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Abstract. The roadmap to enable operational soil moisture
(SM) monitoring for meteorologic and hydrological early
warning depends on the capabilities of the available remote
sensing and modelling products. Since each type of soil
moisture product shows specific strengths and limitations
due to their technical restrictions over certain environments,
the detection of impactful anomalies across a wide range of
conditions and scales is often challenging and incomplete
without a combination of complemental data types of suffi-
cient resolution, revisit time and coverage. This study evalu-
ates the capabilities of SM products of different nature and
their compatibility for combination, with special attention
to their uncertainties in spatial consistency and in residual
trends. While the first has been often revisited to validate re-
mote sensing and modelling products against in situ data, the
last is often overlooked in studies addressing SM changes
despite its potential to disrupt the outcomes.

To meet the demands of operational monitoring this study
evaluated three SM products: (1) the Satellite Application
Facility on Support to Operational Hydrology and Wa-
ter Management (H SAF) active Advanced SCATterometer
(ASCAT)-derived dataset, (2) the passive subset of the Eu-
ropean Space Agency (ESA) – Climate Change Initiative
(CCIp), and (3) the modelled dataset from the European
Drought Observatory (EDO). The analysis was carried out
over Europe in the period 2007–2022 at 10 d temporal scales
and 5 km× 5 km spatial sampling. First, Pearson’s correla-

tion coefficient (R) is used to measure the correspondence
between H120, H121, CCIp and EDO SM products. Then
triplets of the active, passive and model-based products are
applied triple collocation analysis (TCA) to assess their per-
formance based on TCA metrics such as the correlation, error
variance, sensitivity and signal-to-noise ratio.

We obtained that these popular well-validated datasets are
increasingly capable in view of the notable TCA scores ob-
tained but still subject to patches of spatial inconsistency and
residual trends when compared against in situ SM data of the
International Soil Moisture Network (ISMN). These uncer-
tainties have minimal impact on drought monitoring in most
of Europe, except in snow prone regions and for the assess-
ment of long-term soil moisture trends used to design climate
adaptation policies. Furthermore, each type of soil moisture
product prevails in terms of triple collocation scores over the
others under specific environmental conditions of the Euro-
pean continent. In view of the synergies shown by the ac-
tive and passive remote sensing and the modelled SM esti-
mates, two merged products are proposed and tested against
the in situ data. The merging of the products is conducted
by combining the various products based on weights cal-
culated proportionally to the R_TCA scores of the triplets
equalized in dynamic range matching their cumulative dis-
tribution functions. Results indicate that combining H SAF
ASCAT, CCIp and EDO equals or surpasses the spatial and
temporal consistency of the individual SM products alone,
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even when only the near-real-time products of H SAF AS-
CAT and EDO are combined. The evaluation of the trends
of the individual products also indicates that small residual
trends remain despite the improved filtering of the uncertain-
ties, but given their differing sign of the trend, once combined
into merged products can provide improved temporal stabil-
ity of the series. Thus, merging remote sensing and mod-
elled SM products enhances spatial consistency, resolution,
temporal coverage and near-real-time capabilities for better
European-scale drought monitoring, strengthening the early
warning and risk management systems devoted to improving
societal and environmental resilience.

1 Introduction

Soil moisture (SM) is a key state variable of the water cy-
cle, fundamental in the study of climate change impacts.
SM anomalies are early indicators of altered conditions in
both the hydrological domain (Ford et al., 2015; Brocca
et al., 2016; Li et al., 2023) and many critical zone pro-
cesses (Seneviratne et al., 2010; Green et al., 2019; Bolten
and Crow, 2012). Therefore, characterizing SM dynamics
over time and space was encouraged long ago (Owe et al.,
1999) to better understand the implications of SM changes
and their pace of alteration on related processes. Tradition-
ally such analyses were conducted in field studies. However,
alternatives are necessary to ease the systematic monitoring
of SM hindered by the heterogeneous nature of the variable
(Wilson et al., 2004; Zucco et al., 2014) and the persisting
lack of funding for SM observation networks (Dorigo et al.,
2021). The emergence of remote sensing (RS) sensors and
missions (Schmugge, 1983; Wigneron et al., 2000, Entekhabi
et al., 2010) and the rapid development of SM capable mod-
elling tools (e.g. Sheffield and Wood, 2007; Dirmeyer et al.,
2006; De Roo et al., 2000) enabled widespread use of SM
data for earth systems analysis (Ochsner et al., 2013).

Two approaches have primarily dominated SM RS tech-
nologies: active and passive microwave instruments. Active
sensors detect the reflection of the emitted electromagnetic
radiation (radar) while passive ones detect naturally emitted
microwave radiation (radiometer) (Schmugge, 1983). Early
satellite missions carrying active sensors were not primar-
ily designed for soil moisture detection but proved useful for
this purpose beyond their initial meteorological scope (Loew
et al., 2013). Such pioneering satellite missions with active
sensors include the series of European Remote Sensing Satel-
lites (ERS-1/-2) and the series of Meteorological Operational
Platforms (Metop-A/-B/-C). The Satellite Application Facil-
ity on Support to Operational Hydrology and Water Manage-
ment (H SAF) provides surface SM (SSM) estimates derived
from ASCAT on-board the series of Metop satellites since
2008 with near-real-time operability (Albergel et al., 2012).

The passive sensors include the Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR)
mission on board the Aqua satellite launched in 2002 (Njoku
et al., 2003) and the SM dedicated European Space Agency
(ESA) Soil Moisture and Ocean Salinity (SMOS) mission
of 2009 (Wigneron et al., 2000). Their decisive contribu-
tions stimulated the systematic use of L-band passive data,
which are less prone to interferences among different mi-
crowave bands (Kim et al., 2013). With the experience of
dedicated active and passive missions, the Soil Moisture Ac-
tive Passive (SMAP) mission initiative of NASA (Entekhabi
et al., 2010) aimed to take advantage of combining active and
passive sensors. Unfortunately, the failure of the SMAP radar
soon after launch left this ambition to merging initiatives like
the ESA Climate Change Initiative (CCI) Soil Moisture Ver-
sion 08.1 (Gruber et al., 2019), whose passive subset is used
here (i.e. CCIp).

The distinct capabilities of the active and passive RS SM
datasets soon became objects of interest (Scipal et al., 2008).
To support the SM retrieval difficulties of one technique with
the advantages of the other, multiple studies explored the
combination of either data of different RS types or of RS
with modelled data, often applying first the scaling of the
cumulative distribution function (Reichle and Koster, 2004).
Since then, different merging methods have been proposed,
from simple equal weighting to least-square frameworks that
assign weights based on error variances (Yilmaz et al., 2012).
These developments have led to the release of combined pas-
sive and active global SM datasets (Liu et al., 2012) such
as CCI. Combined products reportedly outperform single-
source products for SM evaluation (Dorigo et al., 2015;
Wang et al., 2021) while still inheriting some limitations of
active and passive retrievals under challenging environmen-
tal conditions.

