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Abstract. Flow depth and velocity are the most important
hydrodynamic variables that govern various river functions,
including water resources, navigation, sediment transport,
and biogeochemical cycling. Existing high-resolution flow
depth simulations rely on either computationally expensive
river hydrodynamic models (RHMs) or data-driven models
with formidable training costs, whereas data-driven model-
ing of flow velocity has rarely been explored. Here, using
the hybrid Low-fidelity, Spatial analysis, and Gaussian pro-
cess learning (LSG) model, we developed a downscaling ap-
proach to construct high-resolution flow depth and velocity
from a two-dimensional (2-D) RHM simulation at coarse res-
olution. The LSG models were trained and tested in an urban
watershed in Houston using two different hurricane-driven
flood events. The high-resolution (as fine as 30 m resolution)
and low-resolution (mostly 1000 m resolution) meshes in-
clude 664 724 and 14 536 grid cells, respectively. The results
showed that through downscaling, the simulation errors were
reduced to less than one-fourth and one-third of the errors
of the low-resolution 2-D RHM for flow depth and veloc-
ity, respectively. Our analysis further revealed that the dom-
inant uncertainty sources of the downscaled hydrodynamics
are different, with flow velocity dominated by the dimension-
ality reduction error, which we reduced by using a regional-
ized training procedure. The downscaling approach achieves
an 84-fold acceleration in computational time compared to
the high-resolution 2-D RHM, making high-fidelity ensem-
ble flood modeling feasible. More importantly, the developed
method provides an opportunity to couple large-scale hydro-
dynamical processes with local physical, chemical, and bio-
logical processes in river models.

1 Introduction

Rivers play a crucial role in water resources, navigation,
sediment transport, and biogeochemical cycling (Syvitski
et al., 2005; Oki and Kanae, 2006; Allen and Pavelsky, 2018;
Ibáñez and Peñuelas, 2019; Mao et al., 2019; Regnier et al.,
2022; Feng et al., 2023a; Rocher-Ros et al., 2023). To sustain
these vital services, river flow depth and velocity must re-
main within normal ranges. Extreme flow depths can result in
extensive fluvial flooding (Bates, 2022), whereas prolonged
low flow depths jeopardize the availability of drinking and
irrigation water in many regions worldwide (Gadgil, 1998;
Haddeland et al., 2006). Together, flow depth and velocity
are key drivers of navigation capability, sediment transport,
and biogeochemical processes in rivers (Zhang et al., 2014;
Raymond et al., 2016; Li et al., 2022; Sukhodolov et al.,
2023). Consequently, extreme variations in flow depth and
velocity can lead to waterway blockage, channel aggradation
or degradation, water quality deterioration, and habitat loss.
River flow depth and velocity regimes are dynamic and influ-
enced by climate change and human activities, leading many
rivers to experience extreme flow conditions (Mishra and
Shah, 2018). These conditions exacerbate flooding (Freer
et al., 2011), degrade aquatic ecosystems (Carpenter et al.,
2011; Battin et al., 2023), and diminish water supplies (Oki
and Kanae, 2006). Hence, accurate prediction of river flow
depth and velocity in the context of a changing climate is es-
sential for ensuring the well-being of human society (IPCC,
2021).

Flow depth and velocity are commonly simulated using
river hydrodynamic models (RHMs). Widely used RHMs are
often based on one-dimensional (1-D) or two-dimensional

Published by Copernicus Publications on behalf of the European Geosciences Union.



3834 Z. Tan et al.: An efficient hybrid downscaling framework to estimate high-resolution river hydrodynamics

(2-D) Saint-Venant equations, disregarding vertical varia-
tions due to the significant difference between the horizon-
tal and vertical length scales of rivers (Li et al., 2013; Teng
et al., 2017; Bates, 2022; Huang et al., 2022). Considering the
low computational cost and high numerical stability, Earth
system models (ESMs) usually employ 1-D RHMs as the
river component for large-scale and/or ensemble hydrolog-
ical simulations (Li et al., 2013; Feng et al., 2024). How-
ever, they are unsuitable for high-fidelity flood simulations.
This is because 1-D RHMs are solved on upscaled river net-
works rather than actual river reaches (Wu et al., 2011; Liao
et al., 2022) and rely on uncertain parameterizations, such
as the bathtub method for estimating floodplain inundation
(Luo et al., 2017; Xu et al., 2022). Additionally, by over-
simplifying and/or neglecting momentum transport in river
channels and floodplains (Luo et al., 2017; Feng et al., 2022),
1-D RHMs lack the capability to simulate fine-scale river
hydrodynamics required for geomorphological and biogeo-
chemical modeling (Hostache et al., 2014; Shabani et al.,
2021). Conversely, 2-D RHMs can solve full river dynam-
ics. When running on high-resolution meshes, they can ac-
curately capture river flow depth and velocity (Razavi et al.,
2012). Therefore, high-resolution 2-D RHMs are often re-
ferred to as high-fidelity (HF) models, whereas both 1-D
RHMs and low-resolution 2-D RHMs are referred to as low-
fidelity (LF) models. However, the significant computational
cost of HF RHMs (Teng et al., 2017; Wu et al., 2020; Ivanov
et al., 2021) makes them not viable for real-time model-
ing and flood risk assessments through ensemble modeling,
which requires hundreds or thousands of model realizations
(Wu et al., 2020).

