
Hydrol. Earth Syst. Sci., 29, 3917–3933, 2025
https://doi.org/10.5194/hess-29-3917-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Estimation of radar-based area–depth–duration–frequency curves
with special focus on spatial sampling problems
Golbarg Goshtasbpour and Uwe Haberlandt
Institute of Hydrology and Water Resources Management, Leibniz University Hannover, Hanover, Germany

Correspondence: Uwe Haberlandt (haberlandt@iww.uni-hannover.de)

Received: 14 June 2024 – Discussion started: 27 June 2024
Revised: 3 January 2025 – Accepted: 20 March 2025 – Published: 25 August 2025

Abstract. Radar-based area–depth–duration–frequency
(ADDF) curves offer the possibility of incorporating a space
dimension into the analysis of rainfall extremes. This solves
some shortcomings of the traditional point-based depth–
duration–frequency (DDF) curves which characterize design
rainfall. In this study, ADDF curves are calculated from a
radar-based rainfall data set, a product of the conditional
merging of corrected radar data and station data, covering a
large area in the north part of Germany. The initial results
show implausible behavior in the curves where the rainfall
quantiles increase with increasing area. It is discussed in
detail in this paper that the implausible behavior persists due
to the shortcoming of fixed-area sampling methods which
are missing the most extreme annual maximum rainfall
events within the area of interest. Three alternative sampling
strategies are developed to address this issue. Among the
introduced methods the multiple-location extreme sampling
(MLES) and the single-location extreme sampling (SLES)
methods successfully reduced the number of study locations
with implausible behavior by 67 % and 43 % respectively.
The SLES method is recommended as the best method for
calculating areal design rainfall directly from high-resolution
radar-based data sets. This method tackles the spatial sam-
pling issue, and it can result in area-reduction-factor values
compatible with station-based point design rainfall values.

1 Introduction

The frequency, intensity and spatial occurrence of extreme
rainfall events are changing with global warming (Papalexiou
and Montanari, 2019). This has implications for catastrophic
flooding, overloading storm water and sewage systems, af-

fecting soil erosion, causing landslides, and damaging infras-
tructure. Most of the consequences of extreme rainfall are
due to the sheer volume of water imposed on settlements and
infrastructure, sometimes in a very short period of time. This
shows the importance of studying rainfall and rainfall ex-
tremes as a spatial-temporal phenomenon. This task is chal-
lenging due to the multi-dimensional nature of rainfall ex-
tremes and their high variability in space and time.

The intensity–duration–frequency or depth–duration–
frequency (IDF/DDF) relationship is a tool used to charac-
terize the frequency and magnitude of extreme rainfall events
and is used for planning and design. The IDF relationship is
typically presented as a set of curves and connects the inten-
sity (or depth) of extremes with their duration and the fre-
quency of occurrence or return period. IDF curves provide
information solely for single points, while for many appli-
cations areal extreme rainfall estimates are of interest. The
conversion to areal precipitation is possible using areal re-
duction factors (ARFs), a corrective factor defined as the
ratio between the areal precipitation and the representative
point precipitation of an area, for a specific return period
and duration, with the assumption that the larger the area
becomes, the smaller the average areal precipitation depth
should be. Many studies have used ARFs and IDF curves for
different purposes like design storm characterization (Kim
et al., 2019), design peak discharge (Bertini et al., 2020),
flood hazard quantification (Ghazavi et al., 2016) and devel-
opment of early warning systems (Bezak et al., 2016). An-
other way of handling areal rainfall extremes, not as widely
used as the ARF method, is to apply extreme value analy-
sis directly on areal rainfall and calculate intensity–duration–
area–frequency (IDAF) curves (Bennett et al., 2016; Panthou
et al., 2014; Mélèse et al., 2019; Overeem et al., 2010).
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ARFs and IDAF curves can be calculated through differ-
ent analytical and empirical methods, where the former fo-
cuses on the mathematically determined physical laws and
the underlying characteristics of extreme precipitation and
the latter derives the IDAF and/or ARF relationship based
on observation data. As the analytical approaches might ap-
pear more legitimate and reliable, these methods involve as-
sumptions which do not fully represent the truth of the rain-
fall extremes. Data-driven approaches on the other hand, al-
though computationally more expensive, are based on the ob-
servations, which are the closest information to truth at hand
(Svensson and Jones, 2010). Empirical methods themselves
are divided into fixed-area and storm-centered categories. As
the names suggest, the former calculates the precipitation for
a fixed area and assumes a representative point rainfall (a spe-
cific point in the considered area or the average of the point
extremes), whereas the latter, the point with the maximum
rainfall depth observed for a specific duration and area, is
not fixed and the areal precipitation is calculated for individ-
ual moving storms (Biondi et al., 2021).

Bennett et al. (2016) construct empirical IDAF curves
from a rain-gauge-based interpolation product and assess the
characteristics of the extremes at 11 scattered study regions
across Australia, covering a variety of climates. Panthou et al.
(2014) calculate analytical IDAF curves using a rain-gauge-
based data set and concluded that their ARFs approximate
the empirical ARFs of the region, except for events with
short durations and large spatial scales. Bárdossy and Pe-
gram (2018), however, demonstrate the shortcomings of the
station-based extreme precipitation estimation through an ex-
tensive analysis. They show that IDF curves are only suit-
able for the single observation sites and cannot be expanded
to larger areas around the observation station, since they do
not reflect the spatial behavior of precipitation. They suggest
that the maxima of areal precipitation may exceed single-
point extremes; thus ARFs might underestimate the design
values. Results from Bennett et al. (2016) are an example of a
case where station-based areal extreme precipitation estima-
tion leads to areal average extremes higher than single-point
extremes, which according to Kim et al. (2019) is not rep-
resentative of the reality of precipitation. Concluding from
the statements of Bárdossy and Pegram (2018), Bennett et al.
(2016), and Kim et al. (2019) there is a gap between what
the extreme sampling methods capture and the true spatial
characteristics of these events.