In parallel to the development of RS SM datasets, notable
progress has been made in modelled SM products, which are
increasingly used and evaluated (Beck et al., 2021). From
land surface models to conceptual models like LISFLOOD
(LF) (De Roo et al., 2000), different modelling schemes
have been widely incorporated to meteorological forecasting,
reanalysis and monitoring protocols (Van der Knijff et al.,
2010). In particular, LF was adopted as the primary tool for
providing near-real-time flood risk assessment at continen-
tal scale for European Flood Awareness System (EFAS) and
drought monitoring in the European Drought Observatory
(EDO) (Cammalleri et al., 2015). The flexibility of models
is beneficial to evaluate SM sensitivity to the many factors
of the complex soil system even under scenarios (Vereecken
et al., 2016). However, their high demand on data, intri-
cate parameterization and underlying assumptions may de-
grade the reliability of their estimates (Fatichi et al., 2016;
Samaniego et al., 2010). Conversely, models can generate
SM estimates even under conditions challenging for RS tech-
nologies but struggle to characterize relevant features of SM
processes such as the heterogeneity.
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Despite the increasing capabilities of RS and model-based
datasets, the meteorological and hydrological early warn-
ing systems demand products ensuring reliable monitoring
across a wider range of scales and environmental condi-
tions than the ones the current products alone can provide.
For instance, active remote sensing products like ASCAT
are known for their high temporal resolution but may strug-
gle in densely vegetated areas (Wagner et al., 2013). Con-
versely, passive remote sensing products such as the SMOS
and SMAP can be affected by radio frequency interference
and surface roughness (Entekhabi et al., 2010). Meanwhile,
model-based products reliability can be highly impacted by
the quality of the input data, which varies across regions
(Samaniego et al., 2013). Therefore, since the characteriza-
tion of impactful anomalies across some of the environments
and scales (e.g. headwaters, densely forested areas, semi-arid
areas) that are more relevant for the monitoring is challeng-
ing or incomplete without combining data, merging com-
plemental products is beneficial and due to it favoured by
both monitoring agencies (e.g. EDO) and the scientific com-
munity (Peng et al., 2017; Liu et al., 2011). For instance,
the combination of active and passive remote sensing data
has been shown to improve SM estimates by leveraging the
strengths of both data types (Dorigo et al., 2015; Liu et al.,
2012). Therefore, this study pays special attention to the
compatibility of different SM products and their combined
potential, with a focus on their implicit uncertainties.

Every SM product used for monitoring, whether from RS,
models, or merged origin undergo validation using a vari-
ety of protocols, including the check for validity against the
nearby in situ data (Al-Yaari et al., 2019) of the International
Soil Moisture Network (ISMN) (Dorigo et al., 2011; Dorigo
et al., 2021). However, validation often reveals limitations
in coverage, continuity and scale (Loew et al., 2013; Peng
et al., 2017). A critical aspect of validation that requires ma-
jor attention is identifying spurious tendencies (Gruber et al.,
2020; Wagner et al., 2022) that can affect the interpretation
of the spatiotemporal features of SM data in the context of
climate change. Beyond prominent works that proved funda-
mental reporting change in the SM series (e.g. Dorigo et al.,
2012; Albergel et al., 2013a; Feng and Zhang, 2015; Cam-
malleri et al., 2016), multiple studies, even when proposing
effective approaches to identify trends, may have reported
tendencies that may be artefacts of the SM series. Despite
the critical role that uncertainties in SM datasets can play
in altering the outcomes of a study (e.g. in trend analysis),
explicit analyses of the uncertainties of the data inputs (e.g.
residual trends) and their propagation into results have al-
ways been rare. Only a few studies have incorporated this
crucial step despite its relevance, whether from the early days
of pioneering SM products (e.g. Künzer et al., 2008; Draper
et al., 2009; Liu et al., 2012) or in recent times with new
product versions, improved processing methods, or when in-
gesting new data (e.g. Karthikeyan et al., 2017; Zwieback
et al., 2017). Key studies on this topic reported temporal in-

stabilities in SM series (e.g. artificial trends, Dorigo et al.,
2010; temporal instability, Albergel et al., 2013b; or inherited
parameterization uncertainties, Crosson et al., 2005). There-
fore, specific audit of the uncertainties of the data is required
(Peng et al., 2021a; Brocca et al., 2017b).

Consequently, at least these matters require thorough revi-
sion before proposing a systematic application of SM prod-
ucts for the exhaustive detection of SM evolution demanded
by operational monitoring. This study evaluates three types
of SM data – passive RS, active RS and model-based of
near-real-time capabilities – to better explore their individual
and combined consistency and suitability for the operational
monitoring of SM. The following activities are targeted:

– Assessing the correlation of ESA CCIp, H SAF re-
mote sensing ASCAT-SSM-CDR-12.5 km, including
both Version 7 (H120) and Version 8 (H121), with the
model-based EDO SM data.

– Discussing the suitability of product merging of active
and passive RS SM with model-based SM for opera-
tional monitoring across a range of environmental con-
ditions wider than that of the one of each product alone,
focusing on near-real time product capabilities.

– Evaluating the performance of the active and passive RS
SM, model-based SM and merged SM products against
in situ observation of the ISMN in Europe.

– Describing the trends of these diverse SM datasets and
their combination and discussing their specific perfor-
mance and its impact on trend detection, which has im-
plications on the definition of drought severity and du-
ration.

2 Study area

The study focuses on Europe with additional coverage of
the areas surrounding the Mediterranean basin. The EDO in-
cludes data produced by a defined setup of the hydrological
model LF whose domain covers almost the whole European
continent and the Mediterranean region, approximately be-
tween latitudes 25 to 72.5° N and longitudes 25° W to 50° E.
Most RS products are of global scope and are therefore suit-
able for multiple-scale analysis from the global scale to the
scale of their spatial resolution. The geography of Europe
comprises a wide range of features across the range of scales
covered by the spatial resolution of the RS SM products.
However, some RS SM products are somehow limited at high
latitudes (latitudes higher than 60° N) due to physical charac-
teristics of the environment (permanent frozen soil and snow
cover, water bodies, and vegetation interference); results of
the boreal belt (60–72.5°) are included in the study to illus-
trate the challenges of SM monitoring over such areas. The
area of study is displayed using Lambert Azimuthal Equal
Area (EPSG: 3035) centred at 50° N, 15° E. (Fig. 1).
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Figure 1. (a) Climatic classification based on Köppen–Geiger climate types of Europe and the circum-Mediterranean region (adapted from
Beck et al., 2018; CC BY 4.0). Grey areas represent climate types excluded from analysis. (b) Elevation map based on ETOPO_2022 by
NGDC NOAA (MacFerrin et al., 2024; CC0 1.0).

Figure 2. Location of the SM networks of the ISMN initiative in Europe superimposed over ESA CCI Land Cover 300 m 2015 (Copernicus
Climate Change Service, Climate Data Store, 2019). Yellow/green colours comprise the multiple land cover classes without/with significant
vegetation effects on the retrieval of soil moisture using remote sensing. Urban areas are coloured in pink.

The scope at the European scale grants the existence of
multiple climatic regions of particular environmental charac-
teristics (Fig. 1b) within the study area. Not only in terms of
latitude, from the tundra of northern Scandinavia to the arid
and semiarid regions of the Mediterranean basin, but also

from sea level to alpine altitudes, Europe offers a wide range
of climates (Fig. 1a: Map of climatic areas based on the clas-
sification of climates of Köppen–Geiger (Beck et al., 2018).
At least three out of five of the main climatic domains of this
classification can be found across the continent, the type B
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climate of semi-arid to arid regions defined by precipitation
and two temperate climates determined by the annual tem-
perature range: the type C of low annual temperature range
modulated by sea influence and the type D of wide annual
temperature range prevalent in the continental inland areas.
Other geographical aspects beyond climatic zoning such as
land cover have not been considered but play a role in uncer-
tainties of the RS SM data retrieval such as biomass content
or dense vegetation (Pfeil et al., 2018; Ma et al., 2019; Iko-
nen et al., 2018) and are only secondary objects of comments
in the discussion (Fig. 2: Map of ISMN networks with land
cover).