To achieve accurate and affordable simulations of river hy-
drodynamics, several alternative approaches have been de-
veloped (Razavi et al., 2012). One prominent approach is
the use of data-driven models to emulate the behaviors of
HF RHMs (Ivanov et al., 2021; Tran et al., 2023). With the
rapid advancement of machine learning (ML) techniques,
ML-based emulators have been increasingly employed in hy-
drological sciences, including applications such as model-
ing runoff (Gao et al., 2020), evapotranspiration (Hu et al.,
2021), inundation (Xie et al., 2021), lake–river interactions
(Liang et al., 2018; Huang et al., 2022), reservoir opera-
tions (Zhang et al., 2018; Yang et al., 2019b), streamflow (Ha
et al., 2021; Sikorska-Senoner and Quilty, 2021), groundwa-
ter (He et al., 2020; Wunsch et al., 2022), and water qual-
ity (Chen et al., 2020; Saha et al., 2023). These studies have
demonstrated that, once trained under extensive conditions,
the computationally efficient ML models can mimic numer-
ical models. However, general ML-based emulators often
lack the enforcement of physical laws, such as the conser-
vation of mass and momentum (Konapala et al., 2020; Kar-
niadakis et al., 2021), resulting in poor transferability to out-
of-sample conditions in nonstationary systems (Young et al.,
2017; Konapala et al., 2020), such as streamflow in a chang-
ing climate. To address this limitation, variants like physics-

informed neural networks have been developed, embedding
physical laws (e.g., Saint-Venant equations) into their cost
functions to constrain ML solutions. However, the incorpo-
ration of physical laws tends to reduce the training efficiency
of ML models (Feng et al., 2023b).

The second approach is to downscale the low-resolution
RHM simulation onto a finely discretized grid (Wilby and
Dawson, 2013; Feng et al., 2023b). For instance, Bermúdez
et al. (2020) created high-resolution inundation maps by sim-
ply interpolating flow depth computed from an LF RHM onto
a high-resolution digital elevation model (DEM). Recently,
more advanced downscaling methods have been developed
using various ML techniques to reproduce the detailed spatial
and temporal features of high-resolution river hydrodynam-
ics (Carreau and Guinot, 2021). Notably, Fraehr et al. (2022)
developed a novel downscaling method based on the hybrid
Low-fidelity, Spatial analysis, and Gaussian process learning
(LSG) model. This method demonstrated promising accu-
racy in simulating the dynamic behavior of flood inundation,
such as the rising and recession components and hystere-
sis, at the computational cost of a low-resolution 2-D RHM
(Fraehr et al., 2022). Later, Fraehr et al. (2023a) extended the
approach for fast and accurate simulations of not only high-
resolution flood extent but also high-resolution flow depth.
Additionally, the LSG-based downscaling model can sup-
port both structured and unstructured grids, a significant ad-
vantage as modern 2-D RHMs increasingly adopt unstruc-
tured grids for fine-scale modeling (Begnudelli and Sanders,
2006; Kim et al., 2012). However, like Fraehr et al. (2022,
2023a), existing research on hydrodynamic model downscal-
ing is mostly flood-prediction-oriented and has thus focused
entirely on flood extent and magnitude, while ignoring flow
velocity. This oversight is problematic from two perspec-
tives. First, it could increase the uncertainty of flood risk sim-
ulations because flood velocity is a critical factor for human
safety risks in flood events (Russo et al., 2013). Moreover,
as discussed earlier, in the context of Earth system model-
ing, without accurate simulations of flow velocity, it is not
possible to realistically predict how river functions respond
to environmental stresses. While Fraehr et al. (2022, 2023a)
only applied the LSG-based downscaling approach for inun-
dation extent and depth, this method should theoretically also
be applicable for flow velocity. This is because the mass and
momentum of river flow are governed by the unified shal-
low water equations and driven by the same environmental
factors. However, such an application has not yet been ex-
plored.

In this study, we develop an LSG-based downscaling ap-
proach to achieve accurate simulations of high-resolution
river flow depth and velocity at the computational cost
of a low-resolution 2-D RHM. Compared to Fraehr et al.
(2022, 2023a), the main innovation of our study is to test
and enhance the LSG-based downscaling approach for high-
resolution flow velocity downscaling. This extension of the
LSG-based downscaling approach is expected to greatly

Hydrol. Earth Syst. Sci., 29, 3833–3852, 2025 https://doi.org/10.5194/hess-29-3833-2025



Z. Tan et al.: An efficient hybrid downscaling framework to estimate high-resolution river hydrodynamics 3835

Figure 1. Workflow of training the LSG model and using the trained model to predict high-resolution river hydrodynamics.

broaden its usefulness for Earth system modeling. Besides,
we test the effectiveness of the downscaling method in an
urbanized watershed in the Houston area using data from
two different extreme hurricane events. Together with Fraehr
et al. (2022, 2023a), our independent validation in a differ-
ent environment would help examine whether the LSG-based
downscaling approach has broad geographical applicability.
Furthermore, based on this downscaling method, we propose
a new paradigm to couple large-scale hydrodynamical pro-
cesses with local detailed physical, chemical, and biologi-
cal processes in river models. The remainder of this paper
is organized as follows: Sect. 2 describes the downscaling
method and the configurations of the high-resolution and
low-resolution 2-D RHMs for the study events; Sect. 3 high-
lights the main results; Sect. 4 discusses the implications of
the results, outlines the limitations of our approach, and in-
troduces the new paradigm; and Sect. 5 concludes the paper.

2 Materials and methods

2.1 LSG model

For the LSG model, the underlying principle is that the dy-
namics of flow depth and velocity can be approximated by a
limited number of temporal and spatial modes due to their
strong spatial pattern controlled by topography. The LSG
model consists of an LF RHM, key spatial modes extracted

from an HF RHM, and a sparse Gaussian process (GP) emu-
lator model. It uses the LF RHM as a transfer function to cap-
ture the dynamics and spatial correlation of river flow. The
key temporal features of the LF RHM outputs are extracted
through an empirical orthogonal function (EOF) analysis
based on the extracted spatial features from the HF RHM,
thereby allowing the use of a sparse GP model to convert the
LF data to HF data via conversion of the extracted temporal
features. The LSG model can reconstruct high-fidelity river
hydrodynamics for two reasons. First, the accurate spatial
correlations of river hydrodynamics are preserved due to the
use of the key spatial modes from the HF model, which are
assumed not to vary by event. Second, the sparse GP model is
efficient and effective in reconstructing the dynamics of HF
data. In this study, we used the same 2-D shallow water equa-
tions to construct the LF and HF RHMs (described later). The
only difference between them is the spatial resolution, with
the coarse mesh adopted by the LF model reducing the sim-
ulation accuracy. We followed the procedure described by
Fraehr et al. (2022, 2023a) to train and apply LSG models
for river flow depth and velocity downscaling (Fig. 1), with
any deviations from the general procedure specifically high-
lighted.

