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Abstract. Human-managed reservoirs alter water flows and
storage, impacting the hydrological cycle. Modeling reser-
voir outflow and storage, which affect water availability for
humans and freshwater ecosystems, is challenging because
they depend on human decisions. In addition, access to data
on reservoir inflows, outflows, storage, and operational rules
is very limited. Consequently, large-scale hydrological mod-
els either exclude reservoir operations or use calibration-
free algorithms to model reservoir dynamics. Nowadays, es-
timates of reservoir storage anomalies based on remote sens-
ing are a potential resource for calibrating the release algo-
rithms for many reservoirs worldwide. However, the impact
of calibration against the storage anomaly on simulated reser-
voir outflow and absolute storage is unclear. In this study, we
address this by using in situ outflow and storage data from
100 reservoirs in the USA (ResOpsUS dataset) to calibrate
three reservoir operation algorithms: the well-established
Hanasaki algorithm (CH) and two new storage-based algo-
rithms, the Scaling algorithm (SA) and the Weighting al-
gorithm (WA). These algorithms were implemented in the
global hydrological model WaterGAP, with their parameters
estimated individually for each reservoir and four alterna-
tive calibration targets: monthly time series of (1) the stor-
age anomaly, (2) estimated storage (calculated based on the
storage anomaly and GRanD reservoir capacity), (3) stor-
age, and (4) outflow. The first two variables can be obtained
from freely available global datasets, while the latter two
variables are not publicly accessible for most reservoirs. We
found that calibrating against outflow did not result in skill-
ful storage simulations for most of the 100 reservoirs and
only slightly improved outflow simulations compared to cal-
ibration against the three storage-related targets. Compared

to the non-calibrated Hanasaki algorithm (DH), calibrating
against both the storage anomaly and estimated storage im-
proved the storage simulation, whereas the outflow simula-
tion was only slightly improved. Calibration against the stor-
age anomaly yielded skillful storage simulations for 64 (39),
68 (45), and 66 (45) reservoirs in the case of CH, SA, and
WA, respectively, during the calibration (validation) period,
compared to just 16 (15) for DH. Using estimated storage in-
stead of the storage anomaly does not offer any added benefit,
primarily due to inconsistencies in the observed maximum
water storage and storage capacity data from GRanD. The
default parameters of the Hanasaki algorithm rarely matched
the calibrated parameters, highlighting the importance of cal-
ibration. Using observed inflow rather than simulated inflow
has a greater impact on improving the outflow simulation
than calibration, whereas the opposite is true for the storage
simulation. Overall, the performance of the SA and WA al-
gorithms is nearly equal, and both outperform the CH and
DH algorithms. Moreover, incorporating downstream water
demand into the reservoir algorithms does not necessarily
improve modeling performance due to the high uncertainty
in demand estimation. Therefore, to improve the modeling
of reservoir storage and outflow in large-scale hydrological
models, we recommend calibrating either the SA or the WA
reservoir algorithm individually for each reservoir against the
remote-sensing-based storage anomaly, unless in situ storage
data are available, and improving the reservoir inflow simu-
lation.
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1 Introduction

Globally, over 58 000 large dams (at least 15 m high) capa-
ble of impounding 8300 km3 have been constructed to meet
various human needs, including irrigation, flood control, hy-
dropower generation, domestic water supply, and recreation
(Chao et al., 2008; Perera et al., 2021). These dams store
approximately one-sixth of the annual streamflow in reser-
voirs (Hanasaki et al., 2006), significantly altering the global
freshwater system by increasing evaporation and modify-
ing downstream streamflow (Best, 2019; Tian et al., 2022).
About 60 % of the seasonal variability in Earth’s surface wa-
ter storage is attributed to human-managed reservoirs, i.e.,
artificial reservoirs and regulated lakes, since the water level
of these reservoirs varies on average 4 times more than that of
natural lakes (Cooley et al., 2021). Therefore, to accurately
depict the hydrologic cycle and assess the impact of reser-
voir operations on water availability for humans and freshwa-
ter ecosystems, including the dynamics of human-managed
reservoirs in hydrological models is crucial. Currently, 6 out
of the 16 global hydrological models contributing to ISIMIP2
(The Inter-Sectoral Impact Model Intercomparison Project,
http://www.isimip.org, last access: 28 August 2025) simu-
late the dynamics of human-managed reservoirs (Telteu et
al., 2021).

Whereas the outflow from a natural lake strongly depends
on the lake’s water level and thus the water storage in the
lake, humans manage the outflow from a reservoir. Although
human decisions regarding the release of water from reser-
voirs depend, to some extent, on the reservoir’s water storage,
they are also affected by various other factors, such as down-
stream water demand, the need for hydropower production,
flood protection for downstream areas, ecosystem needs, and
legal constraints (Jager and Smith, 2008; Dong et al., 2023).
Most reservoirs serve multiple purposes, making their sim-
ulation even more complex. However, because the opera-
tional (i.e., release) rules of reservoirs and observed data on
reservoir inflow, outflow, and storage dynamics are rarely
publicly available, large-scale hydrological models must re-
sort to calibration-free reservoir operation algorithms that
only require information about the reservoir’s storage capac-
ity and surface water area. These algorithms are considered
calibration-free because they do not require the calibration of
reservoir-specific parameters based on observations of model
output variables. While these algorithms can simulate the de-
cisions of reservoir operators to some extent, they do not ac-
count for the unique operational patterns of each reservoir
(Masaki et al., 2018; Turner et al., 2021; Steyaert and Con-
don, 2024).

All global hydrological models currently employ
calibration-free reservoir operation algorithms, which vary
in their formulation and complexity (Telteu et al., 2021).
Examples of calibration-free reservoir operation algorithms
proposed for large-scale hydrological modeling are de-
scribed in Dong et al. (2022), Zajac et al. (2017), Haddeland

et al. (2006), and Hanasaki et al. (2006) (herein referred to
as H06). Dong et al. (2022) and Zajac et al. (2017) employed
different operational rules for four distinct levels of reservoir
storage in their algorithms, whereas Haddeland et al. (2006)
developed a prospective optimization algorithm tailored to
the reservoir’s purpose. The H06 method is currently im-
plemented in the global hydrological model H08 (Hanasaki
et al., 2008) and, in a slightly modified form, in the global
hydrological model WaterGAP. It also serves as the basis for
the Dam-Reservoir Operation model (DROP; Sadki et al.,
2023). While studies (e.g., Döll et al., 2009; Vanderkelen
et al., 2022) clearly demonstrate that implementing the
H06 algorithm leads to improved streamflow simulations
compared to completely disregarding the reservoir as a
surface water body, there is no consensus (please refer to
Döll et al., 2009; Vanderkelen et al., 2022; Gutenson et al.,
2020) on whether the H06 algorithm outperforms the natural
lake outflow parameterization of Döll et al. (2003) (herein
referred to as D03), which assumes that artificial reservoirs
behave similarly to natural lakes. It should be noted that the
simulated reservoir outflow and storage dynamics depend
not only on the reservoir operation algorithm but also on
the quality of the simulated inflow, making it challenging
to assess the adequacy of the algorithm without inflow
observations (Vanderkelen et al., 2022).

Several studies have endeavored to fine-tune calibration-
free algorithms by adjusting a single parameter for each
reservoir, but the results have been unpromising. For exam-
ple, Gutenson et al. (2020) found that adjusting only one pa-
rameter of H06 for 60 non-irrigation reservoirs across the
US did not lead to better simulations compared to a cali-
brated D03. Shin et al. (2019) reported that a new algorithm
based on H06, with one parameter calibrated for 27 reser-
voirs, could not accurately capture the seasonality in reser-
voir storage and outflow. As a result, some studies have de-
vised calibration-required algorithms with multiple param-
eters for each reservoir. Turner et al. (2021) introduced the
Inferred Storage Targets and Release Functions (ISTARF)
approach, a reservoir operating policy comprising 19 param-
eters. This approach was applied to 1930 reservoirs across
the US and demonstrated robust improvements in both out-
flow and storage compared to the H06 model. Although
the ISTARF approach is relatively parsimonious in terms
of the number of parameters compared to other established
calibration-required algorithms – such as those proposed by
Yassin et al. (2019) and Turner et al. (2020), which fea-
ture 72 (six parameters for each month) and 208 parameters
per reservoir (four parameters for each week), respectively –
integrating these approaches into large-scale models incurs
substantial computational costs. More importantly, this ap-
proach requires time series data of observed inflow, outflow,
and reservoir storage, which can be difficult to obtain out-
side the US, rendering them unfeasible for global-scale mod-
eling. The same limitation applies to some machine learn-
ing approaches for simulating reservoir dynamics, such as
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the artificial neural network approach proposed by Ehsani et
al. (2016) and the tree-based reservoir model developed by
Chen et al. (2022).

