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Abstract. This study compares two large hydrometeorolog-
ical datasets, the Model Parameter Estimation Experiment
(MOPEX) and the Catchment Attributes and Meteorology
for Large-sample Studies (CAMELS), with the aim of quan-
tifying differences that might impact their mergers. This
comparison focuses on 47 shared watersheds within the con-
tinental United States spanning daily, monthly, seasonal, and
annual scales for the overlapping water years of 1981 to
2000. Results indicate significant differences between the
datasets at daily time steps, highlighting the challenge of
high-temporal-resolution data reconciliation; however, com-
patibility markedly improves with temporal aggregation at
monthly, seasonal, and annual scales. Systematic biases are
evident, with MOPEX showing a warm bias for temperature
and CAMELS displaying a wet bias for precipitation. For fu-
ture studies analyzing monthly or annual runoff trends, no
corrections to the raw data are necessary, as the biases do
not significantly affect large-scale temporal analyses. Studies
focusing on fine-scale hydrological characteristics, such as
daily precipitation events, the frequency of wet and dry days
per month, or single-basin dynamics, may require a statisti-
cal bias correction to ensure accuracy. Uncertainty is inher-
ent in all climate datasets due to differences in data sources,
interpolation methods, and spatial coverage. The transition
from MOPEX to CAMELS does not notably introduce addi-
tional uncertainty beyond what is already present in the origi-
nal datasets. The variability between the datasets is compara-
ble to the inherent variability within each individual dataset
and is neither a useful criterion for dataset selection nor a
barrier to potential merger. As a result, the overall uncer-
tainty in annual or decadal modeling outcomes remains es-
sentially the same, regardless of which dataset is used. That

said, model outputs should be calibrated against observa-
tional reference data to account for systematic errors. Sta-
tistical analyses demonstrate that both datasets are represen-
tative of climatic conditions, trends, and extreme events. Our
findings validate the results of previous research employing
either dataset. Furthermore, this study serves as a founda-
tion for the merging and extension of MOPEX and CAMELS
datasets without any alterations, providing a comprehensive,
long-term dataset suitable for hydrological modeling and cli-
mate analyses while maintaining comparability across basin
and temporal scales.

1 Introduction

Comprehensive historical datasets are crucial for investigat-
ing and projecting surface water availability given the com-
plex response of watersheds to natural and anthropogenic
forcings. In particular, comparative hydrology and large-
sample hydrology (LSH) rely on large datasets comprised of
numerous catchments to derive relationships, develop new
models and uncertainty estimates, and classify locations that
span different climatic and physiographic regions (Addor et
al., 2020; Gupta et al., 2014), yet significant discrepancies
make combining and comparing such datasets difficult. In-
deed, Addor et al. (2020) state that the “lack of common
standards impedes the comparison of basins from different
datasets”.

This paper explores and attempts to resolve the princi-
pal issues confronting the merger of two of the most com-
monly used LSH datasets for the continental United States,
(CONUS), the Model Parameter Estimation Experiment,
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MOPEX (Duan et al., 2006; Schaake et al., 2006), and the
Catchments Attributes and Meteorology for Large-sample
Studies, CAMELS (Addoretal., 2017; Newman et al., 2015).
In general, there is an abundance of data available for climate
variables, streamflow, and catchment characteristics, includ-
ing ground and remotely sensed parameters; however, vary-
ing spatial and temporal resolutions among variables such as
precipitation and temperature often hinder intercomparison
and merging of datasets (Guo, 2017). A wide range of data
sources with varying analysis and derivation methods can in-
troduce uncertainty, especially when metadata (Kelleher and
Braswell, 2021) or uncharacterized anthropogenic influences
are excluded (Addor et al., 2020).

MOPEX and CAMELS are two prominent datasets that
encompass a combination of daily temperature, precipitation,
potential evapotranspiration, and streamflow values for se-
lected catchments. Additionally, these datasets provide es-
sential catchment characteristics such as area, elevation, veg-
etation, and soil texture, employing the United States Geo-
logical Survey (USGS) hydrologic unit code (HUC) subbasin
classification (Seaber et al., 1987). While the consolidation
of attributes and hydroclimatic data simplifies the acquisi-
tion process, challenges arise due to differences in spatial
coverage and data sources, which currently limit the oppor-
tunity to effectively utilize both the MOPEX and CAMELS
datasets simultaneously or confirm findings and expand on
studies employing either dataset.

Researchers often face the necessity of choosing one
dataset over the other, leading to a situation where the unique
strengths and limitations of each dataset influence the selec-
tion process. Numerous studies have engaged in the general-
ization and categorization of watersheds within the CONUS
using either the MOPEX or CAMELS dataset, which un-
derscores the widespread impact and influence of these two
large-sample datasets, making them arguably the most pro-
lific resources within hydrological studies focused on the
CONUS. Their prevalence in hydrologic studies is reflected
in the citation count data derived from Clarivate Web of Sci-
ence (certain data included herein are derived from Clari-
vateTM — Web of ScienceTM — © Clarivate 2024, all rights
reserved), with MOPEX (Duan et al., 2006) currently cited in
489 scientific papers and CAMELS (Addor et al., 2017) cited
in 352. Here we undertake a unique comparative study be-
tween the MOPEX and CAMELS datasets using exploratory
data analysis to evaluate their comparability, accuracy, and
implications for past, present, and future research. The re-
sults aim to bolster confidence in analytical and modeling
outcomes derived from either dataset, thereby fostering ro-
bust hydrological research and supporting effective water re-
source management in the CONUS.

This study compares daily precipitation and temperature
data derived from land surface stations across the country.
MOPEX includes data for 431 watersheds from 1948 to
2003 and CAMELS covers 671 basins from 1980 to 2014.
There are 52 overlapping basins between the two datasets.
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This evaluation is conducted over water years common to
both datasets (1981-2000), emphasizing 47 common sub-
basins. Many previous dataset comparison studies have ad-
dressed global climate datasets (Essou et al., 2016; New-
man et al., 2019), precipitation (Buban et al., 2020; Levy et
al., 2017; Muche et al., 2020; Prat and Nelson, 2015; Sitter-
son et al., 2020; Sun et al., 2018), temperature (Oubeidillah
et al., 2014), and evapotranspiration products (Carter et al.,
2018; Chao et al., 2021; Han et al., 2015). These studies con-
tribute to the ongoing efforts to advance the understanding
of hydrological processes and improve the reliability of hy-
drologic models (Gupta et al., 2014); however, there has yet
to be a study comparing these two large-sample watershed-
based datasets. Our findings show that while MOPEX and
CAMELS exhibit systematic biases, they can still be merged
or reliably compared without requiring corrections beyond
smaller timescales (i.e., a single day, month, or season). Sta-
tistical adjustments to daily data depend on study objectives,
as no single method fits all needs. Raw data or direct model
outputs typically require bias correction, and we intend for
our results to help researchers determine necessary adjust-
ments using appropriate methods, such as equidistant quan-
tile matching (EDCDFm) for temperature and quantile delta
mapping (QDM) or PresRATe for precipitation (Lehner et
al., 2023; Pierce et al., 2015). To support long-term hydro-
logical analyses, all basins will be extended to 2023 using
Daymet, yielding a combined dataset of up to 1050 basins
(Sink, 2025). When MOPEX is extended using Daymet,
slight shifts in these biases are expected, but the dataset’s
overall reliability remains intact.

2 Hydrometeorological datasets
2.1 MOPEX

The MOPEX intercomparison project was conceived by sev-
eral organizations including the World Meteorological Or-
ganization (WMO), the International Association of Hydro-
geologists (IAH) Predictions in Ungauged Basins (PUB)
initiative, and the Global Energy and Water Cycle Experi-
ment (GEWEX) in 1996 (Duan et al., 2006). Its aim was
to establish guidelines for parameter estimation techniques
while simultaneously decreasing uncertainty (Schaake et al.,
2006). MOPEX contains precipitation, minimum and max-
imum temperature, and streamflow data for 431 CONUS
basins on a daily time step for 1948-2003. MOPEX variables
are based on weather station observations from the National
Climatic Data Center (NCDC) and Natural Resources Con-
servation Service (NRCS) SNOTEL network, which were
then averaged by catchment area using an inverse distance
weighting method. For more details regarding data selection
and processing, refer to Duan et al. (2006) and Schaake et
al. (2006).
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2.2 CAMELS

CAMELS, sponsored by the US Bureau of Reclamation and
the US Army Corps of Engineers, consists of three daily forc-
ing datasets from Daymet Version 2 (Thornton et al., 2013),
Maurer (Maurer et al., 2002), and the North American Land
Data Assimilation System (NLDAS) (Xia et al., 2012), along
with benchmark model performance results using the cou-
pled Snow-17 snow model and the Sacramento Soil Mois-
ture Accounting Model (SAC-SMA), using each of the three
forcing datasets, for 671 basins within the CONUS cover-
ing the years 1980-2014 (Newman et al., 2015). CAMELS
contains precipitation, temperature, and streamflow data on
daily time steps in addition to detailed soil characteriza-
tions and geology. The CAMELS Daymet Version 2 forc-
ing dataset is used in this study and interpolates observations
to a 1km x 1 km grid using a Gaussian weighting process
(Thornton et al., 2021), which are simply averaged over the
catchment area in CAMELS. For an in-depth discussion re-
garding data selection and processing for CAMELS, refer to
Addor et al. (2017) and Newman et al. (2015).

2.3 Dataset comparison

Both datasets select basins with apparently minimal anthro-
pogenic impacts, highlight processing methods, and provide
access to basin characteristics including boundary files, frac-
tional spatial coverage of soil type, vegetation type, land
cover, area, and elevation (Table 1). The documentation of
catchment attributes, along with daily data for streamflow,
temperature, precipitation, and potential evapotranspiration,
significantly streamlines the initial phases of data investiga-
tion, consolidation, and processing, making the datasets ex-
ceptionally valuable for research and analysis.

For this study, temperature and precipitation values from
the datasets were evaluated on daily, monthly, seasonal, and
annual temporal scales between 1981 and 2000, based on wa-
ter years spanning 1 October 1980 to 30 September 2000.
Derived variables were omitted for most analyses in this
study because evapotranspiration, when calculated using the
water balance, will only differ based on the precipitation
since both MOPEX and CAMELS obtain the other balance
component, streamflow, from the USGS National Water In-
formation System (NWIS). Potential evapotranspiration val-
ues are highly dependent on the estimation method used and
require additional information such as wind speed, solar radi-
ation, and temperature (Andréassian et al., 2004; Lemaitre-
Basset et al., 2022; Pimentel et al., 2023). Potential evapo-
transpiration values can also be estimated during modeling.

This study provides researchers with detailed analyses re-
garding the uncertainties within the datasets and between
them for a 20-year period through quantitative measure-
ments of dispersion, distribution, central tendency, interval
estimates, and statistical tests. To obtain a longer record,
the datasets will be extended to the present using Daymet
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(Thornton et al., 2021), and the results from this study can be
applied to additional basins by climate region. The merged
MOPEX and CAMELS datasets will incorporate up to 1050
watersheds, temporally extended from 1948 to 2023 (Sink,
2025).

2.4 Study area

MOPEX contains 431 catchments and CAMELS contains
671 (red and blue points, respectively, Fig. 1) within the
CONUS. The spatial coverage differs between the two, with
CAMELS deliberately incorporating more basins within the
Great Plains and southwestern US (Addor et al., 2017; New-
man et al., 2015). Each catchment is identified based on the
USGS NWIS stream gauge identification number (Table 2),
representing its downstream outlet.

The datasets have 52 basins in common, 47 of which were
used in this study (yellow points, Fig. 1). Five watersheds
were omitted from this study because of incomplete stream-
flow records, or the gauge catchment was only a portion of
the watershed. The catchment climate variables precipitation
(PRCP) and temperature (TAIR) were area-weighted (aver-
age of observation values over the area of the basin) using the
Hydro-Climatic Data Network (HCDN) basin delineations
(Slack and Landwehr, 1994).

3 Methodology
3.1 Climate characterization of the watersheds

Understanding how catchments partition annual precipitation
into runoff and evapotranspiration under varying climatic
conditions is crucial for hydrological modeling and water
resource management. The Budyko function describes the
long-term water and energy balance using annual evapora-
tive (evapotranspiration/precipitation) and aridity (potential
evapotranspiration/precipitation) indices (Budyko, 1974).
The annual indices were determined for both datasets and
subsequently combined during K-means clustering to obtain
the overall climate representation for each basin. K-means
clustering, an unsupervised machine learning algorithm that
seeks to minimize the within cluster sum of squares (Har-
tigan and Wong, 1979), was utilized to divide the 47 se-
lected MOPEX—CAMELS shared basins into three climate
groups based on their annual evaporative and aridity indices,
with a classification accuracy of 84 %. The arid (aridity in-
dex > 1.5), continental (aridity index 1.5 to 0.82), and tem-
perate (aridity index < 0.82) zones represent the three K-
means groups. For this study, the basin climate region clas-
sifications (arid, continental, temperate) are based on the K-
means clustering results, which agree closely (but not per-
fectly) with the Képpen—Geiger (Beck et al., 2018) climate
classification (Fig. 2).

Terrestrial evapotranspiration (ET) is difficult to measure
directly but can be evaluated using lysimeters or eddy co-
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Table 1. Comparisons between MOPEX and CAMELS. Acronyms are Hydro-Climatic Data Network (HCDN), National Climatic Data
Center (NCDC), Cooperative Observer Program (COOP), Snow Telemetry Network (SNOTEL), Parameter-elevation Regressions on Inde-
pendent Slopes Model (PRISM), North American Land Data Assimilation System (NLDAS), National Oceanic and Atmospheric Administra-
tion (NOAA), Sacramento Soil Moisture Accounting Model (SAC-SMA), State Soil Geographic (STATSGO) database, Global Lithological
Map (GLiM), Global Hydrogeology Maps (GLHYMPS) of permeability and porosity, Moderate Resolution Imaging Spectroradiometer
(MODIS), International Geosphere—Biosphere Programme (IGBP), University of Maryland (UMD), and normalized difference vegetation

index (NDVI).