For training, we first run the HF RHM over the study
domain for a training flood event (Step 1) and derive the
spatial EOF modes and the temporal expansion coefficient
(EC) modes of this HF simulation through the EOF analysis
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Figure 2. Study domain (a), topography (b), high-resolution mesh (c), and coarse-resolution mesh (d) for river hydrodynamics simulations
in the Turning River basin. The river basin boundary and the boundaries of two reservoirs in the basin are highlighted in orange and blue,
respectively, in (a), and the black dots in (b) show the locations of the USGS gauges (Table S1 in the Supplement) along with their gauge
number. The basemap in (a) is extracted from Google Imagery© 2024 TerraMetrics, Map data© 2024. The seemingly thick bold lines in (c)
are dense grid cells for river channels. The seemingly black lines in (d) are dense grid cells for the dams of the two reservoirs, which can
also be seen in (c).

(Step 2) as defined in Eq. (1).

DHF = UHF ·CHF ≈
∑K

k=1
UHF(k, :) ·CHF(:,k), (1)

where DHF is a T ×N matrix containing simulated HF flow
depth or velocity (T is the number of time steps in the train-
ing data and N is the number of wet cells) that have been de-
trended (Fraehr et al., 2023a), UHF is a T ×N matrix, each
row of which is an EOF spatial map, CHF is a T × T matrix,
each column of which corresponds to an EC temporal func-
tion, and K is the number of significant modes determined
by both North’s test (North et al., 1982) and Kaiser’s rule
(Kaiser, 1960).

For the training phase, we also run the LF RHM for the
training event (Step 3) and interpolate the simulated flow
depth and velocity from the coarse mesh used by the LF
model to the fine mesh used by the HF model (Step 4).
Notably, we improved the nearest-neighbor interpolation
method adopted by Fraehr et al. (2023a) by accounting for
mass conservation. While our improved method still assumes
a homogeneous water level within a coarse grid cell, it en-
sures that the sum of interpolated water volume in fine grid
cells equals the water volume in the coarse grid cell. Ad-
ditionally, we ensure that the interpolation of flow velocity
only occurs at wet grid cells where the water depth is greater
than 3 cm (Fraehr et al., 2023a). Another difference is that
we do not apply area-based weights to DHF before the EOF
analysis, as Fraehr et al. (2023a) recommended. This is be-
cause we are more interested in the flow depth and velocity

of river channels and nearby floodplains that are represented
by smaller grid cells in our fine mesh (Fig. 2).

Next, we perform the EOF analysis on the interpolated LF
flow depth and velocity to derive the temporal EC modes
of the LF simulation (Step 5). Using the extracted high-
resolution EOF spatial modes from Step 2, the extracted tem-
poral ECs are defined in Eq. (2).

CLF = DLF ·U′HF, (2)

where CLF is a T × T matrix containing the LF ECs, DLF
is a T ×N matrix corresponding to the interpolated LF flow
depth or velocity simulations, and U′HF is the transpose of
UHF. In the final step of training, we use the derived LF and
HF temporal ECs to train a sparse GP model (Rasmussen
and Williams, 2006) that can predict the HF ECs from the
LF ECs (Step 6). For flow depth and velocity, the training of
the sparse GP models is performed independently.

For prediction, only the low-cost LF RHM simulations
are needed (Fig. 1). While Steps 7 to 9 essentially replicate
Steps 3 to 5, the difference is that Steps 7 to 9 are applied
to a new LF simulation that is run for an unseen flood event.
After the new LF ECs are retrieved following the EOF analy-
sis in Eq. (1) using the spatial EOF modes derived in Step 2,
they are fed into the trained sparse GP model to predict the
new HF ECs (Step 10). Finally, the predicted HF ECs are
combined with the EOF spatial modes from Step 2 to recon-
struct the HF flow depth and velocity simulations based on
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the reverse EOF analysis (Step 11) as defined in Eq. (3).

D̂LSG =

K∑
k=1

UHF(k, :) · ĈLSG(:,k), (3)

where D̂LSG is the predicted high-resolution flow depth or
velocity, and ĈLSG is the predicted HF temporal EC. More
details of the workflow can be found in Fraehr et al. (2022,
2023a).

The downscaling error consists of two major components:
the error from dimensionality reduction and the error from
the LSG model. According to Eq. (1), the error from di-
mensionality reduction ERDR can be defined as ERDR =

DHF−
∑K

k=1UHF(k, :) ·CHF(:,k). According to Eq. (3), the
error from the LSG model ERLSG can be defined as ERLSG =∑K

k=1UHF(k, :) ·CHF(:,k)−
K∑

k=1
UHF(k, :) · ĈLSG(:,k).

2.2 Study site and flood events

We used the Hurricane Harvey flood event (hereafter re-
ferred to as Harvey) in the Houston area as a case study.
On 26 August 2017, Harvey made landfall along the mid-
Texas coast as a Category 4 hurricane. As one of the worst
hurricanes to hit the United States in recent history, Har-
vey brought record-breaking rainfall across the Houston
metropolitan area (Van Oldenborgh et al., 2017), causing
more than 80 fatalities and over USD 150 billion in economic
losses, mostly due to extraordinary flooding (Emanuel, 2017;
Balaguru et al., 2018). Specifically, we selected the Buffalo
Bayou at Turning Basin as the study domain (Fig. 2), where
the selected RHM was recently validated at different resolu-
tions (Xu et al., 2025).