Remotely sensed data on water levels and surface water
area of reservoirs are increasingly available. They are be-
ing used to derive time series of water storage anomalies or
even absolute storage. With recent advancements in space-
borne data, such as the Surface Water and Ocean Topography
(SWOT) mission, storage anomaly data can now be gath-
ered even for small reservoirs, providing a valuable source
for enhancing reservoir modeling within large-scale hydro-
logical models (Biancamaria et al., 2016). Examples include
HydroSat (Tourian et al., 2022), the Global Reservoir Stor-
age (GRS) dataset (Li et al., 2023), and GloLakes (Hou et
al., 2024). This newly available information could be used to
calibrate reservoir operation algorithms individually for each
reservoir, which is expected to lead to an improved simu-
lation of reservoir dynamics. Remote-sensing-derived reser-
voir storage anomalies were shown to fit reasonably well
with in situ observations, depending on the reservoir and
satellite data product. Storage anomalies, rather than abso-
lute water storage values, should be considered for both sim-
ulated and remote sensing data (Otta et al., 2023). In this
regard, Hanazaki et al. (2022) developed a targeted storage-
and-release algorithm for global flood modeling, where the
release is estimated for four storage zones based on the vol-
ume of each zone, flood discharge, and long-term average
inflow. They estimated the volume of each storage zone us-
ing remote sensing data, while calculating flood discharge
with a probability distribution for 2169 dams worldwide. The
authors reported a 62 % improvement in Nash–Sutcliffe effi-
ciency compared to the version of the CaMa-Flood global hy-
drodynamic model that did not include the reservoir module.
Recently, supported by remote sensing data and a machine
learning approach, Shen et al. (2025) developed a satellite-
based target storage reservoir operation scheme (SBTS) with
seven parameters. This scheme simulates the outflow and
storage of flood control reservoirs across four distinct stor-
age zones, utilizing estimated flood storage capacity (FSC)
data for 1178 reservoirs, derived from machine learning
trained on reported FSC data from 436 reservoirs. They
found that their approach, when using observed inflow, im-
proves reservoir parameterizations, enabling the SBTS to
generally outperform the methods of Dong et al. (2022), Za-
jac et al. (2017), and Hanazaki et al. (2022). However, they
reported no improvement when the simulated inflow was
used. Dong et al. (2023) demonstrated that simultaneous cal-
ibrations against reconstructed release and reservoir storage
data (using remotely sensed data, model simulations, and in
situ data) considerably improved the performance of reser-
voir operation algorithms for the Ertan and Jinping I reser-
voirs in China. However, for global-scale studies, release in-
formation is unavailable for most reservoirs. In such cases,
calibrating against the storage anomaly alone for parameter
estimation may degrade outflow simulations due to poten-

tial trade-offs between calibrating against different variables
(Döll et al., 2024; Hasan et al., 2025). The recently published
dataset of observed dynamics of US reservoirs, “ResOpsUS”
(Steyaert et al., 2022), which provides time series of daily ob-
served storage, elevation, inflows, and outflows for up to 679
reservoirs across the contiguous US, offers an opportunity to
explore this trade-off.

The primary objective of this study is to investigate how
monthly time series of observed reservoir-related data can
improve the simulation of reservoir outflow and storage
in continental or global hydrological models. We focus on
the suitability of observed storage anomalies for calibrating
reservoir operation algorithms, as these anomalies can be ob-
tained globally through remote-sensing-based observations.
We compare their informational value to that of scarcer out-
flow and absolute storage observations, along with the sim-
ulation results obtained from an uncalibrated reservoir algo-
rithm. We utilized in situ storage and outflow data from the
ResOpsUS dataset for 100 reservoirs in the US to calibrate
three reservoir operation algorithms. All algorithms were im-
plemented in the global hydrological model WaterGAP 2.2e
(Müller Schmied et al., 2024). The parameters of the algo-
rithms were estimated using the following alternative cali-
bration targets: (1) the storage anomaly, (2) estimated storage
(calculated based on the storage anomaly and GRanD reser-
voir capacity, detailed in Sect. 2.3), (3) storage, and (4) reser-
voir outflow. Calibration involved optimizing parameters in-
dividually for each reservoir, algorithm, and calibration tar-
get. Additionally, to explore the sensitivity of the model re-
sults to the quality of the inflow data, we calibrated the al-
gorithms for a subset of 35 reservoirs with available inflow
measurements, using observed inflow instead of the inflow
simulated by WaterGAP. Finally, for a subset of 21 reser-
voirs, we evaluated the impact of including downstream wa-
ter demand in the algorithms for irrigation and water supply
reservoirs.

2 Methods and data

2.1 The global hydrological model WaterGAP

WaterGAP simulates the dynamics of water flows and stor-
age on the continents as impacted by human water use and
human-managed reservoirs (Müller Schmied et al., 2021). It
calculates sectoral water abstractions, along with net abstrac-
tions (abstraction minus return flows), from surface water
bodies (such as reservoirs, lakes, and rivers) and groundwa-
ter. The model has a spatial resolution of 0.5°× 0.5° and a
daily temporal resolution. However, model output analysis is
typically conducted on a monthly scale. The current version,
2.2e, has been calibrated in a basin-specific manner against
the mean annual streamflow at 1509 gauging stations world-
wide (Müller Schmied et al., 2024). Taking into account the
commissioning years, WaterGAP simulates the dynamics of
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reservoirs with a storage capacity of at least 0.5 km3, re-
ferred to as “global” reservoirs, using a slightly adapted ver-
sion of the H06 algorithm (Döll et al., 2009). Smaller reser-
voirs, referred to as “local” reservoirs, are treated as nat-
ural lakes (Müller Schmied et al., 2021). A total of 1255
global reservoirs, with a combined maximum capacity of
5672 km3, are integrated into WaterGAP 2.2e, sourced from
the GRanD (Lehner et al., 2011) and GeoDAR (Wang et al.,
2022) datasets; in addition, 88 regulated lakes are treated like
global reservoirs (Müller Schmied et al., 2024). The water
balance for a reservoir in WaterGAP is calculated as (Müller
Schmied et al., 2021)

dS
dt
= I +A ·

(
P −Epot

)
−GWR−NAs−O, (1)

where S (m3) represents reservoir storage, I (m3 d−1) de-
notes inflow into the reservoir from upstream, A (m2) is
the reservoir area, P (m d−1) indicates precipitation, Epot
(m d−1) stands for potential evaporation, GWR (m3 d−1) de-
notes groundwater recharge (only in arid/semiarid regions),
NAs (m3 d−1) represents potential net abstraction from the
reservoir, and O (m3 d−1) is the reservoir outflow including
release and spill. The surface area A is computed daily as
a fraction of the maximum area that depends on the current
reservoir storage and its storage capacity. A is reduced by
15 % when S reaches 50 % of the reservoir’s capacity and by
75 % when S drops to 10 % of the capacity (Müller Schmied
et al., 2021). Abstraction from a reservoir is permitted only
until the water storage level drops to 10 % of its total ca-
pacity. The implementation of reservoir operation algorithms
in WaterGAP is described below. For detailed information
on WaterGAP, please refer to Müller Schmied et al. (2021,
2024).

2.2 Reservoir operation algorithms

2.2.1 Hanasaki algorithm as implemented in
WaterGAP2.2e

The calibration-free H06 method, in its original formula-
tion, estimates monthly reservoir outflow by distinguishing
between irrigation and non-irrigation reservoirs. For non-
irrigation reservoirs, this outflow is determined by factors
such as the storage at the beginning of the operational year
(determined by analyzing the seasonal flow dynamics), the
mean annual inflow into the reservoir, and the reservoir’s
storage capacity. The long-term target for reservoir releases
is the mean annual inflow. If reservoir storage at the begin-
ning of an operational year is above normal, releases increase
throughout the year; conversely, if it is below normal, re-
leases decrease. Therefore, the total release in an operational
year depends on the storage level at the start of that year.
In the case of irrigation reservoirs, the demand also influ-
ences the release (Hanasaki et al., 2006). The H06 algorithm
was implemented in WaterGAP on a daily timescale, and

the mean annual inflow was adjusted by adding the differ-
ence between precipitation and evaporation over the reser-
voir. This modification aimed to provide a more accurate
representation of the reservoir’s water balance (Döll et al.,
2009).