Characteristic MOPEX CAMELS
Basins 431 671
Temporal coverage 1948-2003 1980-2014

Streamflow (daily)
Precipitation (daily)
Temperature (daily)
Potential evapotranspiration
Actual evapotranspiration
Soil properties

Geology

NCDC COOP, SNOTEL
NCDC COOP, SNOTEL

USGS HCDN (Slack and Landwehr, 1992)

NOAA (Farnsworth et al., 1982)

STATSGO (Miller and White, 1998)

USGS HCDN-2009 (Lins, 2012)
Daymet, Maurer, NLDAS
Daymet, Maurer, NLDAS
Priestly—Taylor

SAC-SMA

STATSGO, Pelletier et al. (2016)
GLiM, GLHYMPS

Greenness fraction (NDVI) NLDAS MODIS
Vegetation type IGBP, UMD MODIS
120°W 110°W 100°W 90°W 80°W 70°W

50°N

40°N

30°N

20°N

© Common gauges
e MOPEX gauges
e CAMELS gauges

Figure 1. Locations of the 431 USGS NWIS stream gauges in MOPEX (red points), 671 gauges in CAMELS (blue points), and 47 common
gauges (yellow points) within the CONUS that appear in both the MOPEX and CAMELS datasets.

variance towers on small, local scales. ET can be estimated
on a larger scale using satellite remote sensing or land sur-
face models, but these carry with them inherent biases due to
varying algorithms, spatial resolutions, calibration, and input
data (Long et al., 2014). Many studies have shown that de-
rived ET products fail to reconcile the terrestrial water budget
on multiple temporal scales (Carter et al., 2018). A water bal-
ance approach is commonly used on a catchment scale, with
observed streamflow obtained from a measured outlet (Han
et al., 2015). A water balance sets ET (mm) equal to the pre-
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cipitation (mm) minus basin runoff (mm), with water storage
assumed to be zero on an annual scale.

The MOPEX dataset does not contain daily ET. Studies
that have made use of MOPEX data obtain ET via the water
balance approach using the precipitation and observed runoff
(Berghuijs et al., 2014; Coopersmith et al., 2012; Sawicz
et al., 2014). As mentioned previously, CAMELS provides
three different daily forcing datasets (Daymet, Maurer, NL-
DAS), which do not contain ET, in addition to three Sacra-
mento Soil Moisture and Accounting Model (SAC-SMA)-
generated time series from each of the forcing datasets.

https://doi.org/10.5194/hess-29-4015-2025
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Table 2. Common watersheds between MOPEX and CAMELS. Basins are described by the gauge ID (NWIS identification) along with the
station name, location (city, state), latitude (decimal degrees), longitude (decimal degrees), elevation (meters), area (square kilometers), and
climate. Basins are grouped by climate type and then sorted by increasing gauge identification number.

Gauge ID  Station name Location Latitude Longitude Elevation (m) Area (km?)  Climate
06441500  Bad River Fort Pierre, SD 44.33 —100.38 683.42 8152.55 Arid
08171300  Blanco River Kyle, TX 29.98 —-97.91 379.23 1067.47  Arid
08189500 Mission River Refugio, TX 28.29 —97.28 67.31 1808.29  Arid
09430500  Gila River Gila, NM 33.06 —108.54 2227.36 4804.93  Arid
11224500  Los Gatos Creek Coalinga, CA 36.21 —120.47 658.03 24744  Arid
01664000 Rappahannock River Remington, VA 38.53 —717.81 216.10 1605.10  Continental
01667500  Rapidan River Culpepper, VA 38.35 —77.98 193.47 1209.75  Continental
02016000  Cowpasture River Clifton Forge, VA 37.79 —79.76 645.04 1194.55 Continental
02018000  Craig Creek Parr, VA 37.67 —79.91 648.68 852.34  Continental
03173000  Walker Creek Bane, VA 37.27 —80.71 750.95 773.32  Continental
03237500  Ohio Brush Creek West Union, OH 38.80 —83.42 272.36 1003.21  Continental
03238500  White Oak Creek Georgetown, OH 38.86 —83.93 285.37 568.50  Continental
03346000 North Fork Embarras River Oblong, IL 39.01 —87.95 173.50 814.69 Continental
04185000  Tiffin River Stryker, OH 41.50 —84.43 250.64 1064.00 Continental
05408000  Kickapoo River La Farge, WI 43.57 —90.64 348.35 689.33  Continental
05412500  Turkey River Garber, TA 42.74 —-91.26 327.65 3858.21 Continental
05514500  Cuivre River Troy, MO 39.01 —90.98 226.22 2407.41  Continental
05585000 La Moine River Ripley, IL 40.02 —90.63 197.96 3354.61 Continental
06191500  Yellowstone River Corwin Springs, MT 45.11 —110.79 2547.95 6783.59  Continental
06885500 Black Vermillion River Frankfort, KS 39.68 —96.44 394.81 1062.87  Continental
06888500  Mill Creek Paxico, KS 39.06 -96.15 412.34 842.35  Continental
06892000  Stranger Creek Tonganoxie, KS 39.12 —95.01 304.55 1092.72  Continental
07057500  North Fork River Tecumseh, MO 36.62 —92.25 324.68 1456.44  Continental
01423000  West Branch Delaware River ~ Walton, NY 42.17 —75.14 593.67 859.68 Temperate
01543500  Sinnemahoning Creek Sinnemahoning, PA 41.32 —78.10 547.44 1778.26  Temperate
01548500  Pine Creek Cedar Run, PA 41.52 —77.45 546.71 1557.05  Temperate
01606500  South Branch Potomac River  Petersburg, WV 38.99 —79.18 836.38 1684.55 Temperate
02143000 Henry Fork Henry River, NC 35.68 —81.40 399.35 216.67 Temperate
02143040  Jacob Fork Ramsey, NC 35.59 —81.57 411.33 66.48  Temperate
02472000 Leaf River Collins, MS 31.71 —89.41 123.24 1927.13  Temperate
02479300 Red Creek Vestry, MS 30.74 —88.78 65.19 114420  Temperate
03069500 Cheat River Parsons, WV 39.12 —79.68 961.46 1856.85  Temperate
03164000 New River Galax, VA 36.65 —80.98 766.60 2952.74  Temperate
03182500  Greenbrier River Buckeye, WV 38.19 —80.13 934.51 1364.97  Temperate
03186500  Williams River Dyer, WV 38.38 —80.48 1057.61 329.68  Temperate
03281500  South Fork Kentucky River Booneville, KY 37.48 —83.68 376.49 1838.22  Temperate
03473000  South Fork Holston River Damascus, VA 36.65 —81.84 916.29 784.81 Temperate
03504000 Nantahala River Rainbow Springs, NC 35.13 —83.62 1039.71 134.52  Temperate
03574500  Paint Rock River Woodville, AL 34.62 —86.31 337.61 813.80  Temperate
04221000  Genesee River Wellsville, NY 42.12 —77.96 658.41 750.88  Temperate
07056000  Buftalo River St. Joe, AR 35.98 —-92.75 459.08 2149.36  Temperate
07068000 Current River Doniphan, MO 36.62 —-90.85 293.50 5318.59  Temperate
07197000 Baron Fork Eldon, OK 35.92 —94.84 348.86 808.45 Temperate
07261000  Cadron Creek Guy, AR 35.30 -92.40 197.55 445.81 Temperate
12358500 Middle Fork Flathead River West Glacier, MT 48.50 —114.01 1559.24 2939.19  Temperate
13337000 Lochsa River Lowell, ID 46.15 —115.59 1548.18 3053.42 Temperate
13340600  North Fork Clearwater River ~ Canyon Ranger Station, ID 46.84 —115.62 1417.79 3354.62  Temperate

Daily ET values from the model output time series us-
ing Daymet forcing variables (CAMELS SAC-SMA) were
compared to the water-balance-derived ET using CAMELS
catchment-averaged Daymet precipitation and USGS runoff
values (CAMELS WB) to evaluate any notable differences
between methods and facilitate comparison of MOPEX and
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CAMELS. The CAMELS SAC-SMA-derived ET values are
typically greater than the values derived from the CAMELS
WB, which will become more prominent at an annual scale,
as plotted in Fig. 3.

When annual differences between CAMELS SAC-SMA-
estimated ET and CAMELS WB-estimated ET are averaged,

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025
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Figure 2. Regions of the CONUS divided into Koppen—Geiger climate classification (arid, continental, temperate) are represented by ver-
million, orange, and bluish green, respectively. The blue colors in southern Florida represent regions within the tropical climate group, which
is not represented in this study. The results of K-means clustering are based on the annual aridity and evaporative indices for MOPEX and
CAMELS shared basins shown by point symbols (diamond, triangle, circle). Climate groupings for analyses are represented by K-means
clusters which agree closely but imperfectly with the Koppen—Geiger classification.

SAC-SMA estimations are approximately 13 mm larger in
arid regions (Fig. 3a), 36 mm larger in continental regions
(Fig. 3b), and 50 mm larger in temperate regions (Fig. 3c).
Higher ET values lead to reduced runoff. As shown in Fig. 4,
estimated ET values from the CAMELS SAC-SMA were
subtracted from the provided CAMELS (Daymet) precipi-
tation data to calculate estimated runoff (SAC_RUN), which
was then compared to observed runoff (OBS_RUN). Incor-
porating ET values from the model output time series as an
input variable to a hydrologic model may result in slightly
lower discharge estimates, primarily reflecting the influence
of ET values rather than actual runoff conditions.

A Budyko diagram, plotting evaporative versus aridity in-
dices, clarifies the predominant hydrologic processes versus
climate type (Fig. 5) for the common basins. The CAMELS
SAC-SMA evapotranspiration (solid symbols, Fig. 5) ex-
hibits large discrepancies from CAMELS WB (open sym-
bols, Fig. 5) and MOPEX ET values for most catchments
(arrows, Fig. 5). Furthermore, several CAMELS SAC-SMA
gauges plotted above the water limit (i.e., to extreme values
in the Budyko context) and were 10 % to 12 % larger than
the water-balance-calculated evapotranspiration indices. The
higher model-derived ET for CAMELS could reflect addi-
tional non-precipitation sources of water to the catchment,
but that was not evaluated in this study. The largest dis-
crepancies between model-derived ET/P and water-balance-
derived ET/P for CAMELS for each climate region are 46 %,
12 %, and 60 % for arid, continental, and temperate regions,
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respectively. Average discrepancies between CAMELS evap-
otranspiration values are largest in arid regions at 12 %, fol-
lowed by average discrepancies of 11 % in temperate regions
and 5 % in continental regions.

Differences between water-balance-calculated ET for
MOPEX versus CAMELS vary by climate type and may
partly result from variations in sample distribution. Most of
the shared watersheds fall into temperate and continental cli-
mates, but the western US is not as heavily represented based
on the distribution of the catchments and the restriction to
shared basins. Only eight shared catchments lie west of the
100th meridian (Fig. 1). The arid region basins lie close to
the water limit (ET/P = 1, Fig. 5), while the temperate region
basins are close to the energy limit (PET/P = 1). The conti-
nental region catchments can be seen as located in a transi-
tional climate, which can be either energy- or water-limited.
Annual MOPEX and CAMELS evaporative and aridity in-
dices are plotted separately to highlight the improvements
when utilizing the water balance evapotranspiration values
for CAMELS. The largest difference between MOPEX and
CAMELS evaporative indices using evapotranspiration water
balance values is 16.2 % in temperate regions with an overall
average difference of 4.6 % for all 47 basins. The mean dif-
ference between MOPEX and CAMELS evaporative indices,
with water-balance-calculated evapotranspiration, is 1.89 %,
2.53 %, and 7.14 % for arid, continental, and temperate re-
gions, respectively.
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Figure 3. Total annual evapotranspiration for (a) arid, (b) continental, and (c) temperate regions. The annual values are the overall mean of
all basin totals in a region. The model-output ET (CAMELS SAC-SMA, black line), water-balance-derived MOPEX ET (MOPEX, red line),
and water-balance-derived CAMELS ET (CAMELS WB, blue line) are shown in each plot.

Further research using the CAMELS dataset should ap-
ply the water balance approach instead of SAC-SMA-derived
ET to avoid decreased runoff and vertical displacement in
Budyko space that are artifacts of model-derived ET values.
The water balance ET values were calculated using precipi-
tation that does not include snowmelt; however, most of the
larger discrepancies are present in arid regions (vermillion,
Fig. 5) where snowmelt is negligible.

3.2 Exploratory data analysis

All statistical analyses were conducted using R Statistical
Software (v. 4.3.3; R Core Team, 2024). When basins are
consolidated by climate region, the number of values used
in calculations are dependent on the number of gauges un-
less otherwise specified (Table 3). Each gauge has 7305 daily
observations beginning on 1 October 1980 and ending on
30 September 2000. Monthly values are based on water years
which begin in October of the previous calendar year and end
in September of the current calendar year. Seasons are winter
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(December, January, February), spring (March, April, May),
summer (June, July, August), and fall (September, October,
November), and the months are grouped by water year, re-
sulting in all four seasons within each water year.

3.2.1 Uncertainty and variability within datasets

The central tendency (mean, median), variability (variance,
standard deviation, coefficient of variation), and distribution
(skewness) of precipitation and temperature were indepen-
dently evaluated for MOPEX and CAMELS. Uncertainty for
the mean value was determined using two-sided confidence
intervals computed via the bootstrap method. Bootstrapping
is a statistical technique that estimates the sampling distri-
bution of a statistic by iteratively resampling, with replace-
ment, from the observed data when the population or sample
distribution is unknown (Helsel et al., 2020). This nonpara-
metric method utilizes the observed data to derive robust es-
timates and sampling distributions. In this study, bootstrap-
ping was implemented using the Hmisc R package (Harrell,
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Figure 4. Total annual runoff for (a) arid, (b) continental, and (c) temperate regions. The box plots represent the annual totals for all basins
in a region, with measured observed runoff (OBS_RUN, blue) and water-balance-calculated runoff (PRCP minus ET) using CAMELS SAC-

SMA -output ET (SAC_RUN, black).

Table 3. Number of observations used for various statistical analyses on temporal scales per dataset.