Precipitation during Hurricane Harvey (Fig. 3) is extracted
from the 1 km resolution Multi-Radar Multi-Sensor (MRMS)
precipitation dataset, which has a native temporal resolution
of 2 min (Zhang et al., 2016). To demonstrate the effective-
ness of our downscaling approach for ensemble flood projec-
tions, we use a projected hurricane event (Hurricane Harvey-
like) under the high warming scenario – Shared Socioeco-
nomic Pathway SSP5-8.5 – as a test case (Fig. 3). The future
hurricane is simulated using the Energy Exascale Earth Sys-
tem Model (E3SM) with the novel Simple Cloud-Resolving
E3SM Atmosphere Model (SCREAM) configuration (Cald-
well et al., 2021; Donahue et al., 2024). SCREAM is a
global atmospheric circulation model with a nonhydrostatic
dynamical core and parameterizations for atmospheric radia-
tive transfer, cloud microphysics, and boundary layer clouds
and turbulence (Caldwell et al., 2021). The SCREAM do-
main features a regionally refined mesh (RRM) with 3.25 km
grid spacing over the east coast of the United States, includ-
ing the Gulf of Mexico and a significant part of the Atlantic
Ocean, within a global domain that has 25 km grid spac-
ing outside the RRM. Nudging is applied to grid cells out-
side the RRM to constrain the atmospheric circulation us-

ing the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Reanalysis version 5 (ERA5) data (Hers-
bach et al., 2020). These features enable SCREAM to capture
fine-scale extreme weather events, accurately resolve coastal
areas and mountainous regions, and properly represent con-
vective clouds, which are major sources of climate model un-
certainty (Sherwood et al., 2014). SCREAM is coupled with
the E3SM Land Model (ELM), while sea surface temperature
and sea ice extent are prescribed based on ERA5.

In the historical simulation, SCREAM is initialized using
ERA5 to simulate Hurricane Harvey (hereafter referred to as
the SCREAM simulation). To simulate how Hurricane Har-
vey will behave under future conditions, a storyline simula-
tion using SCREAM is performed (hereafter referred to as
the Pseudo Global Warming, PGW, simulation). In the PGW
simulation, the initial conditions and nudging data from
ERA5 are perturbed by adding the mean monthly changes
derived from a multi-model ensemble of climate simulations
from the Coupled Model Intercomparison Project Phase 6
(CMIP6) to represent the mean climate change under the
SSP5-8.5 scenario by the end of the 21st century (2079–
2099) compared to the historical climate at the end of the
20th century (1990–2010). A similar perturbation is also ap-
plied to ELM for the PGW simulations.

SCREAM can successfully predict the heavy precipita-
tion during Harvey’s landfalls in Texas on 26 August, but
its simulated precipitation during the subsequent landfalls on
27 and 28 August is relatively muted (Fig. 3a), a well-known
challenge even for many weather forecasting models (Wang
et al., 2018; Yang et al., 2019a). Considering the high com-
putational cost of the SCREAM runs, we conducted three
PGW simulations to drive the ensemble flood projections.
These simulations, each with slightly different initial con-
ditions, represent the uncertainty of the hurricane projection
due to internal variability at the weather timescale (Fig. 3f).
One PGW simulation is selected for LSG model validation.
Its temporal and spatial patterns of precipitation are shown
in Fig. 3a, b, and d, which are significantly different from
the patterns of the benchmark precipitation (Fig. 3a–c) se-
lected for LSG model training. The simulation differences
reflect model uncertainty and the effects of climate change
on the hurricane. Correspondingly, the simulated peak water
depth from the HF RHM using the benchmark precipitation
is significantly larger than that using the PGW precipitation
(Fig. 3e). The significant difference in the benchmark and
PGW precipitation as well as that in flood simulations sup-
ports the use of the latter as an out-of-sample test case, rel-
evant for projecting future flooding. Additionally, the choice
of a PGW flood event over a historical flood event for valida-
tion aligns better with the application scenarios of our down-
scaling method that are ensemble flood projections.
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Figure 3. Comparison of the observed (MRMS) and simulated hourly precipitation during Harvey under the observed historical (SCREAM)
and projected future (PGW) conditions (a), comparison of the cumulative MRMS and PGW precipitation (b), and maps of the observed
cumulative precipitation during Harvey (c), the cumulative precipitation of the PGW simulation selected for the LSG model validation (d),
the difference between the simulated peak water depth from the HF RHM using MRMS and that using the PGW precipitation (e), and the
coefficient of variation (CV) of the PGW simulated cumulative precipitation ensemble (f) in the study domain. The 7 d total precipitation for
the 500-year return period in the Houston area is marked in (b).

2.3 River hydrodynamic model

In this study, we chose the 2-D Overland Flow Model (OFM;
Kim et al., 2012) for river hydrodynamics modeling, which
was recently validated for the Harvey flood simulations (Xu
et al., 2025). Briefly, OFM is a finite-volume model that
implements the first-order Godunov-type upwind scheme
on a triangular mesh and uses Roe’s approximate Riemann
solver to compute fluxes between grid cells (Begnudelli and
Sanders, 2006). Later, Ivanov et al. (2021) improved OFM’s
computational efficiency by using the Portable, Extensible
Toolkit for Scientific Computation (PETSc; Balay et al.,
2019) software for model parallelization. Mathematically,
OFM solves the 2-D shallow water equations, which include
the terms of advection, bottom friction, and gravity but ig-
nore the terms of Coriolis and viscous forces (Begnudelli and

Sanders, 2006):

∂h

∂t
+

∂(uh)

∂x
+

∂(vh)

∂y
= q, (4)

∂(uh)

∂t
+

∂
(
u2h+ 1

2gh2
)

∂x

+
∂(uvh)

∂y
=−gh

∂zb

∂x
−CDu

√
u2+ v2, (5)

∂(vh)

∂t
+

∂(uvh)

∂x

+

∂
(
v2h+ 1

2gh2
)

∂y
=−gh

∂zb

∂y
−CDv

√
u2+ v2, (6)

where t is the time (s), h is the flow depth (m), u and v are
the water velocity (ms−1) in the x and y direction under the
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Cartesian coordinate system, q is the excess precipitation rate
(ms−1), g is the gravitational acceleration constant (ms−2),
zb is the bed elevation (m), and CD is the bed drag coefficient
derived from Manning’s roughness n as CD = gn2h−1/3.