The first step in the H06 algorithm involves determining
the release coefficient for the operational year “y” (ky) using
the following equation:

ky =
Sini

a1 ·C
, (2)

where Sini (km3) represents the reservoir storage at the start
of the operational year; C (km3) denotes the water storage
capacity of the reservoir; and a1 is a parameter of the H06
method, recommended to be set to 0.85 in its standard form.
In the second step, the provisional release is determined. For
non-irrigation reservoirs, the provisional release is calculated
as follows:

R′d = I
′, (3)

in which R′d (m3 s−1) is the provisional release for the day
“d”, and I ′ (m3 s−1) is the mean annual inflow into the reser-
voir plus the difference between precipitation and evapora-
tion over the reservoir (for this study, the period 1980–2009).
For irrigation reservoirs, the provisional release is computed
as follows:

R′d =

{
a2 · I ′ ·

[
1+ kalc·NAsd

NAs

]
if NAs≥ a2 · I ′

I ′+ kalc ·NAsd−NAs otherwise
, (4)

in which NAsd (m3 s−1) represents the potential net abstrac-
tion from surface water bodies for downstream cells of the
reservoir for day “d”; NAs (m3 s−1) denotes the mean to-
tal annual potential net abstraction for downstream cells of
the irrigation reservoir; kalc is an allocation coefficient that
distributes the abstraction to the upstream reservoirs based
on the proportion of I ′ into each reservoir (it equals one
if there is only one irrigation reservoir upstream of the de-
mand cells); and a2 is a parameter specifically for irrigation
reservoirs that acts as a partitioner, leading to the use of dif-
ferent equations for reservoirs with a high demand-to-inflow
ratio compared to those with a low demand-to-inflow ratio.
With a default value of 0.5, this parameter sets the minimum
provisional release at 50 % of the mean annual inflow dur-
ing non-crop months. During crop months, the fluctuations
in provisional release for reservoirs with a high demand-to-
inflow ratio (NAs exceeding 50 % of mean annual inflow, first
equation) correspond to fluctuations in daily net abstraction
relative to NAs. In contrast, reservoirs with a low demand-
to-inflow ratio (as per the second equation) align their pro-
visional releases with the daily net abstraction (Hanasaki et
al., 2006). The downstream potential net abstraction associ-
ated with each reservoir is calculated based on surface wa-
ter demand for a maximum of five grid cells downstream in
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the absence of other reservoirs. Otherwise, it extends to the
next reservoir. The potential net abstraction information is
obtained from the WaterGAP dataset.

With the provisional release determined, the daily release
is calculated using the following equation:

Rd =


ky ·R

′

d if c ≥ a3(
c
a3

)2
· ky ·R

′

d+

{
1−

(
c
a3

)2
}
· Id otherwise , (5)

where c represents the ratio of C (km3) to I ′ (km3 yr−1);
Id (m3 s−1) is the daily inflow into the reservoir for the day
“d”; Rd (m3 s−1) is the daily release from the reservoir; and
a3 is a third parameter in the H06 approach, with a default
value of 0.5. This parameter is also a partitioner that results in
the application of different equations for reservoirs with high
capacity-to-inflow ratios (c ≥ a3) compared to those with
low capacity-to-inflow ratios. This implies that for reservoirs
with high capacity-to-inflow ratios (first equation), release is
independent of daily inflow, while for reservoirs with low
capacity-to-inflow ratios (second equation), daily inflow in-
fluences the release (Hanasaki et al., 2006). In this study, H06
with default values for a1, a2, and a3 is referred to as the DH
algorithm, while H06 with calibrated parameters is referred
to as the CH algorithm.

2.2.2 New algorithms

In this study, we introduce and compare two new reservoir
operation algorithms (1) that require the reservoir-specific
calibration of their parameters; (2) that, different from H06,
utilize daily reservoir water storage as a critical factor in
computing daily releases; and (3) that do not require water
use information to estimate the releases of irrigation reser-
voirs. Both algorithms include three parameters related to
different storage levels: above 70 % of the reservoir capacity
(level 1), between 40 % and 70 % of the reservoir capacity
(level 2), and below 40 % of the reservoir capacity (level 3).
This classification is based on the observation that the oper-
ation rule curve of reservoirs often varies at different storage
levels, typically corresponding to different seasons (Dang et
al., 2020). Unlike the H06 approach, which employs a sin-
gle release coefficient for a full year of operation, both new
algorithms consider a daily filling ratio, i.e., relative water
storage (Sreld), as defined by the following equation:

Sreld =
Sd

C
, (6)

in which Sd (km3) is the reservoir storage on day “d”, and
C (km3) indicates the water storage capacity of the reservoir.
Both algorithms use Sreld for release estimation but apply
different equations to calculate the release. The following
sections describe the release estimation methods employed
by these algorithms, i.e., Scaling algorithm (SA) and Weight-
ing algorithm (WA).

Scaling algorithm

In the SA algorithm, the daily release at each specific storage
level (Level 1, Level 2, or Level 3) is computed as a func-
tion of Sreld, mean annual inflow (I ), daily inflow (Id), the
30 d mean inflow (I 30d), and a parameter associated with that
level (Eq. 7). For this purpose, Id is scaled using the ratio of I
to I 30d. This ratio represents the general effect of reservoirs
in altering the temporal variation of streamflow by storing
excess water during high-flow months and releasing it during
low-flow months. The multiplication of I by Sreld mimics a
prompt response to extreme events where storage can fill up
within a few days. The release in the SA algorithm, when
water storage is at level n, is calculated as follows:

Rd = pn ·

[
Sreld−1 · I +

I

I 30d
· Id

]
for n= 1, 2, 3, (7)

in which I 30d (m3 s−1) represents the mean inflow into the
reservoir during the last 30 d. The variable n indicates the
storage level at time d − 1, and pn is the parameter assigned
to storage level n (one parameter assigned to each storage
level). Levels 1, 2, and 3 correspond to Srel as follows: Level
1 for above 0.7, Level 2 for between 0.4 and 0.7, and Level
3 for below 0.4. (see Fig. 1). The parameter values need to
be determined through the calibration process. These param-
eters enable us to adjust the mean release, while temporal
variability is estimated inside the square brackets.

Weighting algorithm

The WA is the same as SA method in most parts of the release
calculation; however, in contrast to the SA method, WA does
not consider Id to compute the release and solely relies on
Sreld for weighting I and I 30d. Therefore, the contribution
of long-term inflow is higher at higher storage levels, while
its contribution decreases as storage levels decrease. Con-
versely, the contribution of inflow from the last 30 d increases
as storage decreases. A maximum of 30 % of I 30d contributes
to release estimation at higher storage levels (Srel≥ 0.7),
while it reaches 100 % when the reservoir is empty, which is
identical to run-of-the-river flow. In the WA algorithm, when
water storage is at level n, the release is estimated as follows:

Rd = qn ·
[
Sreld−1 · I +

(
1−Sreld−1

)
· I30d

]
for n= 1,2,3, (8)

where qn is the parameter assigned to storage level n that
needs to be determined (see Fig. 1). We opted for I 30d over
Id, assuming that release decisions may rather be based on
the past inflow over a more extended period and not on the
inflow on just the previous day.

Contrary to the H06 approach, where the release is inde-
pendent of inflow in reservoirs with large storage capacity
relative to the annual inflow (resulting in a constant release
throughout the year, see Eq. 5), both new algorithms con-
sider the impact of inflow on release in all reservoirs. This
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Figure 1. Overview of the process to calculate reservoir release using the Hanasaki (H06), Scaling (SA), and Weighting (WA) algorithms,
indicating the required inputs as well as the equation numbers; the complete equations can be found in the text. The left panel details the
H06 algorithm implemented in WaterGAP, outlining the steps for calculating the release coefficient, provisional release, and release. The
H06 algorithm requires reservoir capacity, storage values at the start of the operational year, daily inflow, precipitation, evaporation data, and
daily potential net abstraction data for irrigation reservoirs. The right panel presents SA and WA, indicating the calculation of relative water
storage and the release computation as a function of three reservoir water storage levels (n= 1, 2, or 3). SA and WA releases are calculated
based on reservoir capacity, daily storage, precipitation, evaporation, and inflow. The time-averaged variables are derived from daily data.
For the H06 algorithm DH, the default values for a1,a2, and a3 are 0.85, 0.5, and 0.5, respectively.

impact varies with different seasons and storage levels, lead-
ing to variability in release throughout the year, which is
more realistic (see Eqs. 7 and 8). It should be noted that
the new algorithms do not distinguish between irrigation and
non-irrigation reservoirs; therefore, no water use data are
required for their application, making their implementation
easier than the H06 algorithm. This is because estimating
downstream water demand on a large scale is usually very
uncertain, and reservoirs are typically designed for multiple
purposes.

In each of the three algorithms, if Sd falls below 10 % of
the storage capacity (C), the calculated Rd is adjusted to 0.1 ·
Rd if the available water is sufficient; otherwise, the entire Sd
will be released. Finally, the reservoir outflow is calculated
as follows:

Od = Rd+ SPd, (9)

where Od (m3 s−1) and SPd (m3 s−1) are the reservoir out-
flow and the spill from the reservoir during day “d”, respec-
tively. SPd is calculated as the difference between Sd and C
where Sd exceeds C; otherwise, it is zero.