Time Range Per gauge Arid  Continental Temperate

(5 gauges) (18 gauges) (24 gauges)
Days 1 October 1980-30 September 2000 7305 36525 131490 175320
Months October—September 240 1200 4320 5760
Seasons Fall 1981-fall 2000 80 400 1440 1920
Water years  1981-2000 20 100 360 480

2024) to calculate the mean value for daily, monthly, sea-
sonal, and annual precipitation and temperature for MOPEX
and CAMELS separately. Analyses involved 10000 resam-
ples, and the two-sided 95 % confidence intervals were de-
termined by the 0.025 and 0.975 quantiles. This approach
provides a robust method for estimating the uncertainty and
variability associated with the mean values on different tem-
poral scales.
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3.2.2 Uncertainty and variability between datasets

Several hypothesis tests were conducted to compare obser-
vations between MOPEX and CAMELS. The nonparametric
(binomial) sign test is used to compare two groups and as-
sess whether one group is consistently higher than the other
(Helsel et al., 2020). For a two-sided test, the null hypothe-
sis posits that about half of the differences will be positive
and half will be negative, resulting in a median difference
of zero between paired observations. For context, paired ob-
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Figure 5. Budyko diagram with the aridity and evaporative indices plotted for each of the 47 catchments (1981-2000). The overall aridity
index and evaporative index are plotted for each catchment for the three ET values, resulting in 141 points. The three ET values include
MOPEX (asterisk), CAMELS (solid triangle) with SAC-SMA-derived ET, and CAMELS WB (open triangle) with water-balance-calculated
evapotranspiration. The colors represent the climate region. Evaporative index values > 1 are nonphysical.

servations compare the same date (day), month, season, or
water year from each dataset. To conduct this test, MOPEX
values were subtracted from CAMELS values, where a posi-
tive (negative) difference indicates that the CAMELS value is
greater than (less than) the MOPEX value, with no consider-
ation for the magnitude. The differences were computed for
daily (7305 pairs), monthly (240 pairs), seasonal (80 pairs),
and annual (20 pairs) precipitation and temperature values
for each basin (“Per gauge” column, Table 3). Given that
temperature may include negative instances, strict inequali-
ties were applied. Subsequently, the outcomes were assigned
a positive (n4), negative (n_), or zero value, and the val-
ues were tallied. A binomial distribution was used to calcu-
late the probability of observing a value of n, which is 0.5.
A 95 % confidence interval results in a significance level of
p < 0.05. Hypothesis testing and significance make use of
the rstatix (Kassambara, 2023) and stats R packages.
Independent difference hypothesis tests included the
Fligner—Killeen test (Fligner and Killeen, 1976) and the ¢
test. The nonparametric Fligner—Killeen test was conducted
to check whether MOPEX and CAMELS have equal vari-
ances, with the null hypothesis assuming variances are equal
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across all samples. It is less sensitive to departures from nor-
mality compared to the Bartlett and Levene tests (Helsel et
al., 2020). The absolute value of the residuals (AVR) is calcu-
lated in Eq. (1) from each group median for j =1 to k groups
and i =1 to n; observations, where

AVR;; = |x;; — median;|. (D)

The AVR is ranked and weighted, resulting in a set of scores.
A linear-rank test is then computed on the set of scores
(Helsel et al., 2020).

Welch’s ¢ test (Welch, 1951) is a modification of the Stu-
dent’s ¢ test that does not assume equal variance. The null
hypothesis posits that the two group means are identical. The
test statistic, ¢, is calculated as shown in Eq. (2):

ma—m

,:u, (2)
sz 82
_A+_B

na np

where S and Sp are the standard deviation of the two groups
A and B, along with the means m s and mg. And the degrees
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of freedom, df, are calculated as shown in Eq. (3).

st 53’
nn T g
df = ; -
SA SB
(ni(nA—l) + n§<n3—1)>

Statistical significance for the Fligner—Killeen test and ¢ test
is based on a p value less than 0.05.

Bias, the mean absolute error (MAE), and standard er-
ror (SE) were also used to assess the variability within each
group. The standard error provides an estimate of the stan-
dard deviation of the sampling distribution of the difference
between means. The margin of error (MOE) was also de-
termined based on a 95 % confidence interval with a criti-
cal value (o) of 1.96. The critical value is multiplied by the
standard error of the difference of the means, which provides
the confidence interval for the true difference between the
means. The nonparametric Spearman rank correlation coeffi-
cient (p) was also employed to assess the strength of associ-
ation between variables. This method is robust to the distri-
bution of data and is less influenced by outliers.

3

3.3 Validation

Machine learning (ML) techniques, such as linear regres-
sion, random forest, gradient boosting, and support vector
regression, offer a valuable alternative to physically based
models by capturing relationships between input and out-
put variables. While they do not rely on detailed hydrolog-
ical processes, these models can still provide robust predic-
tions and allow for comparative analysis of different datasets
(Herrera et al., 2022). Using ML models as a proxy is in-
creasingly common in hydrological research, as these mod-
els can efficiently handle high-dimensional data and learn
intricate patterns without explicitly modeling physical pro-
cesses (Kratzert et al., 2019). ML models have been shown
to perform well in a range of hydrological applications, espe-
cially in data-rich contexts. For this study, we employed ML
models to evaluate the potential influences of MOPEX and
CAMELS precipitation and temperature biases on predicted
runoff.

Hydrologic models rely on parameterization and assump-
tions about physical processes, while ML models learn di-
rectly from data, reducing dependence on prior assumptions
and allowing for a purely data-driven evaluation (Nearing et
al., 2021). ML models can highlight inconsistencies or bi-
ases in input datasets by comparing their predictive perfor-
mance across datasets. If one dataset consistently leads to
better predictions, it may indicate better representativeness
or higher quality. Traditional hydrologic models typically re-
quire extensive calibration and long run times, especially for
larger-scale applications, but ML models, once trained, can
make predictions rapidly and do not require manual calibra-
tion (Kratzert et al., 2019). ML models can also be trained
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separately on different temporal scales, allowing for direct
comparisons without modifying model structures. By evalu-
ating performance metrics across datasets, ML provides an
objective assessment of whether precipitation and tempera-
ture inputs are sufficient to capture runoff variability (Yokoo
et al., 2022).

Four different ML models were implemented in R to es-
timate runoff from precipitation and mean air temperature
using the e/071 (Meyer et al., 2024), gbm (Ridgeway et al.,
2024), randomForest (Breiman et al., 2024), and caret (Kuhn
et al., 2024) packages. Linear regression models the relation-
ship between a dependent variable and one or more indepen-
dent variables by fitting a linear equation (Xu and Liang,
2021). Random forest is an ensemble learning method that
constructs multiple decision trees and averages their predic-
tions to improve accuracy and reduce overfitting (Breiman,
2001). Gradient boosting builds models sequentially, opti-
mizing for errors in previous iterations by combining weak
learners to create a stronger predictive model (Xu and Liang,
2021). Support vector regression (SVR) maps input data
into a higher-dimensional space and finds the ideal hyper-
plane, separating the data points into different classes, and
minimizes prediction error while maintaining generalization
(Shmilovici, 2023). These models provide a diverse approach
to estimating runoff, ranging from simple linear relationships
to more complex, nonlinear learning techniques.

MOPEX and CAMELS precipitation and temperature val-
ues were used as input to predict runoff at daily, monthly,
seasonal, and annual timescales. Precipitation and tempera-
ture data were transformed into common scales using min—
max normalization. Datasets were then split into training and
test sets, with 80 % of the data allotted to training and 20 %
to testing. Rather than partitioning the data into multiple
subsets, each ML model was run 10 times, resampling and
randomly splitting into testing and training sets (Domingos,
2012). Predicted runoff values were then compared to actual
observed runoff to assess model accuracy using root mean
square error (RMSE), MAE, R2, and bias as performance
metrics. Model results were then compared across MOPEX
and CAMELS datasets to determine their consistency, assess
whether they provide compatible inputs for runoff estima-
tion, and determine the influence of potential systematic bi-
ases in the input data.

SVR was also able to compare MOPEX and CAMELS
datasets as a simple binary classification problem using the
el071 (Meyer et al., 2024) R package. The two datasets were
merged into a composite dataset for each climate region and
temporal aggregation, and each was identified by either a
zero (CAMELS) or 1 (MOPEX), representing the target vari-
able. The composite dataset was then split into training and
test sets, with 75 % of the data allotted to training and 25 %
to testing. Data were randomly selected to avoid any poten-
tial bias due to formatting, for example. SVR models were
trained on the composite datasets to classify the binary label
(MOPEX or CAMELS) using precipitation, temperature, and
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evapotranspiration values as predictor variables. Classifica-
tion was performed separately for all three climate regions at
daily, monthly, seasonal, and water year aggregations. If the
datasets are similar, then the model should have difficulty dif-
ferentiating between them, yielding a classification probabil-
ity near 50 %, akin to a random guess. A double mass curve
was also used to check the consistency of the data by plot-
ting the cumulative annual precipitation of CAMELS versus
MOPEX. If the data are proportional, then the points will plot
as a straight line (Searcy et al., 1960).

4 Results

Evaluation and comparison of the internal uncertainty and
variability of individual dataset parameters are key to under-
standing the consistency between the MOPEX and CAMELS
datasets and the potential for merging and extending these
datasets. For each dataset, climate parameter variability pri-
marily depends on level of aggregation (daily, monthly, sea-
sonal, annual) and secondarily on climate type. Between
datasets, potentially important biases in climate variables are
evident, varying by climate type and aggregation level. This
paper presents a thorough exploratory data analysis and sup-
ports the main finding that the two datasets exhibit similar
uncertainty and variability, both within and between them.
By considering multiple statistics, we can evaluate the repre-
sentativeness of each dataset and identify any systematic dif-
ferences that may need further investigation. If both datasets
exhibit similar means and variability within a climate region,
it suggests that their distributions are comparable. Differ-
ences in variance and skewness, on the other hand, high-
light potential biases between the datasets. Though there
are consistent biases, they are minimal for aggregations be-
yond a daily time step, making them suitable for combined
application in climate studies and hydrologic modeling at
monthly, seasonal, or annual aggregations. Although efforts
were made to distinguish results for internal analyses within
datasets and intercomparisons between datasets, the results
are often presented together to provide a clearer understand-
ing of how each dataset behaves independently, while also
enabling direct cross-dataset evaluation. Consequently, some
overlap does occur.

4.1 Uncertainty and variability within datasets

The internal uncertainty and variability of the MOPEX and
CAMELS datasets were assessed using median, mean, vari-
ance, standard deviation, skewness, coefficient of variation,
and confidence intervals for each climate region at daily,
monthly, seasonal, and annual scales. Precipitation statis-
tics shown in Table 4 were determined for each individual
basin, with minimum and maximum values representing all
basins within each climate region (number of observations,
Table 3). Due to the large differences between temporal pre-

https://doi.org/10.5194/hess-29-4015-2025

cipitation totals, the ranges for each statistic were normalized
by finding the difference between the maximum and mini-
mum values and then dividing the difference by the mean of
the maximum and minimum values. The normalized ranges
(NRs) were then used to assess the variability of each statis-
tic within the dataset across the different temporal aggrega-
tions and are summarized in Table 4. When calculating the
normalized range, a minimum value of zero or close to zero
(i.e., median or skew) will conflate the range, making it ap-
pear larger than it truly is. For this reason, normalized daily
median ranges and normalized skew values are ignored.

The range in median values decreases in all regions when
moving from a monthly aggregation to seasonal (CAMELS
arid 1.38 to 0.79, CAMELS continental 0.41 to 0.32,
CAMELS temperate 0.71 to 0.68, MOPEX arid 1.44 to 0.97,
MOPEX continental 0.36 to 0.28, MOPEX temperate 0.72
to 0.66). Median ranges continue to contract in arid regions
at an annual scale (CAMELS 0.74, MOPEX 0.79). Con-
tinental and temperate regions show a slight expansion in
median ranges between seasonal and annual aggregations.
The range in mean values is uniform in each region over all
temporal scales (CAMELS arid 0.63, CAMELS temperate
0.65, MOPEX arid 0.58, MOPEX continental 0.41, MOPEX
temperate 0.68), with a minor change of 0.35 to 0.34 in
CAMELS continental daily to monthly. All basins within
each region demonstrate minimal variability in the mean and
proportional aggregation. The range in variance is slightly
wider for daily and annual aggregations in all regions for
both CAMELS and MOPEX. The range in annual variance
increases when moving to an annual aggregation except for
MOPEX continental, which remains at a normalized value
of 1.29 between seasonal and annual. This suggests that in-
terannual variability may be more pronounced than intra-
seasonal fluctuations, attributed to the accumulation of ex-
treme precipitation events or shifting between wet and dry.
The range of standard deviation values mimics the variabil-
ity in variance values, with the smallest ranges for monthly
and seasonal aggregations and minor increases at daily and
annual aggregations for all regions except MOPEX conti-
nental (seasonal and annual 0.73). Differences in precipita-
tion patterns can become more apparent over longer periods
of time. Precipitation variability has been shown to increase
over longer timescales under a warming climate (Pendergrass
et al., 2017; Zhang et al., 2021). The distribution in all re-
gions tends to become more Gaussian as the aggregation in-
creases from daily to annual, which is to be expected.

The minimum and maximum median, mean, variance,
standard deviation, and skewness values for mean tempera-
ture in degrees Celsius along with the range values are shown
in Table 5. Overall, temperature variability in each climate
region decreases with temporal aggregation, with daily val-
ues showing the highest variability and annual values the
lowest for both CAMELS and MOPEX datasets. There is
minimal variability in the central tendency in all climate re-
gions, with a slightly narrower spread in the mean values
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Table 4. Minimum (min), maximum (max), and normalized range (NR) of median, mean, variance, standard deviation, and skew-
ness for MOPEX and CAMELS total daily, monthly, seasonal, and annual precipitation (PRCP) in millimeters (mm). Values are
based on all basins within a climate region. The normalized ranges are based on the maximum and minimum values (maxi-
mum — minimum / mean (maximum + minimum)), except for daily median and skewness values.