3 Materials and methods

3.1 Remote sensing soil moisture data

3.1.1 Active microwave soil moisture

H SAF soil moisture products

The C-band real aperture radar system of ASCAT on board
Metop-A satellites since 2006, Metop-B since 2012 and
Metop-C since 2018, collect active microwave data at sun-
synchronous near-polar orbits that is processed using the
TU Wien SM retrieval algorithm to generate the H SAF
SSM products. The products used here ASCAT-SSM-ICDR–
12.5km-v7 (H120) (https://hsaf.meteoam.it/Products/Detail?
prod=H120, last access: 3 May 2025) and the upcoming
ASCAT-SSM-CDR–12.5km-v8 (H121) cover the study pe-
riod 2007–2022 and incorporate the last improvements on
signal processing and correction (Hahn et al., 2017). This
remarkable length, continuity and coverage of the ASCAT-
derived H SAF SSM products have popularized RS SSM
for multiple applications (Brocca et al., 2017b). The H SAF
products H120 and H121 used here have a spatial sampling
of 12.5 km arranged on a Fibonacci spiral grid at a spatial
resolution of 25 km× 25 km. SSM is expressed as degree of
saturation (0 % dry soil, 100 % fully saturated soil) of the
first few centimetres of the soil (< 5 cm) as water volume
present in the soil relative to pore volume (Wagner et al.,
1999; Naeimi et al., 2009). The combination of the data from
the different satellites MetOp A, B and C (currently only B
and C) covers the entire globe every few days.

3.1.2 Passive microwave SM based on C-band and
L-band retrievals

ESA CCI passive soil moisture dataset

ESA CCI passive dataset (CCIp) is a subset of ESA
CCI SM v08.1 (Dorigo et al., 2017; Gruber et al.,
2019) (https://climate.esa.int/en/projects/soil-moisture/, last
access: 4 April 2024) based on merging of passive sen-
sors only. The data is provided globally at a sampling of

0.25°× 0.25° with more frequent spatial gaps in the early
years of the dataset (Loew et al., 2013). Alpine or boreal
regions and densely forested areas show spatial and tempo-
ral gaps of the retrievals due to frozen soils or the canopy
cover attenuation (Dorigo et al., 2017). The data at daily
temporal resolution is available from November 1978 to the
end of 2023. The merging is conducted on the basis of the
signal-to-noise ratio and scaled against SM dynamic ranges
of GLDAS-Noah v2.1 land surface model (Rodell et al.,
2004) and break-adjusted (Preimesberger, 2020).

3.2 Model-based soil moisture data

3.2.1 The European Drought Observatory (EDO)

The EDO (https://edo.jrc.ec.europa.eu, last access: 5 Decem-
ber 2023) provides LISFLOOD (LF) model-based SM esti-
mates. LF is the distributed rainfall–runoff model initially de-
veloped for flood forecasting by the Land Management and
Natural Hazards Unit of the Joint Research Centre (JRC)
of the European Commission. The first two layers (corre-
sponding to the root depth) of the three layers provided by
the model when simulating the water balance of the catch-
ment are considered for the commutation of the SM index.
The dataset has a 5 km× 5 km grid cell size. To perform all
the analyses, H120/H121 and CCIp SM products are regrid-
ded to this finer spatial resolution of EDO. The dataset spans
from 1991 to present at daily temporal resolution but is com-
monly provided at the 10 d period corresponding to the 1st,
2nd and 3rd third of the month.

3.3 In situ soil moisture data

3.3.1 The International Soil Moisture Network (ISMN)

The International Soil Moisture Network (ISMN, https://
ismn.earth/en/, last access: 20 May 2024, Dorigo et al., 2021)
is the collective initiative supported by ESA to compile the
data of multiple networks observing SM around the globe
originated for various purposes. Since the SM data became
essential for RS, the ISMN aims to favour the harmonization
of the SM observations. As of May 2024, the ISMN database
hosts 80 networks of data all over the world, including the
26 networks across Europe included in this study with data
available in the study period 2007–2022 (Table S1 in the Sup-
plement). The networks comprise a diverse but uneven range
of climates and land cover (Table S1). The assorted scales
and measuring settings of the included ISMNs are of chal-
lenging spatial representativity compared to the distributed
RS data (Gruber et al., 2013).
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3.4 Methodology

3.4.1 Preprocessing

Initial datasets feature diverse spatial and temporal scales.
For this reason, both spatial and temporal pre-processing of
the datasets is required. In spatial terms, the datasets are re-
gridded to the reference spatial grid of EDO of 5 km× 5 km
using the search of nearest neighbours of KD-Tree algo-
rithms. In the case of H120 and H121, a transformation from
the original Fibonacci swath geometry used by ASCAT to the
regular grid geometry of the other datasets is required. The
temporal time step defined for the analyses is the 10 d time
scale, which is the time scale followed by the EDO. Each
of the three reference dates per month arranged in this tri-
monthly basis represent the average conditions of a third of
the month (i.e. from the 1st to the 10th, from the 11th to the
20th and from the 21st to the 31st of a month). All initial
values within each of third of the month at daily time step
are aggregated to the reference date of the corresponding in-
terval. In the case of H121, the aggregation to the 10 d time
scale is computed by directly aggregating the hourly-scale
datasets within the 10 d period during the computation of
the soil water index (SWI) from the original SSM given in
degree of saturation. The computation is based on the expo-
nential smoothing filter (Wagner et al., 1999b; Albergel et al.
2008) that converts the surface soil moisture saturation de-
gree, ms(t), into the SWI(t) (Eq. 1):

SWI(t)=
∑n
ims(ti)e

−(
t−ti
T
)

n∑
i

e−(
t−ti
T
)

, (1)

where, regardless of the units of product, the soil moisture
retrieval at time ti is SMsat, the time lag introduced with the
filter is T and t represents the 10 d time step. T was set to 10 d
for all the products. The SWI ranges between 0 and 1 from
dry to wet conditions. More than 3 retrievals in the 10 d inter-
val t were prescribed for calculating SWI, following Pellarin
et al. (2006). Due to the exponential filter smoothing effect
(and delay) ofms(t), the range of SWI(t) varies in a narrower
range than the [0,1]° of saturation range.

The 10 d time scale is used for the intercomparison and
evaluation of the products against the ISMN while the
monthly scale is adopted for the trend analysis of SM anoma-
lies. The SM anomalies are computed by removing the sea-
sonal cycle, which is defined by the mean SM value of each
month of the year. These 12 mean SM values are obtained by
averaging all 10 d SM within each calendar month occurring
along the full length of the study period (2007–2022) without
seasonal focus. In the vast majority of the areas the number
of values involved in obtaining the mean SM of the month
surpasses tens of values per month, with only a few alpine or
boreal snow prone areas being calculated with a few values
per month. The SM anomaly is finally calculated as the ratio

of deviation of SM of any month from the mean SM of that
month.

The different product additionally provides metrics of the
error characteristics to identify the areas and periods affected
by relevant impactful factors such as snow cover. The flag
scheme of ESA CCIp exemplifies the detailed procedures de-
voted to distinguishing when the data is subject to further
filtering. Specifically, ESA CCIp assesses snow and frozen
soil using both temperature and freeze–thaw conditions (via
Ku-, K- and Ka-band retrievals, as noted in the CCIp ATDB
guide). Consequently, considering the notable relative impor-
tance of the snow cover factor over the others factors in our
analysis over Europe, we have applied this specific and re-
strictive snow cover flag of ESA CCIp as a mask to the data
coverage of the other products of the analysis over the snow
prone regions.

Conversely to the case of the distributed datasets, the point
data from the ISMN database has not been severely restricted
with flags due to the general consistency of most stations in
common environmental conditions and the scarcity of sta-
tions with severe indications of uncertainty from the flags. In
such cases, the inclusion of the stations was decided based on
the existence of alternative stations with similar environmen-
tal conditions and, if not available, included stations based on
the criteria of consistency between the factors of uncertainty
causing the flag and the characteristics of the environment.
Multiple areas where snow and icing processes are frequent
are barely observed in situ and, consequently, even despite
the seasonal uncertainties, RS products provide much more
coverage of these areas than the few ISMN stations over
these areas. Therefore, including all ISMN networks and data
available was the decision adopted to ensure enough data for
validation over every climatic type and ensure the represen-
tativity of a wide range of observed soil moisture conditions.
All stations with available data at the uppermost depth of in-
terest were included. Nonetheless, the data series from each
station were filtered to remove unrealistic data indicated by
flags for discontinuities, out-of-range values and other arte-
facts, regardless of uncertainties from location, instrument
type, or other factors.