2.3 Data

The ResOpsUS dataset (Steyaert et al., 2022), which was
used to calibrate and evaluate the three algorithms in this
study, encompasses daily in situ records of inflow, storage,
outflow, elevation, and evaporation for up to 679 US reser-
voirs. The available data cover the years from 1930 to 2020,
determined by the commissioning year of each dam and the
availability of data. In this study, data on reservoir inflow
(daily), outflow (monthly), and storage (monthly) from 1980
to 2019 were considered, divided into two distinct periods:
a calibration phase spanning 1980 to 2009 and a validation
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phase covering the years 2010 to 2019. Monthly data were
computed from daily records, excluding months with more
than one week of missing values. Subsequently, we applied
filters to the dataset, considering only reservoirs with a mini-
mum data length of 5 years and a minimum reservoir capac-
ity of 0.5 km3 . Additionally, we ensured that there is only
one reservoir per 0.5°× 0.5° grid cell and that no negative
values are present. This resulted in 100 reservoirs, with 35
having data for storage, inflow, and outflow and 65 having
data for storage and outflow only. The minimum number of
monthly data values for the 65 (35) reservoirs was 111 (252)
for the calibration period and 65 (59) for the validation pe-
riod. The reservoir storage capacities (C) range from 0.5 to
36.7 km3 based on the GRanD dataset (Lehner et al., 2011).
Out of the total 100 reservoirs, nine are irrigation reservoirs.
Detailed information on each reservoir is provided in Ta-
ble S1 in the Supplement.

Using in situ storage data, we derived two additional
storage-related variables: the time series of the storage
anomaly and estimated storage. These variables can also be
estimated using remote sensing data. The storage anomaly
time series for each reservoir is calculated by subtracting the
mean storage during the calibration period from the in situ
storage data for each reservoir. However, the storage anomaly
lacks information about the bias term, and calibrating against
it can lead to a simulated storage time series that significantly
deviates from the observed water storage. Having actual ab-
solute storage is beneficial, as reservoirs are the only surface
water bodies for which we can model absolute storage within
WaterGAP. To provide an alternative, we calculated the “es-
timated storage time series”; this term refers to storage val-
ues that are not observed directly but are estimated using the
storage anomaly and the reservoir capacity C. First, we de-
termined the storage change time series by subtracting the
initial month’s storage anomaly value from the monthly stor-
age anomaly values. Assuming the reservoir reaches maxi-
mum capacity at least once between 1980 and 2009, we cal-
culated the maximum monthly storage change, referred to as
Difmax. We then subtracted Difmax from the GRanD reser-
voir storage capacity to estimate the initial water storage for
the first month. The estimated storage time series is then ob-
tained by adding the storage changes to this estimated initial
water storage. Since the data are monthly, and daily maxi-
mum storage is generally higher, we applied a 1.2 scaling
factor to Difmax. This adjustment means that Difmax used in
our calculations is 20 % higher than the initially calculated
value. This 20 % increase is derived from the mean differ-
ence between the maximum daily storage and the monthly
storage observed in 100 studied reservoirs (see Table S1).
The calculation of estimated storage can be performed using
either absolute storage or the storage anomaly, as the time se-
ries of storage changes would remain the same in both cases.
An example using GRanD ID 597 (Glen Canyon Dam, Lake
Powell) clarifies the calculation of the storage anomaly and
estimated storage. The mean observed storage value between

1980 and 2009 for Glen Canyon Dam is 22.45 km3. To ob-
tain the storage anomaly time series for this reservoir, the
value of 22.45 km3 is subtracted from all storage data for the
reservoir over the entire period (1980–2019). For calculat-
ing estimated storage, the Difmax is 6.6 km3 , which occurred
in July 1983 (see Supplement Fig. S1). This is calculated
as the storage anomaly value in July 1983 minus the initial
storage anomaly value in January 1980. The initial storage
is estimated as 25.1 km3 (the reservoir capacity reported by
GRanD) minus 7.9 km3 (6.6 km3

× 1.2). This gives an initial
storage value of approximately 17.2 km3. Storage changes
are then added to the estimated initial storage to obtain the
time series of estimated storage (Fig. S1c); e.g., the estimated
storage for July 1983 is 23.8 km3 , which is the sum of 17.2
and 6.6 km3.

2.4 Model variants and calibration approach

The three reservoir operation algorithms were implemented
in WaterGAP. For each algorithm, the algorithm-specific pa-
rameters (a1, a2, and a3 for the CH; p1,p2, and p3 for
the SA; and q1, q2, and q3 for the WA) were estimated
by optimizing the Kling–Gupta efficiency (KGE) (Kling et
al., 2012), including the trend term (see Eq. 10). This opti-
mization was performed through a single-objective calibra-
tion against the monthly time series of four variables: out-
flow, storage, the storage anomaly, and estimated storage (see
Sect. 2.3). The parameters of each algorithm were calibrated
using a grid search approach. Reservoir outflow and storage
time series were simulated for all parameter sets listed in Ta-
ble S2, and the parameter set corresponding to the highest
KGE was selected. The parameter estimation using the stor-
age anomaly and estimated storage serves as the main exper-
iment, as the primary emphasis of this study is on exploring
the added value of incorporating the storage anomaly (which
facilitate the calibration of reservoir algorithms using remote
sensing data in regions where in situ storage time series are
unavailable) into the calibration of reservoir operation algo-
rithms.

As in previous studies by Dong et al. (2023), Turner et
al. (2021), and Shin et al. (2019), the uncalibrated H06 (DH)
is used as a benchmark. For comparison purposes, in all cal-
ibration experiments based on WaterGAP inflow, the inflow
into reservoirs simulated by the DH algorithm was used to
ensure that the same inflow data were applied across all al-
gorithms. To achieve this, WaterGAP was first run with the
DH algorithm to save the reservoir inflow data. These inflow
data were then read from the saved files and used as the in-
flow source to model each reservoir independently. As a re-
sult, the inflow into all reservoirs, regardless of their position,
was based on the DH algorithm when applying the CH, SA,
and WA algorithms, meaning that the operations of upstream
reservoirs did not affect those of downstream reservoirs. The
calibration runs were initialized by running WaterGAP five
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times for the year 1979, allowing water storage to reach a
relatively stable equilibrium state.

In addition to the inflow simulated by WaterGAP, we also
assessed the algorithms based on observed inflow where
available. This was done to evaluate the performance of
reservoir operation algorithms in the presence of high-quality
inflow data, as poor inflow data can significantly impact the
performance of these algorithms (Vanderkelen et al., 2022).
Moreover, we assessed the impact of distinguishing irriga-
tion and supply reservoirs from other reservoirs. The distinc-
tion for irrigation reservoirs is the default approach for the
H06 algorithm; however, here we also applied this distinction
for supply reservoirs, as their outflow also depends on down-
stream demand. To this end, we modeled 21 reservoirs (nine
irrigation and 12 supply reservoirs) in two different ways for
all algorithms: one that included downstream demand and the
other that did not consider it. The purpose of this comparison
is to evaluate whether including downstream demand, de-
spite the high uncertainty in water demand estimation for the
reservoirs, enhances the outflow and storage simulation or
whether it adds value without introducing unnecessary com-
plexity. In the case of the SA and WA approaches for con-
sidering downstream demand, the process involves using the
provisional release R′d instead of I in Eqs. (7) and (8). There-
fore, similar to the DH algorithm, Eq. (4) was used with the
default value for the parameter a2 to estimate R′d. Please note
that, since the WA and SA approaches work with I and not
I ′, I was applied in Eq. (4) instead of I ′ in the SA and WA
approaches.

Table 1 shows a summary of the different calibration vari-
ants. In Table 1, each calibration variant is characterized by a
combination of a reservoir operation algorithm, a calibration
variable, an inflow source, and whether downstream demand
is considered or not. For example, calibrating the CH algo-
rithm against outflow using inflow simulated by WaterGAP
while considering downstream water demand represents one
calibration variant. Thus, each reservoir operation algorithm
comprises 12 calibration variants (eight utilizing WaterGAP
inflow and four using observed inflow), leading to a total of
36 calibration variants.