PRCP Median ‘ Mean ‘ Variance ‘ Standard deviation ‘ Skewness
mm Min Max NR |  Min Max  NR | Min Max NR | Min  Max NR| Min Max
ARID Day 0.00 0.00 - 1.30 2.50  0.63 13.93 60.91 1.26 3.73 7.80 0.71 401 5.84
CAMELS Month 11.50 63.25 1.38 39.55 76.01 0.63 1421.16 4110.82  0.97 37.70 64.12  0.52 123 2.23
Season 91.10 209.51  0.79 118.66 228.03 0.63 6608.73 16794.05 0.87 81.29 12959 046 045 1.37
Year 423.07 920.40 0.74 474.63 912.11 0.63 | 13628.52 6419354 130 | 116.74 25336 0.74 | —0.46 0.87
ARID Day 0.00 0.15 - 1.27 231 0.58 13.36 54.01 1.21 3.66 7.35  0.67 540 7.81
MOPEX Month 9.13 55.67 1.44 38.55 70.33  0.58 1329.37 3569.40 091 36.46 59.74 0.48 1.00 2.34
Season 69.89 202.28 097 115.65 211.00 0.58 6289.11 18484.56  0.98 79.30 13596 0.53 0.37  1.64
Year 381.36 878.77 0.79 462.60 844.02 0.58 | 11933.15 5474576 128 | 109.24 23398 0.73 | —0.41 0.83
CONT Day 0.00 0.57 - 2.25 3.19 035 11.44 64.58 1.40 3.38 8.04 0.82 226 4.0
CAMELS Month 58.74 88.78 0.41 68.51 97.06 0.34 1529.66 457749  1.00 39.11 67.66 0.53 0.71  1.99
Season 203.99 281.15 0.32 205.52 291.19 0.34 5124.76 20848.61 1.21 71.59 14439 0.67 | —0.01 0.95
Year 796.50 1197.26 0.40 822.10 1164.76 0.34 | 11734.23 63049.45 1.37 | 108.32 251.10 0.79 | —0.50 1.14
CONT Day 0.03 0.87 - 2.08 3.16 041 9.68 62.68 1.46 3.11 792 0.87 290 533
MOPEX Month 60.05 86.34 0.36 63.35 96.11 0.41 966.07 400193 1.22 31.08 63.26 0.68 0.83 1.62
Season 209.10 27772 0.28 190.04 288.34 0.41 3920.88 1821045 1.29 62.62 13495 0.73 0.03  1.00
Year 765.73  1143.82 040 760.18 1153.35 0.41 | 11497.26 53327.77 129 | 107.23 23092 0.73 | —0.41 1.09
TEMP Day 0.00 0.70 - 2.90 571 0.65 26.61 13548 1.34 5.16 11.64 0.77 2.09 4.80
CAMELS Month 79.12 165.40 0.71 88.14 173.68 0.65 1872.09 6241.27 1.08 43.27 79.00 0.58 039 1.24
Season 251.52 508.24  0.68 264.42 521.04 0.65 6496.89 28687.61 1.26 80.60 16937 0.71 0.18 1.12
Year 101472 2181.86  0.73 | 1057.68 2084.18 0.65 | 23220.68 12832297 1.39 | 152.38 35822 0.81 | —0.66 091
TEMP Day 0.04 1.09 - 2.59 5.28 0.68 27.73 14450 1.36 5.27 12.02  0.78 2.88 5.34
MOPEX Month 71.48 151.99 0.72 78.98 160.71  0.68 1458.72 5823.13  1.20 38.19 76.31  0.67 048 1.29
Season 224.14 44536  0.66 236.93 482.12  0.68 4861.81 26089.63 1.37 69.73 161.52 0.79 0.05 1.12
Year 923.61 2004.61 0.74 94770  1928.48 0.68 | 18274.22 1360589 1.53 | 135.18 368.86 093 | —0.63 0.85

compared to the median values. In continental regions, the
minimum seasonal median value for all CAMELS basins is
0.81 and 0.96 °C for MOPEX basins, which is due to a few
colder-than-average winters in a watershed located in Mon-
tana. Variance in mean temperature is smallest in annual ag-
gregations for all regions because it is based on annual av-
erages, which smooths the extreme values. In contrast, the
variability in skewness is greatest at annual aggregations in
both CAMELS and MOPEX. Aggregation at an annual scale
reduces variance among mean temperature values, but at the
same time, fewer data points increase the sensitivity to ex-
tremes, which can shift the distribution.

The coefficient of variation (CV) was calculated for each
catchment on all temporal scales for precipitation (Fig. 6).
Daily precipitation shows considerably high variation, with
CAMELS mean CV values of 3.28, 2.39, and 2.12 and
MOPEX mean CV values of 3.23, 2.42, and 2.22 in arid, con-
tinental, and temperate regions, respectively (Fig. 6a). Con-
siderably high variation is still observed on monthly scales
(Fig. 6b) but decreases to moderate variability for seasonal
temporal aggregations for all regions and low variability, less
than 1, on an annual scale. The normalized ranges for precip-
itation variance in Table 4 indicate that annual totals are the
most variable, while the CV demonstrates decreasing vari-
ability from a daily to annual scale. While both are measures
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of variability, they differ in how they express dispersion and
their sensitivity to scale. Variance is unit-dependent and sen-
sitive to magnitude, while the CV is normalized relative to
the mean. This suggests that at short timescales, precipitation
is more event-driven, whereas at longer scales, climate pat-
terns dominate. Temperature demonstrates a consistent de-
crease in variability from daily to annual temporal aggrega-
tion for all regions and is not shown.

Two-sided interval estimates were computed to determine
the uncertainty within each dataset. The daily mean pre-
cipitation and temperature were calculated for each basin,
and the corresponding 95 % confidence intervals were estab-
lished by bootstrapping using 10000 samples with replace-
ment. The results in Table 4 illustrate that overall daily pre-
cipitation means are larger for CAMELS than for MOPEX
(except for arid regions); however, it is noteworthy that the
confidence intervals, shown in Table 7, exhibit overlap for
most regions, suggesting similar degrees of uncertainty. The
most pronounced divergence in precipitation means, a differ-
ence of 7 %, is observed in temperate catchments where the
overall CAMELS daily mean is 3.73 mmd~! and MOPEX is
3.50mmd~!.

When examining total mean monthly precipitation, both
datasets exhibit comparable monthly fluctuations (Fig. 7),
but CAMELS exhibits a small positive bias in non-arid
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Table 5. Minimum (min), maximum (max), and range of median, mean, variance, standard deviation, and skewness for MOPEX and
CAMELS mean daily, monthly, seasonal, and mean temperature (TAIR) in degrees Celsius. Values are based on all basins within a cli-

mate region. Range is maximum minus minimum.

TAIR Median ‘ Mean ‘ Variance ‘ Standard deviation ‘ Skewness
°C Min  Max Range ‘ Min  Max Range ‘ Min Max Range ‘ Min  Max Range ‘ Min Max Range
ARID Day 891 2277 13.86 | 870 21.54 12.84 | 48.08 139.15 91.07 | 6.93 11.8 4.87 | —0.68 0.12 0.80
CAMELS Month 9.08 2198 1290 | 8.64 21.51 12.87 | 36.97 113.08 76.11 | 6.03 10.63 4.60 | —0.22 0.14 0.36
Season 891 2197 13.06 | 8.63 215 12.87 | 30.14 9247 6233 | 549 9.62 4.13 | —0.24 0.13 0.37
Year 874 2157 12.83 | 870 2154 12.84 0.30 1.14 0.84 | 0.54 1.07 0.53 | —0.30 0.51 0.81
ARID Day 9.08 22.81 1373 | 9.08 21.57 1249 | 43.84 123774 7990 | 6.62 11.12 450 | —0.68 0.15 0.83
MOPEX Month  9.12  22.00 1288 | 9.02 21.54 12.52 | 36.49 103.1  66.61 | 6.04 10.15 4.11 | —0.23 0.19 0.42
Season  9.00 21.90 1290 | 9.02 21.54 1252 | 29.49 84.07  54.58 | 5.43 9.17 374 | —0.23 0.16 0.39
Year 9.04 2159 1255 | 9.08 21.57 12.49 0.27 0.86 0.59 | 0.52 0.93 0.41 | —0.33 0.45 0.78
CONT Day 126 1438 1312 | 038 13.48 13.10 | 7541 141.07 65.66 | 8.68 11.88 320 | —040 —0.19 0.21
CAMELS Month 1.04 1392 1288 | 0.33 13.43 13.10 | 59.41 119.00 59.59 | 7.71 1091 320 | —0.22 0.08 0.30
Season 0.81 13.54 12.73 | 033 1343  13.10 | 49.13 99.53 5040 | 7.01 9.98 297 | —0.23 0.10 0.33
Year 1.47 1338 1191 | 038 13.48 13.10 0.32 0.96 0.64 | 0.57 0.98 0.41 | —0.18 0.22 0.40
CONT Day 1.16 1409 1293 | 145 1332 11.87 | 73.49 12515 51.66 | 857 11.19 262 | —0.33  —0.04 0.29
MOPEX Month  1.34 1375 1241 | 1.40 13.27 11.87 | 59.02 107.77 48.75 | 7.68 10.38 270 | —0.14 0.12 0.26
Season 096 13.29 1233 | 140 1327 11.87 | 48.77 89.26  40.49 | 6.98 9.45 247 | —-0.14 0.16 0.30
Year 1.52 1327 1175 | 145 1332 11.87 0.31 0.72 0.41 | 0.56 0.85 029 | —0.19 0.34 0.53
TEMP Day 272 20.03 17.31 | 273 19.03 1630 | 5224 102.48 50.24 | 7.36 10.12 276 | —0.53 —0.03 0.50
CAMELS Month 236 19.04 16.68 | 268 19.00 16.32 | 41.80 82.09  40.29 | 6.46 9.06 2.60 | —0.14 0.11 0.25
Season 2.57 19.23  16.66 | 2.69 18.99  16.30 | 34.08 67.80 33.72 | 5.84 8.23 239 | —0.12 0.12 0.24
Year 287 1898 16.11 | 273 19.03  16.30 0.28 0.88 0.60 | 0.53 0.94 0.41 | —0.28 0.50 0.78
TEMP Day 275 2006 1731 | 3.11 19.06 1595 | 53.08 9252  39.44 | 7.29 9.62 233 | —0.51 0.04 0.55
MOPEX Month 254 19.16 16.62 | 3.07 19.03 15.96 | 41.59 7730 3571 | 6.45 8.79 234 | —0.15 0.12 0.27
Season 2.83 19.26 1643 | 3.06 19.03  15.97 | 34.05 64.06  30.01 | 5.84 8.00 2.16 | —0.13 0.15 0.28
Year 323 19.06 1583 | 3.11 19.06 15.95 0.25 0.59 0.34 | 0.50 0.77 0.27 | —0.29 0.55 0.84

climate regions. Arid regions display the most variability,
with the largest confidence intervals (413.74 mm month™!
for CAMELS and +12.93mmmonth~! for MOPEX)
observed in June and the smallest (7.00 mm month~" for
CAMELS and +7.73 mmmonth™! for MOPEX) observed
in November. Despite this variability, these regions show
the greatest temporal consistency between MOPEX and
CAMELS values, with total precipitation highest in May and
June and lowest in April (Fig. 7a). Additionally, arid regions
demonstrate the most notable overlap of the mean values
and confidence intervals of the two datasets. Continental
regions show an increase in total monthly precipitation in
May, June, and July (Fig. 7b). There is the least amount of
variation in February (£4.12mmmonth~! for CAMELS
and £3.79mmmonth~™' for MOPEX), contrasting with
the largest in July (+6.31 mmmonth~! for CAMELS
and £6.08 mmmonth™!' for MOPEX). Temperate regions
show decreased precipitation in August, September, and
October with less overlap between dataset confidence
intervals (Fig. 7c). The smallest confidence intervals dif-
fer between datasets, with April (4+4.92 mmmonth™!)
for CAMELS and July (+4.54mm month™!)  for
MOPEX, but both share the largest amount of variabil-
ity in December (+8.19mmmonth~! for CAMELS and
+10.21 mm month~! for MOPEX).

https://doi.org/10.5194/hess-29-4015-2025

Seasonal precipitation confidence intervals exhibit the
most variability yet also the greatest consistency in arid
regions (Fig. 8), which coincides with monthly precip-
itation analyses (Fig. 7). The range of potential values
decreases in continental and temperate regions. MOPEX
values are larger than CAMELS in arid regions in the
summer and winter seasons (which corresponds to larger
monthly values in December, January, June, July, and
August). For arid regions (Fig. 8a), the greatest vari-
ance is in the winter season (+25.24 mmseason~! for
CAMELS and +25.37 mmseason~!' for MOPEX). Con-
tinental regions (Fig. 8b) show the greatest uncertainty
in summer for CAMELS (£10.58 mm season—!) and fall
for MOPEX (£10.24 mmseason~!). Temperate regions
(Fig. 8c) have the largest differences in variance between
datasets with little to no overlap of confidence intervals, no-
tably in the spring. Winter has the greatest confidence in-
tervals for CAMELS (+17.69 mmseason~!) and MOPEX
(£22.89 mm season ).

For average total annual precipitation, arid regions ex-
hibit the highest variability within each individual dataset;
however, their mean values remain similar between the
two datasets (Fig. 9a). Other climate regions exhibit a
small positive precipitation bias for CAMELS. Arid re-
gion confidence intervals are greater for CAMELS (be-

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025
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Figure 6. Coefficient of variation of precipitation for CAMELS (blue) and MOPEX (red) for each climate region, shown by temporal
aggregation (a) day, (b) month, (c) season, and (d) water year. Each box plot represents the value of all basins within the climate region
based on total precipitation (mm). Note the progressively declining y-axis range from (a) to (d).

tween £70.91 mmyr~! in 1996 and #326.94mmyr~! in
1987) than MOPEX (between i33.96mmy1r_l in 1996
and £+298.17mmyr~! in 1985). Annual means in con-
tinental (Fig. 9b) and temperate regions (Fig. 9c) are
consistently higher in CAMELS, but confidence inter-
vals do overlap with MOPEX. The smallest uncertainty
is in continental regions with intervals slightly larger for
CAMELS (+48.03mmyr~! in 1986 to & 136.19 mmyr~!
in 1996) compared to MOPEX (£43.57mmyr~!' in
1992 to £ 12691 mmyr~! in 1996). Temperate regions
have greater uncertainty associated with MOPEX val-
ves (£92.22mmyr~! in 1992 to #221.13mmyr~! in
1982) than CAMELS (£72.39mmyr~' in 1981 to
+152.43mmyr~! in 1995).

Evaluation of daily temperature indicates a consistent
pattern discerned in Tables 5 and 8. The means for daily
temperature are consistently larger for MOPEX, with
the largest differences (mean difference of 0.62°C d—h
observed in arid regions. Monthly temperatures show
consistent trends in both datasets, with higher temperatures
in July and August and lower temperatures in January
and December in all regions. MOPEX and CAMELS are
quite similar in their mean values and monthly variabil-

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025

ity (Fig. 10). Akin to precipitation, arid regions contain
the most variability, followed by temperate regions.
The largest uncertainty is in December for CAMELS
(£ 1.37°C month~!) and MOPEX (& 1.32°C month™!) in
arid and continental regions (CAMELS =+ 0.46 °C month™!,
MOPEX +0.40°Cmonth™!) and in February for
temperate  regions = (CAMELS +0.45°Cmonth™!,
MOPEX = 0.43°Cmonth™!). The smallest uncertainty
is in July (CAMELS +0.80°Cmonth~!, MOPEX
+0.71 °Cmonth™1) for arid regions, October (CAMELS
+0.32°C month~!, MOPEX +0.31°C monthfl) for conti-
nental regions, and August (CAMELS =+ 0.36 °C month™!,
MOPEX = 0.33 °C month~!) for temperate regions.

Seasonal temperature is also the most variable in arid
regions, with confidence intervals ranging from +0.77 to
4+ 1.28 °Cseason”! compared to intervals ranging from
+0.30 to 4 0.40 °C season~! for continental and temperate
regions (Fig. 11). Winter is consistently the most variable
season among all regions, resulting in the largest confidence
intervals.

Annually, for temperature, arid confidence intervals are
more than double the range of those found in continental and
temperate regions (Fig. 12), strongly influenced by the small

https://doi.org/10.5194/hess-29-4015-2025
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Figure 7. Average total monthly precipitation for CAMELS (blue) and MOPEX (red) by (a) arid, (b) continental, and (c) temperate climate
region in millimeters. The mean value is determined using all basins within the climate region and each corresponding month for 1981-2000.