3.4.2 Performance metrics

The Pearson’s correlation coefficient (R) is used to quantify
the correspondence between H120 and H121, CCIp and EDO
SM products, and the ISMN SM data. The triple colloca-
tion analysis (TCA) (Stoffelen, 1998; Scipal et al., 2008) is
also used to estimate the random error variances of the collo-
cated H120/H121, CCIp and EDO triplets. The TCA model
assumes linearity of SM retrievals, stationarity of signal and
independence of errors from signal or between product errors
(Gruber et al., 2016; Massari et al., 2017; Filippucci et al.,
2021). However, since the purpose of the study is not to eval-
uate the sensitivity of the assumptions of the TCA model we
focus on the adequacy of the selected SM products for triplets
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based on their acknowledged independence and consistency.
The LISFLOOD model is not used for the processing or vali-
dation of the passive or active RS products that complete the
triplet nor on the curation of the ISMN data used for valida-
tion. The ASCAT active RS SM upgrades on the TU Wien
Change detection algorithm under the release of H120 and
recently H121 are supposed to resolve the increasing trend
and consequently can be considered only marginally non-
stationary. CCIp uncertainties are to a great extent already
resolved in the dedicated processing methods developed for
the error characterization of data from different passive SM
missions (i.e. The Land Parameter Retrieval Model, LPRM).
The same assumption can be applied to the residual trends of
EDO and CCIp SM datasets that are of a magnitude likely
more relevant for long-term analysis rather than for its im-
pact on the TCA assumptions. Therefore, given the sufficient
data quality and independence of the three selected products,
we can assume the classic model of TCA as suitable for our
aim and expressed as in Eq. (2) below:

X = αX +βXθ + εX, (2)

where the spatially and temporally collocated datasets are
compiled in the dataset X ∈ [H120 or H121, CCIp, EDO],
the soil moisture is θ , and αX is the systematic additive er-
ror behind the offset between the temporal and the true mean
of θ . The βX is the coefficient of multiplicative biases of X,
and noise is represented by εX. Even in the case of SM whose
random error can depart from a Gaussian distribution, the
error variance can be expressed as in McColl et al. (2014)
(Eq. 3):

σε =

√Q11−Q12Q13/Q23√
Q22−Q12Q23/Q13√
Q33−Q12Q23/Q12

 , (3)

where Qij is the covariance of dataset i against j , which
leads to the expression of TCA correlation scores R_TCA
(Eq. 3), which is a relative measure against the unknown
truth:

R_TCA=

√Q12Q13/Q11Q23√
Q12Q23/Q22Q13√
Q13Q23/Q33Q12

 . (4)

Additionally to the R_TCA score, auxiliary performance
metrics such as the error variance, the sensitivity and the
signal-to-noise ratio defined in Gruber et al. (2016) are ob-
tained from the TCA analysis and occasionally referred to
further clarify or discuss the results. The performance of each
product is computed by aggregating the scores over the re-
gions occupied by each Köppen–Geiger climate type across
Europe (Fig. 1a, (Beck et al., 2018). Furthermore, the TCA
approach and its performance metrics are also suitable for
merging RS SM products (Gruber et al., 2017), among many
options, as described below.

3.4.3 Definition of the products merging RS and
model-based SM data

Merging is achieved by combining the SM estimates of
the intervening products proportionally to weights based on
their different R_TCA scores of the TCA. The triplets of
TCA generating the R_TCA scores are equalized in dy-
namic range matching their cumulative distribution functions
(CDF) (Brocca et al., 2010b). The expression to merge the
SM product is:

SMmerg2 =−ωH SAF ·SM′H SAF+ωCCIp ·SM′CCIp

×ωEDO ·SM′EDO, (5)

where ωi is the relative weight of each product’s
R_TCA scores, obtained from Eq. (6):
ωH SAF =

R_TCAH SAF
R_TCAH SAF+R_TCA∗CCIp+R_TCA∗EDO

ωCCIp =
R_TCA∗CCIp

R_TCAH SAF+R_TCA∗CCIp+R_TCA∗EDO

ωEDO =
R_TCA∗EDO

R_TCAH SAF+R_TCA∗CCIp+R_TCA∗EDO

 . (6)

Where R_TCAH SAFR_TCA∗CCIp and R_TCA∗EDO are the
TCA correlation scores of H SAF (H120 or H121), CCIp and
EDO. CDF matching (′) is applied in reference to the product
without the mark (H SAF H120 or H121) to equalize the dy-
namic ranges. The two products obtained with this procedure
of merging H SAF (H120 or H121), CCIp and EDO or only
H SAF (H120 or H121) and EDO are hereafter respectively
denominated “MERG_h121_3” and “MERG_h121_2”.

3.4.4 Evaluation against in situ data

The evaluation of SM products against in situ data used all
available ISMN within Europe for the period 2007–2022 de-
spite the existing several factors of uncertainty regarding the
quality of the data (e.g. representativity or SM range). The
ISMN stations whose data availability is shorter than that
of the study period were paired to the corresponding equal
period of the RS H120/H121, CCIp, the model-based data
from EDO, or their combination. All products were also ag-
gregated to the reference 10 d scale of EDO. Pearson cor-
relations to evaluate RS and model-based against the ISMN
records were computed by extracting the corresponding time
series of RS and modelled datasets at the locations of the
stations of the ISMN networks, defined by their latitude and
longitude, using KD-Tree algorithms of nearest neighbours.

3.4.5 Trend analysis

In this work, the Mann–Kendall (MK) (Mann, 1945; Kendall,
1948) methodology was considered to evaluate SM anomaly
trends by the significance of the monotonic upward or down-
ward trends. The lack of trend is indicated with a valid
null hypothesis when data is independent and randomly dis-
tributed. We consider a significance level of 0.05, corre-
sponding to values of the statistic Z> 1.96, to reject the null
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hypothesis and consider that the trend is significant (Rahmani
et al., 2016).

4 Results and discussion

4.1 Characterizing the spatiotemporal concurrence
between SM products

4.1.1 Linear correlation analysis

The temporal correlation quantifies the correspondence be-
tween EDO, CCIp, and H120 or H121. The correlation be-
tween CCIp and another product gets the highest values ei-
ther using H120 (R Pearson median/mean= 0.59/0.48) or
H121 (0.68/0.58) (Fig. 3b and e). H121 version induces a
notable improvement of the scores in respect to H120 and
also for the correlation with EDO (from R= 0.50/0.39 us-
ing H120 to R= 0.59/0.48 using H121) (Fig. 3a and d). The
EDO–CCIp correlation remains intermediate compared to
the others (R= 0.55/0.51) (Fig. 3c). Results indicate differ-
ences between the products over some areas of the continent.
Products agree with R> 0.7 over the British Isles except for
Scotland, Benelux, western areas of Germany, France except
the Alps, the Atlantic basins of Iberia and some Mediter-
ranean areas (e.g.: Peng et al., 2021b; Parinussa et al., 2014;
Brocca et al., 2011). Multiple other regions in the Mediter-
ranean basin display R> 0.5 in line with previous reports
(e.g.: Juglea et al., 2010; Brocca et al., 2010b; Duygu and
Akyürek, 2019). Only continental central and NE Europe
show less consensus (R< 0.4) between products, particu-
larly when EDO intervenes.

The mismatch between RS and EDO SM data in eastern
Europe may be partly attributable to the uncertainty of the
LF model during winter (Cammalleri et al., 2015), especially
since RS SM data is increasingly reliable in boreal areas (Iko-
nen et al., 2018). The water fraction may also interfere over
lake areas of NE Europe (Paulik et al., 2014) but snow cover
has been long considered the prevalent cause of blurred de-
termination of SM in D-E type climates, including moun-
tains, with higher impact over EDO than over RS data (La-
guardia and Niemeyer, 2008).