2.5 Performance evaluation metrics

The performance of the reservoir operation algorithms was
evaluated using KGE and the normalized root mean square
error (nRMSE). KGE is widely used for model calibration
and evaluation, as it simultaneously considers multiple im-
portant aspects of model performance, providing a compre-
hensive assessment (Beck et al., 2019; Lamontagne et al.,
2020). The use of nRMSE offers additional insights by focus-
ing on the magnitude of errors. Following Hosseini-Moghari
et al. (2020), we incorporated the trend component into the

conventional KGE equation as follows:

KGE= 1−
√
(RKGE− 1)2+ (BKGE− 1)2

+(VKGE− 1)2+ (TKGE− 1)2 (10)

RKGE =
cov(sim,obs)
σsim · σobs

(11)

BKGE =
sim

obs
(12)

VKGE =
σsim/sim

σobs/obs
(13)

TKGE =
Tsim

Tobs
, (14)

where RKGE represents the correlation coefficient between
observed (obs) and simulated (sim) time series; BKGE de-
notes the bias of the mean simulated (sim) compared to the
mean of observed (obs); VKGE is the variability component
that denotes the ratio of the standard deviation of the simu-
lated (σsim) to the standard deviation of the observed (σobs)
time series, divided by their mean; and TKGE represents the
ratio of the linear trend of the simulated time series (Tsim)
to the observed one (Tobs). In the case of calibrating against
the storage anomaly, we did not divide σ by the mean, as the
mean for the storage anomaly is zero. Similarly, the BKGE
component was not considered in calculating KGE related
to the storage anomaly. The optimal value for the KGE and
its four components is 1. The KGE range is (−∞,1], while
RKGE ranges from −1 to 1; BKGE, VKGE, and TKGE can vary
between −∞ and +∞. Following Knoben et al. (2019), a
KGE value above −0.73 indicates that the model performs
better than the mean of observations if the trend component
is included in the KGE.

The normalized root mean square error (nRMSE) is calcu-
lated as

nRMSE=

√
1
T

∑T
t=1(obst − simt )2

σobs
. (15)

The perfect value for nRMSE is zero. Normalizing the
RMSE with the standard deviation of observations brings this
metric closer to the Nash–Sutcliffe efficiency (NSE), but dif-
ferent from the NSE, the nRMSE cannot become negative
(Turner et al., 2021).

3 Results

3.1 Performance of calibration variants in the case of
simulated inflow into reservoirs

We found that calibrating against observed water storage, the
water storage anomaly, or estimated water storage (derived
from the storage anomaly and GRanD capacity) improves
the very poor simulation of storage by the calibration-free
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Table 1. Components of the different calibration variants, comprising 36 variants in total, with 12 variants for each algorithm. Each algorithm
includes four variants that use WaterGAP inflow with downstream demand considerations (calibrated against outflow, storage, the storage
anomaly, and estimated storage), four variants that use WaterGAP inflow without downstream demand, and four variants that use observed
inflow. Each calibration variant is defined by the combination of a reservoir operation algorithm, calibration variable, inflow source, and the
consideration or non-consideration of downstream demand. For CH, the default approach incorporates the downstream demand of irrigation
reservoirs, while the opposite is true for SA and WA. Additionally, considering the downstream demand for supply reservoirs is not the
default approach for any of the reservoir operation algorithms. For calibration variants that utilize observed inflow, only the default approach
of each algorithm is considered.

Operation algorithm Calibration variable Inflow source Downstream demand
considered?

CH Outflow WaterGAP Yes1

Storage No

Storage anomaly Observation Yes2

Estimated storage

SA Outflow WaterGAP Yes1

WA Storage No

Storage anomaly Observation No
Estimated storage

1 Water demand is considered for irrigation and supply reservoirs, i.e., 21 out of 100 studied reservoirs. 2 Water
demand is considered for irrigation reservoirs, i.e., 2 out of 35 studied reservoirs with observed inflow.

algorithm (DH) during both calibration and validation for all
three algorithms (Table 2). In the case of DH, storage simula-
tion is skillful, i.e. with a KGEstorage>−0.73 for only 16 %
of the 100 reservoirs in the calibration period and 15 % in the
validation period. Calibration of the H06 reservoir operation
algorithm (CH) achieves skillful storage simulations for 64 %
(39 %) of the reservoirs when calibrated against the storage
anomaly and for 69 % (32 %) of the reservoirs when cali-
brated against estimated storage during the calibration (val-
idation) period. Both SA and WA perform better than CH
in storage simulation when calibrated against storage-related
variables for the calibration and validation periods (Table 2
and Fig. 2). However, the fit of simulated to observed stor-
age remains poor during the validation period, particularly
after calibration against the storage anomaly and estimated
storage (Table 2 and Fig. 2).

Calibrating for storage-related variables only slightly im-
proves the mostly poor simulations of reservoir outflow dur-
ing the calibration period, with slightly better outcomes ob-
served in the validation period (Table 2 and Fig. 2). Skillful
outflow simulations were achieved for 86 % of the reservoirs
when either SA or WA was calibrated against outflow, com-
pared to 78 % for CH and 63 % for DH during the calibration
phase. However, skillful storage simulations were observed
in only 14 % (24 %) and 20 % (30 %) of the reservoirs for SA
and WA, respectively, compared to 22 % (30 %) for CH and
16 % (15 %) for DH in the calibration (validation) phase (Ta-
ble 2). The performances of outflow simulations with CH,
SA, and WA are very similar during both the calibration
and validation periods, except when calibrating against ob-
served outflow in the calibration period. In this case, SA and

Table 2. The number of reservoirs out of 100 in which KGE values
are greater than the benchmark thresholds of −0.73 during the cal-
ibration (validation) phase. All algorithms were calibrated against
outflow, storage, the storage anomaly, and estimated storage, using
KGE as the objective function. The inflow data are sourced from the
WaterGAP model.

Calibrated variable Algorithm KGE>−0.73

Outflow Storage

– DH 63 (56) 16 (15)

Outflow CH 78 (68) 22 (30)
SA 86 (71) 14 (24)
WA 86 (69) 20 (30)

Storage CH 68 (69) 91 (46)
SA 66 (67) 98 (68)
WA 67 (66) 100 (55)

Storage anomaly CH 67 (69) 64 (39)
SA 67 (69) 68 (45)
WA 71 (70) 66 (45)

Estimated storage CH 70 (69) 69 (32)
SA 65 (68) 69 (46)
WA 67 (70) 74 (41)

WA achieved positive KGEoutflow, with medians of 0.15 for
SA and 0.13 for WA. Calibrating with respect to outflow
improves the correlation, variability, and trend of the simu-
lated outflow relative to DH across all three algorithms, while
the bias remains largely unchanged (Figs. S2–S5). On aver-
age, outflow trends are underestimated. Calibrating against
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Figure 2. Letter-value plots of KGE for outflow and storage of 100 studied reservoirs for DH, CH, SA, and WA algorithms for the calibration
period (1980–2009, in blue) and validation period (2010–2019, in yellow). All algorithms are calibrated against outflow (first column),
storage (second column), the storage anomaly (third column), and estimated storage (fourth column), using KGE as the objective function.
The values at the top of the panels are the median KGE (indicated by the horizontal line). KGE values below the benchmark threshold of
−0.73 are set to −0.73. The widest box contains 50 % of the 100 data points, the second widest 25 % of the data (12.5 % in the upper box
and 12.5 % in the lower box), the third widest 12.5 %, and so on. The inflow data are sourced from the WaterGAP model.

outflow worsens both the correlation and variability of stor-
age simulations across all three algorithms during the cali-
bration phase, though it notably improves the bias compo-
nent (Figs. S2–S4). Model performance related to storage is
not affected in a relevant manner by calibration against out-
flow and remains very poor. When algorithms are calibrated
against outflow, the mean observed storage is usually a better
estimator than the simulated storage.

Calibrating against storage (Fig. 2, second column) yields
the highest KGEstorage values, with a median of 0.29, and SA
outperforms CH and WA, while KGEoutflow and its compo-
nent values across the three algorithms are similar (Figs. S2–
S5). Calibration against the storage anomaly (third column
in Fig. 2) or estimated storage (fourth column in Fig. 2)
improves both storage and outflow simulations compared
to DH, but the fit to observed storage is worse than cal-
ibration against storage. The median KGEstorage for cali-
bration against the storage anomaly exceeds that for esti-
mated storage, yet the letter-value plot shows the widest
box for estimated storage, indicating 50 % of the data are
above that for the storage anomaly. Storage simulation im-
provement largely stems from bias adjustment (Fig. S3). The
DH algorithm shows a median BKGE of 1.90 during calibra-
tion, dropping to 0.92 (1.04, 0.99), 0.71 (0.91, 1.18), and
1.25 (1.44, 1.32) for calibrating against storage, the storage
anomaly, and estimated storage of the CH (SA, WA) algo-

rithms. Correlation improves for SA and WA only during
calibration (Fig. S2). Variability improves when calibrating
against the storage anomaly, whereas estimated storage un-
derestimates variability (Fig. S4). Trends of KGEstorage im-
prove significantly when calibrating against storage, the stor-
age anomaly, and estimated storage compared to DH, though
trends are generally underestimated (Fig. S5). Evaluating
KGEstorage_anomaly with different variables shows less degra-
dation in the validation phase (Fig. S6). For instance, skill-
ful simulations for storage reached 17 (18), 93 (44), 98 (59),
and 99 (55) for DH, CH, SA, and WA, respectively, when
calibrated with storage anomalies (see Table 2 for compari-
son). The fit to observed storage variables is less improved
for validation than calibration (Table 2, Fig. 2). Comparing
calibration against the storage anomaly and estimated stor-
age shows SA and WA are preferred over CH and DH, even
though the differences from CH are minor during validation.
Differences between KGEstorage values of SA and WA are
small for all calibration variables in both calibration and val-
idation periods.