We configure the OFM model on two variable-resolution
meshes, with the high-resolution configuration serving as the
HF RHM and the low-resolution configuration as the LF
RHM. The variable-resolution meshes are generated using a
Delaunay-based unstructured mesh generator, JIGSAW (En-
gwirda, 2017), which can refine topographic features impor-
tant for shaping river flow regimes, such as river channels
(Kim et al., 2022; Xu et al., 2022), floodplains (Yamazaki
et al., 2011; Schrapffer et al., 2020), and water manage-
ment structures (Schmutz and Moog, 2018). Specifically, the
high-resolution mesh has 664 724 grid cells over the study
domain, representing the main channels, tributaries, dams,
and other regular cells with resolutions of 30, 60, 30, and
1000 m, respectively. In contrast, the low-resolution mesh
has only 14 536 grid cells over the study domain, represent-
ing the main channels, tributaries, and other regular cells with
a uniform resolution of 1000 m (except for dams, which are
resolved at 30 m) (Fig. 2). In both the high-resolution and
low-resolution meshes, the areas around two flood control
reservoirs, Addicks and Barker’s Reservoir (Fig. 2), are re-
fined to ensure more accurate flood simulations. As indicated
in Xu et al. (2025), even though the simulation of stream-
flow at the outlet is only moderately degraded, the use of a
coarser mesh severely deteriorates the model performance in
simulating inundation. The 30 m resolution digital elevation
model (DEM) from the National Elevation Database (NED)
was used to construct the topography of the RHM meshes.

To force the OFM, the MRMS precipitation data are up-
scaled from their native temporal resolution to an hourly
time step and spatially interpolated to the variable-resolution
mesh cells using the nearest-neighbor interpolation method.
Similarly, the hourly SCREAM simulation data are spa-
tially interpolated to the variable-resolution mesh cells using
the nearest-neighbor method before being used to force the
OFM.

2.4 Validation of downscaled hydrodynamics

Validation of the downscaling method uses the “perfect prog-
nosis” approach in which the HF RHM simulation is the
target for the downscaled flow depth and velocity that uses
the LF RHM simulated flow depth and velocity as the input.
This validation strategy allows one to focus on evaluating
the downscaling method without the influence of the RHM
or observation errors and has been widely adopted in cli-
mate downscaling (Denis et al., 2002) as well as hydrological
and hydrodynamic downscaling (Carreau and Guinot, 2021;
Feng et al., 2023b) when both low- and high-resolution simu-
lations are available. Therefore, in this study, good agreement
between the downscaled flow depth and velocity with the

high-resolution simulations from the HF RHM is a demon-
stration of the effectiveness of the downscaling method.

In the study, the accuracy of the downscaled hydrodynam-
ics is evaluated using multiple metrics. Using the HF sim-
ulation as the reference, we calculate the root mean square
error (RMSE) of the simulated hourly flow depth and veloc-
ity at each grid cell during the flood event and the absolute
bias of the simulated flow depth and velocity at each grid cell
during the flood peak. These two metrics are used to evalu-
ate the spatial uncertainty of the downscaled estimates. The
average RMSE of all the grid cells is also calculated to high-
light the overall uncertainty of the downscaling. The tempo-
ral uncertainty of the downscaled hydrodynamics is assessed
using the Kling–Gupta efficiency (KGE) (Gupta et al., 2009),
which can evaluate the bias, correlation, and error variability
of the downscaling comprehensively. The KGE is calculated
at 19 USGS gauges (Fig. 2), which have been previously used
to validate the HF RHM (Xu et al., 2025).

3 Results

3.1 Validation of downscaled flow depth

The trained LSG models can accurately predict the spatial
and temporal variabilities of flow depth (Figs. 4 and 5) and
velocity (Figs. 6 and 7) for the PGW flood event. First, the
results confirm the effectiveness of the EOF analysis in ex-
tracting the significant spatial and temporal modes of the 2-D
shallow water equations (Figs. S4 and S5 in the Supplement).
Notably, as indicated by the proportion of variance explained
by the specific modes, the significant modes of flow velocity
(Fig. S5) are less representative of its variability compared
to those of flow depth (Fig. S4), likely due to the higher
nonlinearity of flow velocity simulations. Second, the trained
LSG models perform remarkably well in reconstructing the
HF ECs of river hydrodynamics from the LF ECs for both
the training (Figs. S6 and S7 in the Supplement) and predic-
tion phases (Figs. S8 and S9 in the Supplement). This perfor-
mance is achieved despite substantial distinctions between
the HF and LF ECs. Consequently, the spatial and temporal
features of the high-resolution flow depth and velocity are
well reproduced for both the training (Figs. S10–S13 in the
Supplement) and prediction phases (Figs. 4–7), even though
they are forced by two distinct hurricane events (Fig. 3).