Radar rainfall estimates, which have become increasingly
popular in hydrological research in the recent decades, offer
high spatial and temporal resolution and large coverage ar-
eas. Thus radar rainfall data improve the capability to capture
the spatial characteristics of rainfall relative to ground gauge
networks. It is well known that radar data are error-prone;
therefore, numerous methods have been developed to reduce
biases associated with these errors, for instance correction al-
gorithms and merging methods (Krämer and Verworn, 2009;
Sinclair and Pegram, 2005). Quality-controlled radar-based

precipitation data can be of great value as they enable the
experts to develop methods which approach the extreme pre-
cipitation from a spatial perspective. Lengfeld et al. (2020)
showcase the importance and benefits of using radar data.
They report that in the year 2014 in the UK 36 % of the
hourly events and 50 % of the daily events observed by radar
were not captured by the rain gauges. The same analysis on
records from Germany revealed that between 2001 and 2018
only 17.3 % of hourly and 81 % of daily heavy precipitation
was captured by the rain gauge network.

Overeem et al. (2010) offered the first radar-based study
which calculates DDF curves for different durations and ar-
eas from the Netherlands using the generalized extreme value
(GEV) probability distribution of the annual maxima as a
function of duration and area. Mélèse et al. (2019) con-
structed an IDAF analytical model for a region in the south
of France using a radar reanalysis data set where they clas-
sified the shape of the resulting ARF curves to distinguish
the spatial structures of the extremes in the region. Rosin
et al. (2024) investigate the characteristics of the extremes
in coastal, desert and mountainous regions covering the east-
ern Mediterranean. They apply the novel approach of sim-
plified meta-statistical extreme value (Marra et al., 2019) on
12-year-long radar precipitation data and calculate the cor-
responding IDAF curves for different temporal and spatial
scales. Haruna et al. (2023), using a radar reanalysis data set,
aim to take advantage of all available information at hand. In-
stead of working with block maxima, they model their IDAF
curves by including all non-zero precipitation and fitting an
extended generalized Pareto distribution. They take an em-
pirical data-driven approach like Overeem et al. (2010) and
study extreme precipitation in Switzerland, an area with a
complex topography, multiple precipitation regimes, and sea-
sonal and regional variability. Zhao et al. (2023) explore the
variability in the extreme rainfall events in space and time
for current and future climate by building ARF-based IDAF
curves using radar data. In their study the authors work with
the peaks over threshold instead of annual maxima, calculate
the ARFs and apply them to the future extreme events from
the future projections.

In this study we offer an empirical method for calculating
area–depth–duration–frequency (ADDF) curves based on the
extreme value analysis of Koutsoyiannis et al. (1998) using
a merged radar data set covering a part of the northwest of
Germany. More importantly we investigate the spatial order
relation problems, appearing as crossings in ADDF curves,
which lead to missing information in areal rainfall extreme
value analysis and underestimation of design storms. For
this purpose we define novel measures to quantify the is-
sue that appears in the spatial order relation of the curves
and look at the relation between the crossings and topogra-
phy and seasons. We investigate alternatives to sampling ap-
proaches which can lead to practical solutions to this problem
and compare their results with standard design storms for the
region. To our knowledge, there are no studies investigating
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the spatial order problem in detail and offering new sampling
methods.

In Sect. 2 the study area and different data used are in-
troduced, and the quality of merged radar data set is proven
by a cross-validation against ground stations. Section 3 de-
scribes our different sampling methods of areal extremes and
explains the mathematical framework of the extreme value
analysis. Section 4 presents the results which are discussed
in detail in Sect. 5. Finally the findings and conclusions are
expressed in Sect. 6.

2 Study area and data

2.1 Study area

The study area is located in northern Germany, covered by
the range of Hanover radar, in Lower Saxony. Three differ-
ent sources of data are used for this research covering the
period of 2000 to 2019: a radar data set, a daily station data
set and a 5 min station data set, all provided by the German
Weather Service (DWD). The radar beam is 128 km long and
covers an area of roughly 50 000 km2 (Fig. 1). The northern
segment, a part of the North German Plain, is predominantly
flat, while the southern part is home to the Harz Mountains
in the southeast, peaking at 1137 m a.s.l. Annual precipitation
in the study area varies from 500 to 1700 mmyr−1, with the
highest recorded amounts occurring in the Harz Mountains.

2.2 Data

2.2.1 Rain gauge data

The station data sets used in this study include (a) a 5 min
station network used for adjusting the radar data by merging
the two data sources and also to validate the final merged
radar data and (b) a daily station data set with a higher spatial
density, used as reference to compare the ADDF curves in
the results section. From the 5 min stations available only 15
stations were picked out as the validation stations which had
the highest rate of data availability in the study time period
(Fig. 1a). From the daily stations, the ones are chosen which
have high data availability within the study period and build
a dense network of at least four stations around each of the
radar study locations. Due to the scattered availability of the
daily stations only 19 radar locations and 63 daily station are
chosen for a comparison of the spatial analysis of the radar
data with the daily stations (Fig. 1b).

2.2.2 Radar data

The Hanover radar device is a C-band instrument operating
at a 5 min temporal resolution with a 1° azimuth resolution
and a spatial resolution of 1 km along the beam. This study
utilizes the dx product from DWD with a scanning radius of
128 and 1 km resolutions. Each radar image of the dx product

consists of 46 080 cells (128× 360), and the data are offered
in reflectivity values which were not corrected in any man-
ner. The data are then preprocessed and corrected for clutter
and attenuation according to the Berndt et al. (2013) method
using the tools provided in the wradlib Python library (Heis-
termann et al., 2013).

The preprocessing procedure begins with generating a
static clutter map for each year. This involves scanning ev-
ery time step in the year, identifying pixels with extremely
high or low values, and marking them as clutter, resulting
in a map with zeros and ones indicating clutter pixels. Fol-
lowing this, a comprehensive scan is conducted over all time
steps to detect dynamic clutter. The static and dynamic clut-
ter maps are then combined, and the values at cluttered pix-
els are replaced with interpolated values from neighboring
pixels using an inverse distance method. Subsequently beam
attenuation correction and constrained attenuation correction
are applied to each time step. Finally, reflectivity values are
transformed into rainfall depth using the Marshall–Palmer
Z−R power-law relationship:

Z = aRb, (1)

where Z represents reflectivity [mm6 m−3]; R is the cor-
responding rain intensity [mmh−1]; and the parameters a
and b, set to 256 and 1.42 respectively per DWD’s standard
guidelines, are used. The polar grid is then converted into a
1 km× 1 km Cartesian grid within the Gauss–Kruger zone 3
coordinate system. After the initial correction El Hachem
(2023) applied a copula-based conditional merging that is
applied to combine the radar and rain gauge observations
and provide a continuous field of rainfall estimates. In his
method, El Hachem (2023) uses the corrected radar data
and a data set of all available sub-hourly ground stations
within the study area. He incorporates an external drift krig-
ing (EDK) method for interpolating spatially missing station
data using the radar field as auxiliary external information to
estimate the rainfall depth at missing locations. Then he ap-
plies an adapted version of the conditional merging method
by Sinclair and Pegram (2005). The rainfall field is observed
by both rain gauges and radar over a grid. Kriging is used to
estimate rainfall from rain gauges across the radar grid, while
radar data are interpolated at rain gauge locations. The dif-
ference field between observed and interpolated radar values
is calculated and applied to the kriged rain gauge data. This
produces a merged rainfall field that retains the spatial struc-
ture of the radar and the accuracy of the rain gauge measure-
ments. The results of the cross-validation of the final product
of El Hachem (2023) are provided in the following section.

2.2.3 Merged data validation

The final merged product is validated by comparing per-
formance measures of the corrected radar product and the
merged products. For this purpose, merging is done in a
leave-one-out cross-validation mode: to calculate the merged
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Figure 1. Study area, validation stations, investigated locations and covered areas.

value at a specific validation station, the data from that sta-
tion are left out and the merged time series are calculated
for that location. Then the DDF curves are calculated from
the corrected radar data, merged data and the station data at
the validation station using the extreme value analysis (EVA)
method explained in the Methodology section.

The performance measures used for validation are the per-
cent bias (pBias),

pBias=

∑ngauge
i=1

Pradar,i−Pgauge,i
Pgauge,i

ngauge
, (2)

and the normalized root-mean-squared error (nRmse),

nRmse=

√∑ngauge
i=1 (Pradar,i−Pgauge,i )2

ngauge∑ngauge
i=1 Pgauge,i
ngauge

, (3)

which are calculated between the station DDF curves and the
curves from the radar data and merged data at the location of
the validation stations.

Figure 2 depicts two examples of the DDF curves, where a
significant improvement is observed after merging. The per-
formance measures are subsequently calculated for each du-
ration and return period over the 15 validation stations, and
the results are depicted in Fig. 3, where panel (a) shows
the nRmse and panel (b) the pBias. Different colors on the
plots show the error over different return periods. These fig-
ures show a significant reduction in both error measures af-
ter merging. The average nRmse value of 0.2 shows a 20 %
deviation of the merged extremes from the mean value of
the gauge extremes. An average pBias of −0.06 indicates
an overall 6 % underestimation by the merging product com-
pared to the stations. Thus it is reasonable to conclude that
the merged product performs well in estimating rainfall ex-
tremes at point level; thus it can be used for this study.

3 Methodology

The ADDF curves are calculated from the merged radar data.
We define 100 equidistant study locations in space (Fig. 1).
For each location, the following apply.

1. Areas around the study location are considered circular
in shape with radii of r = 1, 2, 4, 6, 8, 10, 12, 14, 16
and 18 km (area of a = 1, 12, 50, 113, 210, 314, 452,
615, 804 and 1017 km2), where r = 1 km is equivalent
to 1 pixel and is considered a point. Areal rainfall Pa is
calculated for each area as the arithmetic mean over all
pixels k = 1, 2, 3, . . . , na :

Pa =

∑na
k=1Pk

na
. (4)

2. The areal rainfall series are aggregated in time using a
moving window for durations d = 5, 15, 30, 60, 120,
240, 480, 720, 1080 and 1440 min (Eq. 5), and the an-
nual maximum series for m years is extracted for each
area and duration by taking the maximum value of the
temporally aggregated series for each year, defined as
AMa(d) (Eqs. 6 and 7):

Pa,t (d)=

t+d∑
j=t

Pa,j , (5)

amyear(a,d)=max
year

Pa,t (d), (6)

AMa(d)= am1(a,d),am2(a,d), . . .,amm(a,d). (7)

3. Extreme value analysis according to Koutsoyiannis
et al. (1998) is applied, and the quantiles are calculated
for each area, duration and return period T = 2, 3, 5,
10, 20 and 33 years; PT (a,d) – described in depth in
Sect. 3.1.
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Figure 2. Example DDF curves of two validation stations P00691 and P04371 for T = 20 years. Curves from three sources are displayed:
ground rain gauges (black), radar data (red) and the product of conditional merging (blue).

Figure 3. Error measures of the point percentiles of the corrected radar and the conditional merging products. The box plots show the
statistics of error over validation stations for different return periods (2, 3, 5, 10, 20 and 33 years).

After the EVA the ADDF curves are plotted in PT [mm]
vs. duration [min] in a half-logarithmic plot, as a group of
curves from different area sizes.

This is the overall procedure used here for calculating the
ADDF curves, however, as new sampling alternatives are in-
vestigated and discussed in Sect. 3.2.2. to 3.2.4. These steps
are slightly modified for each sampling technique. In the fol-
lowing subsections the EVA method is explained, the sam-
pling methods are introduced and finally new measures are
introduced to facilitate the quantification of the observed spa-
tial sampling problem in the results.

3.1 Extreme value analysis

The extreme value analysis method developed by Kout-
soyiannis et al. (1998) was employed here. For simplification
the area dimension is taken out of the following formulas,
since the EVA is applied to the AM of each area size sepa-
rately. In the Koutsoyiannis et al. (1998) approach the inten-
sity of the annual maxima i is considered to be a function of
the duration as follows. For the area size a,

i = AM(d)/d, (8)

with

i = id · bd (9)

and

bd = (d + θ)
η, (10)