Examining the empirical cumulative distribution functions
(eCDFs) for nRMSE reveals that the eCDFs for outflow are
much closer across algorithms than those for storage (see
Fig. 3). This implies calibration has a more significant impact
on storage than on outflow. Calibrating against any storage-
related variable generally enhances outflow performance at
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lower nRMSEoutflow levels in about 60 % of reservoirs. In
comparison, at higher levels, a slight degradation occurs in
roughly 35 % of reservoirs (with probabilities between 0.60
and 0.95). When calibrating against outflow, nRMSEstorage
generally improves for CH and WA algorithms, but no clear
enhancement is seen for SA. Additionally, the nRMSEoutflow
decreases for over 40 % of reservoirs. For nRMSEoutflow
greater than 0.98, calibration against outflow shows nearly no
improvement, as indicated by the eCDFs. Calibration against
the storage anomaly, the main calibration variant, especially
in the validation phase, reveals that SA slightly outperforms
WA, with lower nRMSEstorage and similar nRMSEoutflow. Re-
gardless of the magnitude of the error, the eCDF for vali-
dation exhibits a shape similar to that of the calibration pe-
riod, indicating that the error distribution for the algorithm
remains consistent across both periods.

3.2 Illustrative calibration results for three reservoirs

As an example, we plotted the time series of storage and out-
flow for the Glen Canyon Dam (Lake Powell) in Figs. 4 and
S7, respectively. Results for this reservoir suggest that cal-
ibrating the H06 algorithm based on outflow did not yield
better outcomes than the DH model (Figs. 4a, S7a). Some
improvement was noted in the outflow simulation for SA
and WA during calibration; however, this resulted in a worse
simulation during validation (Fig. S7). Despite this, with a
KGE>−0.73, all outflow simulations demonstrated skill-
ful performance. Calibration against outflow did not nega-
tively impact storage simulation relative to the DH, except
for SA, particularly during validation, where the variabil-
ity of the simulated series was over 3 times higher than
the observed values (Table S3). During the calibration phase
against storage-related variables, simulated storage levels
primarily exceed 40 % (10 km3) of the total capacity. This
pattern results in storage levels under 40 % being inade-
quately handled during the parameter selection for the SA
and WA algorithms. Consequently, when storage levels drop
below 10 km3 during the validation phase, the outcomes are
not promising (Fig. 4c, d). Furthermore, the discrepancy be-
tween the reported capacity by GRanD (25 km3) and the
maximum recorded daily storage (31.7 km3) negatively im-
pacts the simulation outcomes for all calibrated algorithms
that rely on estimated storage versus storage anomalies (see
Fig. S1). This approximately 20 % discrepancy between the
reported capacity and the maximum observed storage intro-
duces a bias, which influences the bias and variability com-
ponents of KGEstorage (Table S3). The outflow shows almost
no bias due to the use of data from the Lees Ferry station,
located just downstream of the dam, for bias adjustment in
WaterGAP’s streamflow simulations via a simple calibration
approach (see Müller Schmied et al., 2024, for more details).

The storage simulation for the Yellowtail Dam (an irri-
gation reservoir, GRanD ID= 355) and the Harry S. Tru-
man Dam (a hydropower reservoir, GRanD ID= 989) is

poor, with a higher seasonal magnitude compared to the ob-
served data. (Fig. 5). Calibrating using the storage anomaly
can introduce significant bias in absolute storage simulation
(Fig. 5c). Similarly, calibrating with estimated storage may
cause issues if there is a mismatch with in situ observations
(Fig. 4d). For the Yellowtail Reservoir, SA and WA, which
do not account for downstream water demand, simulate stor-
age more accurately than DH and CH, which consider down-
stream water demand (Fig. 5a). However, for outflow simu-
lation, the uncalibrated DH performs the best (Fig. S8a).

These examples show that calibrating only against storage
variables does not necessarily worsen outflow simulations
(Fig. S8). However, attention to inaccuracies in reservoir ca-
pacity data in the GRanD dataset is critical when evaluating
reservoir operation performance. In these cases, comparing
storage anomalies may provide a more accurate assessment
than relying solely on absolute storage. This storage simula-
tion error may also impact outflow simulations, where input
data inaccuracies primarily lead to incorrect storage levels
during the validation phase (Fig. 4c).

3.3 Impact of using observed streamflow as input to the
reservoir operation algorithms

The comparison of modeling results using WaterGAP inflow
and observed inflow is shown in Fig. 6 for 35 out of the 100
studied reservoirs. Figure 6 shows no considerable change in
storage simulation with either observed or WaterGAP inflow
data, except for the WA algorithm, which performs better
with observed inflow than with simulated inflow (Fig. 6c).
Nonetheless, the performance of WA in storage simulation
with observed inflow does not exceed that of SA. Conversely,
using observed inflow data considerably enhances the reser-
voir outflow simulation. For instance, KGEoutflow below −1
achieved with WaterGAP inflow can approach 1 with ob-
served inflow (Fig. 6f). In most cases, KGEoutflow between
0–0.5 based on WaterGAP inflow reaches 0.5–1 based on
observed inflow. The most substantial improvement is seen
in the WA algorithm, where the median of KGEoutflow across
various calibration objectives, ranging from [−0.27, 0.14],
rises to [0.56, 0.69] upon replacing WaterGAP inflow with
observed data. This implies that the WA is more sensitive
to the quality of inflow data than other algorithms. During
the validation period, the same pattern is repeated, showing
a median KGEoutflow of [0.38, 0.56] compared to [−0.87,
−0.41], based on observed inflow versus WaterGAP inflow
across all calibration variants (Fig. S9). Utilizing the ob-
served inflow enhances nearly all components of KGEoutflow,
with the most notable improvements seen in the variability
and trend components (see Figs. S10–S17).

3.4 Impact of considering downstream water demand

We assessed the advantages of differentiating irrigation and
water supply reservoirs from others by counting how many
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Figure 3. Empirical cumulative distribution functions of nRMSE for storage and outflow of the 100 studied reservoirs are based on the DH,
CH, SA, and WA algorithms for the calibration period (1980–2009) and the validation period (2010–2019). All algorithms are calibrated
against outflow (first column), storage (second column), the storage anomaly (third column), and estimated storage (fourth column), using
KGE as the objective function. The x axis uses a logarithmic scale. If nRMSE is greater than 1, the mean error exceeds the standard deviation
of the observational values. The inflow data are sourced from the WaterGAP model.

times estimating the outflow of irrigation reservoirs (9 reser-
voirs) and supply reservoirs (12 reservoirs) using Eq. (4) re-
sults in a more accurate simulation compared to ignoring wa-
ter demand in the modeling of reservoir dynamics. We found
that there is no general advantage in distinguishing irriga-
tion and supply reservoirs from other reservoirs, particularly
when calibrating against the storage anomaly or estimated
storage using the overall superior WA and SA algorithms. In
terms of calibration against estimated storage, the SA algo-
rithm performs better for outflow when considering down-
stream demand; however, the opposite is true for storage. In
the WA algorithm, the same number of reservoirs achieves
better or worse streamflow performance when downstream
water demand is considered. However, storage performance
is enhanced when demand is disregarded (Table 3).

4 Discussion

4.1 Calibration variables

Calibrating against outflow does not necessarily improve
storage simulations and may even cause their deterioration
during the calibration phase. In contrast, calibrating against
all types of storage-related variables slightly improves out-
flow compared to the DH algorithm (see Fig. 2 and Table 2).

Thus, calibrating against storage-related variables is more
effective than calibrating against outflow when aiming to
improve the simulation of both variables through a single-
objective calibration. Furthermore, an analysis of the KGE
values for the compromise solution – defined as the one with
the smallest Euclidean distance from the ideal KGE value of
1 for both storage and outflow – reveals that the KGE re-
sults from calibration against storage are considerably closer
to the compromise solution than those for outflow (refer to
Fig. S18). A similar pattern is seen in calibrations against
both the storage anomaly and estimated storage. One reason
for this is that outflow simulations are less sensitive to cali-
bration compared to storage simulations. This finding is en-
couraging because, unlike outflow data, the storage anomaly
can be estimated using remotely sensed data. The data length
should exceed 5 years to be used effectively for this purpose
(Otta et al., 2023). Although our results indicate that, in gen-
eral, calibrating against the storage anomaly improves the
simulation of storage, using the absolute simulated storage
from these calibrations should be approached with caution,
as they do not always ensure an improvement in absolute
storage.