Error bars represent two-sided 95 % confidence intervals, derived from bootstrapping with replacement for 10 000 replicates.
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Figure 8. Average total seasonal precipitation for CAMELS (blue) and MOPEX (red) by (a) arid, (b) continental, and (c) temperate climate
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Error bars represent two-sided 95 % confidence intervals, derived from bootstrapping with replacement for 10 000 replicates.
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Figure 9. Average total annual precipitation for CAMELS (blue) and MOPEX (red) by (a) arid, (b) continental, and (c) temperate climate
region in millimeters. The mean value is determined using all basins within the climate region and each corresponding water year for 1981—
2000. Error bars represent two-sided 95 % confidence intervals, derived from bootstrapping with replacement for 10 000 replicates.
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number of arid sites (Table 3). MOPEX means are consis-
tently larger than CAMELS, indicating a warm bias with the
largest bias in arid regions (Fig. 12a). Continental regions
have the most similarity between mean values and the small-
est amount of uncertainty, with confidence intervals rang-
ing from =4 1.24 to £ 1.47°Cyr~! for CAMELS and from
+1.10 to & 1.31°Cyr~! for MOPEX (Fig. 12b). For tem-
perate regions, MOPEX has a slightly smaller variance com-
pared to CAMELS (Fig. 12c), with confidence intervals rang-
ing from =+ 1.44 to £1.73°Cyr~! (MOPEX) versus =+ 1.47
to £+ 1.82°Cyr~! (CAMELS).

4.2 Uncertainty and variability between datasets

Important differences between the datasets are detailed
below, but in general in time-aggregated values MOPEX
exhibits higher temperature, while CAMELS exhibits
higher precipitation. Statistical and bootstrapping results
from Sect. 4.1 support these findings. The compari-
son of paired observations via a binomial sign test,
CAMELS values minus MOPEX, indicates that individual
daily MOPEX values for precipitation and temperature
are generally larger than CAMELS; in contrast, when
CAMELS precipitation values are aggregated monthly,
seasonally, or annually, they are typically larger than
MOPEX in continental and temperate regions (Fig. 13).
This analysis is based solely on the counts of negative
(MOPEX > CAMELS), positive (CAMELS > MOPEX),
and zero values (CAMELS =MOPEX). The magnitudes
of the differences are not incorporated. Out of the 7305d
recorded for each basin, precipitation values for MOPEX
surpass CAMELS 48 % (62 638 d out of 131490 total days)
and 49 % (86496 d out of 175320 total days) of the time in
continental and temperate climates, respectively, and 40 % of
the time in arid regions (Fig. 13a). In arid climates, MOPEX
and CAMELS precipitation values are equal 46 % of total
days, while in continental and temperate climates, they
are equal 28 % and 22 % of total days. The same binomial
test was conducted to analyze total monthly precipitation
for each catchment. Direct comparisons were made for
each month across all water years (i.e., January 1981,
January 1982), tallying negative and positive differences,
resulting in 240 months per catchment. When aggregated on
a monthly scale, CAMELS typically exhibits greater total
monthly precipitation, particularly in continental (66 %) and
temperate (69 %) regions. Identical (“SAME”, Fig. 13b)
total values are negligible. In contrast, arid regions indicate
larger MOPEX values in 55 % of all months and only
3.25 % of all months have the same total value (Fig. 13b).
Seasonal comparisons, based on 80 seasons per catchment,
indicate the same pattern, with total precipitation greater
in MOPEX for 52% of all seasons in arid regions and
CAMELS greater in continental and temperate regions for
76 % and 78 % of all seasons, respectively (Fig. 13c). On an
annual scale, 20 years per watershed, the comparison reveals

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025
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that total precipitation for arid regions is evenly split, with
CAMELS and MOPEX dominating 51 % and 49 % of all
years, respectively. In contrast, continental and temperate
regions are largely dominated by CAMELS, constituting
88 % of all years (Fig. 13d). All comparisons, except for
arid seasonal and annual, failed to reject the null hypothesis,
which expects a median difference of zero between paired
observations.

Regarding temperature, MOPEX exceeds CAMELS 72 %
of total days in arid, 58 % in continental, and 65 % in tem-
perate regions (Fig. 14a). These regions all exhibit the same
mean daily temperature values (CAMELS = MOPEX) only
0.03 % of total days. On a monthly scale, MOPEX mean
temperature values are larger for all regions, with arid at
81 %, continental at 58 %, and temperate at 74 % of total
months with no equal values (Fig. 14b). Seasonal temper-
ature is greater for MOPEX values 85 %, 58 %, and 77 %
of all seasons for arid, continental, and temperate regions
(Fig. 14c). As for annual mean temperatures, MOPEX val-
ues are greater for arid regions in 91 % of all years, while
continental and temperate regions show MOPEX dominance
in 65% and 79 % of all years, respectively (Fig. 14d). All
temperature differences were statistically significant.

The numerical differences between each pair of same-day
precipitation values, CAMELS minus MOPEX, reveal sub-
stantial differences for extreme events. Specifically, there
are 20 instances of daily precipitation values differing by
more than 100 mm in separate comparisons across all catch-
ments. This indicates notable variations in daily precipita-
tion values between the two datasets. Daily values do not
consistently coincide, as exemplified by the comparison of
the same maximum precipitation events for each climate re-
gion between 1981 and 2000 (Table 6). In the temperate
region, for instance, CAMELS reports the maximum pre-
cipitation (181.04mmd~!) occurring on 7 April 1983 for
gauge 02479300, while MOPEX, for the same date, re-
ports a precipitation total of 64.07mm. MOPEX reports
the maximum precipitation (183.25 mmd~!) as occurring on
20 January 1993 at the same gauge (while CAMELS shows
a precipitation value of 59.73mmd~!). Consequently, this
study does not recommend direct daily comparisons between
MOPEX and CAMELS due to discrepancies in single precip-
itation events.

A positive precipitation bias for CAMELS is visible
for all watersheds within a climate region for all tempo-
ral aggregations (positive values, Fig. 15). Monthly, pre-
cipitation biases for arid regions range from —52.57 to
99.28 mm month ™!, continental regions range from —57.60
to 103.22 mm month™!, and temperate regions are between
—102.68 and 117.29 mm month™!, comparing 240 months
per catchment (Fig. 15a). Seasonal precipitation biases for
arid, continental, and temperate regions are —92.21 to 94.65,
—64.04 to 137.32, and —123.50 to 174.88 mm season™!
(Fig. 15b). Total annual precipitation bias ranges are

https://doi.org/10.5194/hess-29-4015-2025
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Figure 13. Sign tally results from nonparametric binomial sign for (a) daily, (b) monthly, (c) seasonal, and (d) annual precipitation values.
Counts on the y axis reflect the number of basins (gauges) within each climate region times the number of temporal periods. All results are
based on CAMELS minus MOPEX values. Positive values (CAMELS) indicate that CAMELS > MOPEX (blue bars), negative (MOPEX)
values indicate MOPEX > CAMELS (red bars), and zero (SAME) indicates CAMELS = MOPEX (black bars).

Table 6. Largest precipitation event on record for each climate region in millimeters. Max indicates the maximum daily measurement on
record for that dataset between 1981-2000 along with the corresponding value in the other dataset on that date for comparison.

Climate Gauge ID  Date CAMELS (max) MOPEX GaugeID Date MOPEX (max) CAMELS
Arid 08171300 17 Oct 1998 152.12mm  216.23mm 08171300 17 Oct 1998 216.23mm  152.12mm
Continental 02016000 5 Nov 1985 126.82 mm 11.46mm 03237500 1 Mar 1997 140.08 mm 68.68 mm
Temperate 02479300 7 Apr 1983 181.04 mm 64.07mm 02479300 20 Jan 1993 183.25 mm 59.73 mm

—174.43 to 160.03, —111.77 to 315.40, and —256.88 to
405.25 mm yr~! based on 20 years per catchment (Fig. 15¢).

A negative temperature bias for CAMELS vs. MOPEX is
visible for all watersheds in a climate region for all tem-
poral aggregations (negative values, Fig. 16). Daily tem-
perature values differ between the datasets by as much as
+28°Cd~!, with MOPEX demonstrating a greater positive
bias (Fig. 14a). Monthly temperature biases for arid regions
range from —5.29 to 2.00°C month~!, continental regions
range from —6.43 to 0.70 °C month™!, and temperate regions
range from —5.51 to 2.26 °C month~! (Fig. 16a). Seasonal
temperature biases range from —2.71 to 1.70, —4.24 to 0.53,
and —2.84 to 0.85°C season! (Fig. 16b) and mean annual
temperature biases decrease to —2.17 to 0.09, —2.44 to 0.39,

https://doi.org/10.5194/hess-29-4015-2025

and —1.89 to 0.36°Cyr~! (Fig. 16¢) for arid, continental,
and temperate regions, respectively.

While the ranges of biases for precipitation and tempera-
ture are shown in Figs. 15 and 16, respectively, the magnitude
of differences between MOPEX and CAMELS precipitation
and temperature values is clarified by averaging biases over
all basins in a climate region for daily, monthly, seasonal, and
annual time aggregations for 1981-2000 (Fig. 17). Given that
the differences are either negative (MOPEX > CAMELS) or
positive (CAMELS > MOPEX), the mean reflects the over-
all bias since equal differences will negate each other. In
direct pairwise comparisons, MOPEX daily precipitation
values tend to be larger than CAMELS; however, when
CAMELS values exceed MOPEX, the numerical differ-

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025
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Figure 14. Sign tally results from nonparametric binomial sign for (a) daily, (b) monthly, (c) seasonal, and (d) annual temperature values.
Counts on the y axis reflect the number of basins (gauges) within each climate region times the number of temporal periods. All results are
based on CAMELS minus MOPEX values. Positive values (CAMELS) indicate that CAMELS > MOPEX (blue bars), negative (MOPEX)
values indicate MOPEX > CAMELS (red bars), and zero (SAME) indicates CAMELS = MOPEX (black bars).

ence is greater. Daily averages (not shown) for precipitation
bias are —0.02mmd~! (MOPEX > CAMELS) for arid re-
gions, 0.15 mm d-! (CAMELS > MOPEX) for continental,
and 0.23mmd~! (CAMELS > MOPEX) for temperate re-
gions, indicating a wet bias in arid regions for MOPEX and a
wet bias for CAMELS in continental and temperate regions.
When precipitation values are aggregated on a monthly
scale (Fig. 17a), CAMELS values exceed MOPEX values
by 2.94 mm month™! (February) to 6.79 mm month~! (May)
in continental regions and by 4.41 mmmonth™! (August)
to 9.31 mmmonth~! (March) in temperate regions. In arid
climates, CAMELS exceeds MOPEX by 0.18 mm month™!
(February), 5.07 mm month™' (March), 1.11 mm month~!
(May), and 2.56mmmonth~! (October), while MOPEX
exceeds CAMELS (negative values) by 2.58 mm month™!
(January), 0.84mmmonth~! (April), 0.14 mmmonth™!
(June), 4.38 mmmonth™' (July), 3.16mmmonth™! (Au-
gust), 0.42mm month™! (September), 0.36 mm month™!
(November), and 2.88 mmmonth~! (December). Aver-
age seasonal precipitation differences are larger for
CAMELS in continental regions (Fig. 17b), ranging between
12.13 mm season—! (DJF) and 15.66 mm season~! (MAM),
and temperate regions, ranging between 16.78 mm season™!

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025

(JJA) and 24.88 mm season—! (MAM). Average arid precip-
itation differences are larger in JJA and DJF by 7.68 and
5.27 mm season~! for MOPEX values and larger in SON and
MAM by 1.79 and 5.34 mm season™' for CAMELS. Mean
annual differences mirror the biases observed in monthly ag-
gregations (Fig. 17¢). Annual CAMELS precipitation values
are 1.62 to 12.05 mmylr_l larger (1981, 1987, 1988, 1989,
1992, 1994, 1997, 1998, 1999) than MOPEX, while MOPEX
values are 5.63 to 46.91 mmyr~! larger than CAMELS for
annual totals (1982, 1983, 1984, 1985, 1986, 1990, 1991,
1993, 1995, 1996, 2000) in arid regions. CAMELS values
in continental regions are 27.84 to 89.23 mm yr~! larger, and
temperate regions are 51.46 to 112.03mmyr~! larger than
MOPEX values.

The average of daily temperature differences indicated that
MOPEX values were greater than CAMELS by 0.62 °C d~!
for arid basins, 0.15°Cd~! for continental basins, and
0.35°Cd~"! for temperate basins, suggesting a warmer bias
in all MOPEX values. For monthly aggregations, temper-
ature exhibits larger values for MOPEX by 0.41 to 0.95,
0.01 to 0.54, and 0.24 to 0.64°Cmonth~! in arid, conti-
nental, and temperate regions, respectively (Fig. 18a). Sea-
sonally, temperature differences indicate a warm MOPEX

https://doi.org/10.5194/hess-29-4015-2025
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Monthly (a), seasonal (b), and annual (c) precipitation biases in millimeters. All basins are combined by climate region (arid,

continental, and temperate) and box plots represent the number of observations indicated in Table 3. Precipitation biases are based on total
values of CAMELS minus MOPEX. Positive values indicate CAMELS > MOPEX and negative values indicate MOPEX > CAMELS.

bias with average differences of 0.51 to 0.85°C season™!

in arid, 0.03 to 0.41°C season—! in continental, and 0.25 to
0.52°Cseason™! in temperate regions (Fig. 18b). Mean an-
nual temperature differences indicate that MOPEX is greater
than CAMELS by 0.43 to 0.86, 0.07 to 0.29 °C, and 0.23 to
0.47°C yr’1 for arid, continental, and temperate regions, re-
spectively (Fig. 18c).

The spatial distribution of precipitation and temperature
mean biases between the two datasets shows some geo-
graphic concentration, especially of positive (CAMELS) bias
for precipitation in the eastern US (Fig. 19a). Arid regions
show an overall wet bias for MOPEX (two watersheds have
a slight wet bias for CAMELS), while continental and tem-
perate regions have a wet bias for CAMELS for all temporal
aggregations. Temperature biases in Fig. 19b show an overall
warm bias for MOPEX for all regions with the exception of
four continental watersheds and two temperate watersheds.

Overall statistics for precipitation are shown in Table 7 and
were calculated over all shared basins within a climate re-
gion. Temperature statistics are shown in Table 8. The mean
values and corresponding confidence intervals are based on

https://doi.org/10.5194/hess-29-4015-2025

the averages derived from bootstrapping results, shown in
Figs. 7-9 for monthly, seasonal, and annual precipitation val-
ues and Figs. 10-12 for monthly, seasonal, and annual tem-
perature values. The tables highlight the commensurate cen-
tral tendencies, variabilities, and dispersion values within the
datasets and provide insight into the comparisons between
the datasets.