where i is the generalized intensity of the annual maxima
[mmh−1] and id the observed rainfall intensity [mmh−1]
with the duration d. θ and η are the Koutsoyiannis trans-
formation parameters where θ has values larger than 0 and
η takes any value between 0 and 1. The two Koutsoyiannis
parameters (θ and η) are calculated for each series of annual
maxima through an optimization process where the Kruskal–
Wallis statistic comparing the distribution for different dura-
tions is minimized. For more details the reader is referred to
Koutsoyiannis et al. (1998). With θ and η determined, the
annual maximum intensities are generalized (Eqs. 9 and 10).
In the next step the generalized intensities from all durations
are pooled together and the probability distribution function
(PDF) is fitted to the pooled sample. The generalization of
the annual maxima through the transformation with the two
Koutsoyiannis parameters enables the assumption that the
generalized annual maxima of different durations belong to
the same population; thus they have the same distribution.
This method of EVA is advantageous since the joint estima-
tion with data pooled over all durations is robust against the
sample uncertainties. However since the AM values of dif-
ferent durations are highly correlated with each other, the
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pooled sample is not as robust as if could have been in an
independent condition. Subsequent to the pooling, a GEV
distribution is fitted to the sample of the generalized annual
maximum intensities, using the method of L-moments. The
method of L-moments is chosen here over the maximum like-
lihood method per the suggestion of Shehu et al. (2023) due
to the more stable results of the moments. Equation (11) is
the cumulative distribution function of the GEV distribution
with µ, σ and γ being the location, scale and shape param-
eters of the distribution function. Variables i and I represent
the annual maximum rainfall intensity sample and its popu-
lation respectively.

F(I < i;µ,σ,γ )= exp
{
−[1+ γ

(i−µ)

σ
]
−1
γ

}
(11)

Here γ is fixed to 0.1 as Koutsoyiannis (2004) suggests
this value for a more robust estimation when dealing with
return periods of up to 100 years. If the two remaining GEV
parameters µ and σ are known, the precipitation quantiles of
the generalized intensities are calculated by Eq. (12), and the
quantiles are scaled back to actual intensities using Eq. (9)
and converted into rain PT (depth in mm).

i = µ+ σ [
(− ln(F (I < i))−γ − 1

γ
] (12)

3.2 Spatial sampling strategies and ADDF curves

3.2.1 Single-location sampling (SLS)

the single-location sampling scheme is depicted in Fig. 4a.
The analyzed areas are concentric circles with different sizes
to the center of each study location presented in Fig. 1b. The
areal precipitation series are calculated for each of the ar-
eas, and the annual maximum series (n= 20) is extracted for
each duration and area size. Then using Eq. (11) the quan-
tiles are calculated for each area size and duration mentioned
previously. A total number of values comprise one sample
for nt = 20 years and nsp = 1 single location.

nSLS
AM = nt × nsp = 20× 1= 20 (13)

3.2.2 Multiple-location sampling (MLS)

Figure 4b presents an example scheme of annual maximum
sampling by the MLS method. For each location, a larger
area (r = 36 km) is considered the study domain where ran-
domly distributed points (and areas) are chosen as sampling
sites. The number of the sampling sites nsp is chosen for each
area so that the larger the area, the smaller the number of
samples taken: nsp = 500, 350, 200, 150, 100, 75 and 50 re-
spectively for a = 1, 12, 50, 113, 314, 615 and 1017 km2. At
each random site the time series of areal precipitation is cal-
culated, and for all durations the annual maximum series and

Figure 4. (a) Single-location sampling (SLS) of areal extremes,
with the center being the point observation and equivalent to a =
1 km2 and different area sizes shown by the concentric circles;
(b) multiple-location sampling (MLS, MLES and SLES). Different
colors of circles represent different area sizes, and the grey points
are the random samples of a = 1 km2. In both sampling schemes
the center of the outermost circles is the center of the study loca-
tions shown in Fig. 1 with black+. With SLS, areal precipitation
of concentric circles with different sizes is calculated and then the
annual maximum series is extracted from them. In MLS, MLES and
SLES, a study region with a radius double the largest radius of in-
terest is considered. Randomly distributed areas (and points) within
this region are considered for sampling of the respective areal pre-
cipitation series and the extreme value analysis.

their time index, the time step at which the year’s maximum
occurs, are extracted. For each area size and duration, the an-
nual maximum series from all the sampling sites are pooled
together and the dependent events are removed. The removal
of the dependent events is fulfilled such that, for each dura-
tion, the events which occur on the same day are filtered out
and for each day with multiple events registered in the do-
main, only the event with the highest precipitation depth is
kept in the sample. This results in a sample of pooled annual
maxima with

nMLS
AM ≤ nt × nsp, (14)

with

nt = 20 (15)

and

nsp = 500,350,200, . . .,50. (16)

The EVA is applied to the pooled annual maxima, and the
quantiles are calculated for each area size and duration.

3.2.3 Multiple-location extreme sampling (MLES)

MLES follows the same spatial sampling scheme and proce-
dure as in MLS (Fig. 4b) with the following additional step:
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after pooling the maxima together and removing the depen-
dent events, only the 20 largest events for each duration are
kept (n= 20):

AMMLES
= [AMMLS

(1) ,AMMLS
(2) ,AMMLS

(3) , . . .,n
MLS
(20) ], (17)

with a total sample size of

nMLES
AM = 20;nt = 20. (18)

3.2.4 Single-location extreme sampling (SLES)

The SLES method follows the same spatial sampling scheme
as MLS and MLES; however the EVA is done in a differ-
ent manner. In SLES, the sampling sites are chosen within
the study domain and the annual maximum series are cal-
culated for each sample as was done in MLS and MLES.
Then, instead of pooling the annual maxima together, the
PDF is fitted to each sample of annual maxima separately
using Eq. (11) with

nSLES
AM = nt = 20. (19)

This step results in nsp quantile values for each duration,
area size and return period. In the next step, for each dura-
tion, area size and return period, the maximum rainfall re-
turn depth is sought among the nsp values. Thus, the ADDF
curves are presented by selecting the maximum value of the
rainfall quantiles for each duration, area size and return pe-
riod within the study domain from

nsp = 500,350,200, . . .,50, (20)

where similar to MLS the value depends on the area size.