Calibrating against estimated storage does not outperform
calibrating against the storage anomaly (see Fig. 2 and Ta-
ble 2). Although theoretically, it should yield results closer to
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Figure 4. Monthly time series of observed and simulated storage values from DH, CH, SA, and WA algorithms for Glen Canyon dam, GRanD
ID 597, calibrated against (a) outflow, (b) storage, (c) the storage anomaly, and (d) estimated storage using KGE as the objective function.
The dashed black lines distinguish between the calibration and validation periods. The dashed gray lines indicate the relative storage levels
(Srel), categorizing GRanD storage into three categories: above 70 % of storage capacity, between 40 % and 70 % of storage capacity, and
below 40 % of storage capacity for the reservoir. The maximum observed storage (31.7 km3) exceeds the capacity reported in the GRanD
dataset (25 km3). The inflow data are sourced from the WaterGAP model. The time series for outflow is plotted in Fig. S7.

Table 3. Comparison of reservoir simulation performance using different algorithms, both with and without considering downstream water
demand for 21 irrigation and supply reservoirs. Numbers outside parentheses indicate the number of reservoirs (out of 21) where performance
improves when downstream demand is taken into account. In contrast, values inside parentheses represent reservoirs where ignoring down-
stream demand leads to higher KGE values. Improvements are noted only for skillful simulations achieving a KGE value greater than−0.73.
All algorithms are calibrated against outflow, storage, the storage anomaly, and estimated storage using KGE as the objective function. The
inflow data are sourced from the WaterGAP model.

Calibrated variable CH SA WA

Outflow Storage Outflow Storage Outflow Storage

Outflow 4 (5) 1 (3) 10 (6) 1 (3) 8 (8) 3 (4)
Storage 7 (6) 7 (2) 5 (6) 11 (10) 6 (6) 7 (14)
Storage anomaly 6 (6) 3 (3) 7 (6) 7 (10) 8 (6) 7 (9)
Estimated storage 6 (4) 6 (1) 9 (3) 6 (10) 6 (6) 3 (12)
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Figure 5. Monthly time series of observed and simulated storage values from DH, CH, SA, and WA algorithms for Yellowtail/Harry S.
Truman reservoirs, GRanD IDs 355/989, calibrated against (a, c) the storage anomaly and (b, d) estimated storage using KGE as the
objective function. The primary purposes of the Yellowtail Dam and the Harry S. Truman Dam are irrigation and hydropower, respectively.
The dashed black lines distinguish between the calibration and validation periods. The inflow data are sourced from the WaterGAP model.
The time series for outflow is plotted in Fig. S8.

those of calibrating against actual storage. The reason, aside
from inherent storage estimation errors, lies in the discrep-
ancies between GRanD’s capacity data and the maximum
daily recorded storage, with a median difference of about
25 % (refer to Table S1). Steyaert and Condon (2024) also
reported that GRanD’s omission of overtopping and poten-
tial inaccurate data led to 100 of the 679 dams in the ResOp-
sUS dataset having maximum storage values exceeding the
reservoir capacities reported by GRanD. Inconsistencies are
also reported for the reservoir area; Dong et al. (2023) indi-
cated that the actual polygons of Ertan and Jinping I reser-
voirs are 69 % and 50 % larger, respectively, than the GRanD
polygons. Consequently, simulating the operation of reser-
voirs that have inaccurate GRanD data are unlikely to yield
favorable results, especially in terms of absolute storage sim-

ulation. Thus, an absolute storage comparison may not be
a fair approach for assessing model performance, although
it still holds validity for comparing different algorithms. An
evaluation of the degradation in KGE values, comparing cali-
bration against estimated storage with calibration against ac-
tual storage, indicates that the results from estimated storage
align closely with those from actual storage when the dis-
crepancy between the reservoir capacity reported by GRanD
and the maximum daily observed storage is minimal. As this
difference increases, the discrepancy between the results of
the two calibration variants also grows (Fig. S19). It is im-
portant to note that calibrating against the storage anomaly
does not show a direct relationship with these differences in
storage.
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Figure 6. The relationship between the KGE of (a)–(c) storage and (d)–(f) outflow is obtained from modeling reservoirs using WaterGAP
inflow and the observed inflow to the reservoirs during the calibration period (1980–2009) for 35 reservoirs with observed inflow. KGE
values less than −1 are set to −1. The KGE values for the storage anomaly and estimated storage are not displayed. The size of the circles
indicates the reservoir capacity. The values above each panel show the median KGE, with the top values achieved with WaterGAP inflow
and the bottom values derived from observed inflow. The dashed red lines represent the KGE benchmark threshold of −0.73.

To the best of our knowledge, there are currently two
global datasets – the Global Reservoir Storage (GRS) in-
troduced by Li et al. (2023) and the GloLakes dataset by
Hou et al. (2024) – that provide monthly time series of
estimated absolute storage using remotely sensed informa-
tion, along with either a geostatistical model or a volume–
elevation/area–volume relationship. We evaluated the quality
of their estimates for the absolute storage of the studied reser-
voirs. GRS covers all 100 studied reservoirs, while GloLakes
includes only 57 of those reservoirs. The median KGEstorage
(without the trend component) was 0.26 for GRS and 0.14
for GloLakes, showing that neither dataset offers reliable es-
timates for calibrating reservoir operation algorithms based
on absolute storage (see Table S4). The BKGE components
for GRS exhibit a median of 0.84, varying from marked un-
derestimation – for example, at Norfork Dam (GRanD ID
1042), the average estimated storage is merely 2 % of the
observed value – to considerable overestimation, as seen at
Albeni Falls Dam (GRanD ID 305), where the average esti-
mated storage is 45 times the observed value. GloLakes, with
a median BKGE of 1.49, performs slightly better in terms of
extreme bias; the most considerable underestimation occurs
at Santa Rosa Dam (GRanD ID 1086), where the mean esti-
mated storage is only 35 % of the observed value. The max-
imum overestimation for GloLakes is observed at the same
dam (Albeni Falls Dam), but it is less extreme compared to

GRS, although still substantial. The RKGE and VKGE compo-
nents of KGE for storage are better than BKGE in terms of
extreme values. Nonetheless, with medians of 0.63 and 0.84
for GRS and 0.71 and 0.47 for GloLakes, respectively, RKGE
and VKGE for both datasets are still not sufficiently promis-
ing, indicating uncertainty in estimates of remotely sensed
storage anomalies.

4.2 Value of calibration and choice of reservoir
operation algorithm

Using streamflow from the global hydrological model Wa-
terGAP 2.2e as inflow to 100 US reservoirs, we found that
the outflow generated by the calibration-free algorithm DH
is a better alternative to the mean observed outflow. Con-
versely, the opposite holds for simulated reservoir storage
(see Fig. 2), highlighting the need for reservoir-specific cal-
ibration. Our findings show all three calibrated algorithms
generally perform better than DH for storage, but their effect
on reservoir outflow simulation is negligible. Improvements
vary substantially between reservoirs, with some showing
none, as noted by Turner et al. (2021) with a more complex
reservoir operation algorithm. Among calibrated algorithms,
SA and WA outperform CH when calibrated against storage-
related variables. CH may be preferred over SA and WA for
irrigation reservoirs with rather good water demand data or
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if computational resources are very limited, as it estimates
only two parameters instead of three for non-irrigation reser-
voirs. Although KGE cannot distinguish the performance of
SA and WA, nRMSE suggests that SA performs slightly bet-
ter when calibrated against the storage anomaly (Fig. 3).

Calibration of H06 shows that default parameters are
rarely included in the calibrated sets (Fig. S20), particularly
for irrigation reservoirs, where parameter a2 almost always
remains at the lower bound of 0.1. According to Eq. (4), this
suggests that calibration emphasizes the use of a scaled ver-
sion of long-term inflow instead of directly integrating de-
mand through addition. The demand estimation is not accu-
rate enough for reservoir operations, which increases com-
plexity with limited benefits when distinguishing irrigation
and supply reservoirs from other types of reservoirs (Ta-
ble 3). Vanderkelen et al. (2022) similarly observed minimal
additional value in incorporating irrigation demand into the
reservoir operations.