However, the apparent SW–NE gradient of consistency be-
tween SM products attributed to snow prevalence may be
SM regime-related, as it corresponds to the gradient of SM
regimes depending on water or energy dominated conditions
(Denissen et al., 2020, Fig. S1). The areas most influenced
by westerlies (C climate types) of contrasted winter–summer
SM regimes are the ones where SM products concur the
most. Conversely, D climate types of East Europe that tend
to sustain water dominated SM regimes during summer ex-
hibit the lowest similarity. Such SM regime implications may
require further analysis but have been recognized as impact-
ful at least on the backscattering of active RS SM products
(Wagner et al., 2022).

The negative R-Pearson scores shown in Fig. 3 between
EDO and H120/H121, between CCIp and EDO, and to a
lesser extent between CCIp and H120/H121 show negative
R-Pearson correlations in snow dominated areas and thin
soils in mountains and in arid climates. These negative val-
ues refer to disagreement between products beyond low per-
formance. The combinations express that EDO is the great-
est source of such disagreement but that this is shown dif-
ferently for northern and southern latitudes: the negative
scores induces by the participation of EDO seem to be mostly
restricted to snow dominated regions (compare Fig. 3a–c)
while H120/H121 seems to be the primary source of low
scores in the arid areas. These results are consistent with the
known difficulties of EDO-LISFLOOD in snow dominated
hydrological regimes and of ASCAT H120/H121 over thin
soils of arid areas.

Topography (Fig. 1b) is also a principal factor that, in com-
bination with arid conditions, induces uncertainty in the SM
products. Rough areas of Iberia (Escorihuela and Quintana-
Seguí, 2016), north Africa, south Greece and Anatolia dis-
play low scores likely related to the subsurface scattering
over thin soils of either C-band (ASCAT) or L/Ku-band ac-
tive sensors (McColl et al., 2013; Wagner et al., 2022).

4.1.2 Triple collocation analysis

Triple collocation analysis provides an accurate quantifica-
tion of the correspondence between SM products and in re-
spect to the unknown reality (Stoffelen et al., 1998; Gruber
et al., 2016). The TCA results differ from the linear corre-
lation analysis (Figs. 4 vs. 3). In the triplet of H120, CCIp
and EDO, H120 scored between EDO and CCIp (Fig. 4a1–
c1). However, H120 seems fairly accurate in line with re-
ports against ERA5-Land (Pierdicca et al., 2015a). There-
fore, when the improved version H121 is used in the triplet,
it leads the scores (Fig. 4a2–c2), including overD andE type
climates (Fig. 5). CCIp leads the scores in the triplet adopt-
ing H120 (Fig. 4c1), which was already remarkable because
only CCI combined was reported superior to H120 before
(Al-Yaari et al., 2019; Fan et al., 2022). CCIp remains sec-
ond in R_TCA in the triplet including H121, but in this case
even EDO may achieve equal or better scores among climate
differences. Nonetheless, EDO displays the lowest R_TCA
scores in both triplets using H120 and H121, especially in
the NE of Europe (Fig. 4a1 and a2). Multiple studies reported
difficulties of models on snowed/frozen areas (Naeimi et al.,
2012), but low scores are shown by all products in high lat-
itudes/elevations climate types (Dfc-E) (Fig. 5). Our results
also indicate poor performance of EDO (range of R_TCA:
0–0.3) over areas of episodic or seasonal snow cover (Dfb
and Dfc-E, respectively from mid-December to mid-March)
compared to the moderately good values of the snow free pe-
riod (mid-May to mid-October) (R_TCAs: 0.3–0.9).

The percentage of areas with values over the sufficient
threshold of R_TCA> 0.6 differs between products. H121
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Figure 3. Map of temporal R-Pearson correlation between (a) EDO and H120, (b) CCIp and H120, (c) CCIp and EDO, (d) EDO and H121,
(e) CCIp and H121, and (f) H120 and H121.

Figure 4. Maps of R_TCA score of triple collocation analysis of the period 2007–2022 of the triple of the (a1) modelled-based EDO,
(b1) the active RS H120 and (c1) the passive RS CCIp SM products. The second triplet (a2, b2, c2) just replicates the former with H121 in
(b2) replacing the version H120.
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Figure 5. Boxplots of triple collocation score (R_TCA) of the
model-based EDO (boxplots with red square indicating the mean),
the active RS H121 (indicated with blue circles) and the passive
RS CCIp SM product (depicted in green rhombus) between diverse
types of climates (coloured as in Fig. 1b).

champions with more than 65 % of Europe over this value
and with close to the 40 % with R_TCA> 0.9, closely fol-
lowed by CCIp with 60 %, while EDO only achieves a 52 %.
The low values of triple collocation correlations concurring
over the snow prone areas of Scandinavia and snow capped
mountain ranges (e.g. Alps) affect particularly EDO and
CCIp and experienced a significant improvement over snow
prone lowlands of northeastern Europe with the update of
ASCAT data from H120 and H121. Beyond the evidence
that EDO model is limited over snow dominated regimes,
CCIp seems to display a bimodal downgrade of scores with
low values over Scandinavia and intermediate ones over (the
also seasonally snow dominated but less densely vegetated)
East Europe, suggesting that uncertainties originating from
high-latitude and dense canopies may differ from those orig-
inating from the snow regime alone (Blyverket et al., 2019).
This result is also supported by the contrast between the low
R_TCA of eastern Europe (Dfb) (R_TCA range: 0–0.3) com-
pared to the moderate R_TCA values of some high areas of
Scandinavia where, during the snow free season, temporal
snow episodes can also occur like those of Dfb in winter. In
these cases, Scandinavia R_TCA are much higher than at Dfb
(R_TCA range: 0.1–0.6), which suggest an additional influ-
ence of the canopy.

The pattern of high consistency over western Europe
(type C climate) (Fig. 5) has been already reported for EDO,
H120, or CCI (LF, Cammalleri et al., 2017; ASCAT, Chen
et al., 2018; CCI, ERA-5 Land, Pierdicca et al., 2015b; CCI-
ERA-Interim, Deng et al., 2019). Such west–east gradient
pattern has been attributed either to coverage according to
the number of valid triplets available at a certain location or
subject of discussion about the distinct modes of SM variabil-
ity in Europe (dominated by seasonal variability in the west

but dominated by long-term variability in the east: Fig. 11
of Piles et al., 2019). The prominent spots around urban ar-
eas due to urban backscattering visible in H120 are solved
in H121. This underlines the relevance of updates incorpo-
rating processing improvements. However, the reduced sig-
nal in SE Spain that corresponds to the reported backscat-
tering of arid areas (Wagner et al., 2022) or alternatively re-
lated to the autocorrelation error common in areas of low leaf
area index (LAI) (Dong and Crow, 2017) remain. Similarly,
swampy areas like the Pinsk/Pripet River floodplain between
Belarus and Ukraine that downgrade both H120/H121 and
CCIp signals remain better covered by EDO. A bit to the
west of this area, a diagonal of values of CCIp R_TCA ≤ 0.8
between northeast Germany and Ukraine is prone to radio
frequency interference (Oliva et al., 2016) as shown by the
filtering of SMAP (Mohammed et al., 2016). Hence, none
of the products alone can fully characterize SM across Eu-
rope with the same accuracy despite their overall good agree-
ment and partial complementarity, even after updates. How-
ever, results also indicate the independence between prod-
ucts, which is an important prerequisite to address the gener-
ation of combined products, because overlooking interdepen-
dencies in the products may also undermine the consistency
and reliability demands of operational monitoring.