3.3 Spatial order problem quantification

Due to rainfall’s intermittency, as the area increases, the areal
precipitation depth must decrease under stationarity assump-
tions, since the areal precipitation is the average of precip-
itation values within the considered area. In this study the
ADDF curves are presented as sets of curves for different
area sizes as shown in the results section. The expected de-
crease in areal precipitation with area must manifest as a de-
scending order of the curves with area. As presented and
discussed vastly in the results and discussion section, our
curves did not show the expected descending order over all
durations. Instead, the decreasing order of curves changes to
an increasing order after certain durations. Different exam-
ples of this issue are depicted in Fig. 5. As is evident the
issue shows itself as crossings between the ADDF curves
that belong to one study location. In order to make this prob-
lem more comprehensible, quantifiable measures are defined
here. First for each set of ADDF curves at one location, the
spatial order difference (SOD) is calculated for all durations:

SOD(di)=
∑nA
k=1|rank(ZT (ak,di))− rank(ZT (ak,di−1))|

nA
,

(21)

with i = 2, . . .,10 and di =

5,15,30,60,120,240,480,720,1080 and 1440 min.
ZT represents the areal rainfall quantile with the return
period T , and nA = 10 is the number of area sizes. The
SOD is calculating the average rank difference in the areal
curves, between one duration and the duration before that to
determine whether or not the order of the curves has changed
from one duration to the next. The change in the curve ranks
indicates a crossing of the curves between two durations.

Then the following indicators are defined based on the
SOD:

– Number of crossings (NC) represents the number of
times that the order of the curves is not in descending
order. This value is defined for one set of curves, one
location and one return period.

NC= n[SOD(di) | SOD(di) 6= 0] (22)

– Degree of crossing (DC) indicates the extent of the dis-
crepancy between the observed spatial order of curves
and the supposed descending order, in other words the
complexity of the crossing in the curves. DC is defined
as follows:

DC=max
di

SOD(di). (23)

It is important to note that, in cases where the ADDF
curves have more than one crossing (NC> 1), the DC
refers to the crossing with the largest discrepancy from
the correct order. More detailed explanations and exam-
ples are offered in the Discussion section of this paper.

– Duration of crossing (CDur) is defined as the duration
at which the crossing happens. Here as well, in cases
where NC> 1, CDur is given for the largest crossing,
namely the crossing with the maximum DC.

CDur= di |SOD(di)=max
di

SOD(di)= DC (24)

4 Results

4.1 ADDF curves – SLS

The ADDF curves resulting from the SLS method are pre-
sented in Fig. 5. Each curve set is depicted as the areal precip-
itation quantiles vs. duration for the return period of 20 years,
where the colors distinguish the areas. The panels of the fig-
ure show four examples from different study locations. The
curve of the area at 1 km2 represents 1 radar pixel and is
equivalent to a point. The areal extremes increase with du-
ration and decrease with area for durations up to CDur= 8 h
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Figure 5. ADDF curves from SLS at four different locations for T = 20 years.

in all examples. For longer durations than CDur the extremes
increase with area at loc26 and loc38. At loc86 and loc92 this
increase occurs partly only for a few areas. This change in
behavior is the spatial order problem introduced earlier and
will be discussed in detail in the following subsection.

4.1.1 Spatial order problem – the crossings

The spatial order problem is depicted by crossings between
the ADDF curves of different sizes. Since the areal precipi-
tation decreases with increasing area, the areal curves should
have a descending order with increasing area size. Here the
expected descending order of curves changes (loc92) or be-
comes completely ascending (loc26 and loc38). This issue is
called hereafter the crossing of the ADDF curves. The exam-
ples shown in Fig. 5 show that the crossings have different
degrees of complexity at different locations, as locations 26
and 38 have a larger DC than locations 86 and 92. The cross-
ings are observed in 83 % of analyzed locations where the
majority of the crossings happen at durations longer than 8 h
(Fig. 6b).

4.1.2 Attribution of the crossings

To investigate the source of this behavior, the crossings were
analyzed in relation to distance from radar center, topogra-
phy and seasons. The ADDF curves from the maxima ex-

tracted from winter and summer time series separately show
that there are some differences in the behavior of crossings
in summer and winter. Both Figs. 7 and 8 show that in sum-
mer the number of locations with crossings is smaller than in
winter; nevertheless in both cases, the crossings are observed
in over 70 % of the locations. There are locations which show
no crossings, neither in summer nor in winter, and locations
which do not show crossings in summer but in winter and
vice versa. Another difference is observed in the duration and
the degree of crossings (Fig. 7a and b). In summer the ma-
jority of crossings occur at long durations, like 12 and 18 h,
whereas in winter the crossings appear mostly at 4 h; how-
ever, the number of locations with crossings at other dura-
tions is not insignificant. The ADDF curves of summer have
lower DC than the curves of winter (Fig. 7c). Based on the
distribution of the duration of crossing in space, no conclu-
sive relational pattern is observed with topography or with
the distance from the radar center (Fig. 8).

In order to investigate whether the crossings are an artifact
of the radar data or their correction and merging processes,
selected data from a dense daily rainfall station network are
used as a reference for this investigation. For that the areal
and point extremes in a subset of study locations are exam-
ined. The comparison between the areal and point precipi-
tation quantiles for T = 20 years from the daily station data
reveals that similar order relation problems occur with the
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Figure 6. (a) Daily station precipitation extremes with T = 20 years from stations which fall within the study locations (r = 18 km). Red
lines display the range of point precipitation, and black symbols show the areal percentiles. (b) Frequency distribution of the duration of
maximum crossing for the SLS ADDF curves.

Figure 7. Frequency distribution of the duration of maximum crossing for the SLS ADDF curve in winter and summer.

station time series (Fig. 6a). Out of 19 observed locations,
12 showed that the areal precipitation quantile for an area of
1017 km2 is larger than the point precipitation for at least one
station in the observed area. This observation is aligned with
what the crossings in the radar-based ADDF curves show and
confirms that the crossings are not an artifact of radar data
processing.

4.2 ADDF curves – alternative sampling strategies

4.2.1 MLS

The MLS ADDF curves (Fig. 9) present higher values of pre-
cipitation quantiles in shorter durations, whereas for dura-
tions longer than 4 h the values decrease and end up at ap-
proximately similar values to SLS ADDF curves. Moreover,
with the MLS the crossings do not appear as frequently as
SLS. In the rare cases in which crossings occur, the degree of
crossing is small and it is often the curves of the larger areas

crossing each other (Fig. 9, loc38 and loc92). Cases in which
the point curve is crossed by an areal curve happen rarely
(< 5 %). Figure 9 displays the ADDF curves for the same lo-
cations discussed in Fig. 5. As depicted, the crossings at lo-
cations 26 and 86 have vanished, while at locations 86 and 92
only the curves of the three largest areas cross each other, in-
dicating the spatial order problem occurs only between three
area sizes. The point precipitation (1 km2) is still higher than
all estimated areal precipitations. Compared to SLS curves in
Fig. 5 the curves at shorter durations show higher precipita-
tion depths, and for longer durations the curves show lower
values in MLS.