During the PGW flood, using the HF simulation as the ref-
erence, the average RMSE of the downscaled flow depth is
0.07± 0.1 m (Fig. 4b), which is less than one-fourth of the
average RMSE (0.3± 0.6 m) of the simulated LF flow depth
(Fig. 4a). The downscaling achieves impressive error reduc-
tions in river channels (particularly downstream reaches), the
nearby floodplains, and the two reservoirs (Fig. 4), which are
flood-prone areas that have been deliberately refined in the
high-resolution mesh (Fig. 2c). By downscaling, the detailed
longitudinal variations of flow depth in the HF simulation
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Figure 4. Root mean square error (RMSE) of the LF simulated (a) and downscaled flow depth (b) for the entire PGW event, the LF
simulated (c) and downscaled flow depth (d) at 01:00 CST on 27 August (the peak flood time), the bias of the LF simulated (e) and downscaled
flow depth (f) at the peak flood time, and the HF simulated flow depth (g) at the peak flood time. RMSE and bias are calculated by treating
the HF simulation as “ground truth”.

(Fig. 4g) are precisely reproduced (Fig. 4d) during the peak
flood period (near 01:00 CST, 27 August). Even very small
ponding grid cells, which are barely seen in the LF simula-
tion (Fig. 4c), are recovered (Fig. 4d). Compared to the LF
simulation, the downscaled flow depth is highly consistent
with the HF simulation at the peak flood time, with the bias
range (from the 10th percentile to the 90th percentile) re-
duced from [−0.2 m, 0.3 m] (Fig. 4e) to [−0.04 m, 0.06 m]
(Fig. 4f). Generally, the downscaling reduces the underesti-
mation and overestimation of the LF simulated flow depth in
river channels and floodplains, respectively, likely due to the
use of the HF EOFs (Fig. S4).

The downscaling approach also performs promisingly in
reproducing the temporal variability of the HF simulated
flow depth at the selected USGS gauges (Fig. 5). The down-

scaled flow depth achieves KGE ≥ 0.5 (good performance)
at all gauges except Gauge #14, where a small inunda-
tion occurs. In contrast, the LF simulation only achieves
KGE ≥ 0.5 at two gauges but exhibits poor performance
(KGE <−0.41; Knoben et al., 2019) at three gauges,
whereas the performance at the other gauges is barely ac-
ceptable (−0.41 < KGE < 0.5). Notably, for four gauges (#3,
#7, #8, and #19), the downscaling approach achieves KGE
≥ 0.9 (excellent performance). Not only does the downscal-
ing reduce the severe biases of the LF simulation at nearly all
gauges, but it also recovers dynamics not captured by the LF
simulation, such as the second peak flow depth at Gauge #18.
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Figure 5. Comparison of the HF simulated, LF simulated, and downscaled flow depth at the selected USGS gauges during the PGW event.

3.2 Validation and enhancement of downscaled flow
velocity

Likewise, the downscaled simulations provide accurate rep-
resentations of the spatial and temporal variabilities of
flow velocity during the PGW flood (Figs. 6 and 7). The
downscaling significantly reduces the average RMSE of
simulated flow velocity from 0.7± 1.9 ms−1 (Fig. 6a) to
0.2± 0.6 ms−1 (Fig. 6b). Compared to flow depth, the er-
ror reduction in flow velocity is more concentrated in the
river channels, possibly reflecting the larger gradients of flow
velocity from river channels to the nearby floodplains. Like
flow depth, the downscaling successfully recovers the de-
tailed longitudinal variations of flow velocity in the HF sim-
ulation (Fig. 6g), as well as the river flow in small inundated
areas during the peak flood period (Fig. 6d). The method
also yields substantial reductions in the estimation bias at
the peak flood time, from [−0.4 ms−1, 0.3 ms−1] (Fig. 6e)
to [−0.07 ms−1, 0.05 ms−1] (Fig. 6f).

The downscaling also produces more consistent temporal
variability of flow velocity compared with the HF simula-
tion at the selected USGS gauges (Fig. 7). The downscaled

flow velocity achieves KGE ≥ 0.5 (good performance) at
15 gauges and KGE ≥ 0.9 (excellent performance) at two
gauges (#11 and #16). In contrast, the LF simulation only
achieves KGE ≥ 0.5 at Gauge #8 but exhibits unacceptable
performance (KGE <−0.41) at nine gauges. However, de-
spite its superiority to the LF simulation, the downscaled
flow velocity does not perform as well as the downscaled
flow depth at many of the study gauges. For instance, it fails
to capture the velocity spike at Gauge #1 and greatly under-
estimates the velocity peaks at several other gauges (e.g., #2,
#4, and #8). The downscaled solutions also struggle to repro-
duce the high-frequency fluctuations of flow velocity, such
as at Gauges #12 and #18. Analysis of the error sources in-
dicates that for the downscaled flow velocity, the error from
dimensionality reduction ERDR is substantially larger than
the LSG model error ERLSG, while for the downscaled flow
depth, ERLSG is dominant (Fig. 8). First, this result aligns
with the EOF analysis (Fig. S5), which shows the higher
nonlinearity of flow velocity simulations. Second, this im-
plies that reducing ERDR is crucial for more accurate flow
velocity downscaling.
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Figure 6. RMSE of the LF simulated (a) and downscaled flow velocity (b) for the entire PGW event, the LF simulated (c) and downscaled
flow velocity (d) at 01:00 CST on 27 August (the peak flood time), the bias of the LF simulated (e) and downscaled flow velocity (f) at the
peak flood time, and the HF simulated flow velocity (g) at the peak flood time. RMSE and bias are calculated by treating the HF simulation
as “ground truth”.

A possible way to reduce ERDR is to regionalize the train-
ing of the LSG model in a smaller domain that focuses on
a specific geographic feature. This approach can prevent lo-
cally important EC modes from being filtered out in large-
scale EOF analyses (see Fraehr et al., 2023a, for North’s
test and Kaiser’s rule). Notably, this treatment does not re-
quire new model simulations and follows the same proce-
dure outlined in Fig. 1. We selected Gauge #1, where the
whole-domain downscaling fails to reproduce the peak flow
velocity simulated by the HF model. By training a new LSG
model over a smaller area encompassing the gauge (Fig. S14
in the Supplement), the downscaled simulation aligns with
the HF model for predicting the flow velocity spike on 26 Au-
gust (Fig. 9). For the PGW event, the KGE for the simulated
flow velocity increases significantly from 0.04 to 0.61. The

regionalized training also slightly improves the accuracy of
the downscaled flow depth at Gauge #1, with KGE increasing
from 0.81 to 0.96. The smaller effect of regionalized training
on flow depth is expected because our error analysis indicates
that the uncertainty of the downscaled flow depth is only mi-
norly contributed by ERDR (Fig. 8).