4.2 Suitability of merged products for operational
monitoring of SM

The convenience of merging RS and model-based SM
datasets to get the full potential of their synergies can be il-
lustrated with the maps of best performing SM product over
Europe (Fig. 6). Extensive areas of Europe are dominated by
CCIp, mostly in the areas facing west. Remarkably, these ar-
eas now better depicted by CCIp were H120 dominated areas
in the past (Leroux et al., 2013; Al-Yaari et al., 2014). The
prevalence of CCIp is solid in those regions but slightly re-
duced in area from H120 to the latest version of H121 (green
areas, Fig. 6a and b). The eastern part of the continent re-
mains better portrayed by H120 than CCIp and even better
by the H121. The EDO, which prevailed as best product in
north latitudes, is primarily replaced there by H121, thus il-
lustrating the notable progress of RS products despite their
sensitivity to the challenging freeze–thaw processes (Naeimi
et al., 2012) or dense forest cover (Van der Molen et al., 2016;
Ikonen et al., 2018). The prevalence of EDO by the coast,
explained by the limited signal retrieval of RS sensors in the
vicinity of the sea (Brocca et al., 2011; Kerr et al., 2012; Por-
tal et al., 2020), becomes also reduced with the new H121
version. Nonetheless, rough, arid, or swampy areas of un-
certain RS data remain better recognized by EDO, followed
by CCIp. In general, most changes when substituting H120
to H121 in the triplets are favourable to H121, whose share
of areas as best product increases from similar to CCIp to
a dominating 58 % (Fig. 6a vs. b). CCIp change to H121
contributed more than EDO change to H121 (Fig. 6c) to the
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dominance of H121 (Fig. 6b). EDO experiences more decline
than CCIp in shared area.

The spatial prevalence of CCIp and H120/H121 over west-
ern and eastern Europe, respectively, agrees with the cli-
matic division between C and D climates (Fig. 6b). Intrin-
sic hydroclimatic differences may be the cause, as an ex-
pression of the distinct SM regimes as identified with self-
organizing maps (Markonis and Strnad, 2020; see Fig. 4),
as an expression of the oceanic vs. continental moisture
(Gimeno et al., 2012), or due to distinct SM variabilities
(Piles et al., 2019). Ecoregions, which also express hydro-
climatic differences, have also evidenced differences in the
consistency of SM estimates among products (Mazzariello
et al., 2023). The depth of the active and passive RS SM
retrievals might be also distinctly sensitive to the dominant
rewetting process (Lun et al., 2021). Even though the rea-
sons behind these differences are beyond our scope, they
emphasize the complementarity of the active, passive and
modelled SM products. Hence, it is reasonable to develop
products combining RS and modelled SM data (Parinussa
et al., 2014; Peng et al., 2021b) that favour the best per-
forming product over each area while maintaining a balance
according to their performance metrics. The two proposed
merged products combine the best of the ASCAT-derived
products, H121 and EDO (“Merg_h121_2”) or H121, EDO
and CCIp (“Merg_h121_3”) and their performance is evalu-
ated together with H121, CCIp and EDO against the ISMN
data (including trends). The reason for not including CCIp
in the Merg_h121_2 is to determine if H121 and EDO alone
can achieve similar performance to the individual products or
the fully combined case, especially considering the increas-
ing accuracy of ASCAT data (from H120 to H121) which is
encroaching on areas previously dominated by CCIp (Fig. 6a,
vs. b). In consequence, the merging aims to explore the com-
patibility of RS and modelling to fully characterize SM pro-
cesses even in the areas where RS or models, or both, strug-
gle. That is why given the effort devoted to developing spe-
cific missions for SM observation, the scientific community
and agencies emphasize the importance of exploring the data
capabilities to their full potential while contributing to ad-
vances in both the scientific understanding and the opera-
tional monitoring of SM.

4.3 Active, passive and model-based SM products
against in situ ISMN data

The consistency of RS, model-based and merged SM prod-
ucts considered in this study is compared to the data of
the European networks of the ISMN for their coincident
periods (Fig. 7). CCIp coherently agrees for most of the
networks with its active counterpart, the H120/H121 prod-
ucts, both in magnitude and spread of correlations, despite
being the product with the lowest overall R mean/median
score at the ISMN (RCCIp= 0.47/0.51). H120/H121 active
SM datasets perform second in terms of overall R Pearson

correlation (Fig. 7) among the ISMN (RH120= 0.46/0.53,
RH121= 0.51/0.51). H120 is the SM product showing the
widest spread of correlations in some of the evaluated ISMN
such as BIEBRZA_S-1, GROW, GTK and XMS-CAT. The
lowest correlation values are also seen in FMI, GTK and
XMS-CAT networks. Apart from the GROW network, prone
to high uncertainty (Zappa et al., 2020), and XMS-CAT,
whose length of series may be limited, FMI and GTK usually
show poor correlation values with RS data (Kolassa et al.,
2017; Ikonen et al., 2018), attributed to the dense boreal
canopies challenging active and passive sensors (Petropou-
los et al., 2015; Kerr et al., 2012).

The clearest differences in R score across all prod-
ucts occur precisely over boreal areas of D-E climate
types (Fig. 8b). The rather high R scores of EDO
(REDO= 0.56/0.6) also show a downgrade in performance
(Cammalleri et al., 2015) (Fig. 8) due to its better calibration
for rain dominated than for snow dominated regimes (Sala-
mon et al., 2019), in line with the “seasonal” R_TCA results
commented in Sect. 4.1.2 where the performance of EDO
during the snow covered period of winter (15 December–
15 March) proved noticeably lower than that of RS products.
However, the low performance of EDO compared to the other
products over boreal areas is in fact better at the specific lo-
cations of the ISMN networks of Scandinavia (FMI, GTK,
NVE) compared to the results when R Pearson or R_TCA
scores are considered. This disagreement indicates more the
need of additional networks in such a vast boreal area than
actual better performance of model-based estimates over the
remote sensing ones. The values of SM estimated by EDO
agree to a great extent with those of H120/H121 and CCIp,
which exceed globally the mean/median scores of these RS
products. Again, the apparent surpass of EDO scores at
ISMNs over H120/H121 and CCIp (Fig. 8a) may respond
more to the limited locations of the ISMN networks instead
of to the actual superiority of the model-based estimates. This
is because EDOs show a wider spread of correlations than
H121 and CCIp (Fig. 8b)„ not only over the snow prone D-
E climate types but also for Cs and B type climates. EDO
shows the smallest correlation spread over the Cf climate
type, which is the closest to the ideal hydrological regime
emulated by conceptual models. The 5 km× 5 km resolution
of EDO compared to the coarse CCIp and H120/H121 may
also play a role in the apparent better values of EDO than of
CCIp and H120/H121 (Fig. 8). The low performance of EDO
over the UDC_SMOS network may be related to the anoma-
lous SM and flood conditions experienced over the region of
this network in the upper Danube during the period 2007–
2011 (Wanders et al., 2014). EDO performs best at two lo-
cal networks: UMSUOL and HYDRO-NET-PERUGIA. Af-
ter all, both scale effects of the products and the representa-
tivity of the ISMN networks are related.

Furthermore, products may cover better or worse the range
of SM variability shown by the ISMN stations affecting the
overall score of each product. When the range of the notch
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Figure 6. Map of best performing SM product over Europe for (a) the triplet H120, CCIp and EDO and (b) the triplet H121, CCIp and
EDO. (c) Map identifying all changes of best product (from product x to product y) and the areas that stay invariably best estimated by each
product with quantifications in % total area.

surpasses the interquartile range of the boxplots in a network,
which occurs in local-scale networks such as MOL-RAO,
Ru_CFR, or VAS, RS or model-based data might be unable
to display the SM variability that local-scale networks can
describe (Brocca et al., 2010a). EDO has the least preva-
lence of notched boxplots. Although the measuring tech-
nology plays a role because using less accurate techniques
(e.g. GROW, BIEBRZA_S-1, XMS-CAT) tend to show more
spread at the ISMN data (Dorigo et al., 2021), other fac-
tors such as land cover may be more influential. The higher
spread (Fig. 7) or lower correlation (Fig. 8) of CCIp over
some networks of heterogeneous land cover or in the ex-
tremes of the range of soil moisture conditions of the ISMN
networks (e.g. XMS-CAT or BIEBRZA, respectively) can be
due to the coarser resolution of CCIp compared to H120 and
H121 (Dorigo et al., 2010).