4.2.2 MLES

In the MLES method, by sampling the 20 largest events
within the study domain, the resulting ADDF curves present
higher precipitation quantile values and almost no sign of
crossings (only 2 % of locations had a crossing; Fig. 12),
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Figure 8. Relationship between the duration at which the crossings occur and elevation and distance from the radar center in winter and
summer for T = 20 years.

Figure 9. ADDF curves from MLS for T = 20 years. The results of MLS are calculated only for 7 of the 10 area sizes chosen at the beginning
of the study to lower the computational demand. Locations 26 and 86 show no crossings any more, and the DC values of locations 38 and 92
have been reduced compared to SLS,
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indicating that by applying the MLES method the precip-
itation quantiles decrease with increasing area. The curves
for the four example locations show no crossings and evi-
dently higher extreme levels than the results of the SLS and
MLS methods (Fig. 10). These high values are a result of the
sample of maxima used in this method. It is noteworthy that
MLES curves have a very low area-to-point (or ARF) ratio
since the distance between the curves of different area sizes
is higher than in the other two methods.

4.2.3 SLES

Figure 11 shows the results using SLES for the four exam-
ple locations. The ADDF curves resulting from SLES show
quantile values generally higher than SLS results, where
the difference is significant in curves of smaller areas; the
larger the area becomes, the closer the values of the SLES
curve are to the SLS. Compared to MLS results, the SLES
shows higher precipitation quantile values for longer dura-
tions, whereas for shorter durations the values of both meth-
ods approximate each other. Over all, the MLES curves show
higher values than SLES over all durations and area sizes.
The frequency of crossings appearing in the resulting curves
is higher in the SLES than MLES method but lower than in
MLS and SLS method (Fig. 12c). However the degree of
crossing in the SLES crossings is considerably low like in
MLES (Fig. 12b).

For more detailed interpretation and reasoning on the dif-
ferences in results of different methods, the authors refer the
reader to Sect. 5.3.

4.3 Crossings’ statistics

We compare the ADDF curves from the different sampling
methods for durations of 1 to 24 h and a return period of
20 years (Fig. 12). To develop the alternative sampling meth-
ods only a subset of durations and areas (d = 1, 3, 4, 6, 8,
12, 18 and 24 h; a = 1, 12, 50, 113, 314, 615 and 1017 km2)
are taken into consideration to reduce the computational de-
mand of the analysis. Therefore the number of locations with
crossings mentioned in this section is different from the num-
ber presented in Fig. 6. The choice of the return period of
20 years in Fig. 12 is solely an example in the presentation
of results and has no significance over other return periods.
In SLS results, 69 % of the locations present crossings, and
there are multiple cases with more than one crossing over
all durations (Fig. 12c); for example, there are locations with
crossings of curves at five different durations. The statistics
in Fig. 12 are based on the mentioned subset. The number
of locations with crossings decreases in MLS, with 50 %
of curves showing crossings and the number of crossings
within each set of curves decreasing. With MLES, the num-
ber of locations with crossings reduces to 2 % where both
locations have only one crossing in their respective set of
curves. In SLES this number increases to 26 % which shows

a decrease compared to SLS and MLS and an increase com-
pared to MLES. Figure 12b shows the variation in the de-
gree of the crossing in three different scenarios, where clearly
the degree of crossing decreases as we move from a single
fixed-location sample to a more spatially distributed sample
of maxima.

5 Discussion

The ADDF curves are calculated for different area sizes at
100 locations using a radar-based rainfall data set, and the
observed spatial sampling issue is investigated. Alternative
sampling strategies of extremes are developed and compared.
In this section we discuss the crossings issue, the reason be-
hind it and what they mean. Further, we interpret the effect
of the sampling methods on this issue and finally compare
the point results of different methods with KOSTRA-DWD-
2020 (Junghänel et al., 2022), the DWD’s station-based de-
sign storm catalog for the whole of Germany.

5.1 The spatial order problems and attribution

As discussed in the previous sections, using a fixed-
point/fixed-area approach for sampling extremes leads to re-
sults in ADDF curves which are not consistent with the phys-
ical characteristics of rainfall extremes. This inconsistency
appears as crossings in ADDF curves, which indicate that
from a certain duration (CDur) the extremes increase with
area. The irregular and sporadic nature of rainfall leads to
variations in intensity and duration over time and space. In
smaller areas, intermittent and localized heavy rainfall events
can significantly influence the average rainfall depth. As the
area size increases, these localized events are spread out and
averaged with regions experiencing less intense or no rain-
fall, leading to a lower overall average rainfall depth. In
a fixed observation area with a single observation point at
the center (or any point within the area), the largest event
of the year for a certain duration may consist of multiple
smaller cells drifting across the area in a scattered manner.
It is likely that the rain cell with the largest intensity never
passes over the observation point. In that case the areal pre-
cipitation might end up higher than or equal to the point pre-
cipitation. The same reasoning is valid for the areal precip-
itation of a fixed small observation area within a larger ob-
servation area, and this is what leads to the crossing of the
ADDF curves. In other words, wherever the crossings ap-
pear in ADDF curves, at the durations following the cross-
ing, the point and all or some of the smaller areas missed the
part of the annual maximum event which included the pixels
with the highest precipitation depths. The findings from Bár-
dossy and Pegram (2018) support this interpretation. Further-
more, the ADDF curves at durations longer than CDur lead to
ARF> 1. Mélèse et al. (2019) reported briefly in their study
about rare cases of this behavior which they attributed to the
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Figure 10. ADDF curves from MLES for T = 20 years. Compared to SLS and MLS results, these curves show no crossings at any of the
example locations.

intensification of rainfall in mountainous region due to orog-
raphy. It is noteworthy that in contrast to the study region
of Mélèse et al. (2019) our study region is predominantly flat
with a small mountainous part which according to Fig. 8 does
not have a significant relationship with the crossings.