3.3 Ensemble inundation downscaling

Because the training of the LSG model can be completed
within minutes, the computational cost of our downscaling
approach depends solely on the computational time needed
for the RHM simulations. For the 13 d PGW simulations,
when running on Intel Xeon Skylake CPUs (2.4 GHz) with
192 GB of DDR4 DRAM, the HF model (664 724 grid cells)
requires 4032 CPU hours to complete, while the LF model
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Figure 7. Comparison of the HF simulated, LF simulated, and downscaled flow velocity at the selected USGS gauges during the PGW event.

(14 536 grid cells) requires only 48 CPU hours. Thus, by ap-
plying the downscaling approach to the LF ensemble sim-
ulations, our method provides an efficient way to evalu-
ate the impact of the uncertainty in tropical cyclone (TC)
predictions on the simulation of urban flooding. Figure 10
shows that compared to the single-member PGW simula-
tion described in the above evaluation, a three-member en-
semble of PGW simulations predicts higher peak inundation
depths in the lower reaches of the Buffalo Bayou watershed,
where population density is also the highest. In some areas,
the difference in peak flood depth during the PGW event
can exceed 1 m (Fig. 10b). Using the ensemble simulations,
we can also calculate the likelihood of the areas where the
PGW flood event poses significant or high risks to human
safety (h > 0.95 m; Russo et al., 2013). From the ensemble
simulations, humans will very likely face significant risks
from floodwater in the two reservoirs, river channels, and
the nearby areas in Houston during the PGW flood event
(Fig. 10c). In line with Fig. (10b), some simulations predict
larger extents of the areas where the flood event would pose
significant risks to human safety.

4 Discussion

4.1 Simulation of high-resolution river hydrodynamics

Our results demonstrate that the LSG-model-based down-
scaling approach can provide efficient and accurate simula-
tions of high-resolution river hydrodynamics at the computa-
tional cost of LF RHMs. To the best of our knowledge, this
is one of the first studies to explore methods for fast and ac-
curate simulations of high-resolution flow velocity in realis-
tic cases, broadening the usefulness and relevance of recent
rapid progress in hydrodynamic modeling, which still exclu-
sively focuses on flooding (Carreau and Guinot, 2021; Xie
et al., 2021; Zhou et al., 2021; Feng et al., 2023b; Fraehr
et al., 2023b; Frame et al., 2024; Wing et al., 2024). With
HF simulations of flow velocity, our understanding of not
only instantaneous flood hazards but also longer-timescale
environmental hazards, such as eutrophication and pollution,
can be greatly advanced. More broadly, the new method can
contribute to the development of fully coupled atmosphere–
land–river–ocean ESMs, which will be discussed in detail
in Sect. 4.2. It is worth noting that the study watersheds of
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Figure 8. Percentage of flow depth (a) and velocity (b) downscaling uncertainty that can be explained by the error from the LSG model.

Figure 9. Comparison of the HF simulated, LF simulated, and downscaled flow depth and velocity at Gauge #1 during the PGW event when
training LSG models in a focused area around the gauge (Fig. S14).

Fraehr et al. (2023a, 2023b) differ from this study in land
use and climate. The two Australian watersheds in Fraehr
et al. (2023a, 2023b) are dominated by rural and natural land-
scapes and are less affected by TCs. The success of the LSG
model in different domains underscores its broad geographi-
cal applicability.

The LSG-model-based downscaling approach has two ma-
jor advantages over neural network (NN)-based methods for
high-resolution river hydrodynamic modeling. First, com-
pared to NN-based methods (Tran et al., 2023), the training
time of the LSG method is negligible, requiring only one ex-
pensive HF RHM simulation for training. Second, because
physical laws have been explicitly coded in LF RHMs and
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Figure 10. Projected peak flood depth of the PGW ensemble simulation (a), the difference of the projected peak flood depth between the
PGW ensemble simulation and the selected PGW simulation (b), and the probability of significant risks to human safety from flooding (c).

implicitly complied with in the spatial interpolation process,
the trained model can be expected to be transferable to future
unseen climate conditions. These advantages make the ap-
proach well-suited for ensemble projections of future flood-
ing, which are crucial for robust assessment of flood adapta-
tion and mitigation (Fig. 10) given the substantial uncertainty
of TC projections (Fig. 3). Another potential strength of our
approach is that it can directly benefit from future advances
in RHMs. The development of better RHMs will provide

more accurate LF and HF simulations of river hydrodynam-
ics for LSG model training, helping to reduce downscaling
uncertainty (Fraehr et al., 2023a).

While a well-trained LSG model can be applied to un-
seen climate conditions, it is not free from retraining. For in-
stance, without retraining, an LSG model is unlikely to han-
dle changes in land use and geographical features, such as
geomorphological changes in river channels and river flow
modifications related to reservoirs. Additionally, our training
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strategy, which trains the LSG model only with data from
the Harvey flood event, may not be effective in more com-
plex cases where floods are not always driven by TCs. For
instance, the main flood mechanisms in the US Mid-Atlantic
watersheds include both rain-on-snow (ROS) and snowmelt
events that mainly occur in high-latitude areas (e.g., 1996
ROS flood) and heavy rainfall from tropical cyclones (e.g.,
Hurricane Irene in 2011), extratropical systems, and convec-
tive systems (Smith et al., 2010; Li et al., 2021; Sun et al.,
2024). For such cases, it is necessary to follow the training
procedure of Fraehr et al. (2023a), selecting multiple repre-
sentative flood events of different types for training. Since
the number of flood mechanisms is limited, we expect that
the computational demand will still be manageable even if
the LSG model is applied to a watershed with diverse flood
generation processes.