The results of the merged products in Figs. 7 and 8
indicate that the weighted combination of techniques sur-
pass the performance of H120/H121 versions and CCIp
(RMERG_h121_3= 0.54/0.56, RMERG_h121_2= 0.53/0.55).
Only EDO shows higher scores thanks to its higher per-
formance station by station and over the areas of climate
Dfc-E that are also challenging for RS SM products (Fig. 7
networks in blue and ice-blue and at sub-boxplots of types of
climates at Fig. 8b). In the rest of climates MERG_h121_3
and MERG_h121_2 tend to reduce the spread of the scores
at ISMN and slightly increase their value. Despite the lower
tails of the merged products propagating from climate types
such as Cs, Dfc-E with short, local, or reduced number
of series, their distribution of values is better than that of
individual products, especially for the interquartile range
(Q1–Q3 over the boxplots of Fig. 8a). Climate types that
prevail across the continent such as B, Cf and Dfb are the
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Figure 7. R Pearson coef. of (a) H120, (b) H121, (c) CCIp, (d) EDO, (e) the merged MERG_h121_3 (combining H121, CCIp and EDO)
and (f) the merged MERG_h121_2 (combination of H121 and EDO) against in situ SM data of the ISMN (names of networks in the leftmost
column). The colour of the notched boxplots corresponds to Köppen–Geiger climatic classes (gold colour:B climate class, yellow: Cs, green:
Cf, blue: Dfb, blue green: Dfa, ice blue: Dfc-E) assuming all stations of each network have same climate. In the y axis ISMN networks sorted
from the northernmost to the southernmost in latitude within each group of climates and climates sorted from colder to warmer.

most benefited, except for EDO, by the merging. Here, the
merged products adopt a rather balanced weighting, but
any other merging scheme favouring the best performing
product in an area may notably enhance the performance
of the merged products. Furthermore, the MERG_h121_2
(combining H121 and EDO) almost equals the results of
the MERG_h121_3 product, which evidence that the best
performing products can be obtained even without using
CCIp, emphasizing the possibility to obtain a merged
product solely based on RS and modelling data available in
near real-time.

4.4 Evaluating the trends on SM databases and
discussing the implications

Results of the analysis of trends of the monthly anomalies
in the period 2007–2022 of H120/H121, CCI and EDO ex-
hibit spatial and temporal contrasts (Fig. 9). There is partial

agreement between the RS products CCIp and H120/H121
(Fig. 9a, c1 and c2) not only in wet anomalies but also in a
few drying areas. The relatively higher agreement between
CCIp and H121 across the continent is due to the less ex-
tensive wet trend of H121 but is consistent with multiple
validation studies in the area (Gruber et al., 2019; Preimes-
berger et al., 2020) and with reanalysis data (ERA5-Land,
not shown here, Pierdicca et al., 2015a).

However, there is notable contrast between the drying
trend of EDO (Cammalleri et al., 2016) and the wet trend
of H120 (Wagner et al., 2022) (Fig. 9b vs. 9c1–9c2). The
products have noticeable diverging trends (positive in EDO,
negative in H120) but they still agree in the sign of areas
where products concur in a subtle trend which indicates rela-
tive spatial agreement despite not agreeing on the magnitude
of the trends of the anomalies. Therefore, as EDO and H120
do not surpass CCIp range of trends, they can be considered
as the products depicting the lower (EDO) and upper (H120)
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Figure 8. (a) Boxplots illustrating the distribution of the R Pearson correlation coef. of the active RS SM product H120 and H121, the
passive CCIp, the model-based EDO, and the two suggested merged products with superimposed mean values in white and median values in
yellow colour. (b) Boxplots of the products for the subsets of the different climate types. The notches represent the confidence interval of the
median and when surpassing the interquartile ranges indicate uncertainty, partly due to a small size of the samples.

range of trend characterization. They both additionally agree
in extensive significance of the trends which suggest inherent
issues of the products with trends; subsequently, the products
with lesser extent of significant trends are considered here of
better performance in line with works indicating trends might
be less widespread than expected (Almendra-Martín et al.,
2022). The divergence between H120 and EDO and the dif-
ferent range of the significant trends between CCIp and EDO
(Fig. 9) illustrate the need to refine products, which recent
versions (e.g. H121) seem to have accomplished.

The merged products show intermediate characteristics as
results of combining H121 and EDO (MERG_h11_2) or
CCIp (MERG_h121_3). Their trends become more balanced
in sign and lower in magnitude compared to their original
products which also supports the use of merged products for
specific applications addressing anomalies sensitive to drifts.

Interestingly, both merged products (Fig. 9d1 and d2) agree
to a great extent, which suggests that the role of CCIp might
be already secondary when H121 and EDO become merged.

Such agreement between the two may also imply that the
dominance of H121 as best product (Fig. 6) is due to the al-
ready consistent nature of H121 or, alternatively, that H121
and CCIp are both in great agreement. Though, by adopt-
ing H121 the significant areas formerly dominating EDO or
H120 become no longer the norm and also reduced compared
to CCIp (Fig. 9b vs. d1 and d2). Therefore, merged prod-
ucts compile the trending areas with more consensus in sign,
magnitude and location between the products, which can be
considered as a consistent depiction of the major trends.

The cause of the SM trend shown by EDO (Fig. 9b) may
seem attributable to global warming origin based on what
is widely accepted to be impact of climate change or based
on previous reports using reanalysis and model-based stud-
ies (Samaniego et al., 2018; Li et al., 2020). The drying
trend has been shown to prevail in EDO (Dorigo et al., 2012;
Almendra-Martín et al., 2022) at least in southern latitudes
(Cammalleri et al., 2016). However, many areas of low dry-
ing trend in EDO do not concur with the drying areas of
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Figure 9. Maps of significant annual trends (Theil-Sen slopes) of the series of monthly SM anomalies indicated by the Mann–Kendall tests
of (a) CCIp, (b) EDO, (c1) H120 and (c2) H121, as well as the merged products (d1) MERG_h121_2 and (d2) MERG_h121_3 for the period
2007–2022. Non-significant areas in the plain grey colour of the rest of continental areas outside of the domain of study. “S” describes overall
slope values.
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Figure 10. Temporal trends of the RS (H120/H121, CCIp), model-based (EDO) and merged SM products for the whole domain and period
of study 2007–2022 of the monthly SM anomalies. (b) Temporal trends of the SM products of EDO (in green continuous line), H120 (in
discontinuous blue line) and CCIp (in red line) in the study period 2007–2022, assessed by the main climatic classes of Europe (b1) B,
(b2) Cs, (b3) Dfc-E.

