheless, the presented estimates of variability,
based on 35 years of data, might deviate from the variability
estimated by longer periods. Besides variability, the time pe-
riod length also influences the detection of trends, as small
signal to noise ratios can mask trends. Further, any trend
analysis is time period sensitive and only a snapshot in time.
For example, our trend analysis starting in 1986 yields de-
creasing trends in observed extreme precipitation (Fig. 7c);
however, starting in 1901, it yields clearly increasing trends
in observations (see e.g., Scherrer et al., 2016). Also Bruno
and Duethmann (2024) show that the sign and significance of
trends can vary depending on the time. In addition, the time
varying quantity and quality of stations, which are in vary-
ing degrees used to generate the studied datasets and obser-
vations, might lead to spurious or artificial trends (Monteiro
and Morin, 2023). This could be a reason for the large num-
ber of significant or opposite trends in the CERRA dataset
(Fig. S18).

One main drawback of the current version of CERRA is
the short simulation period (1984–2021). However, there are
plans to extend the dataset to the present and back extend it to
1961 (Ridal et al., 2024). Once the long time period is avail-
able, the drawbacks arising from the short simulation period
can partly be neglected. However, the good performance of
CERRA over the recent period, which can in part be at-
tributed to the large number of station data included in the
MESCAN regional precipitation analysis system, needs to
be re-assessed and confirmed for the back extension, where
abundant and high-quality station records will be rarer.

The choice of the gridded observational product from Me-
teoSwiss might have influenced the results of our evalu-
ation. Kotlarski et al. (2017) show that such influence is
rather weak for temperature but larger for precipitation. The
precipitation observations (RhiresD) used in this study tend
to overestimate light precipitation and underestimate strong
precipitation (MeteoSchweiz, 2021a; Kotlarski et al., 2017).
This means that the underestimation of extreme precipita-
tion metrics in ERA5, ERA5-Land, and CHELSA is likely
even larger than shown here. In general, gridded observa-
tions suffer from uncertainties not only from measurement
errors (Kochendorfer et al., 2017) but also from the interpola-
tion of station data (Frei and Isotta, 2019). The interpolation
uncertainty is thereby influenced by varying station densi-
ties or the lack of representative stations, especially at high
altitudes (Frei, 2013). For the gridded temperature dataset
TabsD, Frei (2013) show seasonally varying interpolation er-
rors with larger biases in winter, which can reach mean ab-
solute errors of 3°C and more, and smaller errors in sum-
mer. This means that dataset differences, especially in win-
ter (e.g., for the snowfall approximation), could in reality
be larger or smaller depending on the location. To account
for these uncertainties, more observational datasets would
be required, although most gridded datasets rely on more
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or less the same station network, which would then only al-
low for disentangling the uncertainties from the interpolation
scheme. As the interpolated fields are only one possible re-
alization of the real spatial distribution, one could use en-
sembles of the same gridded product to estimate the interpo-
lation uncertainty (e.g., Frei and Isotta, 2019. However, not
many ensemble products for gridded observations exist, and,
for example, Bandhauer et al. (2021) show that such an en-
semble might not represent the full spread of interpolation
uncertainty.

8 Conclusions and recommendations

In this paper, we conducted a comprehensive spatio-temporal
evaluation of four state-of-the-art reanalysis datasets (ERA5,
ERA5-Land, CERRA(-Land), and CHELSA-v2.1) for dif-
ferent precipitation, temperature, and snowfall metrics over
complex terrain by comparing them to gridded observations.
Across the various precipitation and temperature metrics, and
their temporal variability, the CERRA dataset best represents
the observations (Figs. 12, S17), making it a good over-
all choice for hydrological impact studies in low- to high-
elevation catchments. In the following, we will provide a
few general recommendations for the use of the reanalysis
datasets compared and some more specific recommendations
for some hypothetical use-cases.

As precipitation is the dominant variable in driving the
hydrological response, we recommend using the CERRA
dataset for hydrological impact studies and hypothesize that
CERRA will likely serve as a good input for hydrological
models, because (a) CERRA captures mean and extreme pre-
cipitation well across seasons and elevations; (b) captures
the three heavy precipitation events that triggered flooding in
Switzerland well in terms of intensity and spatial extent; and
(c) can in combination with its good representation of tem-
perature lead to small biases in snowfall fraction and total
snow amount. In snow-dominated catchments, we can fur-
ther recommend the use of CHELSA, as it also represents
snow fraction and amount well.

Many climate change impact studies require bias adjust-
ment of climate model simulations prior to modeling hydro-
logical changes. Here, we can recommend using CERRA as
the reference for the bias adjustment, for similar reasons as
above and because of its good representation of wet-day fre-
quency. ERA5, ERA5-Land, or CHELSA will likely be an
insufficient reference to correct for biases, as these datasets
themselves are biased in terms of wet-day frequency and
mean and extreme precipitation.

Overall, all four reanalysis datasets can represent extreme
dry and wet meteorological conditions of varying severity
and intensity as illustrated for the droughts in 2003 and 2018
and the extreme precipitation events in 1999 and 2005. For
studying meteorological droughts in mountain regions, we
recommend using ERA5, ERA5-Land, or CHELSA. While

they can overestimate drought severity, they overall capture
these events well. CERRA, on the other hand, underestimates
the severity and intensity of the studied drought events, re-
vealing spurious precipitation events that alleviate drought
conditions, which seems to be the major limitation of this
dataset. For heavy precipitation events, we recommend us-
ing CERRA. It best represents wet extremes, while the other
datasets overestimate spatial extents, severity, and intensity
in catchments with low to moderate precipitation character-
istics.

In conclusion, CERRA seems to be the best reanalysis
choice for hydrological impact studies that rely on precip-
itation, temperature, and their interplay as it captures their
mean characteristics, variability, and extremes well, with the
exception of distinct droughts.
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