Our study reveals that the downscaling accuracy of flow
velocity is lower than that of flow depth. This is because
the dynamics of flow velocity are more nonlinear, which
induces significantly larger dimensionality-reduction errors
in the downscaling process (Fig. 8). Accordingly, we in-
troduced a regionalized training procedure to improve the
downscaled flow velocity in focused areas (Fig. 9). This pro-
cedure does not significantly increase the computational cost
of the LSG model because it does not require any new RHM
runs. We envision that this strategy can be particularly use-
ful for simulating river hydrodynamics in geographical ar-
eas that need more careful flood risk assessments, such as
schools, hospitals, critical infrastructures, energy facilities,
and Superfund sites (Brand et al., 2018).

The LSG model error ERLSG primarily depends on the per-
formance of the sparse GP model in mapping LF ECs to HF
ECs. Besides the sparse GP model, other data-driven models,
such as multilayer perceptrons and artificial neural networks,
can also be used to establish the complex relationships be-
tween ECs (Carreau and Guinot, 2021). Future research on
implementing other data-driven models to reduce ERLSG is
also worth exploring.

The LF model used in this study is about 84 times faster
than the HF model, which is significantly more efficient than
the LF model adopted by Fraehr et al. (2023a) that is only
12 times faster. Also, our LF model achieves a larger accel-
eration rate than the theoretical boost rate when considering
the reduction in the number of grid cells ( 664 724

14 536 ≈ 46). The
improved efficiency indicates that the OFM RHM has taken
advantage of fewer computational units and longer time steps
according to the Courant–Friedrichs–Lewy convergence cri-
teria in the simulations. Furthermore, the results underscore
the usefulness of our approach for flood risk assessment,
which needs hundreds or thousands of ensemble model runs
for uncertainty quantification (Wu et al., 2020), which the
configuration of Fraehr et al. (2023a) cannot provide due to
its inefficient LF simulations.

4.2 Coupling large-scale hydrodynamical processes
with local processes in river models

It is challenging to represent other physical, chemical, and bi-
ological processes beyond river discharge in large-scale river
models. This is mainly because, by sacrificing process and
resolution accuracy for computational efficiency, these mod-
els cannot provide accurate simulations of high-resolution
flow depth and velocity necessary for calculating local dy-
namics important for fluvial processes (Bertagni et al., 2024),
such as sediment settling velocity (Li et al., 2022), bottom
shear stress and diffusivity (Chen et al., 2023), and green-
house gas outgassing velocity (Ulseth et al., 2019). By accu-
rately and efficiently simulating high-resolution flow depth
and velocity, our downscaling approach provides an oppor-
tunity to bridge the gaps between large-scale hydrodynam-
ical processes and detailed local processes in river mod-
els. Specifically, we propose a two-way coupling scheme in
large-scale river models (Fig. 11). In the first stage of each
simulation cycle, a large-scale river model is used to simu-
late coarse-resolution flow depth and velocity and transport
mass and momentum downstream. In the second stage, the
LSG-model-based approach is employed to downscale the
simulated flow depth and velocity to fine resolutions. In the
third stage, high-resolution hydrodynamics are used to drive
detailed physical, chemical, and biological models, such as
the PFLOTRAN model for geochemistry (Hammond et al.,
2012) and the GAIA model for sediment (Tassi et al., 2023),
to simulate the sources and sinks of the represented tracers.
In the final stage, the sources and sinks calculated in the fine-
resolution mesh are upscaled to the coarse-resolution mesh
of the large-scale river model and used to update the concen-
trations of the represented tracers.

An outstanding weakness of existing ESMs is that they
ignore the lateral biogeochemical fluxes in the land–river–
ocean continuum and therefore do not close the global bio-
geochemical cycles (Regnier et al., 2022). By implementing
this new paradigm of river modeling in ESMs, land, river,
and ocean biogeochemistry will be fully coupled, helping
to close the global biogeochemical cycles. To achieve this
vision, future research must focus on extending the LSG-
model-based approach to downscale 1-D river models to 2-D
fine-resolution meshes. This is because, despite the prospect
of 2-D large-scale river models running on GPU-based su-
percomputers, 1-D river models will likely still be the default
configuration in ESMs in the near future (Telteu et al., 2021).
We envision that the potential challenges could include the
alignment of 1-D and 2-D unstructured meshes and the in-
terpolation of simulated 1-D river hydrodynamics onto 2-D
meshes.
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Figure 11. A schematic illustration of coupling large-scale hydrodynamical processes that are simulated in coarse resolution with local
physical, chemical, and biological processes that are simulated in fine resolution in river models.

5 Conclusion

In this study, we developed a downscaling approach based
on the LSG model to achieve fast and accurate simulations
of high-resolution river flow depth and velocity. Our test of
TC-induced flood events in an urban watershed in Houston
demonstrates the effectiveness and efficiency of the down-
scaling method, as the simulation errors in the LF RHM
are greatly reduced, without additional computational costs.
We further indicated that the simulation error of the down-
scaled flow velocity can be reduced by employing region-
alized training of the LSG model for selected focus areas.
As one of the first studies to explore high-fidelity and ef-
ficient flow velocity simulations in realistic cases, our re-
search can help broaden the usefulness and relevance of
the recent rapid progress in hydrodynamic modeling, which
still exclusively focuses on flooding. More importantly, the
downscaling approach provides an opportunity to bridge the

gaps between large-scale hydrodynamical processes and lo-
cal physical, chemical, and biological processes in river mod-
els, which could eventually help close the global biogeo-
chemical cycles in ESMs.
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