4.3 Relevance of the quality of simulated reservoir
inflow and reservoir storage capacity data

We found that inflow data quality is more crucial than reser-
voir operation algorithms for outflow simulation but has less
impact on storage simulation. This finding aligns with Van-
derkelen et al. (2022), who attributed the similar performance
of natural lake parameterization and H06 to poorly simulated
streamflow in the Community Land Model. Comparing ob-
served inflow as a substitute for simulated outflow and ob-
served outflow shows that the DH algorithm generates worse
outflow simulations compared to ignoring the dam. DH has
median KGEoutflow values of 0.42 (calibration) and 0.02 (val-
idation), while observed inflow shows median KGEoutflow
values of 0.57 (calibration) and 0.36 (validation). This aligns
with Vora et al. (2024), who reported that ignoring reservoirs
in modeling may lead to better outflow simulations than DH
in some cases. However, some skill is observed in other al-
gorithms, particularly SA, where the median KGEoutflow val-
ues for CH, SA, and WA are 0.68 (0.46), 0.75 (0.52), and
0.69 (0.56) for calibration (validation), respectively, when
calibrated against outflow (see Figs. 6 and S9). Unlike Van-
derkelen et al. (2022), our study showed that observed inflow
did not significantly improve storage simulation. This may be
due to errors in GRanD data, which has a median difference
of about 14 % from the maximum daily observed storage for
reservoirs with observed inflow data. Another possible rea-
son might be the influence of initial storage on simulation re-
sults, which differs based on the regulatory level of reservoir
operations, as stated by Yassin et al. (2019). In summary, our
results suggest that enhancing the quality of inflow data is
more crucial than calibrating reservoir operation algorithms,
particularly when the objective is to achieve accurate outflow
simulation. Only calibrating against storage anomalies does
not ensure better outflow predictions.

4.4 Complexities of reservoir operations and dynamics

Besides poor inflow data and inaccurate capacity informa-
tion, other factors also affect the performance of reservoir
operation algorithms. Incorporating human decision-making
into the model is very challenging, despite its critical impor-
tance (Rougé et al., 2021). This complexity arises because
human decisions do not always follow operational rules due
to changing conditions, such as variations in water demand
(Shah et al., 2019) or during droughts and floods (Nazemi
and Wheater, 2015). For example, the Hoover Dam (Lake
Mead) and Glen Canyon Dam (Lake Powell) are intercon-
nected, and historically, Glen Canyon could release enough
water to meet downstream needs until 2014. However, due
to a drought in 2012 and 2013, releases from Glen Canyon
Dam in 2014 dropped to the lowest level since the initial fill-
ing of Lake Powell in 1963 (Radonic et al., 2013; U.S. Bu-
reau of Reclamation, 2019). This reduction in release aimed
to recover Lake Powell’s storage, which had fallen to around
40 % of its capacity (NASA Earth Observatory, 2014). Addi-
tionally, climate change and increases in water demand can
result in non-stationary situations, meaning that calibrated al-
gorithms may not perform as well compared to the calibra-
tion period. This trend is observed in the ResOpsUS dataset,
where there is a generally decreasing trend in reservoir stor-
age, which also impacts release (Steyaert and Condon, 2024).
For example, the Hoover Dam has experienced a continuous
negative trend in its storage since 2000 (see Fig. S21). Under-
standing these trends is crucial for assessing the degradation
of the studied algorithms during the validation period, where
the connection between observed inflow and outflow also be-
comes weaker.

4.5 Limitations

This study modeled reservoirs independently, which may
have potentially affected analysis quality. A calibrated up-
stream reservoir can alter inflows to the downstream reser-
voir. Nevertheless, as the calibration has not significantly in-
fluenced the outflow simulation, it is expected that the overall
conclusions will remain comparable. In the case of the SA
and WA algorithms, a reservoir might attain relative storage
levels (refer to Eqs. 7 and 8) during the validation phase that
were not observed during the entire calibration period. As a
result, the parameters for these unobserved relative storage
levels remain indeterminate and are assigned the minimum
value (0.1 for both SA and WA). As a result, the performance
of the algorithm for those reservoirs during the validation
phase is influenced by setting these undetermined parameters
to their lowest value. In the case of the SA algorithm, this is-
sue affects at most four reservoirs across the calibration vari-
ants, while for the WA algorithm, it impacts up to nine reser-
voirs (see Table S5). Yassin et al. (2019) indicate that a 5-year
spin-up period is generally sufficient for complete stabiliza-
tion, even for large dams. In our study, we conducted five
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simulations of 1979 as our spin-up period. However, using
a longer spin-up duration before 1980 could result in differ-
ent initial storage conditions. Consequently, this might affect
the performance of the operational algorithm. These poten-
tial limitations should be acknowledged, as they may influ-
ence the accuracy and generalizability of the results.

5 Conclusions

This study assessed whether monthly time series of observed
reservoir storage anomalies, available globally via remote
sensing, are suitable targets for calibrating reservoir opera-
tion algorithms in large-scale hydrological models. To ac-
complish this, we incorporated the well-established Hanasaki
algorithm along with two new ones, namely, WA and SA,
into the global hydrological model WaterGAP. We calibrated
them against the storage anomaly, estimated storage, storage,
and outflow data from ResOpsUS for 100 US reservoirs. For
35 of these reservoirs with observed inflow data, both ob-
served and simulated inflows were included in the analysis.
Our findings lead to the following conclusions:

– Using observed storage-related variables, i.e., the stor-
age anomaly, estimated storage, or storage, to calibrate
reservoir algorithms results in a clear improvement in
storage simulation and slightly enhances outflow sim-
ulation during calibration, especially against storage.
However, the performance of the algorithms for storage
during validation is still inferior to that for outflow. Cal-
ibration with scarce outflow data improves only the sim-
ulated outflow, leaving the simulated storage distinctly
poor.

– Of the three calibrated reservoir operation algorithms,
the two new algorithms, WA and SA, perform similarly
or better in storage simulation than CH, i.e., the cali-
brated Hanasaki algorithm.

– If observations of either storage, the storage anomaly, or
outflow are available for a reservoir, the parameters of
the reservoir algorithm should be adjusted, as we found
that the default parameter set of the DH algorithm, par-
ticularly the irrigation reservoir parameter, is seldom
the optimal set. For reservoirs without observations, a
calibration-free algorithm such as DH has to be used.

– Modeling irrigation and supply reservoirs with water
demand, as in DH, may not enhance reservoir simula-
tion due to uncertainty in demand estimation. We rec-
ommend ignoring downstream water demand for these
reservoirs.

– We found that using observed inflow instead of sim-
ulated inflow considerably improves the performance
of the reservoir operation algorithms regarding outflow

simulation, although it has minimal impact on their per-
formance in storage simulation.

– For many reservoirs, none of the three relatively sim-
ple reservoir operation algorithms can accurately depict
the dynamics of both outflow and storage, despite cali-
bration with observations of outflow or storage-related
variables and using observed inflow in the simulation.
The complexity of human decision-making eludes algo-
rithms that rely solely on globally available information,
even when parameters are adjusted through calibration.

– To enhance large-scale hydrological modeling, we rec-
ommend utilizing recent and upcoming spaceborne data
on reservoir water storage anomalies by employing the
SA or WA reservoir operation algorithms. These al-
gorithms facilitate reservoir-specific calibration against
observed storage anomalies. After calibration, they
demonstrated slightly improved performance over the
CH algorithm and are more suited for large-scale appli-
cations compared to algorithms like those from Chen et
al. (2022) and Turner et al. (2021), which require daily
inflow, storage, and outflow data – information that is
seldom accessible outside the US.

– Due to the strong biases often exhibited by the cur-
rently available time series of absolute reservoir storage
derived from the remote-sensing-based water storage
anomaly, and considering that calibration against esti-
mated storage does not outperform calibration against
the storage anomaly, we recommend estimating the pa-
rameters of the SA or WA algorithm using globally
available, remote-sensing-based monthly time series of
the reservoir water storage anomaly (and in situ storage
and outflow time series where available). This approach
is expected to particularly enhance the quality of simu-
lated reservoir storage.

Although the algorithms introduced in this study outper-
form the conventional DH algorithm, there remains scope
for improvement. For example, integrating knowledge-based
equations with deep learning in hybrid machine learning
methods could be beneficial for simulating reservoir dynam-
ics. However, improving the accuracy of inflow simulations
and validating reservoir-related characteristics is very likely
more important for achieving better reservoir outflow and
storage simulations than refining the algorithm itself.

Code availability. The WaterGAP 2.2e code is ac-
cessible through Müller Schmied et al. (2023,
https://doi.org/10.5281/ZENODO.10026943) and is licensed
under the GNU Lesser General Public License version 3.

Data availability. All storage and outflow data obtained from dif-
ferent algorithms and calibration variants, as well as the calibrated
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parameters, are available in the Supplement as Excel files. The
reservoir characteristics are provided in Table S1. The observed data
are available through Steyaert et al. (2022).
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