To assess the magnitude of disparities between CAMELS
and MOPEX, we also examined the mean absolute error
(MAE), with temperate regions exhibiting the greatest MAE
for precipitation (Fig. 20) and arid regions the greatest val-
ues for temperature (Fig. 21). The overall error consid-
ers both positive and negative differences equally, with the
magnitude increasing from 1.30mmd~" in arid regions to
2.70mmd~! in continental and 3.19mmd~! in temperate
regions for daily precipitation. Monthly precipitation MAE
ranges from 2.37 to 5.72 mm month~! in arid regions, 3.74
to 6.80 mm month—! for continental regions, and 5.48 to
9.62 mmmonth~! in temperate regions (Fig. 20a). Seasonal
MAE ranges from 1.79 to 7.68, 12.13 to 15.66, and 16.78 to
24.88 mm season™! for arid, continental, and temperate re-

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025
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Figure 16. Monthly (a), seasonal (b), and annual (c¢) temperature biases in degrees Celsius. All basins are combined by climate region (arid,
continental, and temperate) and box plots represent the number of observations indicated in Table 3. Temperature biases are based on mean
values of CAMELS minus MOPEX. Positive values indicate CAMELS > MOPEX and negative values indicate MOPEX > CAMELS.

Table 7. Overall statistics for MOPEX (M) and CAMELS (C) precipitation totals by climate region in millimeters. Bootstrapping mean
values for each climate region and the lower and upper confidence limits are based on a two-sided 95 % confidence interval (CI) and 10 000
replicates with replacement. Median, variance, standard deviation, and skewness are based on the average of all values for each basin within

a region.

PRCP Median  Median Mean + CI Mean + CI Variance Variance SD SD Skew Skew
(mm) C M C M C M M C M

ARID  Day 0.00 0.06 1.76 £0.06 1.78 £0.06 33.12 32.78 5.50 5.51 5.18 6.82
Month 36.32 37.25 53.65+10.59 54.13£10.22 2912.56 2697.72 52.86 51.03 1.55 1.52
Season 142.71 142.06 159.08 £22.75 160.56 +£22.03 11287.61 1092390 104.63 102.62 0.85 0.83
Year 644.74 646.79 643.74 + 182.57 649.56 +£165.36  37205.76 24725.11 185.53 180.40 0.14 0.13

CONT Day 0.03 0.18 2.85+0.04 2.70+0.04 46.45 42.53 6.74 6.45 3.99 4.51
Month 76.40 73.17 86.86 +5.20 82.17+£4.86 2918.08 2502.34 53.38 49.32 1.13 1.12
Season 248.45 235.51 257.56 +£9.79 243.68+9.61 11252.31 9913.34 103.43 96.78 0.49 0.53
Year 1039.78 978.47 1042.31 £79.39 986.09 £76.57 33962.67 29675.00 180.26 167.92 0.34 0.33

TEMP  Day 0.10 0.39 3.73£0.04 3.50£0.04 61.98 60.14 7.69 7.55 3.56 4.20
Month 105.73 98.73 113.44 £6.03 11142 +6.46 3484.74 3051.77 57.99 54.04 0.84 0.90
Season 330.78 309.13 34433 +£12.30 330.48+14.36  12668.97 11042.11 109.89 101.87 0.54 0.55
Year 1364.52  1279.35 1393.13+122.75 1337.09+158.06 48010.82 42250.29 213.19 197.93 0.18 0.18

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025
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Overall average precipitation bias (CAMELS minus MOPEX)
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Figure 17. Magnitude of precipitation bias averaged over all watersheds in a climate region (arid, continental, and temperate) based on
(a) monthly, (b) seasonal, and (¢) annual totals in millimeters. All differences are CAMELS minus MOPEX values. Positive bias indicates

CAMELS >MOPEX, while negative bias indicates MOPEX > CAMELS.

Table 8. Overall statistics for MOPEX (M) and CAMELS (C) temperature by climate region in degrees Celsius. Bootstrapping mean values
for each climate region and the lower and upper confidence limits are based on a two-sided 95 % confidence interval (CI) and 10 000 replicates
with replacement. Median, variance, standard deviation, and skewness are based on the average of all values for each basin within a region.

TAIR Median Median Mean £ CI Mean £ CI  Variance Variance SD SD Skew Skew
°O) C M C M C M C M C M
ARID  Day 14.77 1533 14.394+0.10 15.01£0.10 70.17 65.68 8.17 793 -032 -0.25
Month 14.57 15.08 14354+1.07 14.97+£1.04 56.51 53.95 733 7.18 —-0.05 —-0.02
Season 14.49 1498 14.39+1.05 15.01+1.04 46.06 43.94 6.61 648 —0.04 —-0.01
Year 14.36 1499 14.39+4.44 15.01+4.29 0.59 0.45 0.74 0.65 0.22 0.12
CONT Day 11.32 11.37 10.61+0.06 10.77 +£0.06 103.63 98.58 10.13 9.89 —-0.34 —-0.26
Month 11.01 11.13  10.574+0.37 10.72+£0.34 84.44 81.65 9.14 899 —-0.12 —-0.08
Season 10.88 1094 10.60+0.36 10.75+£0.32 70.25 67.79 834 820 -0.10 —-0.07
Year 10.65 10.81 10.62+1.33 10.77+1.19 0.59 0.51 0.76 0.71 0.04 0.06
TEMP Day 11.14 11.35 10.57+0.05 10.924+0.04 80.52 76.14 894 870 —-0.36 —0.28
Month 10.56 1093 10.474+0.40 10.894+0.38 63.60 61.69 795 783 —-0.08 —0.05
Season 10.62 1094 10494038 10.92+0.36 52.41 50.88 721 7.11 —-0.05 —-0.03
Year 10.52 1091 10.514+1.64 10.94+1.57 0.46 0.38 0.67 0.62 0.10 0.14
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Overall average temperature bias (CAMELS minus MOPEX)
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Figure 18. Magnitude of temperature bias averaged over all watersheds in a climate region (arid, continental, and temperate) based on
(a) monthly, (b) seasonal, and (c¢) annual totals in degrees Celsius. All differences are CAMELS minus MOPEX values. Positive bias
indicates CAMELS > MOPEX, while negative bias indicates MOPEX > CAMELS.
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Figure 19. Overall bias for (a) mean precipitation at each gauge location based on CAMELS minus MOPEX. The color bar represents bias
in millimeters per day, where negative values (red) indicate a MOPEX wet bias and positive values (blue) indicate a CAMELS wet bias.
Opverall bias for (b) mean temperature at each gauge location based on CAMELS minus MOPEX. The color bar represents bias in degrees
Celsius per day, where negative values (red) indicate a MOPEX warm bias and positive values (blue) indicate a CAMELS warm bias.
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gions (Fig. 20b). Annual MAE ranges from 1.62 to 46.91,
27.84 to 89.23, and 51.46 to 112.03 mm yr*1 for arid, conti-
nental, and temperate regions (Fig. 20c).

Daily temperature MAE averages 1.01°Cd~! in arid re-
gions, 0.87 °C d~! in continental regions, and 0.82 °C dlin
temperate regions. Monthly temperature MAE ranges from
0.41 to 0.95, 0.04 to 0.54, and 0.24 to 0.64 °C month~!
for arid, continental, and temperate regions, respectively
(Fig. 21a). Seasonal MAE for temperature ranges from 0.51
to 0.85, 0.03 to 0.41, and 0.25 to 0.52 °C season~! for arid,
continental, and temperate regions (Fig. 21b). Annual tem-
perature MAE ranges from 0.43 to 0.86, 0.07 to 0.29, and
0.23 to 0.47°C yr’1 for arid, continental, and temperate re-
gions (Fig. 21c).

The statistical results for all regions are summarized in Ta-
ble 9 and are calculated over all days, months, seasons, and
water years (refer to Table 3). Overall statistics remove the
observed fluctuations in monthly, seasonal, and annual data
but provide a generalized value by climate region. The mar-
gin of error (MOE) was derived from the standard error (SE)
of the difference of the means and coincides with the boot-
strapping results. Arid regions have the largest MOE for pre-
cipitation and temperature.

The Fligner—Killeen test for equality of variances indi-
cated that arid regions are the most similar in precipita-
tion variance for all temporal aggregations except daily (Ta-
ble 10). Statistically significant differences between vari-
ances were found for continental regions (daily, monthly,
seasonally) and temperate regions (daily and monthly) but
not on an annual basis. Temperature values are more consis-
tent, with statistically significant differences between vari-
ances indicated for daily values only. These results are cor-
roborated by observations previously presented and outlined
in Sect. 4.1, as shown in Tables 4 and 5 and Figs. 7 through
12.

Differences in the mean values, evaluated by Welch’s ¢
test, indicated that there were no statistically significant dif-
ferences in the mean for daily, monthly, seasonal, and annual
arid precipitation (Table 11). Despite the largest variance,
arid regions are the most similar with the smallest amount
of bias between means. Differences in mean precipitation
values in continental and temperate regions are statistically
significant on all temporal scales; however, the largest differ-
ence between mean values is only 6.36 % (daily temperate).
Temperature mean differences are only statistically signifi-
cant at daily aggregations for all climate regions, with the
exception of monthly temperature.

The nonparametric Wilcoxon signed-rank test (Helsel et
al., 2020) was also conducted to evaluate the median differ-
ences, and the results indicated statistically significant differ-
ences for daily precipitation in all regions and for monthly,
seasonal, and annual precipitation in continental and temper-
ate regions. Temperature median differences were only sta-
tistically significant for daily values.

https://doi.org/10.5194/hess-29-4015-2025

As previously noted, there are no discrepancies in runoff
between MOPEX and CAMELS datasets because both con-
tain identical daily streamflow values sourced from the
USGS. However, evapotranspiration estimates derived from
the water balance approach will differ due to variations
in precipitation, since runoff remains consistent across the
datasets. Runoff and water-balance-derived evapotranspira-
tion were included in correlation analyses to evaluate the re-
lationships among all variables for both datasets and to de-
termine consistency in the strength and direction of their as-
sociations.

Daily precipitation Spearman rank correlation values be-
tween CAMELS (_C) and MOPEX (_M) ranged from 0.58 to
0.74, 0.48 to 0.86, and 0.46 to 0.88 for arid, continental, and
temperate regions, respectively (Fig. 22a, e, i). The highest
precipitation correlation values were observed for monthly
(Fig. 22b, 1, j) and seasonal aggregations (red cells, Fig. 22c,
g, k), with annual values following closely (Fig. 22d, h, 1).
Monthly precipitation correlations are the lowest in July and
August for all regions (0.84 to 0.91). Monthly and seasonal
aggregations are the most consistent between MOPEX and
CAMELS, followed by annual and then daily for precipi-
tation and temperature. Temperature shows a high similar-
ity between MOPEX and CAMELS for all temporal aggre-
gations and regions, ranging from 0.99 to 1.0. Correlations
between runoff and precipitation are positive for all regions
and temporal aggregations in both datasets, with the largest
difference of 0.08 in daily continental (0.14 for MOPEX,
0.22 for CAMELYS). Water balance evapotranspiration values
show improved agreement, greater than 0.90, for monthly,
seasonal, and annual aggregations. Daily evapotranspiration
coefficients are between 0.59 and 0.64, indicating less con-
sistency between MOPEX and CAMELS.

Runoff efficiency is the amount of precipitation that be-
comes runoff and can be used to evaluate trends and cli-
mate impact. This coefficient provides an additional metric
of dataset compatibility. The annual efficiency for each basin
was determined for CAMELS and MOPEX using total pre-
cipitation and total runoff and then plotted, resulting in an
R? value of 0.988 for all climate regions combined (Fig. 23).
This correlation was calculated to illustrate the annual com-
patibility of the datasets and the ability of both to convey
consistent attributes among watersheds for derived parame-
ters, such as runoff efficiency.

4.3 Evaluation of precipitation and temperature
extremes between datasets

While data extremes were not the focus of this study, a few
precipitation and temperature extreme indices were evaluated
for CAMELS and MOPEX values. Heavy precipitation days,
where daily precipitation is greater than or equal to 10 mm,
are more prolific in CAMELS, consistent with the wet bias
(Fig. 24a). Despite the difference in the number of days, the
two datasets show the same trends over time from 1981 to

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025
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Figure 20. Mean absolute error for (a) monthly, (b) seasonal, and (c) annual precipitation in millimeters. MAE is based on mean totals
between all basins within a climate region (arid, continental, and temperate).

2000. The number of dry days (precipitation < 1 mm) per
year is greater in CAMELS for all climate regions, with the
largest discrepancies in arid regions (Fig. 24b). This study
has shown that CAMELS has a wet bias for continental and
temperate regions and MOPEX has a wet bias for arid re-
gions (Fig. 17). The differences in the number of dry days
show that CAMELS daily precipitation values are overall
larger than MOPEX values (Fig. 24b).

The extreme wet-day rainfall, R99p, represents the annual
total precipitation when daily rainfall is greater than the 99th
percentile; when plotted for both datasets by climate region,
very similar trends are observed (Fig. 25). In a broad tempo-
ral context, analysis consistently shows that precipitation val-
ues tend to be larger in CAMELS, regardless of the temporal
scale considered beyond paired daily values. This pattern is
observed in monthly, seasonal, and annual aggregations as
well as summarized daily mean for continental and temper-
ate regions.

In contrast, temperature values exhibit a different trend,
with MOPEX consistently showing larger values irrespective
of the temporal aggregation or climate region (Fig. 18). The
number of frost days (Fig. 26a) indicates the annual count
per year when temperature falls below 0 °C. CAMELS has a
greater number of cold days, which corresponds to a warmer

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025

MOPEX bias. The warm MOPEX bias is most prevalent in
arid regions when evaluating the number of summer days per
year, which is the annual count of days with temperatures
above 25 °C (Fig. 26b).

4.4 Validation

Hydrologic models are used to simulate real-world processes
and range from simple conceptual models to complex physi-
cally based models. Choosing a suitable model is highly de-
pendent on the purpose and scale. The input data required
depend on the spatial and temporal distributions evaluated in
a model, but precipitation and temperature are fundamental.
Inherent biases in input data can skew modeling results. Ma-
chine learning (ML) was used instead of hydrologic models
(i.e., SWAT, VIC, SAC-SMA) because ML models provide
a data-driven, model-agnostic approach that focuses on the
relationships between inputs and outputs without relying on
predefined process-based assumptions (Herrera et al., 2022).
Four machine learning models were used to predict runoff
at daily, monthly, seasonal, and annual scales for MOPEX
and CAMELS. The objective is not to determine model suit-
ability but rather to evaluate the performance of each dataset.

https://doi.org/10.5194/hess-29-4015-2025
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Figure 21. Mean absolute error for (a) monthly, (b) seasonal, and (¢) annual temperature in degrees Celsius. MAE is based on means between
all basins within a climate region (arid, continental, and temperate).