H120/H121 and CCIp (Fig. 9), especially in the SE or NE
of the domain where mixed and wetting trends of H120 and
CCIp have been described (Tuel and Eltahir, 2021, Saffioti
et al., 2016), but partially agrees with reports of SM sensi-
tivity to temperature change using GLDAS (Gu et al., 2019).
Therefore, it is still appropriate to contrast SM trends with
those of related variables such as precipitation, evapotran-
spiration and temperature (Meng et al., 2018; Deng et al.,
2019) or even with the response of vegetation (Liu et al.,
2020; Lal et al., 2023). The temperature influence may sug-
gest that EDO overexpresses SM trends due to sensitivity to
meteorological forcing (Koster et al., 2009). The EDO se-
ries over the most temperature-driven climates (e.g. B-type,
Fig. 10b1) partially agree with that. However, since the tem-
perature is a variable only indirectly influencing the water
balance , for the case of a preliminary exploration of the cor-
respondence between SM trends and auxiliary variables we

prefer to refer to precipitation and evaporation trends as com-
ponents of the water balance directly affecting SM. Signifi-
cant ERA-Land precipitation and evaporation trends occur at
fewer areas than those shown by SM products, therefore, the
areas concurring in trends strictly circumscribe to areas with
precipitation and evaporation trends. The southwestern part
of Europe indicated by EDO does show decreasing SM and
precipitation for EDO and ERA5-Land, with an increasing
trend in evaporation. In the SE and Central Europe there are
diverging trends. This reduces areas of consistent trends be-
tween the SM and the auxiliary variables below the 8 % of
the total study area. This reinforces the idea of considering
SM product trends more as an indicator of SM product’s con-
sistency than of environmental change, which indeed would
require specific methods to unveil causality between trends
of SM and other variables.
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That is why we interpret the EDO notable trends as in-
herent of the product. This possibility emphasizes the need
to carefully revise implicit trends before use, particularly if
climate change applications are intended. The successful up-
grading of the active dataset from H120 to H121 version
also illustrates the product’s specific nature of trends, since
product upgrades incorporating improvements on processing
(subsurface backscattering: Wagner et al., 2022; vegetation:
Vreugdenhil et al., 2016) and decreasing their dependence
from proxies (Dorigo et al., 2017; Madelon et al., 2021) have
led to a significant reduction of SM trends between consec-
utive versions (e.g. here between H120 and H121, in which
the trend in SM reduces from the 66 % of the total area in
H120 to merely a 22 % in H121).

The sequence of wet and dry spells displayed in the time
series of Fig. 10a give the temporal detail of the spatial
patterns shown on Fig. 9. The temporal divergence of the
trends between EDO and H120 is visible in the time series
of the whole domain (Fig. 10a) and in the ones of the cli-
mate types (Fig. 10b1–b3), particularly in the last years (in
Fig. 9 H120 show significant trends in 66 % of the area, of
which 61 % positive and 5 % negative, while EDO significant
trends cover the 65 % of the study area, of which 5 % posi-
tive and 60 % negative). Areas of B and Cs climates seem the
most affected, followed by Dsb, Dfb, Cfb, Dfa, with Dfc-E as
the least affected, in line with the temperature gradient. An
example is the contrast between the former patches of SM
increase identified in the period 1988–2010/2015 (Dorigo
et al., 2012; Albergel et al., 2013a; Liu et al., 2019, Piles
et al., 2019) and the decline reported recently (Skulovich and
Gentine, 2023) or in the past (Deng et al., 2019). When the
joint trends of SM and ERA5-Land Precipitation and Evap-
oration are considered, the remaining patterns of trends con-
cur more between products than when only the SM trends
are considered. Less than 5 % of the total area shows joint
trends among all SM products, but the agreement between
them in those regions, even with deferring sign of trends,
is much higher than when considering only the SM trends
(e.g. SW Europe and NW North Africa, pockets of Central
Europe, Eastern Europe and Caucasus, and certain exposed
areas of Scandinavia. These results support the consistency
between products while highlighting the minimal impact of
auxiliary variables in the residual trends of the SM products.
The best merged product, MERG_h121_3 shown in Fig. 10,
has the advantage of an overly balanced trend. Combining
the diverging trends of H120 and EDO may have neutralized
the trend in MERG_h121_3 and fostered its insensitivity to
the climate (Fig. 10b1–b3). A balanced spatial and tempo-
ral consistency of the merged product able to counteract the
diverging trends of the individual products is preferable to-
wards operational monitoring but it may also obscure the in-
terpretation of the causes behind the diverging trends of its
components. However, when products with diverging trends
counteract, such as between EDO and H120, MERG_h121_2
agrees with the extension and significance of the trending ar-

eas of CCIp. Thus, merged products can provide better tem-
poral stability than the products used in their combination
which is of benefit not only for operational monitoring but
for long-term change analysis as well.

5 Conclusions

The evaluation of the complex soil moisture processes across
all environmental conditions is challenging. The increasing
capabilities of remote sensing and modelling datasets have
eased the systematic monitoring of soil moisture, but their
limitations require attention to prevent misleading interpreta-
tions. Well-known global soil moisture products such as the
remote sensing active H SAF ASCAT-SSM-CDR-12.5km-
v7 (H120) and v8 (H121), the passive ESA CCIp, and the
model-based EDO represent the three main distinct types of
data suitable for soil moisture monitoring at the continen-
tal scale, each with specific strengths and weaknesses. This
study illustrates that no single product excels universally, but
that evaluating their spatial and temporal consistency as well
as their uncertainties, particularly regarding residual trends,
provides benefits from which the strategic combination of
data can enhance the operational monitoring of soil moisture
across a wider range of conditions than when using individ-
ual products alone.

The correspondence of EDO, CCIp, and H120 or H121
shown in pairwise correlation and TCA proved notably con-
sistent between products for most regions across Europe.
The remote sensing datasets H120, H121 and CCIp can pro-
vide equal, or better soil moisture estimates across most of
the continent than EDO, with CCIp prevailing over temper-
ate oceanic (C type of Köppen–Geiger classification) and
H120/H121 over temperate continental climates (D type).
Conversely EDO, as a model-based type of data, is still best
at characterizing SM over areas where RS products experi-
ence uncertainties due to rough terrain or subsurface scatter-
ing. Knowing the distinct capabilities and differences of the
products but also their synergies and increasing accuracy, the
merging of these three types of SM data based on their per-
formance scores provides equal or better soil moisture char-
acterization than individual datasets alone, partly due to com-
pensating biases and trends, which allows soil moisture mon-
itoring across a wider range of conditions while optimizing
data use.

Products depict a notably reliable characterization of soil
moisture against the in situ data of the International Soil
Moisture Network across most climates except for boreal
(Dfc-E type), despite the uncertainties due to network’s par-
ticularities. Nonetheless, the passive RS CCIp and the model-
based EDO, despite their spatial agreement and adequate
comparability to in situ data, still exhibit residual trends that
obscure the interpretation of authentic soil moisture tenden-
cies in location, magnitude and significance. CCIp, while of
balanced distribution between positive and negative trends
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over the continent, tends to display spots of excessive trend
over small areas which disagree in sign and magnitude with
other products. Conversely, EDO exhibits a tendency to show
extensive areas of significant negative trends. The known
positive trends of H120 have been corrected in H121, im-
proving the sign magnitude, extent and significance of the
trend portrayal. Yet, the overall trend agreement among prod-
ucts remains moderate because it implicitly contains product
uncertainties not related to real SM change.

In this way, the combination of datasets for operational
monitoring of soil moisture maximizes the consistency of
the estimates across environments and provides the most
frequent revisit times with more balanced temporal stabil-
ity, which benefits the applicability of soil moisture data for
multiple applications that may be limited by the specific re-
strictions of each product. Therefore, the merging, by under-
standing the capabilities and especially the limitations of SM
products, fully exploits the value of the data accordingly to
their prominent characteristics. This aim is in line with the
increasing demand of combined datasets that maximize the
information provided by multiple sources of data while sim-
plifying the effort on their evaluation and interpretation. Con-
sequently, the manuscript demonstrates this possibility, high-
lighting the benefit of this approach for enhanced operational
monitoring of soil moisture.

Data availability. All raw data can be provided by the cor-
responding authors upon request. Additional associated
datasets of the monthly z-score anomalies of the EU-
METSAT H SAF H120 dataset have been published in
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et al., 2025) in the framework of the OEMC project
funding this study (https://zenodo.org/communities/oemc-
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