The DC as a measure of how complex a crossing is can
vary between 0 and 3.5 for the curve sets with seven area
sizes (and from 0 to 5 with 10 area sizes). The larger the DC,
the more complex the crossing. A higher DC, thus a more
complex crossing, means more observation areas missed the
extremes captured by larger areas, indicating that the areal
annual maxima were sampled poorly compared to a case with
a lower DC or no crossing at all. It is worth repeating here
that there are sets of ADDF curves, especially in SLS results,
where the crossings appear at multiple durations. The DC and
the CDur are only referring to the crossing with the highest
degree of crossing within a set of ADDF curves.

To investigate this issue from the seasons’ (or event types’)
perspective, the analysis was repeated on the extremes of
winter and summer separately. In winter the dominant events
belong to frontal systems which affect larger storm areas,
whereas in summer the convective storms comprise the ma-
jority of the events, which are spatially concentrated and
short in duration (Biondi et al., 2021). The winter ADDF
curves show larger DCs compared to summer (Fig. 7), and
the crossings appear at almost all durations, whereas in

summer the crossings happen predominantly around 1218 h.
Frontal events in winter are characterized by their larger spa-
tial and temporal extent. If the event is drifting over a part of
the observing circles and the most intense cells are not pass-
ing over the center point or smaller areas, a higher number
of areas capture a higher areal precipitation than the point in
the center or areas of smaller sizes, which leads to a higher
DC. The same applies to the frequency distribution of the
CDur. In winter the crossings appear with a considerable
frequency at most of the studied durations, ranging from 2
to 24 h. Frontal events’ longer temporal spans allow shorter
observation windows to capture the same prolonged events.
On the contrary in summer with the convective events with
shorter durations and smaller areas, a crossing happens when
(a) one event is captured partially by the observing areas or
(b) multiple events drift over the circles. In both scenarios the
events drift over the observing window so that the observing
areas are not completely covered by them and the storm cen-
ter cells with the highest intensity pass through the observa-
tion window closer to the edges than to the center. Since the
events are smaller specifically in scenario a, the DC is smaller
because it is likely that not all the observing areas capture the
event. Scenario b happens at the longer durations, where due
to the short duration of the predominant convective events
the long temporal observation window is more likely to cap-
ture multiple events as one observation. The number of lo-
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Figure 11. ADDF curves from SLES for T = 20 years. Compared to SLS, MLS and MLES results, these curves show no crossings at any of
the example locations.

Figure 12. Crossing statistics for the three different strategies: (a) frequency of locations with different number of crossings, (b) distribution
of the degree of maximum crossing among 100 locations for different sampling strategies and (c) distribution of the duration of maximum
crossing. All statistics are based on the ADDF curves with 20-year return periods.

cations with crossings is slightly lower in summer because
the fixed spatial sampling and smaller area coverage of con-
vective events increase the likelihood of missing some events
entirely.

All the above points support the existence of the spatial
order problem with traditional single-location sampling. In
order to reach an effective method for calculating areal ex-
treme rainfall, this issue needs to be addressed.

5.2 Effect of the sampling method

To tackle the spatial sampling problem, alternative methods
are offered. As is evident in Figs. 9, 10 and 11 the spa-
tial order problem is addressed by all methods. In MLS and
SLES the crossings are reduced in number and degree, and
in MLES the crossings vanish almost completely with 98 %
of locations showing no crossings. This shows that by taking
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multiple areal samples across a domain surrounding the loca-
tion of interest, the potentially missed extreme events will be
covered by the observation window. Notably all three of the
alternative sampling methods are more successful in captur-
ing the real extremes. By pooling the extreme value distribu-
tion is assumed to be stationary, thus belonging to the same
PDF. The MLES curves do not provide the extreme rainfall
for a point or area but rather for any point or area within the
study domain. Therefore, MLES cannot be used for design
because it is overestimating the risk of extremes. Moreover
it would lead to very small ARF values in practice due to the
very small point-to-area ratio of the curves mentioned in the
results section. As an example, at loc92 (Fig. 10) the ARF
for an area of 1017 km2 would be roughly 0.3. The very low
ARF values resulting from MLES curves, when applied to
point precipitation quantiles which might already be under-
estimated, would yield a significant underestimation of the
areal precipitation extreme and lead to high vulnerability of
infrastructure built based on such calculations.

In the SLES approach, although the number of the lo-
cations with the crossings is not insignificant, the degree
of crossing is very low at all the locations which have the
crossings. These cases are mostly where only two curves of
1 and 12 km2 cross and in rare cases where the curves of
50 and 113 km2 cross. The final ADDF curves are driven
partly empirically as the maximum quantiles within are cho-
sen for each duration and area size after the PDF fitting. In
other words, the final resulting ADDF curves from the SLES
method are not the direct outcome of the extreme value anal-
ysis; thus the curves have breaking points in them where the
slope changes. Furthermore the SLES curves present much
higher point-to-area ratio and can yield more realistic ARF
values than MLES curves.

As there are no established methods for estimating spa-
tial extremes directly from station rainfall data, there is no
reference at hand to validate the radar-based ADDF curves.
Therefore a simple comparison is done on the point level be-
tween the 1 km2 curves of the three sampling strategies and
the extreme rainfall values from KOSTRA at the 100 study
locations (Fig. 14). KOSTRA is the standard reference for
station-based extreme rainfall in Germany, used by engineers
and water authorities, and is provided as a grid covering the
whole of Germany at 5 km resolution for different durations
and return periods (Junghänel et al., 2022).

KOSTRA shows significantly higher values among all du-
rations compared to SLS. This is due to the fact that KOS-
TRA is based on a 60-year station network time series,
whereas the radar product used for this study covers only
20 years. With a longer observation period there is a higher
chance for the rain stations to capture larger extremes over
time. Moreover, as observed in Fig. 3, although the merged
radar product used in this study performs well at estimating
rainfall extremes, the extremes are underestimated overall.
This underestimation would propagate in spatial and tempo-
ral aggregation done in the extreme value analysis and might

be another reason for the discrepancy between the KOSTRA
and SLS values. In addition, the results from Peleg et al.
(2018) proved that the radar rainfall estimates do not ac-
count for the subpixel-scale rainfall variability and thus lead
to partly significant underestimation of the DDF curves when
comparing a single point with a radar pixel of 1 km2 size. The
disadvantage caused by the radar data set’s short length and
the systematic underestimation affects all sampling methods.