Table 9. Statistical results for comparisons between CAMELS and MOPEX values for all basins within a climate region. Analyses were
conducted over the total number of values. Bias represents mean CAMELS minus mean MOPEX. Standard error (SE), margin of error
(MOE), mean absolute error (MAE), and Spearman rank (Rz) are also based on mean values.

Precipitation (mm) | Temperature (°C)

Bias  SE  MOE MAE  R?>| Bias SE MOE MAE  R?

ARID  Day —-0.02  0.04 +0.08 1.30 0.665 | —0.62 0.07 =£0.14 1.01  0.992
Month  —0.48 2.24 +4.38 399 0975 | —0.62 037 £0.72 0.62 0.99
Season —1.45 8.02 £15.71 502 0977 | —=0.62 059 =£1.16 0.62 0.993
Year —5.82 3590 +£70.37 12.09 0964 | —0.62 072 +£141 0.62 0.986

CONT Day 0.15 0.03 +0.05 270 0571 | —0.16 0.04 £0.08 087 0.9%4
Month 4.69 1.13 +222 516 0973 | —0.15 020 £040 0.16 0.999
Season  13.88 3.92 +7.69 1405 0978 | —0.15 033 £064 0.15 0998
Year 56.21 1495 £2931 5622 0956 | —0.15 022 042 0.15 0.989

TEMP  Day 0.23 0.03 +0.05 3.19 0609 | —0.35 0.03 £0.06 082 0.995
Month 4.67 1.11 +2.18 752 0962 | —0.36 017 £0.33 0.35  0.999
Season  13.85 3.88 +7.60 21.07 0964 | —0.35 027 £052 035 0.998
Year 56.04 1899 £37.22 8428 0949 | —0.35 027 =£0.53 0.35  0.996

https://doi.org/10.5194/hess-29-4015-2025 Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025
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Table 10. The results of the Fligner—Killeen test for homogeneity of variance. The df1 value is the number of groups minus 1, and the statistic
is x2. The p values are reported as * p < 0.05, ** p < 0.01, and *** p < 0.001. Bolded values are statistically significant.

Precipitation ‘ Temperature

dfl  Chi-squared p ‘ dfl  Chi-squared P

ARID  Day 1 9661.2 <0.001*** | 1 3822  <0.001***
Month 1 0.15 070 | 1 1.16 0.28

Season 1 0.10 075 | 1 1.00 0.32

Year 1 0.09 0.76 | 1 1.35 0.25

CONT Day 1 14432 <0.001*** | 1 60.52 <0.001***
Month 1 2324 <0.001*** | 1 2.86 0.09

Season 1 4.96 0.03* | 1 1.98 0.16

Year 1 0.69 041 | 1 2.62 0.11

TEMP Day 1 11096 <0.001*** | 1 89.83  <0.001***
Month 1 2154  <0.001*** | 1 3.32 0.07

Season 1 2.68 0.10 | 1 1.86 0.17

Year 1 0.67 041 | 1 2.69 0.10

Table 11. The results of Welch’s ¢ test for comparison of means with unequal variance. Here, n represents the number of values, df is
calculated degrees of freedom, and the statistic calculated is 7. The p values are reported as * p < 0.05, ** p < 0.01, and *** p < 0.001.

Bolded values are statistically significant.

Precipitation ‘ Temperature

n df  statistic )4 ‘ n df  statistic )4

ARID  Day 36525 73045.58 —0.37 0.71 36525 72950.21 —-870 <0.001***
Month 1200 2393.65 —-0.22 0.83 1200 2395.78 —-1.70 0.09

Season 400 797.34 —0.18 0.85 400 797.19 —1.05 0.29

Year 100 197.15 —0.16 0.87 100 197.54 —0.86 0.39

CONT Day 131490 262467.77 591  <0.001*** | 131490 262734.92 —-3.76  <0.001***
Month 4320 8589.14 414  <0.001*** 4320 8632.98 —0.75 0.45

Season 1440 2867.28 3.58  <0.001%*** 1440 2875.99 —0.47 0.64

Year 360 715.67 376 <0.001*** 360 711.07 —0.71 0.48

TEMP Day 175320 350554.08 872 <0.001*** | 175320 350322.75 —10.64 <0.001***
Month 5760 11481.67 632  <0.001*** 5760 11513.38 -2.11 0.03*

Season 1920 3829.89 543 <0.001%*** 1920 3836.39 —1.32 0.19

Year 480 957.97 444  <0.001*** 480 956.60 —1.29 0.20

The RMSE, MAE, R2, and bias of predicted versus observed
runoff serve as dataset comparisons.

On a daily scale, CAMELS has a slightly lower RMSE and
MAE than MOPEX for all regions and a better RZ, although
the values are quite low, less than 0.3, shown in Table 12.
A good fit is not expected with daily data which will have
multiple zero values for precipitation.

At the monthly aggregation, shown in Table 13, CAMELS
narrowly outperforms MOPEX with lower RMSE and MAE
values. The R? values are extremely similar between datasets
in all regions, and both exhibit the same positive biases with
all ML models except for SVR, which underpredicts runoff
and results in negative biases for both datasets. The results in-
dicate that the predictive performance of the models is very
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similar across both datasets, suggesting a high degree of con-
sistency between them.

Seasonally, as shown in Table 14, the main discrepan-
cies between the datasets are in continental regions, where
CAMELS runoff predictions are lower than those from
MOPEX by approximately 4 to S mm. This difference, while
evident, is relatively small and may not have significant im-
plications for broader regional or long-term studies. For in-
stance, seasonal runoff values in continental regions range
from 0.3 mm in one basin (JJA 1988) to 423.88 mm (MAM
1996) in another basin. This effect of these biases would be
more pronounced for basins with very little runoff in a spe-
cific season, but this issue is not unique to these datasets. Any
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Figure 22. Spearman rank correlation values between CAMELS (_C) and MOPEX (_M) datasets for precipitation (PRCP) in millimeters,
temperature (TAIR) in degrees Celsius, and water-balance-calculated evapotranspiration (ET) in millimeters. Runoff, in millimeters, repre-
sents both datasets. Arid correlations are between (a) daily values, (b) monthly values, (¢) seasonal values, and (d) annual water year values.
Continental correlations are between (e) daily values, (f) monthly values, (g) seasonal values, and (h) annual water year values. Temperate
correlations are between (i) daily values, (j) monthly values, (k) seasonal values, and (1) annual water year values.

dataset used on such a fine, basin-specific scale may exhibit
similar biases.

The differences in precipitation and temperature between
MOPEX and CAMELS become more relevant depending on
the scale and objective of the study. For daily or single-
month analyses, as well as for very specific seasons, the
datasets may not be directly comparable. However, as with
any modeling approach, results come with inherent uncer-
tainty, which should be acknowledged when presenting find-
ings. Model results should be accompanied by an uncertainty
estimate, reflecting potential biases or discrepancies. Bias
correction is an essential part of any modeling process, typi-
cally done during the calibration phase (Lehner et al., 2023).
In this context, the warm bias in MOPEX and the wet bias in
CAMELS are important only when focusing on very fine,
basin-specific scales. On larger temporal or spatial scales,
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these biases are less likely to significantly affect the conclu-
sions, making these two datasets comparable for general hy-
drological or climate studies. At an annual scale, as shown
in Table 15, MOPEX and CAMELS have improved R? and
the same predicted runoff biases despite the overall warm
MOPEX temperature biases and wet CAMELS precipitation
biases present in the data. The similarity in predicted runoff
demonstrates the compatibility between the two datasets and
that no corrections to the raw data are required at an annual
scale.

Total annual observed runoff is plotted against the pre-
dicted runoff for all four ML models in Fig. 27 with a 1:1
reference line. In all regions, MOPEX and CAMELS exhibit
similar visual patterns and alignment of the points. In arid re-
gions (Fig. 27a, b), both datasets show distinct clusters of low
and high runoff values, reflecting greater variability and de-

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025
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Figure 23. Annual runoff coefficient (runoff / precipitation) for each basin. Colored points represent climate region (arid, continental, and

temperate). The blue line indicates the best linear fit.

fined wet and dry periods. In contrast, continental (Fig. 27c,
d) and temperate regions (Fig. 27e, f) display a more even
distribution of runoff throughout the year, with both datasets
capturing this behavior.

In addition to predicting runoff, machine learning was
used to differentiate between MOPEX and CAMELS. Data
were separated by climate region, and then daily, monthly,
seasonal, and annual precipitation, temperature, and water-
balance-derived evapotranspiration were used for classifica-
tions. The support vector machine performed binary classi-
fication, assigning the standardized values to either MOPEX
or CAMELS. The classification accuracy values shown in Ta-
ble 16 represent the model’s ability to identify which dataset
the values belong to. If both datasets are considered equal,
then the probability of choosing the correct dataset based on
a selection of precipitation, temperature, and evapotranspi-
ration values would be 0.5. Accuracy ranges from 49 % to
53 %, with most classifications close to 50 %. The model’s
difficulty in successfully classifying the data demonstrates
the relative similarity of MOPEX and CAMELS for all cli-
mate regions and temporal aggregations.

Annual precipitation similarity was evaluated using the
double mass curve (Searcy et al., 1960), a comparative anal-
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ysis that can identify changes in values over time, examine
data consistency, and provide validation (Gao et al., 2017).
Cumulative values of two variables plotted against each other
should display a linear relationship if the ratio between them
is constant. Breaks in the slope can indicate changes in the
data and the time they occurred. When cumulative precip-
itation values are plotted for CAMELS and MOPEX, the
slopes are 0.99, 1.06, and 1.07 for arid (Fig. 28a), conti-
nental (Fig. 28b), and temperate regions (Fig. 28c), respec-
tively. There are apparent trends in the residuals for con-
tinental (Fig. 28e) and temperate (Fig. 28f) regions which
could be due to bias; however, the residuals are small, within
£ 60 mm.

5 Discussion

The comprehensive results above indicate important biases
between the CAMELS and MOPEX datasets which vary in
potential importance by climate region, geographic location,
and degree of temporal aggregation. The findings underscore
the need for careful consideration of dataset disparities, ac-
knowledging the impact of temporal scale and methodology.
As one would expect, comparability between CAMELS and

https://doi.org/10.5194/hess-29-4015-2025
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MOPEX increases with greater temporal aggregation. The
uncertainty and variability within each dataset were evalu-
ated independently by calculating variance, standard devia-
tion, and mean confidence intervals with bootstrapping (Ta-
bles 4-5, 7-8). The uncertainty and variability between the
datasets were evaluated by paired tests, bias, MAE, MOE,
RZ%, and hypothesis tests. With these measures, monthly, sea-
sonal, and annual precipitation and temperature values are
comparable for MOPEX and CAMELS (Table 9). “Mag-
nitudes of difference or trends within data products may
be comparable to the magnitude of difference between data
products” (Levy et al., 2017). Essentially, the datasets share
similar uncertainties and variances.

Statistically significant differences between variance and
mean were more prevalent for precipitation than temperature;
however, bootstrapping results indicate that both datasets
have similar uncertainties for their mean values, with fre-
quent overlap of the confidence intervals (Tables 7-8). The
most substantial differences in mean values are observed
in daily aggregations, with discrepancies of 1.13 %, 5.41 %,
and 6.36 % for arid, continental, and temperate regions, re-
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spectively. At the annual scale, these differences decrease to
0.87 % for arid regions and 4.11 % for temperate regions.
Continental regions unexpectedly show an increased dif-
ference of 5.54 % at the annual scale, which could be at-
tributed to higher interannual variability or spatial hetero-
geneity. Median differences in precipitation show signifi-
cant improvement with temporal aggregation: arid regions
decrease from 200 % to 4.88 %, continental regions from
142.86 % to 5.70 %, and temperate regions from 118.37 %
t0 5.63 %.

Arid regions have the largest margin of error for precipita-
tion but the smallest percent difference between their daily,
monthly, seasonal, and annual mean values. Conversely, for
temperature, arid regions have the largest percent difference
between mean values in addition to the largest margins of
error compared to continental and temperate regions. Cor-
relations improve from 0.57 to 0.67 for daily precipitation
values to greater than 0.90 for monthly, seasonal, and annual
totals. Temperature correlation values are 0.99 for all regions.
Positive correlation between temperature/evapotranspiration
and runoff in arid regions is possibly due to increased rates

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025
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Table 12. Machine learning model metrics for predicted versus observed total daily runoff using total daily precipitation and mean daily
temperature data as inputs for CAMELS (C) and MOPEX (M).

Day ML model RMSEC RMSEM MAEC MAEM R2C R?M BiasC BiasM
ARID  Linear regression 0.73 0.82 0.21 0.21 0.15 0.08 —0.01 0.00
Random forest 0.70 0.84 0.20 022 021 0.04 —0.01 0.01
Gradient boosting 0.69 0.82 0.20 021  0.25 0.09 0.00 0.00
SVR 0.77 0.85 0.17 0.17  0.12 006 —0.06 —0.06
CONT Linear regression 1.99 2.09 0.89 093 0.21 0.06 0.00 —-0.01
Random forest 1.95 2.14 0.85 095 0.25 0.05 0.01 0.01
Gradient boosting 1.89 2.06 0.83 090 0.29 0.09 -0.01 —0.01
SVR 1.99 2.15 0.73 0.77  0.29 0.08 —-0.39 —-0.46
TEMP  Linear regression 2.62 2.83 1.41 148  0.17 0.06 0.00 —0.01
Random forest 2.60 2.87 1.38 1.48  0.19 0.07 0.01 0.01
Gradient boosting 2.51 2.77 1.34 141  0.24 0.10 -0.01 —0.01
SVR 2.63 2.88 1.21 126 0.23 0.11  —-0.60 —0.69
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Table 13. Machine learning model metrics for predicted versus observed total monthly runoff using total monthly precipitation and mean
monthly temperature data as inputs for CAMELS (C) and MOPEX (M).

Month ML model RMSEC RMSEM MAEC MAEM R2C R?’M BiasC BiasM
ARID  Linear regression 7.73 10.64 5.12 594 037 0.37 0.62 0.64
Random forest 8.08 10.82 3.82 532 03l 0.37 0.12 0.30
Gradient boosting 8.15 11.13 4.00 554 033 0.35 0.37 0.44
SVR 7.00 10.65 3.48 434 036 039 —-091 —-142
CONT Linear regression 23.42 23.45 17.16 16.95  0.40 0.41 0.42 0.31
Random forest 22.61 22.81 16.05 16.03 045 0.44 0.48 0.29
Gradient boosting 21.49 21.87 15.40 1556  0.50 0.48 0.45 0.51
SVR 21.69 22.02 14.80 1493  0.50 049 274 -2.99
TEMP  Linear regression 41.55 42.09 28.96 29.27  0.32 0.31 0.74 0.78
Random forest 41.01 40.97 28.13 28.18  0.36 0.36 1.39 1.27
Gradient boosting 38.73 3891 26.52 26.84 041 0.41 1.21 0.75
SVR 38.71 39.21 25.29 25.85 042 041 —-5.00 —5.20

https://doi.org/10.5194/hess-29-4015-2025 Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025



4048

K. Sink and T. Brikowski: Toward merging MOPEX and CAMELS hydrometeorological datasets

Table 14. Machine learning model metrics for predicted versus observed total seasonal runoff using total seasonal precipitation and mean
seasonal temperature data as inputs for CAMELS (C) and MOPEX (M).

Season ML model RMSEC RMSEM MAEC MAEM R2C R?’M BiasC BiasM
ARID  Linear regression 21.60 22.66 14.52 14.65 0.37 0.31 0.48 0.41
Random forest 16.96 20.25 10.36 11.27  0.61 0.55 1.29 1.02
Gradient boosting 18.25 21.17 11.26 12.15  0.59 0.54 227 1.32
SVR 18.63 21.33 9.27 949  0.53 039 —-249 435
CONT  Linear regression 59.11 51.78 43.00 3857 044 043 —441 -0.12
Random forest 54.75 54.91 39.47 40.55 0.52 058 —4.45 —0.99
Gradient boosting 53.19 50.00 39.01 3676 0.55 047 —=5.00 0.07
SVR 53.93 50.94 37.02 3579 055 047 -9.69 —4.22
TEMP  Linear regression 97.33 96.28 70.64 70.71 0.31 0.33 0.66 0.46
Random forest 92.10 92.02 67.26 65.56  0.40 0.40 2.23 2.28
Gradient boosting 87.83 88.08 66.09 6393 044 0.44 2.54 1.92
SVR 91.48 91.78 64.44 64.54 041 041 —-7.17 -9.29

of soil drying and decreased soil moisture retention, which
then leads to greater runoff. Intense precipitation events with
higher temperatures can also lead to less infiltration and more
runoff. Climate patterns, such as rainy or dry seasons, are
captured similarly in both datasets, and the more consistent
pattern may contribute to higher monthly and seasonal cor-
relations compared to annual.

MOPEX has an overall warm bias for all climate re-
gions and a wet bias for arid regions. CAMELS has an
overall wet bias for temperate and continental regions.
MOPEX is approximately 0.62, 0.16, and 0.35 °C warmer
than CAMELS for arid, continental, and temperate re-
gions, respectively, on all temporal scales. For precipitation,
MOPEX is larger than CAMELS by 0.02mmd~!, 0.48 mm
month~!, 1.45 mm season™!, and 5.82mm yr~! for arid re-
gions. CAMELS shows a wet bias for continental, ranging
from 0.15mmd~! to 56.21 mmyr_l, and temperate, with
biases of 0.23mmd~! to 84.27mmyr~!. Other compari-
son studies have also shown a warm MOPEX bias when
compared to Daymet and a wet Daymet bias compared to
MOPEX (Essou et al., 2016) and PRISM (Muche et al.,
2020). Arid regions have the largest variance and uncertainty,
which could be due to high evaporation rates, diverse land-
scapes, or the limited number of stations influencing boot-
strapping results, incorporating fewer values compared to
temperate or continental landscapes.

Precipitation exhibits a more pronounced positive bias on
an annual scale (Fig. 15c¢), primarily due to the accumulation
of small positive biases observed on monthly and seasonal
scales. On finer temporal scales, these individual biases may
partially offset each other due to seasonality, leading to less
noticeable discrepancies, yet when data are aggregated annu-
ally, consistent overestimations are amplified, resulting in a
more evident positive bias. This pattern highlights the pres-
ence of a systematic wet bias, where precipitation is consis-
tently overestimated across temporal scales. The effect be-
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comes more apparent at larger aggregation intervals, particu-
larly due to increasing precipitation totals.

For temperature, although larger biases are observed in the
1980s, this pattern is limited to arid regions. Even in later
years, the outliers for arid regions remain close to —2 °C. The
medians for 1981, 1983, and 1987 are near zero, indicating
minimal central tendency bias for those years. When aver-
aged over time, as shown in Fig. 18, there is a slight improve-
ment in biases for arid regions, with a reduction of approx-
imately 0.25°C from 1981 to 2000. An increase in station
density could also contribute to the observed improvement
in biases. The GHCNd database, accessed via the National
Centers for Environmental Information (NCEI), indicates a
noticeable rise in the number of precipitation and tempera-
ture stations during the late 1990s and early 2000s. This in-
creased station coverage likely enhanced the spatial repre-
sentation of observations, reducing biases and improving the
accuracy of aggregated data.

Biases have potential consequences for dependent vari-
ables like evapotranspiration and runoff. A wet bias in daily
precipitation could propagate and inflate the estimates of
evapotranspiration and runoff, with hydrological models pos-
sibly predicting higher water availability across the sys-
tem than actually present. Precipitation and temperature data
sources differ between MOPEX and CAMELS, resulting in
the observed biases; however, statistical analyses and valida-
tion in this study demonstrate that the datasets closely resem-
ble one another. Precipitation biases are between —0.25 and
0.54mmd~! and temperature biases are between —1.88 and
0.27°Cd~". These biases exhibit little influence on general
hydrologic indices such as runoff efficiency (Fig. 23). Paired
same-day comparisons of CAMELS versus MOPEX indi-
cate that the largest discrepancies are between daily values
for precipitation and temperature. Combining these datasets
is not recommended for evaluating daily events such as
maximum 1d precipitation; however, both datasets exhibit

https://doi.org/10.5194/hess-29-4015-2025
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Table 15. Machine learning model metrics for predicted versus observed total annual runoff using total annual precipitation and mean annual
temperature data as inputs for CAMELS (C) and MOPEX (M).

Year ML model RMSEC RMSEM MAEC MAEM R?2C R*’M BiassC BiasM
ARID  Linear regression 33.57 32.52 28.63 2697  0.79 0.78 17.72 19.03
Random forest 31.82 34.20 23.87 2544  0.58 0.60 10.86 13.29
Gradient boosting 35.33 30.54 26.30 22.16 0.68 0.83 17.85 21.22
SVR 20.18 21.24 15.95 16.53 0.81 0.81 4.27 8.06
CONT Linear regression 85.78 91.05 77.12 77.10  0.69 0.67 —6.11 -9.69
Random forest 91.53 94.40 82.25 7777 0.64 0.65 —10.76 —10.76
Gradient boosting 89.53 95.91 83.76 80.24  0.64 0.64 —1548 —15.15
SVR 80.13 85.16 74.19 70.84  0.73 0.73 —11.10 —15.48
TEMP  Linear regression 106.89 113.85 82.26 91.08 0.88 087 —19.61 —19.52
Random forest 121.34 126.85 92.93 103.58 0.85 0.83 —17.52 —-23.33
Gradient boosting 109.74 121.89 85.29 95.15 0.87 0.84 —20.21 —-28.71
SVR 101.84 118.68 79.35 94.11 0.89 0.86 —19.59 —33.60
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Table 16. Classification accuracy results for support vector models.

Day Month Season  Year
Arid 0.517  0.490 0.495  0.480
Continental  0.505 0.521 0.529 0.523
Temperate 0.508 0.524 0.530 0.510

the same general trends for seasonality and climatic indices
(Sect. 4.3).

Climate data inherently carry a degree of uncertainty, and
the biases described above derive from varying data sources
and interpolation of those data to the watershed footprint.
Factors such as heterogeneity, gaps in coverage, and interpo-
lation methods contribute to deviations from precision. Data
sources can include gauges, satellites, or a combination of
both. No two datasets will be identical, as discrepancies oc-
cur across various scales. The primary objective is to choose
the most appropriate, quality-controlled, accurate, and repre-
sentative dataset for the research at hand. Previous compar-
ison studies have highlighted the inconsistencies and biases
between data products (Levy et al., 2017; Mallakpour and
Villarini, 2016; Prat and Nelson, 2015; Sun et al., 2018).

Differences are expected between the datasets based on
their sources and processing. Essou et al. (2016) compared
three gridded datasets that interpolated daily temperature and
precipitation values from the same observation network and
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noted that “the differences between gridded products may
largely be attributed to the interpolation schemes which dif-
fer substantially from one dataset to another”. A key dis-
tinction between the MOPEX and CAMELS datasets lies
in their methodological foundations. While both rely on
ground-based weather stations as their primary source of
meteorological input, they differ in how these observations
were processed and spatially interpolated. Daily observa-
tions from a network of weather stations are made available
by NOAA’s National Centers for Environmental Information
(NCEI). These data undergo quality assurance checks and
processing prior to dissemination. However, uncertainties in-
herent to station observations remain due to limitations in
instrumentation, despite adhere to established standards and
calibration protocols, such as those outlined by the National
Weather Service (https://www.weather.gov/coop/standards,
last access: 24 April 2025).

MOPEX used observed, gauge-based inputs of precip-
itation and temperature from Cooperative Observer Pro-
gram (COOP) and Snowpack Telemetry Network (SNOTEL)
weather stations to estimate mean areal values at the catch-
ment scale (Schaake et al., 2006). For precipitation, MOPEX
employed the mean areal precipitation (MAP) methodology
developed by the National Weather Service River Forecast
Systems (NWSRFS), which combined an inverse distance
weighting algorithm with monthly climatological means
from PRISM to enhance spatial representativeness (Daly et

https://doi.org/10.5194/hess-29-4015-2025
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al., 1993). In contrast, CAMELS derived its meteorologi-
cal forcing data, specifically precipitation and temperature,
from Daymet version 2, a gridded dataset that interpolates
and extrapolates surface observations from Global Histori-
cal Climatology Network (GHCN) stations, including those
from COOP (Wuertz et al., 2018). Daymet version 2 em-
ploys a Gaussian convolution kernel interpolation method
to produce spatially and temporally consistent values across
the CONUS. These gridded values were then spatially aver-
aged to the catchment scale within CAMELS (Newman et
al., 2015).

Evapotranspiration values in CAMELS are estimated via
the SAC-SMA hydrological model, and as our results high-
light, these model-based ET values can sometimes produce
implausible behavior — such as overestimation or ET demand
exceeding available precipitation. As MOPEX does not pro-
vide ET data, it can be calculated as a water balance resid-
ual. This approach benefits from empirical grounding, par-
ticularly in well-instrumented basins, but may suffer in re-
gions with poor data quality or significant anthropogenic in-
fluences that are not explicitly accounted for in the water bal-
ance in addition to the uncertainties present in precipitation
and runoff estimates (Carter et al., 2018).

MOPEX provides a longer historical record, which is valu-
able for evaluating long-term trends and hydroclimate vari-
ability. CAMELS is particularly well-suited for regional-
scale hydrological analyses and climate sensitivity studies,
especially in areas where gauge coverage is minimal or
where spatial variability in meteorology is high (Addor et
al., 2017; Newman et al., 2015). For spatially extensive or
gridded analyses where consistency and meteorological real-
ism are priorities, CAMELS offers advantages. Thus, when
using daily data, the choice between CAMELS and MOPEX
depends on the application.

6 Conclusions

In this study, we evaluated two large-sample datasets,
MOPEX and CAMELS, comparing precipitation and tem-
perature. The current MOPEX dataset contains data for 431
watersheds within the CONUS, while CAMELS includes
data for 671 watersheds. The datasets were combined for
this study and 47 common basins were compared for water
years 1981 through 2000 on daily, monthly, seasonal, and an-
nual scales. Precipitation, temperature, and streamflow data
are areally weighted by delineated boundaries available as
shapefiles. The main conclusions from the statistical com-
parison between CAMELS and MOPEX at daily, monthly,
seasonal, and annual scales are summarized as follows.

1. The relevance of differences between MOPEX and
CAMELS depends on the study’s scale and purpose.

2. Daily pairwise comparisons are not recommended due
to the variability in extreme precipitation event mea-
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surements. However, both datasets capture similar pat-
terns and basin behavior, for example, when evaluating
the number of rainy days or dry days per year.

3. Comparison improves significantly with monthly, sea-
sonal, and annual aggregations. Despite temperature
and precipitation biases, MOPEX and CAMELS show
similar predicted runoff at the annual scale, requiring
no raw data corrections. Monthly, seasonal, and annual
values are comparable, as their differences are within
expected uncertainty ranges.

4. Compeatibility is constrained by basin water balance and
requires basin-averaged values; i.e., ET values from
model-output CAMELS time series must be used with
caution and often cannot be reconciled with MOPEX or
other water-balance-based estimates

5. All modeling results should include uncertainty esti-
mates. Bias correction is typically performed during
calibration, addressing dataset-specific biases.

The comparative analysis of the MOPEX and CAMELS
datasets reveals distinct biases and variability patterns across
climate regions and temporal scales. CAMELS generally
exhibits a positive precipitation bias at monthly, seasonal,
and annual aggregations in continental and temperate re-
gions, while MOPEX shows higher daily precipitation val-
ues, particularly in arid regions. Temperature analysis high-
lights a consistent warm bias in MOPEX across all regions
and timescales, with notable disparities in daily values. De-
spite these differences, the datasets show overlapping confi-
dence intervals for many metrics, suggesting similar levels of
uncertainty.

The observed variations, particularly for extreme precipi-
tation events, underscore the necessity for cautious interpre-
tation of dataset-specific results. For applications requiring
precision, such as hydrological modeling or climate analy-
sis, direct substitution of daily values between MOPEX and
CAMELS is not advisable without considering these biases.
Instead, leveraging insights from both datasets can provide a
more comprehensive understanding of regional and temporal
climate characteristics.

Ongoing research aims to extend the MOPEX dataset
from 2003 to 2023 and the CAMELS dataset from 2014 to
2023, leveraging the Daymet dataset (Thornton et al., 2021).
MOPEX and CAMELS will be integrated into a cohesive re-
source that combines catchment attributes and human impact
classifications based on the GAGESII framework (Falcone
et al., 2010). The enhanced dataset will support model cali-
bration and freshwater balance studies at the watershed scale
(Sink, 2025). Basin-scale analyses and forecasts are expected
to benefit from more precise water balance constraints, im-
proving their accuracy and predictive power.

Hydrol. Earth Syst. Sci., 29, 4015-4054, 2025
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