Similarly, MLS shows smaller values than KOSTRA for
all durations. For durations longer than 6 h the MLS ex-
tremes vary less with duration and they present smaller val-
ues than SLS. This is possibly because by sampling indepen-
dent annual maxima from multiple sites in a domain of over
4000 km2, we are adding annual maxima of different mag-
nitudes to our final sample of maxima. Although the pooled
sample includes the largest events of the domain, which is of
interest in this method, the frequency of the annual maxima
smaller than the most extreme events of the domain is in-
creased in the final sample as well. Thus although including
the highest values within the domain is favorable to our goal,
the addition of a high number of medium-level extremes af-
fects the parameters of the PDF drastically. The presence
of a larger number of smaller annual maxima in the sample
leads to less variable quantiles among durations and a biased
sample which leads to significant underestimation of the ex-
tremes. Figure 13 as well shows the low variability in the
MLS ADDF curves over durations and the underestimation
easily detectable in panel (b), as the MLS extreme values of
longer durations are smaller than the extremes of SLS.

5.3 Comparison with KOSTRA

MLES values have a median which approximates the KOS-
TRA results but generally a much wider inter-quartile range
compared to KOSTRA. For sub-daily durations, the MLES
sampling leads to higher extremes than KOSTRA, and for
daily events KOSTRA has higher values than MLES. This
can be explained by the longer duration of the events and
observation period. A longer temporal window has better
chances of capturing the storm traces. This, in combination
with long time series of observation in KOSTRA, can ex-
plain KOSTRA showing higher extremes than MLES, which
is based on only 20 years of data.

SLES point extremes have higher values than SLS for all
durations and than MLS for durations longer than 3 h. Events
with 1 and 3 h durations are approximately the same in the
MLS and SLES methods. Compared to KOSTRA, SLES
shows lower values; however the discrepancy between SLES
and KOSTRA is smaller than the difference between MLS or
SLS and KOSTRA.

Among the three tested sampling strategies, we recom-
mend the SLES method for estimating the representative
point extreme or calculating the area extreme of a catchment
directly, as it presents the maximum precipitation quantile
for the region. Moreover, for the purpose of calculating ARF
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Figure 13. Comparison of the ADDF curve resulting from different sampling strategies. Results from one location for T = 20 years with
areas r = 1 and 10 km in panels (a) and (b) respectively.

Figure 14. Extremes for T = 20 years at a point scale (a = 1 km2)
at the 100 studied locations. Comparison of different sampling
strategies and KOSTRA.

it is a more suitable method, especially for a case like Ger-
many, where the design point rainfall catalog is solely based
on station data.

6 Conclusions

In this study we aimed to develop a method for moving from
a point approach to a more spatial approach in design rainfall
estimation by utilizing a radar-based product. The initial at-
tempts for calculating the ADDF curves showed an implau-
sible pattern: the crossing of the curves and the increase in
rainfall quantiles with increasing area. To validate the truth-
fulness of the observed behavior, different hypotheses were
tested. A comparison with the EVA results of a dense daily
station network revealed the same behavior, which led the
authors to question the sampling methods. As a solution to
this problem, three innovative alternative sampling methods
are presented and discussed.

The main findings of this paper are as follows:

– By observing annual precipitation maxima through
fixed points and areas, there is a risk that the obser-
vation window may not capture the rain cells with the
highest rainfall depth as the event might bypass the ob-
servation window in space. Missing the highest depths
of the annual maximum events manifests as crossings of
ADDF curves representing different area sizes and de-
picts an increase in precipitation depth with area size.
The crossings in ADDF curves show that the point sam-
ple and the samples of the smaller areas have missed the
rain cells with high rain depths which were captured by
the samples of larger areas.

– To tackle this issue multiple-location sampling meth-
ods are presented in which samples of annual maxima
are taken from multiple points and areas randomly dis-
tributed within a study domain, encompassing the lo-
cation of interest. The MLS takes the pooled series of
annual maxima from all sampling sites, whereas MLES
takes the 20 largest events of the pooled sample from the
region. The SLES looks at the extremes of each sam-
pling site separately and takes the highest quantile val-
ues within the region for each duration and area size.

– The MLES method proved to be the most successful
among the three in removing the crossings from the
curves; however, it would lead to significant overesti-
mation of point extremes and low ARF values due to the
large distances between the curves. Currently available
point design rainfall catalogs like KOSTRA are based
on conventional methods and thus might underestimate
the reality of the point extremes. Therefore, MLES can-
not offer a suitable practical solution because applying
low ARF to underestimated point extremes might lead
to significant underestimations.

– The MLS method shows low values, partly even lower
than SLS due to the presence of a high number of
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medium-level annual maximum rainfall depths in its
sample, and this method is not as successful as MLES
and SLES in removing the crossings.

– The SLES method is the method that would be recom-
mended here as a starting point for a practical solution
to this problem, since it reduces the number of locations
with crossings from 69 % to 26 %, and although it does
not reduce the locations as well as MLES does, the re-
maining locations with crossings in the SLES method
show only an insignificant degree of crossings. More-
over, the ARF values which would result from this
method are more realistic compared to MLES.

– The discrepancy of the point extremes between KOS-
TRA values and the results of the alternative sampling
methods is due to (a) the short length of the observed
time series by the radar product (20 years) compared
to the stations’ data sets used for KOSTRA (60 years)
and (b) the minimal level of underestimation of the rain-
fall extremes by the merged radar product. Both of these
shortcomings affect the three alternative sampling meth-
ods equally. Further developing the method of radar data
correction and merging, as well as using advanced sta-
tistical approaches, would help compensate for the short
length of radar records. However further investigations
are needed, which do not fit in the scope of this study.

The issue of the underestimation of extremes by conven-
tional methods has been rarely discussed in the hydrologi-
cal community (Bárdossy and Pegram, 2018). To our knowl-
edge this paper is the first study investigating this issue in
detail and more importantly offering a solution. The authors
are convinced that moving from a point understanding of the
rainfall extremes to a spatial understanding is crucial and that
the SLES method is a strong starting point for developing ro-
bust solutions for engineering practice.
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